WO2016041680A1 - Whitening composition - Google Patents

Whitening composition Download PDF

Info

Publication number
WO2016041680A1
WO2016041680A1 PCT/EP2015/067350 EP2015067350W WO2016041680A1 WO 2016041680 A1 WO2016041680 A1 WO 2016041680A1 EP 2015067350 W EP2015067350 W EP 2015067350W WO 2016041680 A1 WO2016041680 A1 WO 2016041680A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid detergent
detergent composition
composition according
aqueous liquid
alkoxylated
Prior art date
Application number
PCT/EP2015/067350
Other languages
English (en)
French (fr)
Inventor
Stephen Norman Batchelor
Jayne Michelle Bird
Original Assignee
Unilever Plc
Unilever N.V.
Conopco, Inc., D/B/A Unilever
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Plc, Unilever N.V., Conopco, Inc., D/B/A Unilever filed Critical Unilever Plc
Priority to CN201580043683.1A priority Critical patent/CN106661503B/zh
Priority to EP15744901.8A priority patent/EP3194545B1/de
Priority to AU2015317182A priority patent/AU2015317182A1/en
Priority to BR112017004339-4A priority patent/BR112017004339B1/pt
Publication of WO2016041680A1 publication Critical patent/WO2016041680A1/en
Priority to CONC2017/0001201A priority patent/CO2017001201A2/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/37Mixtures of compounds all of which are anionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/06Ether- or thioether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/34Derivatives of acids of phosphorus
    • C11D1/345Phosphates or phosphites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/12Soft surfaces, e.g. textile

