EP3604808B1 - Compresseur de gaz du type à alimentation en liquide - Google Patents

Compresseur de gaz du type à alimentation en liquide Download PDF

Info

Publication number
EP3604808B1
EP3604808B1 EP18777716.4A EP18777716A EP3604808B1 EP 3604808 B1 EP3604808 B1 EP 3604808B1 EP 18777716 A EP18777716 A EP 18777716A EP 3604808 B1 EP3604808 B1 EP 3604808B1
Authority
EP
European Patent Office
Prior art keywords
liquid
gas
compressor
pressure
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18777716.4A
Other languages
German (de)
English (en)
Other versions
EP3604808A4 (fr
EP3604808A1 (fr
Inventor
Kenji Morita
Masahiko Takano
Shigeyuki Yorikane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Publication of EP3604808A1 publication Critical patent/EP3604808A1/fr
Publication of EP3604808A4 publication Critical patent/EP3604808A4/fr
Application granted granted Critical
Publication of EP3604808B1 publication Critical patent/EP3604808B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0207Lubrication with lubrication control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/021Control systems for the circulation of the lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/24Level of liquid, e.g. lubricant or cooling liquid

Definitions

  • the present invention relates to a liquid-feed-type gas compressor including a gas-liquid separator and particularly relates to a liquid-feed-type gas compressor suitable to monitor the liquid surface height in a gas-liquid separator.
  • Patent Document 2 provides a compression unit for a refrigerator that has an appreciable refrigerating capacity by preventing bypassing of working fluid via an oil separator, even during displacement control of a compressor by speed control of a motor.
  • the oil separator separates oil mixed in helium gas discharged from the compressor.
  • the oil held in the oil separator is returned to a low pressure part of the compressor via an oil return passage to cool the motor.
  • the oil in an oil sump in a casing of the compressor is pumped up by an oil pump that supplies it to a compression element to cool helium gas increased in temperature by compression in the compression element.
  • a valve travel control part controls the travel of a flow control valve in the oil return passage.
  • An oil-feed-type air compressor that is one of liquid-feed-type gas compressors and includes a compressor main body, an oil separator, and an oil feed system (for example refer to Patent Document 1).
  • the compressor main body compresses air (gas) while injecting oil (liquid) into compression chambers for the purpose of cooling of heat of compression, lubrication of compression members such as rotors and laps, seal of the compression chambers, and so forth.
  • the oil separator gas-liquid separator
  • the oil feed system liquid feed system feeds the oil stored in the oil separator to the compressor main body.
  • a method in which a detector that detects the pressure is set at a predetermined height position in the oil separator is conceivable.
  • this method by setting a threshold that is the middle of the pressure of air and the pressure of oil in the oil separator in advance, for example, and determining whether the pressure detected by the detector exceeds the threshold, it is determined which of air and oil the fluid existing at the predetermined height position in the oil separator is. Thereby, whether the oil surface in the oil separator is lower than the predetermined height position is detected.
  • a method in which a detector that detects the temperature is set at a predetermined height position in the oil separator is conceivable.
  • this method by setting a threshold that is the middle of the temperature of air and the temperature of oil in the oil separator in advance, for example, and determining whether the temperature detected by the detector exceeds the threshold, it is determined which of air and oil the fluid existing at the predetermined height position in the oil separator is. Thereby, whether the oil surface in the oil separator is lower than the predetermined height position is detected.
  • a detector of an optical system that detects whether or not oil exits is set at a predetermined height position in the oil separator.
  • oil separated from compressed air flows down in the oil separator.
  • the oil surface in the oil separator often undulates. For this reason, even when the oil surface in the oil separator is lower than the predetermined height position, the oil continuously passes through the detector or adheres thereto, which possibly leads to erroneous detection of the detector. Therefore, this method cannot be employed.
  • the present invention is made in view of the above-described matter and one of problems thereof is monitoring the liquid surface height in a gas-liquid separator.
  • a liquid-feed-type gas compressor includes a compressor main body that compresses a gas while injecting a liquid into a compression chamber, a gas-liquid separator that separates the liquid from a compressed gas discharged from the compressor main body and stores the liquid therein, a liquid feed system that feeds the liquid stored in the gas-liquid separator to the compressor main body, a sampling line whose inlet side is connected to a predetermined height position of the gas-liquid separator and that allows fluid from the predetermined height position of the gas-liquid separator to flow by pressure difference between the inlet side and an outlet side, a detector that detects pressure or temperature of the fluid that flows in the sampling line, a controller that determines which of the gas and the liquid the fluid that flows in the sampling line is by carrying out at least one of determination of whether the pressure or the temperature detected by the detector exceeds a first
