EP0108298B1 - Condenseur de turbine avec au minimum un conduit de dérivation de vapeur entrant dans le dôme - Google Patents

Condenseur de turbine avec au minimum un conduit de dérivation de vapeur entrant dans le dôme Download PDF

Info

Publication number
EP0108298B1
EP0108298B1 EP83110382A EP83110382A EP0108298B1 EP 0108298 B1 EP0108298 B1 EP 0108298B1 EP 83110382 A EP83110382 A EP 83110382A EP 83110382 A EP83110382 A EP 83110382A EP 0108298 B1 EP0108298 B1 EP 0108298B1
Authority
EP
European Patent Office
Prior art keywords
steam
throttle
turbine condenser
condenser according
dome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83110382A
Other languages
German (de)
English (en)
Other versions
EP0108298A1 (fr
Inventor
Otto Dipl.-Ing. Von Schwerdtner
Hans Gossen
Jürgen Dipl.-Ing. Günther
Hans Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6177117&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0108298(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0108298A1 publication Critical patent/EP0108298A1/fr
Application granted granted Critical
Publication of EP0108298B1 publication Critical patent/EP0108298B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/04Plants characterised by condensers arranged or modified to co-operate with the engines with dump valves to by-pass stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B5/00Condensers employing a combination of the methods covered by main groups F28B1/00 and F28B3/00; Other condensers