Definitions

  • the present invention concerns the use of laundry liquid detergent compositions.
  • Dyes are widely used to colour liquid laundry detergents.
  • Shading dyes are blue or violet dyes which are substantive to fabrics during the wash process, and enhance whiteness by eliminating yellowness on white fabrics.
  • Liquid detergents may be used to directly treat stains on fabrics.
  • the dye may stain the fabric. Methods to ameliorate this problem are required.
  • alkoxylated polyaryl and polyalkyi phenols reduce neat contact dye staining of coloured domestic liquid laundry products.
  • the present invention provides a laundry aqueous liquid detergent composition
  • a laundry aqueous liquid detergent composition comprising: charged surfactant, preferably the level of charged surfactant is from 4 to 50 wt%, more preferably 6 to 30 wt%, most preferably 8 to 20 wt%; alkoxylated polyaryl or alkoxylated polyalkyl phenol of the following structure:
  • Ri is selected from linear or branched C3-C15 alkyi groups and aryl groups, X is selected from ethoxy or propoxy groups; n is from 2 to 70, T is selected from H, SO3 " ; COO " ; and, PO3 2" , preferably H and SO3 " ; preferably the alkoxylated polyaryl or alkoxylated polyalkyl phenol is at a level of from 0.1 to 20 wt%, more preferably 0.5 to 10 wt%, most preferably 2 to 9 wt%; and,
  • (iii) dye preferably 0.0001 to 0.1 wt% of blue or violet shading dye.
  • the present invention provides a laundry detergent composition
  • a laundry detergent composition comprising:
  • anionic surfactant selected from: linear alkyi benzene sulphonates; alkyi sulphates; alkyi ether sulphates; and mixtures thereof;
  • n is selected from: 10; 1 1 ; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21 ; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31 ; 32; 33; 34; 35; 36; 37; 38; 39; 40; 41 ; 42; 43; 44; 45; 46; 47; 48; 49; 50; 51 ; 52; 53; and, 54; and
  • (iii) dye preferably 0.0001 to 0.01 wt% dye.
  • the present invention provides a domestic method of treating a textile, the method comprising the steps of:
  • the liquid detergent will be applied to stains on the textile rather than to the entire textile, prior to washing.
  • the surfactant used is preferably as preferred for the embodiments of the invention which are described herein with reference to compositions.
  • the textile is preferably an item of clothing, bedding or table cloth.
  • Preferred items of clothing are cotton containing shirts, trousers, underwear and jumpers.
  • Alkoxylated polyarylphenol and polvalkylphenol Preferably the alkoxylated polyarylphenol and alkoxylated polyalkylphenol is an uncharged (neutral) alkoxylated tristyrylphenol.
  • the alkoxylated tristyrylphenol is a polyethylene glycol mono(2,4,6-tris(1- phenylethyl)phenyl) ether.
  • the alkoxylated polyarylphenol contains an average of 2 to 70 alkoxy groups, most preferably 10 to 54 alkoxy groups.
  • the alkoxylationed is ethoxylation.
  • the aryl group in the alkoxylated polyarylphenol is preferably selected from, phenyl, tolyl, naphthyl, tetrahydronaphthyl, indanyl, indenyl, styryl, pyridyl, quinolinyl, and mixtures thereof.
  • the alkoxylated polyarylphenol is a polyethylene glycol mono(2,4,6-tris(1 - phenylethyl)phenyl) ether (CAS-No: 70559-25-0) with the following structure:
  • n is the average numbers of moles of alkoxy units in the polyalkoxy chain.
  • Compounds are available from industrial suppliers, for example Rhodia under the Soprophor trade name; from Clariant under the Emulsogen trade name; Aoki Oil Industrial Co under the Blaunon trade name; from Stepan under the Makon trade name; from TOHO Chemical Industry Co under the Sorpol trade name.
  • alkoxylated polyarylphenol or the alkoxylated polyalkyi phenol is not considered a surfactant and does not contribute numerically to the surfactant content as defined herein.
  • Dyes are soluble in the medium of application, in this case a laundry detergent liquid.
  • Dyes for use in liquid laundry detergents preferably have an extinction coefficient at the maximum absorption in the visible range (400 to 700nm) of greater than 5000 L mol "1 cm -1 , preferably greater than 10000 L mol "1 cm -1 .
  • the dyes are blue or violet in colour.
  • Preferred dye chromophores are azo, azine, anthraquinone, phthalocyanine and triphenylmethane.
  • Azo, anthraquinone, phthalocyanine and triphenylmethane dyes preferably carry a net anionic charged or are uncharged.
  • Azine dyes preferably carry a net anionic or cationic charge.
  • Preferred non-shading dyes are selected are selected from blue dyes, most preferably anthraquinone dyes bearing sulphonate groups and triphenylmethane dye bearing sulphonate groups.