  • a liquid-feed-type gas compressor includes a compressor main body that compresses a gas while injecting a liquid into a compression chamber, a gas-liquid separator that separates the liquid from a compressed gas discharged from the compressor main body and stores the liquid therein, a liquid feed system that feeds the liquid stored in the gas-liquid separator to the compressor main body, a sampling line whose inlet side is connected to a predetermined height position of the gas-liquid separator and that allows fluid from the predetermined height position of the gas-liquid separator to flow by pressure difference between the inlet side and an outlet side, a detector that detects the pressure or the temperature of the fluid that flows on a system on a downstream side connected to the outlet side of the sampling line on the liquid feed system, a controller that determines which of the gas and the liquid the fluid that flows in the sampling line is by carrying out at least one of determination of whether the pressure or the temperature detected by the detector exceeds a first set value set in advance in some cases and determination of whether the pressure or
  • the present invention is based on knowledge that pulsation (in other words, large change in which increase and decrease are cyclically repeated) hardly occurs in the pressure or the temperature of a liquid when the liquid is caused to flow in the sampling line whereas pulsation occurs in the pressure or the temperature of a gas when the gas is caused to flow in the sampling line, and it can be determined which of the gas and the liquid the fluid that flows in the sampling line is. Due to this, the liquid surface height in the gas-liquid separator can be monitored.
  • FIG. 1 is a schematic diagram that represents the configuration of the oil-feed-type air compressor in the present embodiment and shows the state in which the amount of stored oil in an oil separator is sufficient.
  • FIG. 2 is a diagram showing the state in which the amount of stored oil in the oil separator is insufficient in the present embodiment.
  • the oil-feed-type air compressor of the present embodiment includes a compressor main body 1, an intake system 2 connected to the intake side of the compressor main body 1, an oil separator 4 (gas-liquid separator) connected to the discharge side of the compressor main body 1 through a discharge line 3, a compressed air feed system 5 (compressed gas feed system) connected to the upper part of the oil separator 4, an oil feed system 6 (liquid feed system) connected between the lower part of the oil separator 4 and the compressor main body 1, a controller 7, and a display 8.
  • These compressor main body 1, intake system 2, discharge line 3, oil separator 4, compressed air feed system 5, oil feed system 6, controller 7, and display 8 are disposed on the same pedestal (base, pallet, or air tank in the case of a tank-mounted type, or the like) to configure a compressor unit 9.
  • the compressor unit 9 is configured with a housing composed of panel plates which surround the circumferential surface and the upper surface of the unit.
  • the compressor main body 1 has a pair of male and female screw rotors that mesh with each other and a casing that houses them, and plural compression chambers are formed in the tooth spaces of the screw rotors.
  • the compression chambers take in air (gas) from the intake system 2 and compress the air to discharge the compressed air (compressed gas) to the discharge line 3.
  • the compressor main body 1 injects oil (liquid) into the compression chambers at any stage in the compression process, typified by a stage immediately after start of compression, for example, for the purpose of cooling of heat of compression, lubrication of the rotors, seal of the compression chambers, and so forth.
  • the intake system 2 has a suction filter 10 that removes impurities in air and a suction throttle valve 11 that is set on the downstream side of the suction filter 10 and can close the intake side of the compressor main body 1.
  • the oil separator 4 separates oil from the compressed air discharged from the compressor main body 1 by using specific gravity separation and impingement separation, for example, and stores the separated oil at the lower part.
  • the compressed air separated by the oil separator 4 is fed to a use destination outside the unit through the compressed air feed system 5.
  • the compressed air feed system 5 has a pressure regulating valve (check valve) 12, an after-cooler 13 that is disposed on the downstream side of the pressure regulating valve 12 and cools the compressed air, and a control pressure sensor 14 that is disposed on the downstream side of the pressure regulating valve 12 and detects the pressure of the compressed air (i.e. pressure that varies depending on the amount of use of the compressed air).
  • the control pressure sensor 14 outputs the detected pressure to the controller 7.
  • the oil stored in the oil separator 4 is fed to the compression chambers through the oil feed system 6 by the pressure difference between the oil separator 4 and the compression chambers of the compressor main body 1.
  • the oil feed system 6 has an oil cooler 15 that cools the oil, a bypass line 16 that bypasses the oil cooler 15, a temperature regulating valve (three-way valve) 17 set at the inlet (branch point) of the bypass line 16, and an oil filter 18 that is disposed on the downstream side relative to the outlet (merging point) of the bypass line 16 and removes impurities in the oil.
  • the temperature regulating valve 17 detects the temperature of the oil and regulates the ratio between the flow rate on the side of the oil cooler 15 and the flow rate on the side of the bypass line 16 according to the temperature of the oil. Thereby, the temperature of the oil fed to the compressor main body 1 is regulated.
  • the controller 7 has an calculation control section (for example, CPU) that executes calculation processing and control processing by cooperation with a program, a storing section (for example, ROM and RAM) that stores the program and the result of the calculation processing, and so forth.
  • the controller 7 controls the opened/closed state of the suction throttle valve 11 according to the pressure detected by the control pressure sensor 14 and switches the operation state of the compressor main body 1 based on this. It is also possible for all or part of the controller 7 to have an analog circuit configuration.
