EP3604808B1 - Liquid-feed type gas compressor - Google Patents
Liquid-feed type gas compressor Download PDFInfo
- Publication number
- EP3604808B1 EP3604808B1 EP18777716.4A EP18777716A EP3604808B1 EP 3604808 B1 EP3604808 B1 EP 3604808B1 EP 18777716 A EP18777716 A EP 18777716A EP 3604808 B1 EP3604808 B1 EP 3604808B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- liquid
- gas
- compressor
- pressure
- feed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 claims description 81
- 238000005070 sampling Methods 0.000 claims description 76
- 239000012530 fluid Substances 0.000 claims description 47
- 238000007906 compression Methods 0.000 claims description 26
- 230000006835 compression Effects 0.000 claims description 25
- 230000008859 change Effects 0.000 claims description 17
- 238000004891 communication Methods 0.000 claims description 17
- 239000003921 oil Substances 0.000 description 178
- 239000007789 gas Substances 0.000 description 28
- 230000004048 modification Effects 0.000 description 23
- 238000012986 modification Methods 0.000 description 23
- 238000010586 diagram Methods 0.000 description 17
- 230000010349 pulsation Effects 0.000 description 14
- 230000000694 effects Effects 0.000 description 12
- 238000001514 detection method Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000010687 lubricating oil Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 8
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0007—Injection of a fluid in the working chamber for sealing, cooling and lubricating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B51/00—Testing machines, pumps, or pumping installations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/02—Lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/02—Lubrication
- F04B39/0207—Lubrication with lubrication control systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/06—Cooling; Heating; Prevention of freezing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/14—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
- F04C18/16—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
- F04C29/021—Control systems for the circulation of the lubricant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/80—Other components
- F04C2240/81—Sensor, e.g. electronic sensor for control or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/24—Level of liquid, e.g. lubricant or cooling liquid
Definitions
- the present invention relates to a liquid-feed-type gas compressor including a gas-liquid separator and particularly relates to a liquid-feed-type gas compressor suitable to monitor the liquid surface height in a gas-liquid separator.
- Patent Document 2 provides a compression unit for a refrigerator that has an appreciable refrigerating capacity by preventing bypassing of working fluid via an oil separator, even during displacement control of a compressor by speed control of a motor.
- the oil separator separates oil mixed in helium gas discharged from the compressor.
- the oil held in the oil separator is returned to a low pressure part of the compressor via an oil return passage to cool the motor.
- the oil in an oil sump in a casing of the compressor is pumped up by an oil pump that supplies it to a compression element to cool helium gas increased in temperature by compression in the compression element.
- a valve travel control part controls the travel of a flow control valve in the oil return passage.
- An oil-feed-type air compressor that is one of liquid-feed-type gas compressors and includes a compressor main body, an oil separator, and an oil feed system (for example refer to Patent Document 1).
- the compressor main body compresses air (gas) while injecting oil (liquid) into compression chambers for the purpose of cooling of heat of compression, lubrication of compression members such as rotors and laps, seal of the compression chambers, and so forth.
- the oil separator gas-liquid separator
- the oil feed system liquid feed system feeds the oil stored in the oil separator to the compressor main body.
- a method in which a detector that detects the pressure is set at a predetermined height position in the oil separator is conceivable.
- this method by setting a threshold that is the middle of the pressure of air and the pressure of oil in the oil separator in advance, for example, and determining whether the pressure detected by the detector exceeds the threshold, it is determined which of air and oil the fluid existing at the predetermined height position in the oil separator is. Thereby, whether the oil surface in the oil separator is lower than the predetermined height position is detected.
- a method in which a detector that detects the temperature is set at a predetermined height position in the oil separator is conceivable.
- this method by setting a threshold that is the middle of the temperature of air and the temperature of oil in the oil separator in advance, for example, and determining whether the temperature detected by the detector exceeds the threshold, it is determined which of air and oil the fluid existing at the predetermined height position in the oil separator is. Thereby, whether the oil surface in the oil separator is lower than the predetermined height position is detected.