  • Preferred compounds are acid blue 80, acid blue 1 , acid blue 3; acid blue 5, acid blue 7, acid blue 9, acid blue 1 1 , acid blue 13, acid blue 15, acid blue 17, acid blue 24, acid blue 34, acid blue 38, acid blue 75, acid blue 83, acid blue 91 , acid blue 97, acid blue 93, acid blue 93:1 , acid blue 97, acid blue 100, acid blue 103, acid blue 104, acid blue 108, acid blue 109, acid blue 1 10, and acid blue 213.
  • Blue or violet Shading dyes are most preferred. Shading dyes deposit to fabric during the wash or rinse step of the washing process providing a visible hue to the fabric.
  • the dye gives a blue or violet colour to a white cloth with a hue angle of 240 to 345, more preferably 260 to 320, most preferably 270 to 300.
  • the white cloth used in this test is bleached non-mercerised woven cotton sheeting.
  • the shading dye's fabric substantivity makes the neat contact staining worse.
  • WO2012/054820 P&G
  • WO2013/142495 P&G
  • WO2013/151970 P&G
  • a mixture of shading dyes may be used.
  • the shading dye chromophore is most preferably selected from mono-azo, bis-azo and azine.
  • Mono-azo dyes preferably contain a heterocyclic ring and are most preferably thiophene dyes.
  • Bis-azo dyes are preferably sulphonated bis-azo dyes.
  • Preferred examples of sulphonated bis-azo compounds are direct violet 7, direct violet 9, direct violet 1 1 , direct violet 26, direct violet 31 , direct violet 35, direct violet 40, direct violet 41 , direct violet 51 , direct violet 66, direct violet 99 and alkoxylated versions thereof.
  • Alkoxylated bis-azo dyes are discussed in WO2012/054058 and WO/2010/151906.
  • An example of an alkoxylated bis-azo dye is :
  • Azine dyes are preferably selected from sulphonated phenazine dyes and cationic phenazine dyes. Preferred examples are acid blue 98, acid violet 50, dye with CAS-No 72749-80-5, acid blue 59, and the phenazine dye selected from:
  • X 3 is selected from: -H; -F; -CH 3 ; -C 2 H 5 ; -OCH 3 ; and, -OC 2 H 5 ;
  • X 4 is selected from: -H; -CH 3 ; -C 2 H 5 ; -OCH 3 ; and, -OC 2 H 5 ;
  • Y 2 is selected from: -OH; -OCH 2 CH 2 OH; -CH(OH)CH 2 OH; -OC(0)CH 3 ; and, C(0)OCH 3 .
  • the shading dye is present in the liquid composition in range from 0.0001 to 0.1 wt %. Depending upon the nature of the shading dye there are preferred ranges depending upon the efficacy of the shading dye which is dependent on class and particular efficacy within any particular class. As stated above the shading dye is a blue or violet shading dye.
  • the laundry composition comprises charged surfactant and it is most preferred that the charged surfactant is anionic surfactant (which includes a mixture of the same).
  • Suitable anionic detergent compounds which may be used are usually water- soluble alkali metal salts of organic sulphates and sulphonates having alkyi radicals containing from about 8 to about 22 carbon atoms, the term alkyi being used to include the alkyi portion of higher alkyi radicals.
  • suitable synthetic anionic detergent compounds are sodium and potassium alkyi sulphates, especially those obtained by sulphating higher Cs to Ci8 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyi C9 to C20 benzene sulphonates, particularly sodium linear secondary alkyi C10 to C15 benzene sulphonates; and sodium alkyi glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • the anionic surfactant is preferably selected from: linear alkyi benzene
  • alkyi sulphates alkyi ether sulphates; soaps; alkyi (preferably methyl) ester sulphonates, and mixtures thereof.
  • anionic surfactants are selected from: linear alkyi benzene sulphonate; alkyi sulphates; alkyi ether sulphates and mixtures thereof.
  • the alkyi ether sulphate is a C12-C14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units.
  • Sodium lauryl ether sulphate is particularly preferred (SLES).
  • the linear alkyi benzene sulphonate is a sodium C11 to Ci5 alkyi benzene sulphonates.
  • the alkyi sulphates is a linear or branched sodium C12 to C18 alkyi sulphates.
  • Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyi sulphate).
  • the level of anionic surfactant in the laundry composition is preferably from 4 to 50 wt%, more preferably 6 to 30 wt%, and most preferably 8 to 20 wt%.
  • two or more anionic surfactant are present, for example linear alkyl benzene sulphonate together with an alkyl ether sulphate.
  • the laundry composition in addition to the anionic surfactant comprises alkyl exthoylated non-ionic surfactant, preferably from 2 to 8 wt% of alkyl alkoxylated, preferably ethoxylated, non-ionic surfactant.
  • Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide.
  • Specific nonionic detergent compounds are the condensation products of aliphatic Cs to Cie primary or secondary linear or branched alcohols with ethylene oxide.