  • the controller 7 determines whether the pressure detected by the control pressure sensor 14 has risen to become an unloading start pressure Pu set in advance. Then, if the pressure detected by the control pressure sensor 14 becomes the unloading start pressure Pu, the controller 7 controls the suction throttle valve 11 to the closed state to cause switching to no-load operation of the compressor main body 1.
  • the controller 7 determines whether the pressure detected by the control pressure sensor 14 has fallen to become a load return pressure Pd (where Pd ⁇ Pu) set in advance. Then, if the pressure detected by the control pressure sensor 14 becomes the load return pressure Pd, the controller 7 controls the suction throttle valve 11 to the opened state to cause switching to load operation of the compressor main body 1.
  • the oil-feed-type air compressor includes a sampling line 19 whose inlet side is connected to a predetermined height position H of the oil separator 4 (specifically, for example, height position of the oil surface corresponding to the desired amount of stored oil when the compressor is driven) and whose outlet side is connected to the upstream side of the oil filter 18 of the oil feed system 6, and a pressure sensor 20 (detector) that detects the pressure of fluid that flows in the sampling line 19.
  • the sectional area of the sampling line 19 is smaller than that of the line of the oil feed system 6, for example, so that the flow rate may become lower than that of the oil feed system 6.
  • the sampling line 19 is not limited thereto.
  • the pressure sensor 20 outputs the detected pressure to the controller 7.
  • the controller 7 determines which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by carrying out determination of whether the pressure detected by the pressure sensor 20 gets out of a set range set in advance in some cases (in other words, determination of whether the pressure exceeds a set value P1 set in advance in some cases and determination of whether the pressure falls below a set value P2 (where P2 ⁇ P1) set in advance in some cases), and outputs the determination result to the display 8.
  • the display 8 informs the determination result of the controller 7.
  • the controller 7 determines that the fluid that flows in the sampling line 19 is oil. Due to this, it can be detected that the oil surface in the oil separator 4 is higher than the predetermined height position H.
  • the controller 7 determines that the fluid that flows in the sampling line 19 is air. Due to this, it can be detected that the oil surface in the oil separator 4 is lower than the predetermined height position H.
  • the display 8 displays a message of "warning: lubricating oil is insufficient” or “warning: please replenish lubricating oil,” or the like, as notification information based on the determination result. Furthermore, the determination result that the fluid that flows in the sampling line 19 is oil may be input to the display 8 and the display 8 may display a message of "lubricating oil is sufficient” or the like as information based on the determination result.
  • These informing methods may be various forms such as sound, vibration, or combination of them.
  • the present embodiment is based on knowledge that pulsation hardly occurs in the pressure of oil when the oil (liquid) flows in the sampling line 19 whereas pulsation occurs in the pressure of air when the air (gas) flows in the sampling line 19, and it can be determined which of oil and air the fluid that flows in the sampling line 19 is (or which of them mainly exists). Due to this, the oil surface height in the oil separator 4 can be accurately monitored.
  • the description is made by taking as an example the case in which the controller 7 determines which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by carrying out determination of whether the pressure detected by the pressure sensor 20 gets out of the set range in some cases (in other words, both determination of whether the pressure detected by the pressure sensor 20 exceeds the set value P1 in some cases and determination of whether the pressure falls below the set value P2 in some cases).
  • the present invention is not limited thereto and modifications are possible in such a range as not to depart from the gist and technical idea of the present invention.
  • the controller 7 may determine which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by carrying out either one of determination of whether the pressure detected by the pressure sensor 20 exceeds the set value P1 in some cases and determination of whether the pressure falls below the set value P2 in some cases. Also in such a modification example, the same effects as the above description can be obtained.
  • the controller 7 may determine which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by carrying out one or both of determination of whether the frequency at which the pressure detected by the pressure sensor 20 exceeds the set value P1 is higher than a predetermined value and determination of whether the frequency at which the pressure detected by the pressure sensor 20 falls below the set value P2 is higher than a predetermined value. Also in such a modification example, the same effects as the above description can be obtained.
  • the controller 7 may determine which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by calculating a change rate in the pressure detected by the pressure sensor 20 (specifically, for example, change rate of the pressure obtained at every interval of the detection time of the pressure sensor 20) and carrying out one or both of determination of whether this change rate exceeds a positive set value set in advance in some cases and determination of whether the change rate falls below a negative set value set in advance in some cases. Also in such a modification example, the same effects as the above description can be obtained.
  • FIG. 5 is a schematic diagram that represents the configuration of an oil-feed-type compressor in the present embodiment.
  • a sampling line 19A in the second embodiment has a configuration in which the outlet side thereof is connected to the upstream side relative to the temperature regulating valve 17 on the oil feed system 6 and that the pressure sensor 20 is disposed on the downstream side relative to the outlet of the sampling line 19A (in the present embodiment, on the downstream side relative to the outlet of the bypass line 16) on the oil feed system 6.
