EP3591179A1 - Conduit de dérivation de vapeur - Google Patents

Conduit de dérivation de vapeur Download PDF

Info

Publication number
EP3591179A1
EP3591179A1 EP18181414.6A EP18181414A EP3591179A1 EP 3591179 A1 EP3591179 A1 EP 3591179A1 EP 18181414 A EP18181414 A EP 18181414A EP 3591179 A1 EP3591179 A1 EP 3591179A1
Authority
EP
European Patent Office
Prior art keywords
arrangement
holes
steam
condenser
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18181414.6A
Other languages
German (de)
English (en)
Inventor
Christian Musch
Andreas Auge
Simon Hecker
Stephan Minuth
Andreas PENKNER
Steffen Wendt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP18181414.6A priority Critical patent/EP3591179A1/fr
Priority to US17/257,122 priority patent/US20210231030A1/en
Priority to CN201980044738.9A priority patent/CN112543842B/zh
Priority to KR1020217003075A priority patent/KR102481662B1/ko
Priority to JP2021521889A priority patent/JP2022505564A/ja
Priority to RU2020142862A priority patent/RU2756941C1/ru
Priority to EP19734313.0A priority patent/EP3791050B1/fr
Priority to PCT/EP2019/066192 priority patent/WO2020007609A1/fr
Publication of EP3591179A1 publication Critical patent/EP3591179A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/04Plants characterised by condensers arranged or modified to co-operate with the engines with dump valves to by-pass stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/02Auxiliary systems, arrangements, or devices for feeding steam or vapour to condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines

Definitions

  • the invention relates to an arrangement for equalizing a flow, the arrangement having a housing which is designed to limit the flow, the housing having holes through which the flow flows as a jet in a space outside the housing.
  • a steam is generated in a so-called steam generator and led to a steam turbine via pipes.
  • the thermal energy of the steam is converted into mechanical rotational energy in the steam turbine.
  • the pressure and the temperature of the steam decrease.
  • the steam turbine flows through the steam, the steam flows into a condenser at comparatively low temperatures and low pressure, where the steam condenses on cool pipelines and is converted back to water.
  • bypass operation In bypass operation, three criteria have to be essentially fulfilled so that safe operation is possible, which also leads to as little damage as possible. On the one hand, this would be a criterion that the steam is fed to the condenser without actively flowing or driving steam on the rotor of the steam turbine. On the other hand, the bypass steam inlet must be designed in such a way that it does not damage the cooling pipes of the condenser by imprinting impermissibly high steam speeds. Finally, the following criterion must be observed: Since the steam is cooled by water injection before being introduced into the condenser and the water can be present in the form of drops or steam, it must also be ensured that droplet loading does not lead to erosion damage in the condenser or the turbine comes.
  • a perforated basket is characterized by a housing that has individual bores through which the bypass steam flows. After the perforated basket, the steam flows into a free space of the condenser dome, which is often provided with stiffening elements of different geometries.
  • dumptubes An alternative to the perforated basket are so-called "dumptubes". These are also designed to conduct the bypass steam into the condenser.
  • the dumptube is characterized by a tube-like housing, which also has holes through which the bypass steam flows into the condenser.
  • Erosion poses a problem. Because the gas dynamics caused the bursting of the beam to form a large area with supersonic flow, it is not always possible to completely rule out erosion-related damage to the condenser. Erosion occurs when water drops are accelerated to high speed and then hit built-in parts. This damage can be minimized through the use of erosion-resistant materials, but this is very cost-intensive and can lead to a renewal of it later.
  • the previous configurations of the perforated baskets and the dumptubes are such that there is a post-expansion in which the beams from the individual bores, which can be referred to as throttle bores, are combined and thus into a large coherent area with supersonic flow in which the potentially There is a risk of damage. Since the beam is essentially only dissipated at the edge of the beam, the penetration depth of the beam is also very large in this case. In the case of a perforated basket, this area can extend to the opposite condenser wall. The invention seeks to remedy this.
  • the area to which the beam energy can be dissipated is increased many times over, and the depth of penetration is thus reduced many times over.
  • the arrangement is a perforated basket in one case and a dumptube in another case.
  • the distance D between two adjacent holes is at least 50 mm. This is a value that has been empirically determined and is an optimal value. At this value of 50 mm, the distance between the individual bores is such that the bore pattern is such that no beam union can occur at any operating point.
  • holes are designed as a bore deviating from a circular cross section.
  • the ratio of hole circumference to hole cross-section should be maximized so that the beam edge is also maximized.
  • the hole can be in the form of a cloverleaf.
  • the ratio of hole circumference to hole cross section is maximum and leads to a further improvement.
  • the Figure 1 shows a condenser 1.
  • the condenser 1 comprises a condenser housing 2 and condenser tubes 3.
  • a cooling medium flows through the condenser tubes 3.
  • the steam supplied in the condenser housing 2 condenses into water from a low-pressure turbine.
  • the supply of steam from the low-pressure turbine part in the condenser 1 is in the Figure 1 not shown in detail.
  • a steam with high energy flows via a bypass line 4 through the condenser housing 2 into an arrangement 5, which in this case is a perforated basket 6.
  • Stiffening elements 7 are arranged within the capacitor 1.
  • the arrangement 5 comprises a housing 8 which is designed to limit the flow from the bypass line 4.
  • the housing 8 has holes 9.
  • the arrangement 5 and the housing 8 are designed in such a way that the steam from the bypass line 4 can only flow through the holes 9 into the interior of the condenser and it is not possible for the steam to flow out between the housing 8 and the condenser housing 2.
  • the Figure 3 shows an alternative embodiment of the arrangement 5.
  • the arrangement represents a dump tube 10.
  • the dump tube 10 also has a housing 8 in which holes 9 are arranged.
  • the Figure 6 shows an enlarged view of a part of the arrangement, which can be designed as a perforated basket 6 or as a dumptube 10. It can be seen in the Figure 6 part of the housing 8. Furthermore, a hole 9 is shown centrally, and four further holes 9 at the corners according to the perspective view Figure 6 , The holes 9 are at a distance 11 from one another. This distance 11 is such that a jet flowing through the hole 9 does not combine with one another. The distance 11 should therefore be at least 50 mm.
  • the Figure 5 shows an alternative embodiment of a hole 9a.
  • the hole 9a is designed as a cloverleaf. This means that essentially four smaller bores are formed, which have a continuous bore in the middle. The ratio of hole circumference and hole cross section is optimal.
  • the Figure 7 shows an embodiment of a hole 9.
  • the hole 9 is designed as a Laval nozzle.
  • the flow 12 takes place from left to right.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
EP18181414.6A 2018-07-03 2018-07-03 Conduit de dérivation de vapeur Withdrawn EP3591179A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP18181414.6A EP3591179A1 (fr) 2018-07-03 2018-07-03 Conduit de dérivation de vapeur
US17/257,122 US20210231030A1 (en) 2018-07-03 2019-06-19 Steam bypass conduit
CN201980044738.9A CN112543842B (zh) 2018-07-03 2019-06-19 蒸汽旁通引入部
KR1020217003075A KR102481662B1 (ko) 2018-07-03 2019-06-19 증기 우회 도관
JP2021521889A JP2022505564A (ja) 2018-07-03 2019-06-19 バイパス蒸気導入部
RU2020142862A RU2756941C1 (ru) 2018-07-03 2019-06-19 Ввод пара в байпасе
EP19734313.0A EP3791050B1 (fr) 2018-07-03 2019-06-19 Conduit de dérivation de vapeur
PCT/EP2019/066192 WO2020007609A1 (fr) 2018-07-03 2019-06-19 Entrée de vapeur de dérivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18181414.6A EP3591179A1 (fr) 2018-07-03 2018-07-03 Conduit de dérivation de vapeur