  • the alkyl ethoxylated non-ionic surfactant is a Cs to Cie primary alcohol with an average ethoxylation of 7EO to 9EO units.
  • nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described "Surface Active Agents” Vol. 1 , by Schwartz & Perry, Interscience 1949, Vol. 2 by Schwartz, Perry & Berch, Interscience 1958, in the current edition of "McCutcheon's Emulsifiers and Detergents” published by Manufacturing Confectioners Company or in "Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 .
  • surfactants used are saturated. Also applicable are surfactants such as those described in EP-A-328 177
  • the charged surfactant may be a cationic such that the formulation is a fabric conditioner.
  • the detergent compositions based on anionic or anionic/non-ionic surfactants is however the more preferred embodiment.
  • the present invention When the present invention is used as a fabric conditioner it needs to contain a cationic compound.
  • the quaternary ammonium compound is a quaternary ammonium compound having at least one C12 to C22 alkyl chain.
  • the quaternary ammonium compound has the following formula:
  • a preferred compound of this type is the quaternary ammonium compound cetyl trimethyl quaternary ammonium bromide.
  • a second class of materials for use with the present invention are the quaternary ammonium of the above structure in which R 1 and R 2 are independently selected from Ci to C22 alkyl or alkenyl chain; R 3 and R 4 are independently selected from Ci to C 4 alkyl chains and X " is a compatible anion.
  • the composition optionally comprises a silicone.
  • Builders or Complexinq Agents Builder materials may be selected from 1 ) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
  • calcium sequestrant builder materials examples include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
  • Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate.
  • Examples of calcium ion-exchange builder materials include the various types of water- insoluble crystalline or amorphous aluminosilicates, of which zeolites are the well known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070.
  • the composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions.
  • Zeolite and carbonate carbonate (including bicarbonate and sesquicarbonate)) are preferred builders with carbonates being particularly preferred.
  • the composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15%w.
  • Aluminosilicates are materials having the general formula:
  • the preferred sodium aluminosilicates contain 1.5-3.5 S1O2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. The ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
  • phosphate builders may be used.
  • 'phosphate' embraces diphosphate, triphosphate, and phosphonate species.
  • Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
  • the laundry detergent formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt% of phosphate.
  • powder laundry detergent formulations are predominantly carbonate built.
  • Powders should preferably give an in use pH of 9.5-1 1 .
  • the laundry detergent is an aqueous liquid laundry detergent, preferably with a pH of from 7 to 9.
  • mono propylene glycol is present at a level from 1 to 30 wt%, most preferably 2 to 18 wt%, to provide the formulation with appropriate, pourable viscosity.
  • the composition preferably comprises a fluorescent agent (optical brightener).
  • Fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
  • Preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1 ,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1 ,3,5-triazin-2- yl)]amino ⁇ stilbene-2-2' disulphonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1 ,3,5- triazin-2-yl)]amino ⁇ stilbene-2-2' disulphonate, and disodium 4,4'-bis(2- sulphostyryl)biphenyl.
  • Preferred fluorescers are fluorescers with CAS-No 3426-43-5; CAS-No 35632-99-6; CAS- No 24565-13-7; CAS-No 12224-16-7; CAS-No 13863-31 -5; CAS-No 4193-55-9; CAS-No 16090-02-1 ; CAS-No 133-66-4; CAS-No 68444-86-0; CAS-No 27344-41 -8.
  • composition preferably comprises a perfume.
  • perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992
  • the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; pentanoic acid, 2- methyl-, ethyl ester; octanal; benzyl acetate; 1 ,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1 ,1-dimethylethyl)-, 1-acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2-phenylethyl ester;amyl salicylate; beta-caryophyllene; ethyl undecylenate;
  • Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA). It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]). Preferred top- notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • the International Fragrance Association has published a list of fragrance ingredients (perfums) in 201 1. (http://www.ifraorq.Org/en-us/inqredients#.U7Z4hPldWzk)