  • one of characteristics of the second embodiment is that not pressure pulsation of the sampling line 19A but pressure pulsation that occurs in the oil feed system 6 due to the sampling line 19A is detected.
  • the same effects as the first embodiment and the modification examples thereof can be obtained.
  • the size of the sampling line 19A is small and it is also possible to expect effects of simplification of the line configuration and reduction in the member cost.
  • FIG. 6 is a schematic diagram that represents the configuration of an oil-feed-type air compressor in the present embodiment and shows the state in which the amount of stored oil in the oil separator 4 is sufficient.
  • FIG. 7 is a diagram showing the state in which the amount of stored oil in the oil separator 4 is insufficient in the present embodiment.
  • the oil-feed-type air compressor of the present embodiment includes, instead of the pressure sensor 20, a temperature sensor 21 (detector) that detects the temperature of fluid that flows in the sampling line 19.
  • the temperature sensor 21 outputs the detected temperature to a controller 7A.
  • the controller 7A determines which of air and oil the fluid that flows in the sampling line 19 is by carrying out determination of whether the temperature detected by the temperature sensor 21 gets out of a set range set in advance in some cases (in other words, both determination of whether the temperature exceeds a set value T1 set in advance in some cases and determination of whether the temperature falls below a set value T2 (where T2 ⁇ T1) set in advance in some cases), and outputs the determination result to the display 8.
  • the controller 7A determines that the fluid that flows in the sampling line 19 is oil. Due to this, it can be detected that the oil surface in the oil separator 4 is higher than the predetermined height position H.
  • the controller 7A determines that the fluid that flows in the sampling line 19 is air. Due to this, it can be detected that the oil surface in the oil separator 4 is lower than the predetermined height position H.
  • the display 8 displays a message of "warning: lubricating oil is insufficient” or “warning: please replenish lubricating oil,” or the like, as information based on the determination result. Furthermore, the determination result that the fluid that flows in the sampling line 19 is oil may be input to the display 8 and the display 8 may display a message of "lubricating oil is sufficient” or the like as information based on the determination result.
  • the present embodiment is based on knowledge that pulsation hardly occurs in the temperature of oil when the oil (liquid) is caused to flow in the sampling line 19 whereas pulsation occurs in the temperature of air when the air (gas) is caused to flow in the sampling line 19, and it can be determined which of oil and air the fluid that flows in the sampling line 19 is (or which of them mainly exists). Due to this, the oil surface height in the oil separator 4 can be monitored.
  • the description is made by taking as an example the case in which the controller 7A determines which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by carrying out determination of whether the temperature detected by the temperature sensor 21 gets out of the set range in some cases (in other words, both determination of whether the temperature detected by the temperature sensor 21 exceeds the set value T1 in some cases and determination of whether the temperature falls below the set value T2 in some cases).
  • the present invention is not limited thereto and modifications are possible in such a range as not to depart from the gist and technical idea of the present invention.
  • the controller 7A may determine which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by carrying out either one of determination of whether the temperature detected by the temperature sensor 21 exceeds the set value T1 in some cases and determination of whether the temperature falls below the set value T2 in some cases. Also in such a modification example, the same effects as the above description can be obtained.
  • the controller 7A may determine which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by carrying out one or both of determination of whether the frequency at which the temperature detected by the temperature sensor 21 exceeds the set value T1 is higher than a predetermined value and determination of whether the frequency at which the temperature detected by the temperature sensor 21 falls below the set value T2 is higher than a predetermined value. Also in such a modification example, the same effects as the above description can be obtained.
  • the controller 7A may determine which of air and oil the fluid that flows in the sampling line 19 is (or which of them mainly exists) by calculating a change rate in the temperature detected by the temperature sensor 21 (specifically, for example, change rate of the temperature obtained at every interval of the detection time of the temperature sensor 21) and carrying out one or both of determination of whether this change rate exceeds a positive set value set in advance in some cases and determination of whether the change rate falls below a negative set value set in advance in some cases. Also in such a modification example, the same effects as the above description can be obtained.
  • the description is made by taking as an example the case in which the informing device that informs the determination result of the controller 7 or 7A is the display 8 that is mounted on the compressor unit 9 and displays information based on the determination result of the controller 7 or 7A.
  • the present invention is not limited thereto and modifications are possible in such a range as not to depart from the gist and technical idea of the present invention.
  • the informing device may be, for example, a communication terminal 23 that is separated from the compressor unit 9 and displays information (specifically, a message of, for example, "warning: lubricating oil is insufficient” or "warning: please replenish lubricating oil," or the like) based on the determination result of the controller 7 or 7A received through a communication channel 22.