- a detector of an optical system that detects whether or not oil exits is set at a predetermined height position in the oil separator.
- oil separated from compressed air flows down in the oil separator.
- the oil surface in the oil separator often undulates. For this reason, even when the oil surface in the oil separator is lower than the predetermined height position, the oil continuously passes through the detector or adheres thereto, which possibly leads to erroneous detection of the detector. Therefore, this method cannot be employed.
- the present invention is made in view of the above-described matter and one of problems thereof is monitoring the liquid surface height in a gas-liquid separator.
- a liquid-feed-type gas compressor includes a compressor main body that compresses a gas while injecting a liquid into a compression chamber, a gas-liquid separator that separates the liquid from a compressed gas discharged from the compressor main body and stores the liquid therein, a liquid feed system that feeds the liquid stored in the gas-liquid separator to the compressor main body, a sampling line whose inlet side is connected to a predetermined height position of the gas-liquid separator and that allows fluid from the predetermined height position of the gas-liquid separator to flow by pressure difference between the inlet side and an outlet side, a detector that detects pressure or temperature of the fluid that flows in the sampling line, a controller that determines which of the gas and the liquid the fluid that flows in the sampling line is by carrying out at least one of determination of whether the pressure or the temperature detected by the detector exceeds a first
- a liquid-feed-type gas compressor includes a compressor main body that compresses a gas while injecting a liquid into a compression chamber, a gas-liquid separator that separates the liquid from a compressed gas discharged from the compressor main body and stores the liquid therein, a liquid feed system that feeds the liquid stored in the gas-liquid separator to the compressor main body, a sampling line whose inlet side is connected to a predetermined height position of the gas-liquid separator and that allows fluid from the predetermined height position of the gas-liquid separator to flow by pressure difference between the inlet side and an outlet side, a detector that detects the pressure or the temperature of the fluid that flows on a system on a downstream side connected to the outlet side of the sampling line on the liquid feed system, a controller that determines which of the gas and the liquid the fluid that flows in the sampling line is by carrying out at least one of determination of whether the pressure or the temperature detected by the detector exceeds a first set value set in advance in some cases and determination of whether the pressure or
- the present invention is based on knowledge that pulsation (in other words, large change in which increase and decrease are cyclically repeated) hardly occurs in the pressure or the temperature of a liquid when the liquid is caused to flow in the sampling line whereas pulsation occurs in the pressure or the temperature of a gas when the gas is caused to flow in the sampling line, and it can be determined which of the gas and the liquid the fluid that flows in the sampling line is. Due to this, the liquid surface height in the gas-liquid separator can be monitored.
- FIG. 1 is a schematic diagram that represents the configuration of the oil-feed-type air compressor in the present embodiment and shows the state in which the amount of stored oil in an oil separator is sufficient.
- FIG. 2 is a diagram showing the state in which the amount of stored oil in the oil separator is insufficient in the present embodiment.
- the oil-feed-type air compressor of the present embodiment includes a compressor main body 1, an intake system 2 connected to the intake side of the compressor main body 1, an oil separator 4 (gas-liquid separator) connected to the discharge side of the compressor main body 1 through a discharge line 3, a compressed air feed system 5 (compressed gas feed system) connected to the upper part of the oil separator 4, an oil feed system 6 (liquid feed system) connected between the lower part of the oil separator 4 and the compressor main body 1, a controller 7, and a display 8.
- These compressor main body 1, intake system 2, discharge line 3, oil separator 4, compressed air feed system 5, oil feed system 6, controller 7, and display 8 are disposed on the same pedestal (base, pallet, or air tank in the case of a tank-mounted type, or the like) to configure a compressor unit 9.
- the compressor unit 9 is configured with a housing composed of panel plates which surround the circumferential surface and the upper surface of the unit.
- the compressor main body 1 has a pair of male and female screw rotors that mesh with each other and a casing that houses them, and plural compression chambers are formed in the tooth spaces of the screw rotors.
- the compression chambers take in air (gas) from the intake system 2 and compress the air to discharge the compressed air (compressed gas) to the discharge line 3.