  • Perfume top note may be used to cue the whiteness and brightness benefit of the invention.
  • perfume components which it is advantageous to encapsulate include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also advantageous to encapsulate perfume components which have a low Log P (ie. those which will be partitioned into water), preferably with a Log P of less than 3.0. These materials, of relatively low boiling point and relatively low Log P have been called the "delayed blooming" perfume ingredients and include one or more of the following materials:
  • Cyclal C Dimethyl Benzyl Carbinol, Dimethyl Benzyl Carbinol Acetate, Ethyl Acetate, Ethyl Aceto Acetate, Ethyl Amyl Ketone, Ethyl Benzoate, Ethyl Butyrate, Ethyl Hexyl Ketone, Ethyl Phenyl Acetate, Eucalyptol, Eugenol, Fenchyl Acetate, Flor Acetate (tricyclo Decenyl Acetate) , Frutene (tricyclco Decenyl Propionate) , Geraniol, Hexenol, Hexenyl Acetate, Hexyl Acetate, Hexyl Formate, Hydratropic Alcohol,
  • Methyl Benyl Acetate Methyl Eugenol, Methyl Heptenone, Methyl Heptine Carbonate, Methyl Heptyl Ketone, Methyl Hexyl Ketone, Methyl Phenyl Carbinyl Acetate, Methyl Salicylate, Methyl-N-Methyl Anthranilate, Nerol, Octalactone, Octyl Alcohol, p-Cresol, p- Cresol Methyl Ether, p-Methoxy Acetophenone, p-Methyl Acetophenone,
  • perfumes with which the present invention can be applied are the so-called aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as clary sage, eucalyptus, geranium, lavender, mace extract, neroli, nutmeg, spearmint, sweet violet leaf and valerian.
  • the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
  • a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
  • composition may comprise one or more further polymers. Examples are:
  • carboxymethylcellulose poly (ethylene glycol), polyvinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • Polymers present to prevent dye deposition may be present, for example
  • One or more enzymes are preferred present in a laundry composition of the invention and when practicing a method of the invention.
  • the level of each enzyme in the laundry composition of the invention is from 0.0001 wt% to 0.1 wt% protein.
  • enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from
  • Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in
  • WO 96/13580 a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1 ,372,034), P. fluorescens, Pseudomonas sp. strain SD 705 (WO 95/06720 and WO 96/27002), P. wisconsinensis (WO 96/12012), a Bacillus lipase, e.g. from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1 131 , 253-360), B. stearothermophilus (JP 64/744992) or B. pumilus (WO 91/16422).
  • B. subtilis Dartois et al. (1993), Biochemica et Biophysica Acta, 1
  • lipase variants such as those described in WO 92/05249,
  • LipolaseTM and Lipolase UltraTM LipexTM and LipocleanTM (Novozymes A/S).
  • the method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1 .4 and/or EC 3.1.1 .32.
  • phospholipase is an enzyme which has activity towards phospholipids.
  • Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1 ) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
  • Phospholipases are enzymes which participate in the hydrolysis of phospholipids.
  • phospholipases Ai and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
  • lysophospholipase or phospholipase B which can hydrolyze the remaining fatty acyl group in lysophospholipid.
  • Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
  • proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included.
  • the protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease.
  • Preferred commercially available protease enzymes include AlcalaseTM, SavinaseTM, PrimaseTM, DuralaseTM, DyrazymTM, EsperaseTM, EverlaseTM, PolarzymeTM, and KannaseTM, (Novozymes A/S), MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM, PurafectTM, Purafect OxPTM, FN2TM, and FN3TM (Genencor International Inc.).
  • the method of the invention may be carried out in the presence of cutinase. classified in EC 3.1.1 .74.
  • the cutinase used according to the invention may be of any origin.
  • cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
  • Suitable amylases include those of bacterial or fungal origin.
  • Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain of Bacillus, e.g. a special strain
  • B. licheniformis described in more detail in GB 1 ,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060.
  • Commercially available amylases are DuramylTM, TermamylTM, Termamyl UltraTM, NatalaseTM, StainzymeTM, FungamylTM and BANTM (Novozymes A/S), RapidaseTM and PurastarTM (from Genencor International Inc.).