  • the communication terminal 23 may be a configuration physically in contact with the compressor unit 9 as long as it is a separated configuration as the configuration of communication connection.
  • a configuration may be employed in which the communication terminal 23 is placed or suspended at any place in the compressor unit 9 and is temporarily fixed in such a manner as to be separatable.
  • a configuration may be employed in which an external calculator (server or the like) connected through the communication channel 22 is equipped with the determination function of the controller 7 or 7A and the determination result thereof is informed from the external calculator to the communication terminal 23 through the communication channel 22.
  • a configuration in which the communication terminal 23 has the determination function of the controller 7 or 7A may be employed.
  • the informing device may be a warning lamp or warning buzzer mounted on the compressor unit 9, for example.
  • the controller 7 or 7A may drive the warning lamp or warning buzzer when determining that the fluid that flows in the sampling line 19 is air. Also in these modification examples, the same effects as the above description can be obtained.
  • the description is made by taking as an example the case in which the outlet side of the sampling line 19 (19A) is connected to the upstream side of the oil filter 18 of the oil feed system 6.
  • the present invention is not limited thereto and modifications are possible in such a range as not to depart from the gist and technical idea of the present invention.
  • the sampling line is configured in such a manner that the inlet side is connected to the predetermined height position of the oil separator 4 and the fluid from the predetermined height position of the oil separator 4 is allowed to flow by the pressure difference between the inlet side (higher pressure side) and the outlet side (lower pressure side). For this reason, it suffices that the pressure at the site to which the outlet side of the sampling line is connected is lower than the pressure in the oil separator 4 by at least the pressure loss of the sampling line.
  • the description is made by taking as an example the case in which, in the oil-feed-type air compressor, the suction throttle valve 11 that closes the intake side of the compressor main body 1 is set in order to switch the compressor main body 1 from load operation to no-load operation.
  • the present invention is not limited thereto and modifications are possible in such a range as not to depart from the gist and technical idea of the present invention.
  • the oil-feed-type air compressor may include a relief valve 24 (shown by a dotted line in FIG. 1 , FIG. 5 , or FIG. 6 ) that releases a gas on the discharge side of the compressor main body 1 (specifically, upstream side relative to the pressure regulating valve 12 of the compressed air feed system 5) instead of the suction throttle valve 11 in order to switch the compressor main body 1 from load operation to no-load operation.
  • a relief valve 24 shown by a dotted line in FIG. 1 , FIG. 5 , or FIG. 6 ) that releases a gas on the discharge side of the compressor main body 1 (specifically, upstream side relative to the pressure regulating valve 12 of the compressed air feed system 5) instead of the suction throttle valve 11 in order to switch the compressor main body 1 from load operation to no-load operation.
  • the controller 7 or 7A controls the relief valve 24 to the opened state to switch the compressor main body 1 from load operation to no-load operation.
  • the controller 7 or 7A controls the relief valve 24 to the closed state to switch the compressor
  • the oil-feed-type air compressor may include both the suction throttle valve 11 and the relief valve 24. Furthermore, the oil-feed-type air compressor may be configured in such a manner as not to switch the compressor main body 1 from load operation to no-load operation. In other words, the oil-feed-type air compressor may not include the suction throttle valve 11 or the relief valve 24 and the controller 7 or 7A may not include the above-described operation control function. Also in these modification examples, the same effects as the above description can be obtained.
  • the present invention is not limited thereto.
  • the present invention may be applied to a water-feed-type air compressor including a compressor main body that compresses air (gas) while injecting water (liquid) into compression chambers, a water separator (gas-liquid separator) that separates the water from the compressed air (compressed gas) discharged from the compressor main body and stores the water therein, and a water feed system (liquid feed system) that feeds the water stored in the water separator to the compressor main body.
  • a water-feed-type air compressor including a compressor main body that compresses air (gas) while injecting water (liquid) into compression chambers, a water separator (gas-liquid separator) that separates the water from the compressed air (compressed gas) discharged from the compressor main body and stores the water therein, and a water feed system (liquid feed system) that feeds the water stored in the water separator to the compressor main body.
  • the present invention is applied to this water-feed-type air compressor, the water surface height in the water separator can be
  • the description is made by taking as an example the compression mechanism of a so-called twin-screw rotor composed of male and female screw rotors.
  • the positive displacement type includes rotary type, reciprocating type, and so forth.
  • rotary type single screw rotor, twin screw rotor, and multi screw rotor, single scroll lap and multi scroll lap, vane type, craw type, and so forth are included.
  • reciprocating type single reciprocating type and multi reciprocating type and so forth are included.
  • the compressor main body is also not limited to the one-compressor configuration and even a multi-stage configuration formed of a combination based on the same forms or different forms can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Claims (14)