- the compressor main body 1 injects oil (liquid) into the compression chambers at any stage in the compression process, typified by a stage immediately after start of compression, for example, for the purpose of cooling of heat of compression, lubrication of the rotors, seal of the compression chambers, and so forth.
- the intake system 2 has a suction filter 10 that removes impurities in air and a suction throttle valve 11 that is set on the downstream side of the suction filter 10 and can close the intake side of the compressor main body 1.
- the oil separator 4 separates oil from the compressed air discharged from the compressor main body 1 by using specific gravity separation and impingement separation, for example, and stores the separated oil at the lower part.
- the compressed air separated by the oil separator 4 is fed to a use destination outside the unit through the compressed air feed system 5.
- the compressed air feed system 5 has a pressure regulating valve (check valve) 12, an after-cooler 13 that is disposed on the downstream side of the pressure regulating valve 12 and cools the compressed air, and a control pressure sensor 14 that is disposed on the downstream side of the pressure regulating valve 12 and detects the pressure of the compressed air (i.e. pressure that varies depending on the amount of use of the compressed air).
- the control pressure sensor 14 outputs the detected pressure to the controller 7.
- the oil stored in the oil separator 4 is fed to the compression chambers through the oil feed system 6 by the pressure difference between the oil separator 4 and the compression chambers of the compressor main body 1.
- the oil feed system 6 has an oil cooler 15 that cools the oil, a bypass line 16 that bypasses the oil cooler 15, a temperature regulating valve (three-way valve) 17 set at the inlet (branch point) of the bypass line 16, and an oil filter 18 that is disposed on the downstream side relative to the outlet (merging point) of the bypass line 16 and removes impurities in the oil.
- the temperature regulating valve 17 detects the temperature of the oil and regulates the ratio between the flow rate on the side of the oil cooler 15 and the flow rate on the side of the bypass line 16 according to the temperature of the oil. Thereby, the temperature of the oil fed to the compressor main body 1 is regulated.
- the controller 7 has an calculation control section (for example, CPU) that executes calculation processing and control processing by cooperation with a program, a storing section (for example, ROM and RAM) that stores the program and the result of the calculation processing, and so forth.
- the controller 7 controls the opened/closed state of the suction throttle valve 11 according to the pressure detected by the control pressure sensor 14 and switches the operation state of the compressor main body 1 based on this. It is also possible for all or part of the controller 7 to have an analog circuit configuration.
- the controller 7 determines whether the pressure detected by the control pressure sensor 14 has risen to become an unloading start pressure Pu set in advance. Then, if the pressure detected by the control pressure sensor 14 becomes the unloading start pressure Pu, the controller 7 controls the suction throttle valve 11 to the closed state to cause switching to no-load operation of the compressor main body 1.
- the controller 7 determines whether the pressure detected by the control pressure sensor 14 has fallen to become a load return pressure Pd (where Pd ⁇ Pu) set in advance. Then, if the pressure detected by the control pressure sensor 14 becomes the load return pressure Pd, the controller 7 controls the suction throttle valve 11 to the opened state to cause switching to load operation of the compressor main body 1.
- the oil-feed-type air compressor includes a sampling line 19 whose inlet side is connected to a predetermined height position H of the oil separator 4 (specifically, for example, height position of the oil surface corresponding to the desired amount of stored oil when the compressor is driven) and whose outlet side is connected to the upstream side of the oil filter 18 of the oil feed system 6, and a pressure sensor 20 (detector) that detects the pressure of fluid that flows in the sampling line 19.
- the sectional area of the sampling line 19 is smaller than that of the line of the oil feed system 6, for example, so that the flow rate may become lower than that of the oil feed system 6.
- the sampling line 19 is not limited thereto.
- the pressure sensor 20 outputs the detected pressure to the controller 7.
- the controller 7 determines which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by carrying out determination of whether the pressure detected by the pressure sensor 20 gets out of a set range set in advance in some cases (in other words, determination of whether the pressure exceeds a set value P1 set in advance in some cases and determination of whether the pressure falls below a set value P2 (where P2 ⁇ P1) set in advance in some cases), and outputs the determination result to the display 8.