Publications (1)

Publication Number Publication Date
EP3591179A1 true EP3591179A1 (fr) 2020-01-08

Family

ID=62846047

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18181414.6A Withdrawn EP3591179A1 (fr) 2018-07-03 2018-07-03 Conduit de dérivation de vapeur
EP19734313.0A Active EP3791050B1 (fr) 2018-07-03 2019-06-19 Conduit de dérivation de vapeur

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19734313.0A Active EP3791050B1 (fr) 2018-07-03 2019-06-19 Conduit de dérivation de vapeur

Country Status (7)

Country Link
US (1) US20210231030A1 (fr)
EP (2) EP3591179A1 (fr)
JP (1) JP2022505564A (fr)
KR (1) KR102481662B1 (fr)
CN (1) CN112543842B (fr)
RU (1) RU2756941C1 (fr)
WO (1) WO2020007609A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009137572A2 (fr) 2008-05-06 2009-11-12 Alba Therapeutics Corporation Inhibition des peptides de la gliadine
US11608359B2 (en) 2018-02-23 2023-03-21 9 Meters Biopharma, Inc. Compounds and methods for treating tight junction permeabtility

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108298A1 (fr) * 1982-11-02 1984-05-16 Siemens Aktiengesellschaft Condenseur de turbine avec au minimum un conduit de dérivation de vapeur entrant dans le dôme
EP0953731A1 (fr) * 1998-04-30 1999-11-03 Asea Brown Boveri AG Dispositif d'introduction de vapeur dans des centrales d'énergie
US6481208B1 (en) * 2001-10-01 2002-11-19 Holtec International External steam dump
KR20130056446A (ko) * 2011-11-22 2013-05-30 비에이치아이 주식회사 복수기의 습증기 침식방지용 증기 바이패스 덤프 분사장치
EP2829693A1 (fr) * 2013-07-26 2015-01-28 Siemens Aktiengesellschaft Condensateur à turbine pour une turbine à vapeur
EP3104107A1 (fr) * 2015-06-12 2016-12-14 General Electric Technology GmbH Dispositif de décharge de vapeur pour une centrale nucléaire

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1330081A (en) * 1919-02-06 1920-02-10 Ljungstroms Angturbin Ab Condensing apparatus
JPS58220908A (ja) * 1982-06-16 1983-12-22 Hitachi Ltd タ−ビンバイパス蒸気のエネルギ−ダンパ構造
JPS6490736A (en) * 1987-09-30 1989-04-07 Sumitomo Rubber Ind Apex mounting and its device
JPH02267490A (ja) * 1989-04-07 1990-11-01 Toshiba Corp 復水器
JPH10325686A (ja) * 1997-05-22 1998-12-08 Toshiba Corp 復水器およびその起動方法
JP4673765B2 (ja) * 2006-02-27 2011-04-20 株式会社日立製作所 タービン排気システム
EP2565538A1 (fr) * 2011-08-31 2013-03-06 Siemens Aktiengesellschaft Conduite de vapeur de déviation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108298A1 (fr) * 1982-11-02 1984-05-16 Siemens Aktiengesellschaft Condenseur de turbine avec au minimum un conduit de dérivation de vapeur entrant dans le dôme
EP0953731A1 (fr) * 1998-04-30 1999-11-03 Asea Brown Boveri AG Dispositif d'introduction de vapeur dans des centrales d'énergie
US6481208B1 (en) * 2001-10-01 2002-11-19 Holtec International External steam dump
KR20130056446A (ko) * 2011-11-22 2013-05-30 비에이치아이 주식회사 복수기의 습증기 침식방지용 증기 바이패스 덤프 분사장치
EP2829693A1 (fr) * 2013-07-26 2015-01-28 Siemens Aktiengesellschaft Condensateur à turbine pour une turbine à vapeur
EP3104107A1 (fr) * 2015-06-12 2016-12-14 General Electric Technology GmbH Dispositif de décharge de vapeur pour une centrale nucléaire

Also Published As

Publication number Publication date
US20210231030A1 (en) 2021-07-29
RU2756941C1 (ru) 2021-10-07
JP2022505564A (ja) 2022-01-14
KR20210027429A (ko) 2021-03-10
CN112543842B (zh) 2023-04-21
CN112543842A (zh) 2021-03-23
WO2020007609A1 (fr) 2020-01-09
EP3791050B1 (fr) 2022-06-08
EP3791050A1 (fr) 2021-03-17
KR102481662B1 (ko) 2022-12-28

Similar Documents

Publication Publication Date Title
DE112018002222T5 (de) Brennstoffinjektor und Gasturbine
EP2423599A2 (fr) Procédé de fonctionnement d'un agencement de brûleur ainsi qu'agencement de brûleur destiné à l'exécution du procédé
EP3791050B1 (fr) Conduit de dérivation de vapeur
EP2035690B1 (fr) Tuyère munie d'un obturateur dans une turbine de pelton ou une turbine tangentielle
DE102011054793B4 (de) Einspritzkühler
EP2951066B1 (fr) Circuit de refroidissement d'un véhicule automobile, muni d'un retardateur hydrodynamique
DE69725077T2 (de) Vorrichtung zum Regeln des Brennstoff-Ablassstromes für eine Turbine mit Nachverbrennung
DE2933932C2 (de) Dampferzeuger
EP0108298B1 (fr) Condenseur de turbine avec au minimum un conduit de dérivation de vapeur entrant dans le dôme
EP3019793B1 (fr) Insert de protection contre la chaleur pour conduite de carburant
DE102014103691A1 (de) Wärmetauscher, Reaktoranordnung umfassend diesen Wärmetauscher und Verfahren zum Temperieren eines Reaktors
DE102012000536B3 (de) Passiver Rückflussbegrenzer für ein Strömungsmedium
EP1512905A1 (fr) Générateur de vapeur à passage unique et méthode pour faire fonctionner ledit générateur de vapeur à passage unique
DE2446090C3 (de) Druckwasserreaktor
EP2382033B1 (fr) Station de dérivation avec un dispositif mélangeur pour mélanger de l'eau et de la vapeur d'eau
DE102008024530A1 (de) Drosselelement für Verdampfer sowie Verdampfer und Verdampfungsverfahren mit demselben
DE102017104044A1 (de) Verfahren zum Herstellen einer Brennstoff- oder Hydraulikmittelleiteinheit unter Einbringung eines Schutzmediums und Werkzeugmaschine
DE102006009558A1 (de) Speisepumpenantriebsturbine
DE102004025585B4 (de) Reaktordruckbehälterdeckel für einen Siedewasserreaktor
DE102013020631B4 (de) Löschdüsenkopf
DE19845147A1 (de) Vorrichtung und Verfahren zur Kühlung einer einseitug von Heißgas umgebenen Wand
EP3591176A1 (fr) Raccord à bride refroidi pour une turbomachine
WO1999008040A1 (fr) Dispositif pour proteger des elements encastres
EP3472515A1 (fr) Générateur de vapeur vertical à récupération de chaleur
DE102006047068A1 (de) Ventil zum Einspeisen von Lösungen in Kristallisationsanlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200709