  1. Compresseur de gaz du type à alimentation de liquide incluant un corps principal de compresseur (1) qui comprime un gaz tout en injectant un liquide jusque dans une chambre de compression, un séparateur gaz/liquide (4) qui sépare le liquide d'un gaz comprimé évacué depuis le corps principal de compresseur (1) et qui stocke le liquide à l'intérieur, et un système d'alimentation de liquide (6) qui alimente le liquide stocké dans le séparateur gaz/liquide (4) au corps principal de compresseur (1), caractérisé en ce que le compresseur de gaz du type à alimentation de liquide comprend :
    un conduit d'échantillonnage (19) dont le côté d'entrée est connecté à une position en hauteur prédéterminée du séparateur gaz/liquide (4) et qui permet à un fluide provenant de la position en hauteur prédéterminée du séparateur gaz/liquide de s'écouler par une différence de pression entre le côté d'entrée et un côté de sortie ;
    un détecteur (20, 21) qui détecte une pression ou une température du fluide qui s'écoule dans le conduit d'échantillonnage ;
    un contrôleur (7) qui détermine si le fluide qui s'écoule dans le conduit d'échantillonnage (19) est un gaz ou un liquide en exécutant au moins une détermination parmi une détermination quant à savoir si la pression ou la température détectée par le détecteur (20, 21) excède une première valeur fixée qui est fixée à l'avance et une détermination quant à savoir si la pression ou la température détectée par le détecteur (20, 21) tombe en dessous d'une seconde valeur fixée qui est fixée de manière à être plus petite que la première valeur fixée à l'avance ; et
    un dispositif d'information qui informe d'un résultat de détermination du contrôleur (7).
  2. Compresseur de gaz du type à alimentation de liquide selon la revendication 1, dans lequel
    le contrôleur (7) détermine si le fluide qui s'écoule dans le conduit d'échantillonnage (19) est un gaz ou un liquide en exécutant à la fois la détermination quant à savoir si la pression ou la température détectée par le détecteur (20, 21) excède la première valeur fixée qui est fixée à l'avance et la détermination quant à savoir si la pression ou la température détectée par le détecteur (20, 21) tombe en dessous de la seconde valeur fixée qui est fixée de manière à être plus petite que la première valeur fixée à l'avance.
  3. Compresseur de gaz du type à alimentation de liquide selon la revendication 1, dans lequel
    le compresseur de gaz du type à alimentation de liquide inclut au moins une vanne papillon d'aspiration qui ferme un côté d'admission du corps principal de compresseur (1) et une vanne de détente (24) qui détend le gaz sur un côté d'évacuation du corps principal de compresseur (1) afin d'exécuter une commutation du corps principal de compresseur (1) depuis une opération de charge vers une opération de non-charge, et
    au moment de l'opération de charge du corps principal de compresseur (1), le contrôleur (7) détermine si le fluide qui s'écoule dans le conduit d'échantillonnage (19) est un gaz ou un liquide en exécutant au moins une détermination parmi la détermination quant à savoir si la pression ou la température détectée par le détecteur (20, 21) excède la première valeur fixée qui est fixée à l'avance et la détermination quant à savoir si la pression ou la température détectée par le détecteur (20, 21) tombe en dessous de la seconde valeur fixée qui est fixée de manière à être plus petite que la première valeur fixée à l'avance.
  4. Compresseur de gaz du type à alimentation de liquide selon la revendication 1, dans lequel
    le côté de sortie du conduit d'échantillonnage (19) est connecté au système d'alimentation de liquide (6).
  5. Compresseur de gaz du type à alimentation de liquide selon la revendication 1, dans lequel
    le corps principal de compresseur (1), le séparateur gaz/liquide (4) et le système d'alimentation de liquide (6) configurent une unité de compresseur (9) disposée sur une même base, et
    le dispositif d'information inclut un affichage qui est monté sur l'unité de compresseur (9) et qui affiche une information sur la base du résultat de détermination du contrôleur (7).
  6. Compresseur de gaz du type à alimentation de liquide selon la revendication 1, dans lequel
    le corps principal de compresseur (1), le séparateur gaz/liquide (4) et le système d'alimentation de liquide (6) configurent une unité de compresseur (9) disposée sur une même base, et
    le dispositif d'information inclut un terminal de communication qui est séparé de l'unité de compresseur (9) et qui affiche une information sur la base du résultat de détermination du contrôleur (7), le résultat de détermination étant reçu via un canal de communication.
  7. Compresseur de gaz du type à alimentation de liquide incluant un corps principal de compresseur (1) qui comprime un gaz tout en injectant un liquide jusque dans une chambre de compression, un séparateur gaz/liquide (4) qui sépare le liquide d'un gaz comprimé évacué depuis le corps principal de compresseur (1) et qui stocke le liquide à l'intérieur, et un système d'alimentation de liquide (6) qui alimente le liquide stocké dans le séparateur gaz/liquide (4) au corps principal de compresseur (1), caractérisé en ce que le compresseur de gaz du type à alimentation de liquide comprend :
    un conduit d'échantillonnage (19) dont le côté d'entrée est connecté à une position en hauteur prédéterminée du séparateur gaz/liquide et qui permet à un fluide provenant de la position en hauteur prédéterminée du séparateur gaz/liquide (4) de s'écouler par une différence de pression entre le côté d'entrée et un côté de sortie ;
    un détecteur (20, 21) qui détecte une pression ou une température du fluide qui s'écoule sur un système sur un côté aval connecté au côté de sortie du conduit d'échantillonnage sur le système d'alimentation de liquide (6) ;
    un contrôleur (7) qui détermine si le fluide qui s'écoule dans le conduit d'échantillonnage (19) est un gaz ou un liquide en exécutant au moins une détermination parmi une détermination quant à savoir si la pression ou la température détectée par le détecteur excède une première valeur fixée à l'avance et une détermination quant à savoir si la pression ou la température détectée par le détecteur (20, 21) tombe en dessous d'une seconde valeur fixée qui est fixée de manière à être plus petite que la première valeur fixée à l'avance ; et
    un dispositif d'information (8) qui informe d'un résultat de détermination du contrôleur (7).
  8. Compresseur de gaz du type à alimentation de liquide selon la revendication 7, dans lequel
    le contrôleur (7) détermine si le fluide qui s'écoule dans le conduit d'échantillonnage (19) est un gaz ou un liquide en exécutant à la fois la détermination quant à savoir si la pression ou la température détectée par le détecteur (20, 21) excède la première valeur fixée qui est fixée à l'avance et la détermination quant à savoir si la pression ou la température détectée par le détecteur (20, 21) tombe en dessous de la seconde valeur fixée qui est fixée de manière à être plus petite que la première valeur fixée à l'avance.
  9. Compresseur de gaz du type à alimentation de liquide selon la revendication 7, dans lequel
    le compresseur de gaz du type à alimentation de liquide inclut au moins une vanne papillon d'aspiration qui ferme un côté d'admission du corps principal de compresseur (1) et une vanne de détente (24) qui détend le gaz sur un côté d'évacuation du corps principal de compresseur (1) afin d'exécuter une commutation du corps principal de compresseur (1) depuis une opération de charge vers une opération de non-charge, et
    au moment de l'opération de charge du corps principal de compresseur (1), le contrôleur (7) détermine si le fluide qui s'écoule dans le conduit d'échantillonnage (19) est un gaz ou un liquide en exécutant au moins une détermination parmi la détermination quant à savoir si la pression ou la température détectée par le détecteur (20, 21) excède la première valeur fixée qui est fixée à l'avance et la détermination quant à savoir si la pression ou la température détectée par le détecteur (20, 21) tombe en dessous de la seconde valeur fixée qui est fixée de manière à être plus petite que la première valeur fixée à l'avance.
  10. Compresseur de gaz du type à alimentation de liquide selon la revendication 7, dans lequel
    le côté de sortie du conduit d'échantillonnage (19) est connecté au système d'alimentation de liquide (6).
  11. Compresseur de gaz du type à alimentation de liquide selon la revendication 7, dans lequel
    le corps principal de compresseur (1), le séparateur gaz/liquide et le système d'alimentation de liquide (6) configurent une unité de compresseur disposée sur une même base, et
    le dispositif d'information inclut un affichage (8) qui est monté sur l'unité de compresseur et qui affiche une information sur la base du résultat de détermination du contrôleur (7).
  12. Compresseur de gaz du type à alimentation de liquide selon la revendication 7, dans lequel
    le corps principal de compresseur (1), le séparateur gaz/liquide (4) et le système d'alimentation de liquide (6) configurent une unité de compresseur disposée sur une même base, et
    le dispositif d'information inclut un terminal de communication (23) qui est séparé de l'unité de compresseur et qui informe d'une information sur la base du résultat de détermination du contrôleur (7), le résultat de détermination étant reçu via un canal de communication (22).
  13. Compresseur de gaz du type à alimentation de liquide selon la revendication 1 ou 7, dans lequel
    le contrôleur (7) détermine si le fluide qui s'écoule dans le conduit d'échantillonnage (19) est un gaz ou un liquide en exécutant au moins une détermination parmi une détermination quant à savoir si une fréquence à laquelle la pression ou la température détectée par le détecteur (20, 21) excède une première valeur fixée qui est fixée à l'avance est supérieure à une valeur prédéterminée, et une détermination quant à savoir si une fréquence à laquelle la pression ou la température détectée par le détecteur tombe en dessous d'une seconde valeur fixée qui est fixée de manière être plus petite que la première valeur fixée à l'avance est supérieure à une valeur prédéterminée.
  14. Compresseur de gaz du type à alimentation de liquide selon la revendication 1 ou 7, dans lequel
    le contrôleur (7) détermine si le fluide qui s'écoule dans le conduit d'échantillonnage (19) est un gaz ou un liquide en calculant un taux de changement dans la pression ou dans la température détectée par le détecteur (20, 21) et en exécutant au moins une détermination parmi une détermination quant à savoir si le taux de changement dépasse une valeur fixée positive qui est fixée à l'avance et une détermination quant à savoir si le taux de changement tombe en dessous d'une valeur fixée négative qui est fixée à l'avance.
EP18777716.4A 2017-03-29 2018-03-27 Compresseur de gaz du type à alimentation en liquide Active EP3604808B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/013105 WO2018179190A1 (fr) 2017-03-29 2017-03-29 Compresseur de gaz du type à alimentation en liquide
PCT/JP2018/012412 WO2018181299A1 (fr) 2017-03-29 2018-03-27 Compresseur de gaz du type à alimentation en liquide