- the display 8 informs the determination result of the controller 7.
- the controller 7 determines that the fluid that flows in the sampling line 19 is oil. Due to this, it can be detected that the oil surface in the oil separator 4 is higher than the predetermined height position H.
- the controller 7 determines that the fluid that flows in the sampling line 19 is air. Due to this, it can be detected that the oil surface in the oil separator 4 is lower than the predetermined height position H.
- the display 8 displays a message of "warning: lubricating oil is insufficient” or “warning: please replenish lubricating oil,” or the like, as notification information based on the determination result. Furthermore, the determination result that the fluid that flows in the sampling line 19 is oil may be input to the display 8 and the display 8 may display a message of "lubricating oil is sufficient” or the like as information based on the determination result.
- These informing methods may be various forms such as sound, vibration, or combination of them.
- the present embodiment is based on knowledge that pulsation hardly occurs in the pressure of oil when the oil (liquid) flows in the sampling line 19 whereas pulsation occurs in the pressure of air when the air (gas) flows in the sampling line 19, and it can be determined which of oil and air the fluid that flows in the sampling line 19 is (or which of them mainly exists). Due to this, the oil surface height in the oil separator 4 can be accurately monitored.
- the description is made by taking as an example the case in which the controller 7 determines which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by carrying out determination of whether the pressure detected by the pressure sensor 20 gets out of the set range in some cases (in other words, both determination of whether the pressure detected by the pressure sensor 20 exceeds the set value P1 in some cases and determination of whether the pressure falls below the set value P2 in some cases).
- the present invention is not limited thereto and modifications are possible in such a range as not to depart from the gist and technical idea of the present invention.
- the controller 7 may determine which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by carrying out either one of determination of whether the pressure detected by the pressure sensor 20 exceeds the set value P1 in some cases and determination of whether the pressure falls below the set value P2 in some cases. Also in such a modification example, the same effects as the above description can be obtained.
- the controller 7 may determine which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by carrying out one or both of determination of whether the frequency at which the pressure detected by the pressure sensor 20 exceeds the set value P1 is higher than a predetermined value and determination of whether the frequency at which the pressure detected by the pressure sensor 20 falls below the set value P2 is higher than a predetermined value. Also in such a modification example, the same effects as the above description can be obtained.
- the controller 7 may determine which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by calculating a change rate in the pressure detected by the pressure sensor 20 (specifically, for example, change rate of the pressure obtained at every interval of the detection time of the pressure sensor 20) and carrying out one or both of determination of whether this change rate exceeds a positive set value set in advance in some cases and determination of whether the change rate falls below a negative set value set in advance in some cases. Also in such a modification example, the same effects as the above description can be obtained.
- FIG. 5 is a schematic diagram that represents the configuration of an oil-feed-type compressor in the present embodiment.
- a sampling line 19A in the second embodiment has a configuration in which the outlet side thereof is connected to the upstream side relative to the temperature regulating valve 17 on the oil feed system 6 and that the pressure sensor 20 is disposed on the downstream side relative to the outlet of the sampling line 19A (in the present embodiment, on the downstream side relative to the outlet of the bypass line 16) on the oil feed system 6.
- one of characteristics of the second embodiment is that not pressure pulsation of the sampling line 19A but pressure pulsation that occurs in the oil feed system 6 due to the sampling line 19A is detected.
- the same effects as the first embodiment and the modification examples thereof can be obtained.
- the size of the sampling line 19A is small and it is also possible to expect effects of simplification of the line configuration and reduction in the member cost.
- FIG. 6 is a schematic diagram that represents the configuration of an oil-feed-type air compressor in the present embodiment and shows the state in which the amount of stored oil in the oil separator 4 is sufficient.
- FIG. 7 is a diagram showing the state in which the amount of stored oil in the oil separator 4 is insufficient in the present embodiment.