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691 ,178, US 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307.
  • cellulases include CelluzymeTM, CarezymeTM, CellucleanTM,
  • EndolaseTM RenozymeTM (Novozymes A/S), ClazinaseTM and Puradax HATM (Genencor International Inc.), and KAC-500(B)TM (Kao Corporation). CellucleanTM is preferred.
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin.
  • peroxidases Chemically modified or protein engineered mutants are included.
  • useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257.
  • peroxidases include GuardzymeTM and NovozymTM 51004 (Novozymes A/S).
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • alkyl groups are sufficiently long to form branched or cyclic chains, the alkyl groups encompass branched, cyclic and linear alkyl chains.
  • the alkyl groups are preferably linear or branched, most preferably linear.
  • indefinite article “a” or “an” and its corresponding definite article “the” as used herein means at least one, or one or more, unless specified otherwise.
  • An aqueous liquid laundry detergent was prepared of the following formulation:
  • the formulation was used to pretreat 10x10cm woven cotton cloth pieces; 1 ml of the formulation was placed in the centre of the cotton and rubbed in a circular motion. The cotton was then left lying on a flat non-porous surface for 24 hours and washing at a liquor to cloth ratio of 100:1 in 26° French Hard water at 20°C, in a plastic bottle placed on an orbital shaker (150rpm) for 1 hour. The cotton was removed and the colour of the cotton measured using a reflectometer. The colour was measured at the centre of the cloth, where the detergent was applied and also at the edge of the cloth, where the neat applied detergent did not reach. The colour was expressed as the CIE L * a * b * values and the difference in colour between the edge and the centre measured as Abstain:
  • the experiment was repeated with different levels of dye and level of uncharged alkoxylated polyarylphenol.
  • the polyarylphenol used was polyethylene glycol mono(2 6-tris(1-phenylethyl)phenyl) ether with different levels of ethoxylation (16 and 54EO).
  • the dye used was a phenazine dye of structure:.
  • the polyarylphenol reduced the neat contact staining of the dye, as seen by the reduction in Abstain value.
  • the 16EO compound was the more effective.
  • An aqueous liquid laundry detergent was prepared of the following formulation:
  • the formulation was used to pretreat 10x10cm woven cotton cloth pieces; 1 ml of the formulation was placed in the centre of the cotton and rubbed in a circular motion. The cotton was then left lying on a flat non-porous surface for 24 hours and washing at a liquor to cloth ratio of 100:1 in 26° French Hard water at 20°C, in a plastic bottle placed on an orbital shaker (150rpm) for 1 hour. The cotton was removed and the colour of the cotton measured using a reflectometer. The colour was measured at the centre of the cloth, where the detergent was applied and also at the edge of the cloth, where the neat applied detergent did not reach. The blue colour due to the dye was measured as the Reflectance at 590nm, as this is the maximum absorbance of the dye in the visible spectrum and is unaffected by fluorescence. The difference in colour between the edge and the centre measured as AR(590)stain:
  • AR(590)stain R(590)edge-R(590)stain
  • the larger AR(590) s tain value the greater the difference in colour between the centre and edge and the more visible the stain.
  • Three different polyalkyl/polyaryl phenol ethers were used: (a) 2,4,6 Tributyl phenol ether sulphate with 7 EO (b) 2,4,6 Tributyl phenol ether with 13 EO (c) 2,4,6 Tristryl phenol ether phosphate
  • the polyaryl/alkyl phenol reduced the neat contact staining of the dye, as seen by the reduction in AR(590) s tain value. This occurs for all 3 compounds: the alkoxylated polyalkyl phenol with and without a sulphonates group and for the alkoxylated polyaryl phenol with the sullphonate group.
  • the polyaryl phenol has best performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
PCT/EP2015/067350 2014-09-18 2015-07-29 Whitening composition WO2016041680A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580043683.1A CN106661503B (zh) 2014-09-18 2015-07-29 增白组合物
EP15744901.8A EP3194545B1 (de) 2014-09-18 2015-07-29 Bleichungszusammensetzung
AU2015317182A AU2015317182A1 (en) 2014-09-18 2015-07-29 Whitening composition
BR112017004339-4A BR112017004339B1 (pt) 2014-09-18 2015-07-29 Composição detergente líquida aquosa para lavagem de roupa, composição detergente para lavagem de roupa e método doméstico de tratar um têxtil
CONC2017/0001201A CO2017001201A2 (es) 2014-09-18 2017-02-08 Composición blanqueadora