Publications (3)

Publication Number Publication Date
EP3604808A1 EP3604808A1 (fr) 2020-02-05
EP3604808A4 EP3604808A4 (fr) 2020-10-14
EP3604808B1 true EP3604808B1 (fr) 2021-08-11

Family

ID=63676184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18777716.4A Active EP3604808B1 (fr) 2017-03-29 2018-03-27 Compresseur de gaz du type à alimentation en liquide

Country Status (6)

Country Link
US (1) US20200102950A1 (fr)
EP (1) EP3604808B1 (fr)
JP (1) JP6742509B2 (fr)
CN (1) CN110462213B (fr)
TW (1) TWI671467B (fr)
WO (2) WO2018179190A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113432043B (zh) * 2021-06-28 2023-04-21 珠海格力智能装备有限公司 注油系统及注油方法
BE1030905B1 (nl) * 2022-09-22 2024-04-22 Atlas Copco Airpower Nv Koelinrichting voor het koelen van olie, olie-geïnjecteerde compressorinrichting voorzien van dergelijke koelinrichting en werkwijze voor het regelen van dergelijke koelinrichting

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE360168B (fr) * 1971-12-22 1973-09-17 Stal Refrigeration Ab
JPS50149370A (fr) * 1974-05-20 1975-11-29
JPH1194408A (ja) * 1997-09-19 1999-04-09 Sanyo Electric Co Ltd 冷凍装置用冷媒リーク検知装置
DE19954570A1 (de) * 1999-11-12 2001-08-02 Zexel Valeo Compressor Europe Axialkolbenverdichter
JP2005076902A (ja) * 2003-08-28 2005-03-24 Daikin Ind Ltd 冷凍機の圧縮ユニット
DE602005027537D1 (de) * 2004-01-14 2011-06-01 Mitsubishi Rayon Co System zur herstellung einer kohlensäurequelle
JP5268317B2 (ja) 2007-09-28 2013-08-21 株式会社日立産機システム 油冷式空気圧縮機
KR20090077575A (ko) * 2008-01-11 2009-07-15 엘지전자 주식회사 멀티형 공기조화기 및 그 제어방법
JP5398571B2 (ja) * 2010-02-15 2014-01-29 三菱重工業株式会社 空気調和装置
JP5277214B2 (ja) * 2010-07-27 2013-08-28 株式会社日立ハイテクノロジーズ 自動分析装置
CN202281432U (zh) * 2011-10-11 2012-06-20 麦克维尔空调制冷(武汉)有限公司 一种采用新供液方法的冷水热泵机组
WO2014118904A1 (fr) * 2013-01-30 2014-08-07 三菱電機株式会社 Dispositif de détection de niveau de liquide
CN203376022U (zh) * 2013-07-15 2014-01-01 广东美的暖通设备有限公司 气液分离器液位测量的装置及具有该装置的气液分离器
CN103939324B (zh) * 2014-04-25 2016-08-24 合肥通用机械研究院 基于相溶性的制冷剂压缩机油循环率测量试验装置
CN203948250U (zh) * 2014-07-02 2014-11-19 艾默生网络能源有限公司 一种压缩机防液击装置及制冷空调
CN104266426B (zh) * 2014-10-16 2016-06-15 珠海格力电器股份有限公司 判断气液分离器中液位的方法及系统
US10788344B2 (en) * 2014-11-04 2020-09-29 Schneider Electric Systems Usa, Inc. Vortex flowmeter including pressure pulsation amplitude analysis
CN105466094B (zh) * 2015-12-25 2018-05-01 珠海格力电器股份有限公司 液位检测系统、具有该系统的空调系统及液位控制方法

Also Published As

Publication number Publication date
WO2018181299A1 (fr) 2018-10-04
EP3604808A4 (fr) 2020-10-14
US20200102950A1 (en) 2020-04-02
WO2018179190A1 (fr) 2018-10-04
JP6742509B2 (ja) 2020-08-19
TW201837311A (zh) 2018-10-16
TWI671467B (zh) 2019-09-11
CN110462213A (zh) 2019-11-15
EP3604808A1 (fr) 2020-02-05
CN110462213B (zh) 2021-04-13
JPWO2018181299A1 (ja) 2020-01-09

Similar Documents

Publication Publication Date Title
US11047390B2 (en) Oil feed type air compressor
US8241007B2 (en) Oil-injection screw compressor
US10711784B2 (en) Air compressor with drain pipe arrangement
EP3604808B1 (fr) Compresseur de gaz du type à alimentation en liquide
JP7005766B2 (ja) 圧縮機及び監視システム
JP2012097618A (ja) 圧縮装置及びその運転制御方法
US11994138B2 (en) Gas compressor with a plurality of air realease systems each having an air release valve and an air regulating valve
US11795949B2 (en) Liquid level height detection in a gas-liquid separator of a liquid supply type gas compressor
CN112752907B (zh) 气体压缩机
CN110939569B (zh) 喷油多级压缩机装置和用于控制压缩机装置的方法
WO2022044863A1 (fr) Compresseur d'air de type à alimentation en huile
EP3742080B1 (fr) Appareil de réfrigération
JP6454607B2 (ja) オイルフリー圧縮機
CN103512280B (zh) 空调器的油平衡方法
CN117677769A (zh) 供油式压缩机
CN116209829A (zh) 气体压缩机
CN117662469A (zh) 压缩机系统以及压缩机系统的运行方法
JP2016095103A (ja) 冷凍装置

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20200911

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 1/00 20060101ALI20200907BHEP

Ipc: F04B 39/02 20060101ALI20200907BHEP

Ipc: F04C 29/00 20060101ALI20200907BHEP

Ipc: F04B 39/06 20060101AFI20200907BHEP

Ipc: F04C 29/02 20060101ALI20200907BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210219

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TAKANO, MASAHIKO

Inventor name: YORIKANE, SHIGEYUKI

Inventor name: MORITA, KENJI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018021762

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Ref country code: AT

Ref legal event code: REF

Ref document number: 1419638

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210811

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1419638

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018021762

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220327

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220327

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230208

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230216

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240130

Year of fee payment: 7

Ref country code: GB

Payment date: 20240201

Year of fee payment: 7