- the oil-feed-type air compressor of the present embodiment includes, instead of the pressure sensor 20, a temperature sensor 21 (detector) that detects the temperature of fluid that flows in the sampling line 19.
- the temperature sensor 21 outputs the detected temperature to a controller 7A.
- the controller 7A determines which of air and oil the fluid that flows in the sampling line 19 is by carrying out determination of whether the temperature detected by the temperature sensor 21 gets out of a set range set in advance in some cases (in other words, both determination of whether the temperature exceeds a set value T1 set in advance in some cases and determination of whether the temperature falls below a set value T2 (where T2 ⁇ T1) set in advance in some cases), and outputs the determination result to the display 8.
- the controller 7A determines that the fluid that flows in the sampling line 19 is oil. Due to this, it can be detected that the oil surface in the oil separator 4 is higher than the predetermined height position H.
- the controller 7A determines that the fluid that flows in the sampling line 19 is air. Due to this, it can be detected that the oil surface in the oil separator 4 is lower than the predetermined height position H.
- the display 8 displays a message of "warning: lubricating oil is insufficient” or “warning: please replenish lubricating oil,” or the like, as information based on the determination result. Furthermore, the determination result that the fluid that flows in the sampling line 19 is oil may be input to the display 8 and the display 8 may display a message of "lubricating oil is sufficient” or the like as information based on the determination result.
- the present embodiment is based on knowledge that pulsation hardly occurs in the temperature of oil when the oil (liquid) is caused to flow in the sampling line 19 whereas pulsation occurs in the temperature of air when the air (gas) is caused to flow in the sampling line 19, and it can be determined which of oil and air the fluid that flows in the sampling line 19 is (or which of them mainly exists). Due to this, the oil surface height in the oil separator 4 can be monitored.
- the description is made by taking as an example the case in which the controller 7A determines which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by carrying out determination of whether the temperature detected by the temperature sensor 21 gets out of the set range in some cases (in other words, both determination of whether the temperature detected by the temperature sensor 21 exceeds the set value T1 in some cases and determination of whether the temperature falls below the set value T2 in some cases).
- the present invention is not limited thereto and modifications are possible in such a range as not to depart from the gist and technical idea of the present invention.
- the controller 7A may determine which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by carrying out either one of determination of whether the temperature detected by the temperature sensor 21 exceeds the set value T1 in some cases and determination of whether the temperature falls below the set value T2 in some cases. Also in such a modification example, the same effects as the above description can be obtained.
- the controller 7A may determine which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by carrying out one or both of determination of whether the frequency at which the temperature detected by the temperature sensor 21 exceeds the set value T1 is higher than a predetermined value and determination of whether the frequency at which the temperature detected by the temperature sensor 21 falls below the set value T2 is higher than a predetermined value. Also in such a modification example, the same effects as the above description can be obtained.
- the controller 7A may determine which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by calculating a change rate in the temperature detected by the temperature sensor 21 (specifically, for example, change rate of the temperature obtained at every interval of the detection time of the temperature sensor 21) and carrying out one or both of determination of whether this change rate exceeds a positive set value set in advance in some cases and determination of whether the change rate falls below a negative set value set in advance in some cases. Also in such a modification example, the same effects as the above description can be obtained.
- the description is made by taking as an example the case in which the informing device that informs the determination result of the controller 7 or 7A is the display 8 that is mounted on the compressor unit 9 and displays information based on the determination result of the controller 7 or 7A.
- the present invention is not limited thereto and modifications are possible in such a range as not to depart from the gist and technical idea of the present invention.
- the informing device may be, for example, a communication terminal 23 that is separated from the compressor unit 9 and displays information (specifically, a message of, for example, "warning: lubricating oil is insufficient” or "warning: please replenish lubricating oil," or the like) based on the determination result of the controller 7 or 7A received through a communication channel 22.
- the communication terminal 23 may be a configuration physically in contact with the compressor unit 9 as long as it is a separated configuration as the configuration of communication connection.
- a configuration may be employed in which the communication terminal 23 is placed or suspended at any place in the compressor unit 9 and is temporarily fixed in such a manner as to be separatable.