Definitions

  • the invention relates to a turbine condenser with at least one bypass steam inlet opening into the steam dome according to the preamble of claim 1.
  • the bypass steam inlets are equipped with a bypass valve to regulate the amount of bypass steam, a throttle device to relieve the bypass steam and a water injection to cool the bypass steam.
  • the heat gradient to be throttled in such a bypass steam introduction is very large.
  • the steam pressure upstream of the bypass valve is usually up to 45 bar, while the back pressure in the turbine condenser can be specified at around 0.1 bar.
  • a turbine condenser is known from DE-AS1014568, in the steam dome of which the bypass steam is introduced via one or two pipes extending in the longitudinal direction of the condenser.
  • the bypass steam is conducted into the tube lane of the turbine condenser in such a way that exposure to components which are at risk is avoided.
  • the previous cooling of the bypass steam takes place via a water injection pipe arranged inside the pipe.
  • the perforated tube of the bypass steam inlet must be arranged in the area in which the exhaust steam from the turbine is introduced into the turbine condenser.
  • sufficient throttle cross sections for the desired expansion of the bypass steam cannot be made available for reasons of space, also due to the perforation of the pipe.
  • a turbine condenser is also known, in which two or more bypass steam inlets are welded into the steam dome wall on the end face of the condenser.
  • the bypass steam inlets each contain a bypass valve and a steam cooling screen arranged downstream thereof, in which the bypass steam is expanded and cooled by injected water or condensate.
  • the residual relaxation of the bypass steam takes place behind the steam cooling panel via a short pipe section or directly into the steam dome. Redirection steam inlets designed in this way have the advantage that, with the simplest design, disruptive installations in the steam dome of the turbine condenser are avoided.
  • the proportion of post-expansion into the steam dome is relatively high, since the cross-section of the steam cooling screen provided as a throttle device is limited for structural reasons.
  • the bypass steam enters the steam dome in the form of a bundled single jet.
  • the invention has for its object to improve the bypass steam introduction into the steam dome of a turbine condenser so that the noise is greatly reduced without significant disturbances in the exhaust steam flow of the turbine and the risk of vibration excitation and drop impact erosion of turbine blades, condenser tubes, housing walls and other illuminated components is eliminated .
  • the invention is based on the finding that speeds of the bypass steam which are substantially above the speed of sound can be avoided in the case of throttle devices connected in series with throttle cross sections increasing downstream. This applies to the entire relaxation area, ie also to the area behind the last throttle device, provided that a sufficiently large throttle cross-section can be made available to the last throttle device. For this reason, the last throttle device is formed by an installation which clings to the inside of the steam dome wall, in whose convex curved wall has a plurality of holes. Due to the arrangement of the installation within the steam dome, a sufficiently large area is available for the holes in the installation, so that the remaining gradient is correspondingly small.
  • the installation consists of an axially parallel cut and at least approximately vertically aligned multi-hole partial cylinder with end walls.
  • This multi-hole partial cylinder is thus attached to the steam dome wall in the flow direction of the exhaust steam.
  • the multi-hole partial cylinder is also expedient to design the multi-hole partial cylinder as a multi-hole half cylinder, as a result of which the strength properties are improved and production is also facilitated.
  • the end walls are not perforated and thus all of the steam jets emerging from the last throttle device run at least approximately in the horizontal direction.
  • the upper end wall can then also be inclined and rise towards the steam dome wall, such a shape being particularly aerodynamic.
  • a first throttle device designed as a multi-hole throttle cone and a second throttle device designed as a steam cooling diaphragm are arranged in succession downstream of the diverter valve.
  • the multi-hole throttling cone also has the task of calming the highly turbulent steam flow behind the diverter valve.
  • the pressure of a water injection arranged after this multi-hole throttle cone can be reduced and the pump output can accordingly be reduced.
  • the steam cooling orifice arranged immediately behind causes a further throttling of the steam flow and a good atomization of the water injected in the area of high steam speeds.
  • the second throttle device can also be designed as a multi-hole steam cooling screen, whereby the steam and water distribution is further improved.
  • Additional throttle devices can also be arranged between the aforementioned second throttle device and the last throttle device.
  • the distances between these further throttle devices can then be matched to the throttle cross sections such that the vapor velocity generated in one throttle device is slowed down before reaching the next throttle device in accordance with the cross section available there. This is done in the supersonic area by compression impacts and otherwise by swirling.
  • the further throttle devices are arranged outside the steam dome wall and are designed as multi-hole throttle cones. This results in an extremely simple design, the design of the throttle devices as multi-hole throttle cones offering advantages in terms of strength, thermal expansion and vibration behavior.
  • the further throttle devices are formed by internally arranged internals which adhere to the inside of the steam dome wall.
  • Such a bypass steam inlet is extremely short in view of the small space requirement outside the steam dome.
  • the further throttle devices could be designed as multi-hole throttle cones and / or as roof-shaped internals with perforated roof surfaces. The two roof halves of a roof-shaped installation are then expediently connected to one another via a short half-cylinder piece.
  • At least one of the above-mentioned further throttle devices must be assigned a further water injection.
  • bypass steam inlet opens out to the side of the preheater in an end face of the steam dome.
  • these can open out on both sides next to the preheater in a front steam dome wall. Due to the small space requirement of the installation which forms the last throttle device and clings to the inside of the steam dome wall, there is sufficient space within the steam dome without mutual hindrance for one or two bypass steam inlets, for a preheater and for the arrangement of steam extraction pipes.
  • Fig. 1 shows a highly simplified schematic representation of a first embodiment of a bypass steam introduction.
  • the bypass steam indicated by arrows 1 first reaches a bypass valve 2 which regulates the amount of bypass steam according to the respective operating conditions of the turbine.
  • a pipe socket 3 Connected to the bypass valve 2 is a pipe socket 3 which is flared in the direction of flow and which is welded at the end into the steam dome wall of a turbine condenser designated by 400.
  • a first throttle device 5 is initially arranged behind the diverter valve 2, which is designed as a multi-hole throttle cone which widens in the flow direction and, in addition to throttling the diverter steam 1, is also intended to calm the flow, which is strongly turbulent at this point.
  • a second throttle device 6 designed as a steam cooling screen, which has a plurality of circumferentially arranged and slightly inclined bores 60 in the direction of flow, through which water or condensate is injected to cool the bypass steam 1, as is caused by the Arrows 600 is indicated.
  • the flow cross section of the second throttle device 6 is adapted to the course of the speed, the water 600 being injected for atomization reasons at the highest possible steam speed.
  • the second throttle device 6 is followed in succession by a third throttle device 7, a fourth throttle device 9, each of which is designed as a multi-hole throttle cone that widens in the direction of flow.
  • the axial distances of the other throttle devices 7, 8 and 9 are matched to the hole diameters of the throttle cross sections so that the velocity of the bypass steam 1 generated in one throttle point is slowed down before reaching the next throttle point in accordance with the cross section available there. This is done in the supersonic area by compression impacts and otherwise by swirling.
  • further water injections can be assigned to the further throttle devices 7, 8 and 9.
  • a further water injection 11 is arranged directly upstream of the throttle device 9, through which water indicated by arrows 1100 is injected.
  • the design of the further throttle devices 7, 8 and 9 as multi-hole throttle cones offers advantages in terms of strength, thermal expansion and vibration behavior. In addition, this creates favorable conditions for the swirling and mixing of the bypass steam 1 with the injected water 600 or 1100, since the flow through the holes in a multi-hole throttle cone is directed inwards and is forced outwards again before the following multi-hole throttle cone.
  • the last throttle device 12 following the throttle device 9 is therefore no longer arranged within the pipe socket 3, but within the steam dome of the turbine condenser.
  • the last throttle device 12 is designed as a multi-hole half cylinder 120, which is oriented vertically, i.e. in the flow direction of the exhaust steam of the turbine, and is aligned as installation of the steam dome hugs the steam dome wall 400 from the inside.
  • the multi-hole half cylinder 120 has an upper end wall 1200 and a lower end wall 1201, the upper end wall 1200 being inclined in an aerodynamically favorable manner with respect to the exhaust steam flowing into the steam dome.
  • the flow of the bypass steam 1 from the pipe socket 3 into the last throttle device 12 takes place in the manner of a T-piece. This is intended to avoid bottlenecks in the flow cross section.
  • the throttle cross sections of the throttle devices 5. 6, 7, 8, 9 and 12 connected in series increase downstream, so that the bypass steam 1 can be throttled in such a way that the speed of sound is exceeded as little as possible in each case.
  • the last throttle device 12 can be provided with such a large throttle cross-section as the installation of the steam dome that the corresponding reduction of the remaining gradient means that the bypass steam 1 only moderately exceeds the speed of sound when entering the steam dome.
  • Fig. 2 shows a very simplified schematic representation of a second embodiment of a bypass steam inlet.
  • the bypass steam indicated by arrows 1 ' a bypass valve 2 ', a pipe socket 3', a first throttle device 5 'designed as a multi-hole throttle cone, a second throttle device 6' arranged immediately behind it and designed as a multi-hole steam cooling screen, a third throttle device 7 'designed as a multi-hole throttle cone , a fourth throttle device 8 ', also designed as a multi-hole throttle cone, a fifth throttle device 9' designed as a roof-shaped installation with perforated roof surfaces, and a last throttle device 12 ', which as a multi-hole half cylinder 120' with an upper, inclined end wall 1200 'and one lower end wall 1201 'is formed.
  • the first throttle device 5 ', the second throttle device 6' and the third throttle device 7 ' are arranged within a step-wise conical widening pipe socket 3', while the fourth throttle device 8 ', the fifth throttle device 9' and the last throttle device 12 'as nested Built-in steam dome are formed, which are attached to the inside of the steam dome wall 400 '.
  • the entire bypass steam inlet is therefore extremely short outside the steam dome.
  • the second throttle device 6 ' is designed as a multi-hole steam cooling screen, which results in a better distribution of the bypass steam 1' and the water 600 'supplied via a line 60' and an annular channel.
  • the short distances between the individual throttling points are taken into account by small hole diameters. In order to avoid that the steam jets generated in one throttle point blow directly onto the holes in the next throttle point, holes have been omitted where the distances are too short.
  • the fifth throttle device 9 ' is designed as an installation with perforated roof surfaces, these roof surfaces being connected to one another via a short half-cylinder piece 90'.
  • This short half-cylinder piece 90 ' can also be seen in the sectional view of FIG. 3. 3 also shows the fastening of the multi-hole half cylinder 120 'of the last throttle device 12' and the multi-hole throttle cone of the fourth throttle device 8 'on the steam dome wall 400'.
  • FIG. 4 shows a vertical section through a turbine condenser, generally designated 4, which is resiliently supported on a foundation F below a low-pressure partial turbine NT.
  • the steam dome is labeled 40
  • the steam dome wall is 400
  • a preheater installed in the steam dome 40 is 41
  • steam extraction tubes are arranged in the area of the steam dome 40 and 42
  • tube bundles are arranged in the lower area with 43 ′ and a condensate collection container with 44.
  • two of the bypass steam inlets shown in FIG. 1 open into the steam dome 40, of which the last throttle device 12 with the multi-hole half cylinder 120 and the upper end wall 1200 as well as the pipe socket 3 welded into the front steam dome wall 400 can be seen is.
  • the last throttling devices 12 which adhere to the inside of the steam dome wall 400 from the inside cannot significantly obstruct the exhaust steam A escaping from the last turbine stage and through the outflow housing with diffuser during normal operation, and thus ensure a uniform inflow of the tube bundles 43 is.
  • the already described special configuration of the bypass steam inlets and in particular the last throttle devices 12 greatly attenuates the volume of the resulting noises and eliminates the risk of vibration excitation and drop impact erosion of the blades of the low-pressure partial turbine NT and the individual components of the turbine condenser 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (15)

1. Condenseur de turbine comportant au moins un dispositif d'introduction de la vapeur dérivée, qui débouche dans le dôme de prise de vapeur et qui est équipé d'une valve de dérivation servant à régler la quantité de vapeur dérivée, un dispositif d'étranglement servant à détendre la vapeur dérivée et un dispositif d'injection d'eau servant à refroidir la vapeur dérivée, remarquable par les caractéristiques suivantes :
a) la détente de la vapeur dérivée s'effectue dans au moins deux dispositifs d'étranglement branchés en série (5, 6, 7, 8, 9, 12 ; 5', 6', 7', 8', 9', 12'),
b) les sections transversales d'étranglement des dispositifs d'étranglement (5, 6, 7, 8, 9, 12 ; 5', 6', 7', 8', 9', 12') augmentent vers l'aval,
c) le dernier dispositif d'étranglement en aval (12 ; 12') est formé par un insert s'adaptant de l'intérieur à la paroi (400 ; 400') du dôme de prise de vapeur et dans la paroi convexe duquel sont ménagés un nombre important de trous.
2. Condenseur de turbine suivant la revendication 1, caractérisé par le fait que l'insert est constitué par un élément de cylindre comportant de nombreux trous, qui est sectionné parallèlement à l'axe, et dirigé au moins approximativement verticalement et comporte des parois de terminaison frontales (1200, 1201 ; 1200', 1201'). 3: Condenseur de turbine suivant la revendication 1, caractérisé par le fait que l'élément de cylindre à trous multiples est réalisé sous la forme d'un demi-cylindre à trous multiples (120 ; 120').
4. Condenseur de-turbine suivant la revendication 2 ou 3, caractérisé par le fait que les parois de terminaison frontales (1200, 1201 ; 1200', 1201) ne sont pas perforées.
5. Condenseur de turbine suivant la revendication 4, caractérisé par le fait que la paroi de terminaison frontale supérieure (1200 ; 1200') est disposée en oblique et monte en direction de la paroi (400 ; 400') du dôme de prise de vapeur.
6. Condenseur de turbine suivant l'une des revendications précédentes caractérisé par le fait qu'un premier dispositif d'étranglement (5 ; 5') réalisé sous la forme d'un cône d'étranglement à trous multiples et un second dispositif d'étranglement (6 ; 6') réalisé sous la forme d'un diaphragme de refroidissement de vapeur sont disposés successivement en aval de la valve de dérivation (2 ; 2').
7. Condenseur de turbine suivant la revendication 6, caractérisé par le fait que le second dispositif d'étranglement (6') est réalisé sous la forme d'un diaphragme de refroidissement de la vapeur à trous multiples.
8. Condenseur de turbine suivant la revendication 6 ou 7, caractérisé par le fait que d'autres dispositifs d'étranglement (7, 8, 9 ; 7', 8', 9') sont disposés entre le second dispositif d'étranglement (6 ; 6') et le dernier dispositif d'étranglement (12 ; 12').
9. Condenseur de turbine suivant la revendication 8, caractérisé par le fait que les autres dispositifs d'étranglement (7, 8, 9) sont agencés à l'extérieur de la paroi (400) du dôme de prise de vapeur et sont réalisés sous la forme de cônes d'étranglement à trous multiples.
10. Condenseur de turbine suivant la revendication 7, caractérisé par le fait qu'au moins une partie des autres dispositifs d'étranglement (8', 9') est formée par des inserts disposés imbriqués les uns dans les autres et s'adaptant de l'intérieur à la paroi (400') du dôme de prise de vapeur.
11. Condenseur de turbine suivant la revendication 10, caractérisé par le fait que les autres dispositifs d'étranglement (7', 8', 9') sont réalisés sous la forme de cônes d'étranglement à trous multiples et/ou sous la forme d'inserts en forme de toits comportant des pans perforés.
12. Condenseur de turbine suivant la revendication 11, caractérisé par le fait que les deux pans d'un insert en forme de toit sont reliés entre eux par l'intermédiaire d'une courte pièce semi-cylindrique (90').
13. Condenseur de turbine suivant l'une des revendications 8 à 12, caractérisé par le fait qu'un autre dispositif (11) d'injection d'eau est associé au moins à l'un des autres dispositifs d'étranglement (9).
14. Condenseur de turbine suivant l'une des revendications précédentes, comportant un réchauffeur disposé dans le dôme de prise de vapeur, caractérisé par le fait que le dispositif d'introduction de la vapeur dérivée débouche latéralement à côté du réchauffeur (41)-dans une paroi frontale (400) du dôme de prise de vapeur.
15. Condenseur de turbine suivant la revendication 14, comportant deux dispositifs d'introduction de la vapeur dérivée, débouchent des deux côtés, à côté du réchauffeur (41) dans une paroi frontale (400) du dôme de prise de vapeur.
EP83110382A 1982-11-02 1983-10-18 Condenseur de turbine avec au minimum un conduit de dérivation de vapeur entrant dans le dôme Expired EP0108298B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3240453 1982-11-02
DE19823240453 DE3240453A1 (de) 1982-11-02 1982-11-02 Dampfturbinenkondensator mit mindestens einer in den dampfdom einmuendenden umleitdampfeinfuehrung

Publications (2)

Publication Number Publication Date
EP0108298A1 EP0108298A1 (fr) 1984-05-16
EP0108298B1 true EP0108298B1 (fr) 1985-08-07

Family

ID=6177117

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83110382A Expired EP0108298B1 (fr) 1982-11-02 1983-10-18 Condenseur de turbine avec au minimum un conduit de dérivation de vapeur entrant dans le dôme

Country Status (5)

Country Link
US (1) US4530212A (fr)
EP (1) EP0108298B1 (fr)
JP (1) JPS5997487A (fr)
DE (2) DE3240453A1 (fr)
IN (1) IN158404B (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178885A (ja) * 1986-02-03 1987-08-05 Hitachi Ltd 減温減圧装置
WO1994019584A1 (fr) * 1993-02-25 1994-09-01 Siemens Aktiengesellschaft Refroidissement d'une turbine a rapport de compression reduit en mode ventilation
ATE261567T1 (de) * 1997-01-10 2004-03-15 Framatome Anp Gmbh Verfahren und einrichtung zum überhitzen von dampf
SE509216C2 (sv) * 1997-09-08 1998-12-21 Vattenfall Ab Ångutloppsanordning med dysa och fördelningskupa, placerad i en ånggenerators tak
EP0953731A1 (fr) 1998-04-30 1999-11-03 Asea Brown Boveri AG Dispositif d'introduction de vapeur dans des centrales d'énergie
EP1260782A1 (fr) * 2001-05-21 2002-11-27 ALSTOM (Switzerland) Ltd Condenseur de vapeur
US6481208B1 (en) 2001-10-01 2002-11-19 Holtec International External steam dump
EP1607586A1 (fr) * 2004-05-06 2005-12-21 Siemens Aktiengesellschaft Centrale à vapeur
GB2452904B (en) * 2007-05-29 2010-01-20 William St George Vesy Stoney Adiabatic decompression cycle
EP2500549A1 (fr) * 2011-03-14 2012-09-19 Siemens Aktiengesellschaft Ecran d'injection pour une centrale à vapeur
JP6221168B2 (ja) * 2013-03-27 2017-11-01 三菱日立パワーシステムズ株式会社 復水器、及びこれを備える蒸気タービンプラント
EP3591179A1 (fr) * 2018-07-03 2020-01-08 Siemens Aktiengesellschaft Conduit de dérivation de vapeur

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1014568B (de) * 1953-08-17 1957-08-29 Maschf Augsburg Nuernberg Ag Einrichtung zum Niederschlagen des Anfahrdampfes in einem Oberflaechenkondensator
FR2212853A5 (fr) * 1973-01-02 1974-07-26 Cem Comp Electro Mec
JPS503847U (fr) * 1973-05-08 1975-01-16
JPS54150507A (en) * 1978-05-19 1979-11-26 Toshiba Corp Condenser
JPS56132408A (en) * 1980-03-24 1981-10-16 Toshiba Corp Turbine bypass device

Also Published As

Publication number Publication date
DE3240453A1 (de) 1984-05-03
DE3360524D1 (en) 1985-09-12
JPS5997487A (ja) 1984-06-05
EP0108298A1 (fr) 1984-05-16
US4530212A (en) 1985-07-23
IN158404B (fr) 1986-11-08

Similar Documents

Publication Publication Date Title
EP1422403B1 (fr) Dispositif de vaporisation d'eau pour turbines à gaz
EP0108298B1 (fr) Condenseur de turbine avec au minimum un conduit de dérivation de vapeur entrant dans le dôme
EP1429001A2 (fr) Silencieux d'admission pour turbines à gaz
DE102007007090A1 (de) Gasturbine mit Kühlluft-Übertragungssystem
EP2577071A2 (fr) Canal à surface de guidage d'écoulement
DE1525969A1 (de) Stroemungsverteiler
DE3023900A1 (de) Diffusorvorrichtung und damit ausgeruestetes gasturbinentriebwerk
DE112009001754T5 (de) Abgasdiffusor für Gasturbine
DE3203342C2 (de) Luftkanal zur Zuführung von Druckluft bei einer Gasturbinenanlage
EP3791050B1 (fr) Conduit de dérivation de vapeur
EP0882932B1 (fr) Chambre de combustion
DE2545378A1 (de) Gas-druckregelgeraet
EP1153219A1 (fr) Diffuseur sans pulsations de l'interface d'impact, et procede pour empecher les pulsations de l'interface d'impact de diffuseurs
DE2615492B2 (de) Abblasorgan fuer ein reaktorsicherheitsventil
DE2263956C2 (de) Vorrichtung zur Verminderung des Schalles einer mit einem Drosselgerät versehenen, von Gasen durchströmten Leitung
DE19710408B4 (de) Hubkolben-Brennkraftmaschine
EP0481573B1 (fr) Dispositif pour réduction de pression d'un média à gaz
EP0719378B1 (fr) Procédé d'opération de centrales thermiques à l'aide de condenseurs montés en série cÔté eau de refroidissement
DE19949761B4 (de) Mehrdruckkondensationsanlage
DE2012941A1 (de) Einspritzdüse für flüssigen Kraftstoff
EP4039954A1 (fr) Boitier de sortie de gaz, agencement du boitier de sortie de gaz, turbocompresseur de gaz d'échappement doté d'un boitier de sortie de gaz et utilisation d'un boitier de sortie de gaz
DE102019215361A1 (de) Vorrichtung und Verfahren zum Schalldämpfen bei Strömungen
DE1024527B (de) Dampfdruck-Reduzierstation fuer Dampfkraftanlagen
DE10352252B4 (de) Kompressor für eine Turbogruppe
EP1260782A1 (fr) Condenseur de vapeur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840309

AK Designated contracting states

Designated state(s): CH DE FR LI NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Designated state(s): CH DE FR LI NL

REF Corresponds to:

Ref document number: 3360524

Country of ref document: DE

Date of ref document: 19850912

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: BBC AKTIENGESELLSCHAFT BROWN,BOVERI & CIE.

Effective date: 19860507

NLR1 Nl: opposition has been filed with the epo

Opponent name: BBC AKTIENGESELLSCHAFT BROWN, BOVERI & CIE.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19871031

Year of fee payment: 5

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT BERLIN UND MUENCHEN

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SIEMENS AKTIENGESELLSCHAFT TE BERLIJN EN MUENCHEN,

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19881031

Ref country code: CH

Effective date: 19881031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

RIN2 Information on inventor provided after grant (corrected)

Inventor name: PETERS, HANS

Inventor name: GUENTHER, JUERGEN, DIPL.-ING.

Inventor name: GOSSEN, HANS

Inventor name: VON SCHWERDTNER, OTTO, DIPL.-ING.