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14185270 2014-09-18
EP14185270.7 2014-09-18

Publications (1)

Publication Number Publication Date
WO2016041680A1 true WO2016041680A1 (en) 2016-03-24

Family

ID=51564535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/067350 WO2016041680A1 (en) 2014-09-18 2015-07-29 Whitening composition

Country Status (8)

Country Link
EP (1) EP3194545B1 (de)
CN (1) CN106661503B (de)
AR (1) AR101881A1 (de)
AU (1) AU2015317182A1 (de)
BR (1) BR112017004339B1 (de)
CL (1) CL2017000604A1 (de)
CO (1) CO2017001201A2 (de)
WO (1) WO2016041680A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1313944A (fr) * 1960-11-22 1963-01-04 Gen Aniline & Film Corp Nouveaux produits tensio-actifs, et leur procédé de préparation
GB1337190A (en) * 1970-06-15 1973-11-14 Hoechst Ag Aryloxy polyglycol ethers and their use as non-foaming wetting washing and cleaning agents
GB2007692A (en) * 1977-11-02 1979-05-23 Rhone Poulenc Ind Anti-soiling and anti-redesposition compositions which can be used in detergency
US20050107281A1 (en) * 2003-11-17 2005-05-19 Clariant Gmbh Ether carboxylic acids based on alkoxylated styrylphenols
WO2010034623A1 (en) * 2008-09-23 2010-04-01 Unilever Plc Cationic pyridine and pyridazine dyes
WO2012159778A1 (en) * 2011-05-26 2012-11-29 Unilever Plc Liquid laundry composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101460561B (zh) * 2006-04-03 2013-06-12 斯蒂潘公司 用于乳液聚合物胶乳中的取代的烷氧基化酚类和支化硫酸盐

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1313944A (fr) * 1960-11-22 1963-01-04 Gen Aniline & Film Corp Nouveaux produits tensio-actifs, et leur procédé de préparation
GB1337190A (en) * 1970-06-15 1973-11-14 Hoechst Ag Aryloxy polyglycol ethers and their use as non-foaming wetting washing and cleaning agents
GB2007692A (en) * 1977-11-02 1979-05-23 Rhone Poulenc Ind Anti-soiling and anti-redesposition compositions which can be used in detergency
US20050107281A1 (en) * 2003-11-17 2005-05-19 Clariant Gmbh Ether carboxylic acids based on alkoxylated styrylphenols
WO2010034623A1 (en) * 2008-09-23 2010-04-01 Unilever Plc Cationic pyridine and pyridazine dyes
WO2012159778A1 (en) * 2011-05-26 2012-11-29 Unilever Plc Liquid laundry composition

Also Published As

Publication number Publication date
CN106661503A (zh) 2017-05-10
BR112017004339B1 (pt) 2022-05-03
EP3194545A1 (de) 2017-07-26
EP3194545B1 (de) 2018-10-10
BR112017004339A2 (pt) 2018-01-02
CO2017001201A2 (es) 2017-05-19
AU2015317182A1 (en) 2017-02-23
CN106661503B (zh) 2019-01-29
AR101881A1 (es) 2017-01-18
CL2017000604A1 (es) 2017-10-06

Similar Documents

Publication Publication Date Title
EP3194543B1 (de) Bleichungszusammensetzung
EP3194546B1 (de) Bleichungszusammensetzung
WO2016041678A1 (en) Whitening composition
EP3194542B1 (de) Bleichungszusammensetzung
EP3529342B1 (de) Optische aufhellerzusammensetzung
EP3194541B1 (de) Bleichungszusammensetzung
EP3194545B1 (de) Bleichungszusammensetzung
EP3417042B1 (de) Bleichungszusammensetzung
EP3417039B1 (de) Bleichungszusammensetzung
WO2017140392A1 (en) Whitening composition
WO2017121714A1 (en) Dye

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15744901

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015744901

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: NC2017/0001201

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 2015317182

Country of ref document: AU

Date of ref document: 20150729

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017004339

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112017004339

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01Y

Ref document number: 112017004339

Country of ref document: BR

Kind code of ref document: A2

Free format text: EXIGENCIA ANULADA POR TER SIDO INDEVIDA.

Ref country code: BR

Ref legal event code: B01Y

Ref document number: 112017004339

Country of ref document: BR

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 112017004339

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170303