- a configuration may be employed in which an external calculator (server or the like) connected through the communication channel 22 is equipped with the determination function of the controller 7 or 7A and the determination result thereof is informed from the external calculator to the communication terminal 23 through the communication channel 22.
- a configuration in which the communication terminal 23 has the determination function of the controller 7 or 7A may be employed.
- the informing device may be a warning lamp or warning buzzer mounted on the compressor unit 9, for example.
- the controller 7 or 7A may drive the warning lamp or warning buzzer when determining that the fluid that flows in the sampling line 19 is air. Also in these modification examples, the same effects as the above description can be obtained.
- the description is made by taking as an example the case in which the outlet side of the sampling line 19 (19A) is connected to the upstream side of the oil filter 18 of the oil feed system 6.
- the present invention is not limited thereto and modifications are possible in such a range as not to depart from the gist and technical idea of the present invention.
- the sampling line is configured in such a manner that the inlet side is connected to the predetermined height position of the oil separator 4 and the fluid from the predetermined height position of the oil separator 4 is allowed to flow by the pressure difference between the inlet side (higher pressure side) and the outlet side (lower pressure side). For this reason, it suffices that the pressure at the site to which the outlet side of the sampling line is connected is lower than the pressure in the oil separator 4 by at least the pressure loss of the sampling line.
- the description is made by taking as an example the case in which, in the oil-feed-type air compressor, the suction throttle valve 11 that closes the intake side of the compressor main body 1 is set in order to switch the compressor main body 1 from load operation to no-load operation.
- the present invention is not limited thereto and modifications are possible in such a range as not to depart from the gist and technical idea of the present invention.
- the oil-feed-type air compressor may include a relief valve 24 (shown by a dotted line in FIG. 1 , FIG. 5 , or FIG. 6 ) that releases a gas on the discharge side of the compressor main body 1 (specifically, upstream side relative to the pressure regulating valve 12 of the compressed air feed system 5) instead of the suction throttle valve 11 in order to switch the compressor main body 1 from load operation to no-load operation.
- a relief valve 24 shown by a dotted line in FIG. 1 , FIG. 5 , or FIG. 6 ) that releases a gas on the discharge side of the compressor main body 1 (specifically, upstream side relative to the pressure regulating valve 12 of the compressed air feed system 5) instead of the suction throttle valve 11 in order to switch the compressor main body 1 from load operation to no-load operation.
- the controller 7 or 7A controls the relief valve 24 to the opened state to switch the compressor main body 1 from load operation to no-load operation.
- the controller 7 or 7A controls the relief valve 24 to the closed state to switch the compressor
- the oil-feed-type air compressor may include both the suction throttle valve 11 and the relief valve 24. Furthermore, the oil-feed-type air compressor may be configured in such a manner as not to switch the compressor main body 1 from load operation to no-load operation. In other words, the oil-feed-type air compressor may not include the suction throttle valve 11 or the relief valve 24 and the controller 7 or 7A may not include the above-described operation control function. Also in these modification examples, the same effects as the above description can be obtained.
- the present invention is not limited thereto.
- the present invention may be applied to a water-feed-type air compressor including a compressor main body that compresses air (gas) while injecting water (liquid) into compression chambers, a water separator (gas-liquid separator) that separates the water from the compressed air (compressed gas) discharged from the compressor main body and stores the water therein, and a water feed system (liquid feed system) that feeds the water stored in the water separator to the compressor main body.
- a water-feed-type air compressor including a compressor main body that compresses air (gas) while injecting water (liquid) into compression chambers, a water separator (gas-liquid separator) that separates the water from the compressed air (compressed gas) discharged from the compressor main body and stores the water therein, and a water feed system (liquid feed system) that feeds the water stored in the water separator to the compressor main body.
- the present invention is applied to this water-feed-type air compressor, the water surface height in the water separator can be
- the description is made by taking as an example the compression mechanism of a so-called twin-screw rotor composed of male and female screw rotors.
- the positive displacement type includes rotary type, reciprocating type, and so forth.
- rotary type single screw rotor, twin screw rotor, and multi screw rotor, single scroll lap and multi scroll lap, vane type, craw type, and so forth are included.
- reciprocating type single reciprocating type and multi reciprocating type and so forth are included.
- the compressor main body is also not limited to the one-compressor configuration and even a multi-stage configuration formed of a combination based on the same forms or different forms can be applied.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Compressor (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/013105 WO2018179190A1 (ja) | 2017-03-29 | 2017-03-29 | 給液式気体圧縮機 |
PCT/JP2018/012412 WO2018181299A1 (ja) | 2017-03-29 | 2018-03-27 | 給液式気体圧縮機 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3604808A1 EP3604808A1 (en) | 2020-02-05 |
EP3604808A4 EP3604808A4 (en) | 2020-10-14 |
EP3604808B1 true EP3604808B1 (en) | 2021-08-11 |
Family
ID=63676184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18777716.4A Active EP3604808B1 (en) | 2017-03-29 | 2018-03-27 | Liquid-feed type gas compressor |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200102950A1 (ja) |
EP (1) | EP3604808B1 (ja) |
JP (1) | JP6742509B2 (ja) |
CN (1) | CN110462213B (ja) |
TW (1) | TWI671467B (ja) |
WO (2) | WO2018179190A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113432043B (zh) * | 2021-06-28 | 2023-04-21 | 珠海格力智能装备有限公司 | 注油系统及注油方法 |
BE1030905B1 (nl) * | 2022-09-22 | 2024-04-22 | Atlas Copco Airpower Nv | Koelinrichting voor het koelen van olie, olie-geïnjecteerde compressorinrichting voorzien van dergelijke koelinrichting en werkwijze voor het regelen van dergelijke koelinrichting |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE360168B (ja) * | 1971-12-22 | 1973-09-17 | Stal Refrigeration Ab | |
JPS50149370A (ja) * | 1974-05-20 | 1975-11-29 | ||
JPH1194408A (ja) * | 1997-09-19 | 1999-04-09 | Sanyo Electric Co Ltd | 冷凍装置用冷媒リーク検知装置 |
DE19954570A1 (de) * | 1999-11-12 | 2001-08-02 | Zexel Valeo Compressor Europe | Axialkolbenverdichter |
JP2005076902A (ja) * | 2003-08-28 | 2005-03-24 | Daikin Ind Ltd | 冷凍機の圧縮ユニット |
WO2005067862A1 (ja) * | 2004-01-14 | 2005-07-28 | Mitsubishi Rayon Co., Ltd. | 炭酸泉製造装置 |
JP5268317B2 (ja) * | 2007-09-28 | 2013-08-21 | 株式会社日立産機システム | 油冷式空気圧縮機 |
KR20090077575A (ko) * | 2008-01-11 | 2009-07-15 | 엘지전자 주식회사 | 멀티형 공기조화기 및 그 제어방법 |
JP5398571B2 (ja) * | 2010-02-15 | 2014-01-29 | 三菱重工業株式会社 | 空気調和装置 |
JP5277214B2 (ja) * | 2010-07-27 | 2013-08-28 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
CN202281432U (zh) * | 2011-10-11 | 2012-06-20 | 麦克维尔空调制冷(武汉)有限公司 | 一种采用新供液方法的冷水热泵机组 |
JP6021954B2 (ja) * | 2013-01-30 | 2016-11-09 | 三菱電機株式会社 | 液面検知装置及び冷凍空調装置 |
CN203376022U (zh) * | 2013-07-15 | 2014-01-01 | 广东美的暖通设备有限公司 | 气液分离器液位测量的装置及具有该装置的气液分离器 |
CN103939324B (zh) * | 2014-04-25 | 2016-08-24 | 合肥通用机械研究院 | 基于相溶性的制冷剂压缩机油循环率测量试验装置 |
CN203948250U (zh) * | 2014-07-02 | 2014-11-19 | 艾默生网络能源有限公司 | 一种压缩机防液击装置及制冷空调 |
CN104266426B (zh) * | 2014-10-16 | 2016-06-15 | 珠海格力电器股份有限公司 | 判断气液分离器中液位的方法及系统 |
US10788344B2 (en) * | 2014-11-04 | 2020-09-29 | Schneider Electric Systems Usa, Inc. | Vortex flowmeter including pressure pulsation amplitude analysis |
CN105466094B (zh) * | 2015-12-25 | 2018-05-01 | 珠海格力电器股份有限公司 | 液位检测系统、具有该系统的空调系统及液位控制方法 |
-
2017
- 2017-03-29 WO PCT/JP2017/013105 patent/WO2018179190A1/ja active Application Filing
-
2018
- 2018-03-21 TW TW107109591A patent/TWI671467B/zh active
- 2018-03-27 WO PCT/JP2018/012412 patent/WO2018181299A1/ja unknown
- 2018-03-27 JP JP2019509881A patent/JP6742509B2/ja active Active
- 2018-03-27 EP EP18777716.4A patent/EP3604808B1/en active Active
- 2018-03-27 CN CN201880019657.9A patent/CN110462213B/zh active Active
- 2018-03-27 US US16/495,866 patent/US20200102950A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN110462213A (zh) | 2019-11-15 |
CN110462213B (zh) | 2021-04-13 |
WO2018181299A1 (ja) | 2018-10-04 |
JPWO2018181299A1 (ja) | 2020-01-09 |
EP3604808A1 (en) | 2020-02-05 |
EP3604808A4 (en) | 2020-10-14 |
TWI671467B (zh) | 2019-09-11 |
US20200102950A1 (en) | 2020-04-02 |
TW201837311A (zh) | 2018-10-16 |
JP6742509B2 (ja) | 2020-08-19 |
WO2018179190A1 (ja) | 2018-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11047390B2 (en) | Oil feed type air compressor | |
US8241007B2 (en) | Oil-injection screw compressor | |
US20150361984A1 (en) | Air Compressor | |
EP3604808B1 (en) | Liquid-feed type gas compressor | |
JP7005766B2 (ja) | 圧縮機及び監視システム | |
US11994138B2 (en) | Gas compressor with a plurality of air realease systems each having an air release valve and an air regulating valve | |
US11795949B2 (en) | Liquid level height detection in a gas-liquid separator of a liquid supply type gas compressor | |
WO2022044863A1 (ja) | 給油式空気圧縮機 | |
CN112752907B (zh) | 气体压缩机 | |
EP3643979A1 (en) | Refrigeration cycle device | |
CN110939569B (zh) | 喷油多级压缩机装置和用于控制压缩机装置的方法 | |
EP3742080B1 (en) | Refrigeration apparatus | |
CN116209829B (zh) | 气体压缩机 | |
JP6454607B2 (ja) | オイルフリー圧縮機 | |
CN103512280B (zh) | 空调器的油平衡方法 | |
CN117677769A (zh) | 供油式压缩机 | |
CN117662469A (zh) | 压缩机系统以及压缩机系统的运行方法 | |
JP2016095103A (ja) | 冷凍装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191029 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20200911 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F25B 1/00 20060101ALI20200907BHEP Ipc: F04B 39/02 20060101ALI20200907BHEP Ipc: F04C 29/00 20060101ALI20200907BHEP Ipc: F04B 39/06 20060101AFI20200907BHEP Ipc: F04C 29/02 20060101ALI20200907BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210219 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: TAKANO, MASAHIKO Inventor name: YORIKANE, SHIGEYUKI Inventor name: MORITA, KENJI |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018021762 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Ref country code: AT Ref legal event code: REF Ref document number: 1419638 Country of ref document: AT Kind code of ref document: T Effective date: 20210915 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210811 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1419638 Country of ref document: AT Kind code of ref document: T Effective date: 20210811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211111 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211111 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211213 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018021762 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220327 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220327 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240130 Year of fee payment: 7 Ref country code: GB Payment date: 20240201 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180327 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240213 Year of fee payment: 7 Ref country code: BE Payment date: 20240216 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |