EP3591130B1 - Deckenkonstruktion - Google Patents

Deckenkonstruktion Download PDF

Info

Publication number
EP3591130B1
EP3591130B1 EP19175583.4A EP19175583A EP3591130B1 EP 3591130 B1 EP3591130 B1 EP 3591130B1 EP 19175583 A EP19175583 A EP 19175583A EP 3591130 B1 EP3591130 B1 EP 3591130B1
Authority
EP
European Patent Office
Prior art keywords
steel elements
steel
elements
beams
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19175583.4A
Other languages
English (en)
French (fr)
Other versions
EP3591130A1 (de
EP3591130C0 (de
Inventor
Klaus Schiermair
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Klasch Spezial Bauartikel GmbH
Original Assignee
Klasch Spezial Bauartikel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Klasch Spezial Bauartikel GmbH filed Critical Klasch Spezial Bauartikel GmbH
Publication of EP3591130A1 publication Critical patent/EP3591130A1/de
Application granted granted Critical
Publication of EP3591130B1 publication Critical patent/EP3591130B1/de
Publication of EP3591130C0 publication Critical patent/EP3591130C0/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/12Load-carrying floor structures formed substantially of prefabricated units with wooden beams
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G23/0237Increasing or restoring the load-bearing capacity of building construction elements of storey floors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0285Repairing or restoring flooring
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0288Repairing or restoring floor slabs
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/17Floor structures partly formed in situ
    • E04B5/23Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
    • E04B2005/232Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated with special provisions for connecting wooden stiffening ribs or other wooden beam-like formations to the concrete slab
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/17Floor structures partly formed in situ
    • E04B5/23Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
    • E04B2005/232Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated with special provisions for connecting wooden stiffening ribs or other wooden beam-like formations to the concrete slab
    • E04B2005/235Wooden stiffening ribs or other wooden beam-like formations having a special form
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/17Floor structures partly formed in situ
    • E04B5/23Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
    • E04B2005/232Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated with special provisions for connecting wooden stiffening ribs or other wooden beam-like formations to the concrete slab
    • E04B2005/237Separate connecting elements

Definitions

  • This invention relates to a ceiling construction according to the preamble of claim 1.
  • the invention also relates to a ceiling construction according to the preamble of claim 2.
  • AT398797B discloses the mechanical connection of reinforced heavy concrete by means of anchors to a wooden beam, the anchors being introduced into the wooden beam to form a mechanical bond. AT398797B does not disclose that the anchors form an alignment with their free end with a defined inclination.
  • EP0269497A1 discloses a method of reinforcing wood members. There is no reference in this document to aligning the reinforcement element with the wooden part.
  • GB2134956A discloses a method for upgrading the mechanical properties of a wooden beam, steel rods being introduced into a longitudinal slot machined in the wooden beam.
  • steel rods being introduced into a longitudinal slot machined in the wooden beam.
  • FR2728293 is limited purely to the reinforcement of a bent beam, where a reinforcement element with a T-shaped cross-section is inserted at different depths into the beam so that the flange of the T-shaped cross-section contacts an adjacent surface of the beam. It can be found in this document - in particular with reference to the figure 1 from FR2728293 - no indication of the orientation of the stiffening element such that a horizontal plane for a floor is created by the stiffening element.
  • FR2760478A1 also does not disclose the creation of a horizontal plane for a floor by introducing the stiffening elements.
  • Figure 14 of DE60310450T2 discloses wooden beams, in which wooden beams connecting elements 39 made of steel are introduced transversely to the longitudinal extent of the wooden beams.
  • the connecting elements have the task of counteracting gravitational forces.
  • the threaded rods 41 provided for absorbing tensile forces are not incorporated into the wooden beams.
  • the in Figure 24 of DE63145T2 The cross braces shown are also not suitable for absorbing the tensile forces of a beam.
  • DE202006015693 discloses the use of lattice girders to provide a shear-resistant connection between the members of the structure.
  • the document does not disclose that the level of the floor is defined by aligning the trusses; the latter takes place via the concrete layer.
  • EP0568441A1 , DE102017119096 , WO2004065713 do not disclose forming a horizontal geometric plane by inserting the steel elements into a slot in a beam.
  • the wooden beams of a ceiling structure undergo deflection over the period of use, which deflection is increasingly plastic depending on the duration of the deflection of the wooden beams.
  • the old, existing wooden ceiling structure is often provided with a layer of concrete in order to compensate for the deflection with the help of the concrete layer. A level and horizontal floor is restored over the applied concrete layer.
  • the object of the invention is therefore to offer a ceiling construction in which the original wooden tram ceiling or dippel tree ceiling, which has been severely plastically deformed over the course of time, is retained.
  • a wooden tram deck and a dippel tree deck comprise a number of wooden beams which are arranged at a distance from one another or lying next to one another.
  • the support mentioned can also be part of a brick suspended ceiling.
  • the object of the invention is to reinforce the carrier of the suspended tiled ceiling and thus to maintain the ceiling system formed by the suspended tiled ceiling.
  • this is further achieved in the case of a beam with a steel element applied to the upper side of the beam in that the steel elements comprise an adjusting element, the height of which can be adjusted, for forming a horizontal geometric plane that extends over a number of beams and above the beam, which geometric plane passes through the upper edges of the steel elements are defined in a punctiform and/or linear manner and is designed as a rigid floor construction articulated on the steel elements.
  • the ceiling construction according to the invention can be applied to ceiling constructions, which ceiling constructions comprise several beams extending over a ceiling panel.
  • the beams are to be understood as static elements, which static elements are essentially subjected to bending loads.
  • the carriers can also be designed as a single-span carrier or as a multi-span carrier.
  • the carriers can have any desired cross section.
  • the beams in a dip tree deck, the beams have a cross-sectional shape of a semicircle with the flat side down.
  • the beams In the case of a wooden tram ceiling, the beams have the shape of a rectangle.
  • the specialist chooses the form of connection of the steel element to the individual beam. Furthermore, the condition of the individual wearer must be taken into account, if necessary.
  • the disclosure of the invention also includes that the steel elements are connected to the beams by different connection techniques. In the following description, some possible embodiments for producing a connection between the steel element and the beam are described.
  • the steel element is preferably connected to the beam by a connecting means that transmits tensile forces, such as an adhesive.
  • a connecting means that transmits tensile forces, such as an adhesive.
  • the steel elements can also be glued onto the upper side of the beam facing the plane to be produced.
  • a beam will be provided with a slot at its top, into which slot the steel element is inserted.
  • the bond between the steel element and the beam or the plate can be achieved by clamping the steel element and thus by friction.
  • the steel element can be glued into the slot and/or the connection can be made using mechanical connecting means such as pins, screws and the like.
  • a bond between the beam or the plate and the steel element produced via the friction between the steel element and the girder or the plate - at least during the period of manufacture of the ceiling construction according to the invention - has the advantage that the steel element, by overcoming the friction (e.g. by knocking ) can be aligned very easily to the carrier or to the plate.
  • the steel element can be glued to a surface of the support facing the geometric plane to be produced or can be connected to this surface by means of mechanical connecting means.
  • the steel element can, for example, comprise a nail plate, with the nails being introduced into the carrier in order to produce a connection between the steel element and the carrier.
  • the floor construction is a self-supporting, rigid element.
  • the floor construction can be made of dovetail panels.
  • the dovetail plates are to be regarded as rigid elements.
  • the floor construction can include a screed or a concrete layer.
  • the specialist creates a suitable concrete structure for the production of the screed or the concrete layer.
  • Prefabricated concrete elements can also be used as a floor construction within the scope of the invention.
  • a composite beam By creating a bond between the floor construction and the existing beam or to the existing plate through the steel element, a composite beam is created which can be fully loaded immediately after its manufacture.
  • the load-bearing capacity of the composite beam comprising the existing beams and the steel elements is significantly higher than the load-bearing capacity of the original beam.
  • this is achieved in the case of a plate with a slot for introducing the steel element in that the steel elements in the pressure zone or in the tension zone of the plate are aligned to form a horizontal geometric plane extending across the plate, which geometric plane passes through the upper edges of the Steel elements is defined point-like and / or linear and is designed as a hinged to the steel elements, rigid floor construction.
  • the ceiling construction according to the invention is characterized in that the static height of the ceiling construction is greater than that of the existing carrier. It thus becomes the moment of inertia of the existing beam while creating a horizontal plane. This is the case in the application described above on an existing carrier as well as in the application described below on an existing plate.
  • this is achieved in the case of a plate having a steel element attached to the upper side of the plate in that the steel elements are aligned with an adjusting element whose height can be adjusted in order to form a horizontal geometric plane that extends over a number of supports and above the supports, which geometric plane passes through the upper edges of the steel elements are defined in a punctiform and/or linear manner and is designed as a rigid floor construction articulated on the steel elements.
  • the above floor construction embodiments are also applicable to existing slabs.
  • a composite panel is created.
  • the above-mentioned techniques for making a bond between the beam and the steel member can also be used for making a bond between the plate and the steel member.
  • the load-bearing capacity of the composite panel is significantly higher than the load-bearing capacity of the original panel.
  • the slab can be an existing concrete slab, for example, which concrete slab was produced with too low a load-bearing capacity.
  • the extent of increasing the load-bearing capacity of the existing beam or slab depends essentially on the dimensioning of the steel elements and the floor construction.
  • a person skilled in the art can form a steel element as a rod, which rod is introduced, for example, from above into the beam cross section or into the plate cross section.
  • a steel element designed as a bar has no appreciable influence on the load-bearing capacity of the composite body, since no appreciable force can be transmitted from the beams or the slab into the floor construction by means of bars. Bars can only transfer small shear forces in composite beams compared to the following embodiments.
  • the steel element may be formed as a plate-shaped element, which plate-shaped element is connected to the beam or the plate parallel to the longitudinal direction of the latter. It is conceivable that several plate-shaped elements with a defined plate length are arranged over the carrier length or plate length. Likewise, a steel element extending the length of the beam or a highly loaded partial length of the beam or plate can be arranged on the beam.
  • the beams or the plate and the floor construction are subjected to compression or tension and the steel elements to shearing stresses.
  • the ceiling construction according to the invention is characterized in that all elements are installed in the dry state.
  • the connected elements can therefore be loaded immediately after the respective composite has been produced.
  • pin longitudinal axis of the pin-shaped connecting elements When producing a connection between the beam or the plate and the steel element by means of screws and/or glued-in pins as pin-shaped connecting elements, it is advantageous for the pin longitudinal axis of the pin-shaped connecting elements to be oriented essentially parallel to a service cutting force.
  • a screw screwed into wood and a pin glued into wood can be loaded with a significantly lower force in the transverse direction than in the longitudinal direction.
  • the person skilled in the art is able to calculate or estimate the size and direction of the forces occurring during a service load in the connection between the beam or the plate and the steel element in the ceiling construction according to the invention using the usual teachings of statics.
  • the person skilled in the art arranges and aligns the pin-shaped connecting means according to this calculation or estimate.
  • the steel element surface of the steel elements may be formed as a rough surface.
  • the person skilled in the art selects the roughness of the steel element surface in such a way that the static friction between the steel element and the carrier reaches a maximum.
  • the steel element surface can be provided with a sand or other granular material, for example.
  • the steel element surface can, for example, be designed with protrusions in the form of spikes, which spikes are introduced into the carrier to produce a composite.
  • the prongs may also have a function of making the slit when making a slit in the carrier.
  • the steel elements can also have abutments on their steel element surface, which abutments are introduced into the carrier to produce a composite.
  • the steel elements can also have a wave-like shape.
  • the corrugation axis of the corrugation may be oriented perpendicularly to a shearing force acting in the contact area between the beam and the steel member.
  • the contact surface between the steel element and the carrier can be increased and/or a form fit between the carrier and the steel element can be produced via the corrugated shape.
  • the steel element can also have bores for producing a form-fitting connection between the carrier and the steel element.
  • the adhesive When making a bond between the steel element and the beam, the adhesive also enters the holes created by them cavities, so that the solidified adhesive forms a form-fitting bond with the steel element in addition to an adhesive bond.
  • the ceiling construction according to the invention can be characterized in that the steel elements include supports for receiving the floor construction.
  • Such supports facilitate assembly.
  • the supports advantageously include an impact sound insulation element. According to current teaching, the impact sound is transmitted to a lesser extent to the wooden beams underneath.
  • the inventive arrangement of the steel elements on the beam or the plate and the support of a rigid floor construction on the steel elements creates a new ceiling construction compared to the ceiling constructions according to the prior art, which is characterized by an increase in load-bearing capacity, low dead weight, high sound insulation, good Fire protection and a low installation height.
  • FIG 1 and Figure 2 illustrate the manufacture of an embodiment of the ceiling construction according to the invention.
  • figure 3 shows this embodiment of the ceiling construction according to the invention.
  • figure 4 illustrates the manufacture of a further embodiment of the ceiling construction according to the invention.
  • figure 1 shows a classic double tree cover comprising (from bottom to top) double trees 1, an original fill 2 and an original floor structure 3.
  • the original floor structure 3 consists of bricks 3, which are placed on the original fill 2.
  • the original floor structure 3 and the original fill are cleared away.
  • selected dipsticks of the exposed dipsticks 1 are slit and the slit made in the selected dipstick is filled with an adhesive.
  • a steel element is inserted as a new system carrier into the slot filled with adhesive.
  • figure 2 illustrates this manufacturing process using a dip tree ceiling, with a first selected dip tree 5 being slit on its upper side 8, with a second dip tree 6 the slot 9 produced being filled with an adhesive 10 and with a third dip tree 7 a steel element 11 as a new system carrier in the with Adhesive 10 filled slot 9 is introduced.
  • the specialist fills the slot 9 - as in figure 2 shown - only to a partial area, so that when the steel element 11 is introduced, an excess adhesive 10 is not driven out of the slot 9 .
  • the steel element 11 contacts the slot surface with partial steel element areas, so that there is static friction between the steel element 11 and the third dip beam 7 .
  • the height of the steel element 11 can be aligned with the third dimple tree 7 .
  • FIG 3 shows a manufactured embodiment of the ceiling construction according to the invention.
  • Selected duplex trees 5, 6, 7 are slit on their surfaces, with the slits 9 an adhesive 10 and a steel element 11 are introduced.
  • the steel elements 11 and the surfaces of the slots 9 are in frictional contact, so that the steel elements 11 can be aligned in their height relative to the respective dip trees 5, 6, 7 by overcoming the frictional forces between the steel element 11 and the selected dip tree 5, 6, 7, so that the upper edge 12 of the steel elements 11 form an altitude 13 .
  • a geometric plane 14 is formed by the upper edges 12 of the steel elements 11, which geometric plane 14 extends over a plurality of duplex trees 1 and above these duplex trees 1.
  • the geometric plane 14 runs congruently with the lower edge 16 of the floor construction 15.
  • the rigid floor construction 15 extends over the steel elements 11 that are spaced apart from one another.
  • the static elements of the ceiling structure namely the floor structure 15, the steel elements 11 and the wooden pillars 1 are structurally connected to one another, so that when the ceiling structure is stressed by bending, the wooden pillars 1 are subjected to tension and compression and the floor structure 15 to compression.
  • the steel elements 11 connecting the wooden pillars 1 and the floor construction 15 are loaded in shear.
  • the floor construction 15 is made of state-of-the-art aluminum elements.
  • the person skilled in the art recognizes that, among other things, due to the lack of fill 2, the ceiling construction according to the invention has a significantly lower weight than the original, in figure 1 ceiling construction shown.
  • figure 4 shows a further embodiment of the ceiling construction according to the invention, which is based on a wooden tram ceiling according to the prior art.
  • wooden tram ceiling all elements are removed except for the wooden beams 1 and a board layer 18 lying on the wooden beams 1 .
  • the board layer 18 can be retained in the ceiling construction according to the invention for primarily visual reasons, especially since the board layer 18 can have ornaments on its underside in existing ceilings.
  • the wooden beams 1 comprise a slot 9, which slot 9 is partly filled with an adhesive 10.
  • a steel element 11 is inserted into a slot 9 in the case of non-hardening or non-hardening adhesive 10 .
  • the steel elements 11 are aligned in their height 13 to the wooden beam 1 that the upper edges 12 of the steel elements 11 define a geometric plane 14 .
  • the geometric plane 14 extends over several wooden beams 1 and runs above the wooden beams 1.
  • figure 5 shows a longitudinal section of the in figure 4 wooden beam 1 shown in cross section.
  • Several steel elements 1 are distributed over the length of the wooden beam 1 .
  • the steel elements 11 at the ends 20 of the wooden girder 1 are shorter in length than the steel element 11 in the central area 19 of the wooden girder 1.
  • the central area 19 of the wooden girder 1 sags current teaching, the maximum of the bending load and the resulting maximum of the tensile and compressive forces (from the bending) and the maximum of the shearing forces.
  • the shear force that can be transmitted via the combination of steel element 11 and wooden beam 1 is essentially determined by the size of the contact surface of wooden beam 1 and steel element 11 .
  • the steel element 11 in the central area 19 has a greater length than the steel elements 11 at the ends 20 of the wooden beam 1.
  • slot 9 in which slot 9 the steel element 11 is inserted in a form-fitting manner, extends over the board layer 18 and the wooden support 1.
  • the slot 9 is made by sawing the board layer 18 and the wooden support, for example using a circular saw. If necessary, the board layer 18 is attached to the wooden support 1 beforehand.
  • figure 4 and figure 5 show that the space between the floor construction 15 and the board layer 18 is designed as an air space.
  • the expert can also arrange an insulating material in this space.
  • FIG 6 shows a further embodiment not according to the invention of the ceiling construction.
  • the ceiling construction comprises existing, plastically deformed girders 1, which girders 1 have a pressure zone and a tension zone under load.
  • At least one steel element 11 is connected mechanically and/or adhesively to the surface of a support, with the steel elements 11 comprising a height-adjustable actuating element for forming a horizontal geometric plane that extends over a plurality of supports and above the supports, which geometric plane 14 is defined in points and/or lines by the upper edges 12 of the steel elements 11 and is designed as a rigid floor construction articulated on the steel elements 11 .
  • figure 7 shows a view and a sectional image of an embodiment of a steel element 11 with a rough surface in some areas.
  • the steel element 11 has a jagged shape at its insertion edge 21 as a partial area of the surface of the steel element 11 .
  • the steel element 11 is formed by pressing the insertion surface 21 into an in figure 7 Not shown wooden tram 1 pressed.
  • the user can insert the steel element 11 a Provide a slot 9 in the wooden tram 1 or create the slot 9 in the wooden tram 1 by pressing in the steel element 11 .
  • the rough surface of the steel element which is used in the in figure 7 shown embodiment of the steel element 11 is designed in the form of spikes on the insertion edge 21, serves to increase the transmission of shear forces between the in figure 7 Wooden tram 1, not shown, and the steel element, since the spikes introduced into the wooden tram 1 act as an abutment.
  • the steel element 11 further includes bores 22 in the immediate vicinity of the introduction edge 21.
  • the person skilled in the art can provide a slot 9 in the wooden tram 1 as described above.
  • the specialist also fills the slot 9 with an adhesive and then brings the in figure 7 shown steel element 11 in the wooden tram 1.
  • the still liquid adhesive extends through the holes 22 and solidifies as a through the holes 22 extending body.
  • the resulting form fit further increases the maximum force to be transmitted between the steel element 11 and the wooden tram 1 . This force can be included in calculations as shear force.
  • the adhesive which has not yet solidified can extend further between the prongs on the insertion edge 21 and solidify as such a body. This also causes the maximum force that can be transmitted between the steel element 11 and the wooden tram 1, which force can be taken into account in calculations as a shearing force, to be increased by the form fit that occurs.
  • figure 8 partially shows a further embodiment of the ceiling construction not according to the invention.
  • the figure 8 shows two carriers 1, the upper edges of which have a different height level.
  • the different elevation levels are illustrated by the elevation marks.
  • the different height levels of the top edges can be caused, for example, by plastic deformation or by an inaccurate laying of the carrier 1 relative to one another.
  • Steel elements 11 are arranged on the upper edge of the girder 1, which upper edge represents a part of the surface of the girder 1, which steel elements 11 are connected to the girder 1 by screws 23.
  • the specialist can instead of in figure 8 entered screws 23 also provide other suitable connecting means for a mechanical and / or adhesive bond of a steel element 11 with a surface of a beam 1.
  • the steel element 11 can be adjusted in its height position relative to the carrier 1.
  • the person skilled in the art can thus form a geometric plane 14 that is defined by the upper edge of the steel elements 11 and extends over a plurality of supports 1 by adjusting the height of the steel elements 11 .
  • a person skilled in the art can introduce wedges into a cavity between a support 1 and a steel support 11 to adjust the height of the steel support 11 .
  • figure 9 shows a sectional view of a further embodiment of the ceiling construction according to the invention.
  • the ceiling construction according to the invention is based on existing, plastically deformed girders 1, with the upper edges of the girders 1 having different height levels, as is shown in figure 9 is illustrated by the elevation marks.
  • the carriers 1 each comprise a slit 9, which slit 9 is provided with an adhesive 1.
  • a steel element 11 is introduced into each slot 9, with a U-beam open at the bottom being connected as a further steel element 24 to the upper edge of the steel element.
  • the introduction of the steel element 11 into the slot filled with adhesive takes place from the point of view of producing a minimum adhesive surface between the steel element 11 and the adhesive and from the point of view of producing a geometric plane 14, which plane 14 is defined by the upper edge of the other steel elements 24.
  • the wooden beam 1 When the ceiling structure is subjected to a bending load, the wooden beam 1 can be loaded with a tensile force, while the other steel beam 24 is loaded with a compressive force.
  • the rigid floor construction (in figure 9 symbolized by plane 14) prevents the other steel elements from buckling under pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Floor Finish (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

  • Diese Erfindung betrifft eine Deckenkonstruktion nach dem Oberbegriff des Anspruches 1.
  • Die Erfindung betrifft auch eine Deckenkonstruktion nach dem Oberbegriff des Anspruches 2.
  • AT398797B offenbart die mechanische Anbindung von armiertem Schwerbeton mittels Anker an einem Holzbalken, wobei die Anker in den Holzbalken unter Ausbildung eines mechanischen Verbundes eingebracht werden. AT398797B offenbart nicht, dass die Anker mit ihrem freien Ende eine Fluchtlinie mit einer definierten Neigung ausbilden.
  • EP0269497A1 offenbart ein Verfahren zur Bewehrung von Holzteilen. Es findet sich in diesem Dokument kein Hinweis auf ein Ausrichten des Bewehrungselementes zum Holzteil.
  • GB2134956A offenbart ein Verfahren zum Aufwerten der mechanischen Eigenschaften eines Holzbalkens, wobei in einen im Holzbalken eingearbeiteten Längsschlitz Stahlstäbe eingebracht werden. Es findet sich jedoch in diesem Dokument kein Hinweis auf ein spezielles Ausrichten der Stahlstäbe zum Holzbalken.
  • FR2728293 beschränkt sich rein auf die Verstärkung eines gebogenen Balkens, wobei ein Verstärkungselement mit einem T-förmigen Querschnitt unterschiedlich tief in den Balken eingebracht wird, sodass der Flansch des T-förmigen Querschnittes eine benachbarte Oberfläche des Balkens kontaktiert. Es findet sich in diesem Dokument - insbesondere unter Verweis auf die Figur 1 von FR2728293 - kein Hinweis auf die Ausrichtung des Versteifungselementes so, dass durch das Versteifungselement eine waagrechte Ebene für einen Fußboden geschaffen wird.
  • FR2760478A1 offenbart auch nicht die Schaffung einer waagrechten Ebene für einen Fußboden durch das Einbringen der Versteifungselemente.
  • Figur 14 von DE60310450T2 offenbart Holzbalken, in welche Holzbalken quer zur Längserstreckung der Holzbalken Verbindungselemente 39 aus Stahl eingebracht sind. Die Verbindungselemente haben die Aufgabe, gegen Schwerkräfte zu wirken. Die zur Aufnahme von Zugkräften vorgesehenen Gewindestangen 41 sind nicht in die Holzbalken eingebracht. Die in Figur 24 von DE63145T2 gezeigten Querstreben sind ebenso nicht zur Aufnahme von Zugkräften eines Balkens geeignet.
  • DE202006015693 offenbart die Verwendung von Gitterträgern zur Herstellung einer schubfesten Verbindung zwischen den Elementen der Konstruktion. Das Dokument offenbart nicht, dass durch Ausrichten der Gitterträger die Höhenlage des Fußbodens definiert ist; letzteres erfolgt über die Betonschicht.
  • Die in DE20316376U1 offenbarten Verbindungselemente (siehe auch Figur 1 und Figur 2 dieses Dokumentes) weisen keine definierte Höhenlage oder eine definierte Neigung zu der Längsachse des Holzbalkens auf. Dies ist in DE20316376U1 nicht implizit offenbart, da die Höhenlage des Fußbodens der Konstruktion durch die Betonschicht definiert wird.
  • Die Dokumente DE3122431A1 , DE 8804939 U1 und FR2728293A1 offenbaren kein Stahlelement, welches Stahlelement zur Ausbildung einer sich über mehrere Träger erstreckenden geometrischen Ebene in seiner Höhenlage stellbar ist.
  • EP0568441A1 , DE102017119096 , WO2004065713 offenbaren nicht die Ausbildung einer waagrechten geometrischen Ebene durch das Einbringen der Stahlelemente in einen Schlitz in einem Träger.
  • DE202011005658 offenbart nicht das Einbringen des Stahlelementes in einen Schlitz in einem Träger. Die oben genannten Dokumente offenbaren allesamt keine Konstruktion, welche geeignet ist eine waagrechte geometrische Ebene über mehrere Träger zu definieren.
  • Die Holzbalken von einer Deckenkonstruktion erfahren über den Zeitraum der Nutzung eine Durchbiegung, welche Durchbiegung in Abhängigkeit der Dauer der Durchbiegung der Holzbalken zunehmend plastisch ist. Bei einer Sanierung eines Gebäudes wird oft die alte, bestehende Deckenkonstruktion aus Holz mit einer Betonschicht versehen, um mit Hilfe der Betonschicht einen Ausgleich der Durchbiegung herzustellen. Über die aufgebrachte Betonschicht wird wieder ein ebener und waagrechter Fußboden hergestellt.
  • Der Fachmann erkennt, dass das Aufbringen einer Betonschicht auf eine bestehende Deckenkonstruktion aus Holz aufgrund der statischen Eigenschaften der bestehenden Deckenkonstruktion stark begrenzt ist. Es ist hierbei insbesondere zu bedenken, dass die Betonschicht beim Aufbringen nass und sohin schwerer und ohne Eigentragfähigkeit ist.
  • Die oben geschilderten Umstände führen oft dazu, dass die ursprüngliche Deckenkonstruktion aus Holz entfernt wird.
  • Die Erfindung stellt sich sohin die Aufgabe, eine Deckenkonstruktion anzubieten, bei welcher Deckenkonstruktion die ursprüngliche, über den Lauf der Zeit stark plastisch deformierte Holztramdecke oder Dippelbaumdecke erhalten bleibt.
  • Holztramdecken und Dippelbaumdecken sind die am meisten verbreiteten Deckenarten. Das beispielhafte Anführen dieser Decken im Zusammenhang mit der Offenbarung ist keinesfalls als ein Ausschluss anderer Deckensysteme zu verstehen.
  • Im Folgenden wird nicht zwischen den Begriffen Holztramdecke und Dippelbaumdecke unterschieden. Eine Holztramdecke und eine Dippelbaumdecke umfassen mehrere Holzträger, die in einem Abstand zueinander beziehungsweise aneinander liegend angeordnet sind.
  • Der erwähnte Träger kann auch Teil einer Ziegeleinhängdecke sein. Die Erfindung stellt sich die Aufgabe, den Träger der Ziegeleinhängdecke zu verstärken und so das durch die Ziegeleinhängdecke ausgebildete Deckensystem zu erhalten.
  • Erfindungsgemäß wird dies durch den Anspruch 1 erreicht.
  • Erfindungsgemäß wird dies bei einem Träger mit einem auf die Oberseite des Trägers aufgebrachten Stahlelement weiters dadurch erreicht, dass die Stahlelemente ein in seiner Höhenerstreckung verstellbares Stellelement zur Ausbildung einer sich über mehrere Träger und oberhalb der Träger erstreckenden, waagrechten geometrischen Ebene umfassen, welche geometrische Ebene durch die Oberkanten der Stahlelemente punktförmig und/oder linienförmig definiert wird und als eine an den Stahlelementen angelenkte, biegesteife Fußbodenkonstruktion ausgebildet ist.
  • Die erfindungsgemäße Deckenkonstruktion ist auf Deckenkonstruktionen anwendbar, welche Deckenkonstruktionen mehrere sich über ein Deckenfeld erstreckende Träger umfassen. Die Träger sind als statische Elemente zu verstehen, welche statischen Elemente im Wesentlichen auf Biegung beansprucht werden. Die Träger können weiters als ein Einfeldträger oder als ein Mehrfeldträger ausgebildet sein.
  • Die Träger können einen beliebigen Querschnitt aufweisen. Bei einer Dippelbaumdecke weisen die Träger beispielsweise die Querschnittsform eines mit der flachen Seite nach unten gerichteten Halbkreises auf. Bei einer Holztramdecke weisen die Träger die Form eines Rechteckes auf.
  • In Abhängigkeit der Querschnittsform und der Belastung des Trägers wählt der Fachmann die Form des Anschlusses des Stahlelementes am einzelnen Träger. Es ist weiters der Zustand des einzelnen Trägers gegebenenfalls zu berücksichtigen. Die Offenbarung der Erfindung schließt auch ein, dass die Stahlelemente durch unterschiedliche Verbindungstechniken an den Trägern angeschlossen werden. In der nachfolgenden Beschreibung sind einige mögliche Ausführungsformen zur Herstellung einer Verbindung zwischen dem Stahlelement und dem Träger beschrieben.
  • Eine Einbringung von Stahlelementen in Schlitze ist insbesondere in der Druckzone des Trägers vorteilhaft, da der volle, durch Druck belastbare Trägerquerschnitt erhalten bleibt.
  • Bei Einbringung von Stahlelementen in der Zugzone des Trägers wird der durch eine Zugkraft belastbare Querschnitt reduziert. Bei Einbringung von Stahlelementen in der Zugzone des Trägers wird vorzugsweise das Stahlelement mit dem Träger durch ein Zugkräfte übertragendes Verbindungsmittel wie beispielweise einen Klebstoff verbunden. Um das Vorsehen von Schlitzen in einer Zugzone des Trägers zu vermeiden und eine damit einhergehende Schwächung des Querschnittes zu unterbinden, können auch die Stahlelemente auf die der herzustellenden Ebene zugewandten Oberseite des Trägers aufgeklebt werden.
  • Ein Träger wird an seiner Oberseite mit einem Schlitz versehen werden, in welchen Schlitz das Stahlelement eingebracht wird. Der Verbund zwischen dem Stahlelement und dem Träger beziehungsweise der Platte kann durch Einklemmen des Stahlelementes und sohin über Reibung erfolgen. Weiters kann das Stahlelement in den Schlitz eingeklebt werden und/oder der Verbund über mechanische Verbindungsmittel wie Stifte, Schrauben und dergleichen hergestellt werden.
  • Ein über die Reibung zwischen dem Stahlelement und dem Träger beziehungsweise der Platte - zumindest während des Zeitraumes der Herstellung der erfindungsgemäßen Deckenkonstruktion - hergestellter Verbund zwischen dem Träger beziehungsweise der Platte und dem Stahlelement hat den Vorteil, dass das Stahlelement unter Überwindung der Reibung (beispielsweise durch Klopfen) sehr einfach zum Träger beziehungsweise zu der Platte ausgerichtet werden kann.
  • Es kann in nicht erfindungsgemäßer Weise das Stahlelement auf eine der herzustellenden geometrischen Ebene zugewandten Oberfläche des Trägers geklebt werden oder mit dieser Oberfläche mittels mechanischer Verbindungsmittel verbunden werden. Das Stahlelement kann beispielsweise eine Nagelplatte umfassen, wobei die Nägel zur Herstellung eines Verbundes zwischen dem Stahlelement und dem Träger in den Träger eingebracht werden.
  • Die Fußbodenkonstruktion ist ein selbsttragendes, biegesteifes Element. Die Fußbodenkonstruktion kann aus Schwalbenschwanzplatten hergestellt sein. Die Schwalbenschwanzplatten sind als biegesteife Elemente anzusehen.
  • Weiters kann die Fußbodenkonstruktion einen Estrich oder eine Betonschicht umfassen. Der Fachmann stellt zur Herstellung des Estrichs oder der Betonschicht eine geeignete Betonkonstruktion her. Auch vorgefertigte Betonelemente sind im Rahmen der Erfindung als Fußbodenkonstruktion einsetzbar.
  • Durch das Herstellen eines Verbundes zwischen der Fußbodenkonstruktion und dem bestehenden Träger beziehungsweise zu der bestehenden Platte durch das Stahlelement wird ein Verbundträger geschaffen, welcher bereits unmittelbar nach dessen Herstellung im vollen Ausmaß belastbar ist. Die Tragfähigkeit des Verbundträgers umfassend die bestehenden Träger und die Stahlelemente ist deutlich höher als die Tragfähigkeit der ursprünglichen Träger.
  • Erfindungsgemäß wird dies bei einer Platte mit einem Schlitz zur Einbringung des Stahlelementes dadurch erreicht, dass die Stahlelemente in der Druckzone oder in der Zugzone der Platte unter Ausbildung einer sich über die Platte erstreckenden, waagrechten geometrischen Ebene ausgerichtet sind, welche geometrische Ebene durch die Oberkanten der Stahlelemente punktförmig und/oder linienförmig definiert wird und als eine an den Stahlelementen angelenkte, biegesteife Fußbodenkonstruktion ausgebildet ist.
  • Die erfindungsgemäße Deckenkonstruktion zeichnet sich dadurch aus, dass die statische Höhe der Deckenkonstruktion größer ist als die des bestehenden Trägers. Es wird sohin das Trägheitsmoment des bestehenden Trägers unter gleichzeitiger Schaffung einer waagrechten Ebene erhöht. Dies ist bei der oben beschriebenen Anwendung bei einem bestehenden Träger als auch bei der im Folgenden beschriebenen Anwendung bei einer bestehenden Platte der Fall.
  • Erfindungsgemäß wird dies bei einer Platte aufweisend ein an der Oberseite der Platte angebrachtes Stahlelement dadurch erreicht, dass die Stahlelemente ein in seiner Höhenstreckung verstellbares Stellelement zur Ausbildung einer sich über mehrere Träger und oberhalb der Träger erstreckenden, waagrechten geometrischen Ebene ausgerichtet sind, welche geometrische Ebene durch die Oberkanten der Stahlelemente punktförmig und/oder linienförmig definiert wird und als eine an den Stahlelementen angelenkte, biegesteife Fußbodenkonstruktion ausgebildet ist.
  • Die oben angeführten Ausführungsformen der Fußbodenkonstruktion sind auch für bestehende Platte anwendbar.
  • Durch das Herstellen eines Verbundes zwischen dem Stahlelement und der Platte einerseits und dem Stahlelement und der Fußbodenkonstruktion andererseits wird eine Verbundplatte geschaffen. Es können im die oben erwähnten Techniken zur Herstellung eines Verbundes zwischen dem Träger und dem Stahlelement auch zur Herstellung eines Verbundes zwischen der Platte und dem Stahlelement angewandt werden.
  • Die Tragfähigkeit der Verbundplatte ist deutlich höher als die Tragfähigkeit der ursprünglichen Platte.
  • Die Platte kann beispielsweise eine bestehende Betonplatte sein, welche Betonplatte mit einer zu geringen Tragfähigkeit hergestellt wurde.
  • Das Ausmaß der Erhöhung der Tragfähigkeit des bestehenden Trägers oder der bestehenden Platte hängt wesentlich von der Dimensionierung der Stahlelemente und der Fußbodenkonstruktion ab.
  • Der Fachmann kann ein Stahlelement als einen Stab ausbilden, welcher Stab beispielsweise von oben in den Trägerquerschnitt oder in den Plattenquerschnitt eingebracht ist. Ein als ein Stab ausgebildetes Stahlelement hat keinen nennenswerten Einfluss auf die Tragfähigkeit des Verbundkörpers, da mittels Stäbe keine nennenswerte Kraft von den Trägern oder der Platte in die Fußbodenkonstruktion übertragen werden kann. Stäbe können nur im Vergleich zu den folgenden Ausführungsformen kleine Schubkräfte in Verbundträgern übertragen.
  • Das Stahlelement kann als ein plattenförmiges Element ausgebildet sein, welches plattenförmiges Element parallel zu der Längsrichtung des Trägers oder der Platte an diesem beziehungsweise dieser angeschlossen ist. Es ist denkbar, dass mehrere plattenförmige Elemente mit einer definierten Plattenlänge über die Trägerlänge beziehungsweise Plattenlänge angeordnet sind. Ebenso kann ein sich über die Länge des Trägers oder über eine hoch belastete Teillänge des Trägers oder der Platte erstreckendes Stahlelement am Träger angeordnet werden.
  • Bei der erfindungsgemäßen, auf Biegung beanspruchten Deckenkonstruktion werden die Träger oder die Platte und die Fußbodenkonstruktion auf Druck beziehungsweise Zug und die Stahlelemente auf Schub beansprucht.
  • Die erfindungsgemäße Deckenkonstruktion zeichnet sich dadurch aus, dass sämtliche Elemente im trockenen Zustand eingebracht werden. Die verbundenen Elemente sind sohin unmittelbar nach der Herstellung des jeweiligen Verbundes belastbar.
  • Bei Herstellung eines Verbundes zwischen dem Träger oder der Platte und dem Stahlelement mittels Schrauben und/oder eingeklebte Stifte als stiftförmige Verbindungselemente ist es vorteilhaft, dass die Stiftlängsachse der stiftförmigen Verbindungselemente im Wesentlichen parallel zu einer Gebrauchsschnittkraft orientiert ist.
  • Eine in Holz eingedrehte Schraube und ein in Holz eingeklebter Stift sind mit einer wesentlich niedrigeren Kraft in Querrichtung als in Längsrichtung belastbar. Der Fachmann ist in der Lage bei der erfindungsgemäßen Deckenkonstruktion die Größe und die Richtung der bei einer Gebrauchsbelastung auftretenden Kräfte im Verbund zwischen dem Träger oder der Platte und dem Stahlelement unter Anwendung der gängigen Lehren der Statik zu berechnen oder abzuschätzen. Der Fachmann ordnet und richtet die stiftförmigen Verbindungsmittel nach dieser Berechnung oder Abschätzung aus.
  • Die Stahlelementoberfläche der Stahlelemente kann als eine raue Oberfläche ausgebildet sein. Der Fachmann wählt die Rauigkeit der Stahlelementoberfläche so, dass die Haftreibung zwischen dem Stahlelement und dem Träger ein Maximum erreicht. Die Stahlelementoberfläche kann beispielsweise mit einem Sand oder einem anderen körnigen Material versehen sein.
  • Die Stahlelementoberfläche kann beispielsweise mit Vorsprüngen in Form von Zacken ausgebildet sein, welche Zacken in den Träger zur Herstellung eines Verbundes eingebracht werden. Die Zacken können bei einer Herstellung eines Schlitzes im Träger auch eine Funktion zur Herstellung des Schlitzes haben.
  • Die Stahlelemente können an ihrer Stahlelementoberfläche auch Widerlager aufweisen, welche Widerlager zur Herstellung eines Verbundes in den Träger eingebracht werden.
  • Die Stahlelemente können auch eine wellenartige Form aufweisen. Die Wellenachse der Wellenform kann senkrecht zu einer im Kontaktbereich zwischen dem Träger und dem Stahlelement wirkenden Schubkraft orientiert sein. Über die Wellenform kann die Kontaktfläche zwischen dem Stahlelement und dem Träger erhöht werden und/oder ein Formschluss zwischen dem Träger und dem Stahlelement hergestellt werden.
  • Die Stahlelement kann weiters Bohrungen zur Herstellung eines formschlüssigen Verbundes zwischen dem Träger und dem Stahlelement aufweisen. Bei der Herstellung einer Verklebung zwischen dem Stahlelement und dem Träger tritt der Klebstoff auch in die durch die Bohrungen geschaffenen Hohlräume ein, sodass der erstarrte Klebstoff mit dem Stahlelement neben einen Haftverbund auch einen formschlüssigen Verbund eingeht.
  • Die erfindungsgemäße Deckenkonstruktion kann sich dadurch auszeichnen, dass die Stahlelemente Auflager zur Aufnahme der Fußbodenkonstruktion umfassen.
  • Derartige Auflager erleichtern die Montage.
  • Vorteilhaft umfassen die Auflager ein Trittschalldämmelement. Nach der gängigen Lehre wird so der Trittschall in einem geringeren Ausmaß auf die darunter liegenden Holzbalken übertragen.
  • Die erfindungsgemäße Anordnung der Stahlelemente an Träger oder der Platte und der Auflagerung einer biegesteifen Fußbodenkonstruktion auf den Stahlelementen schafft im Vergleich zu den Deckenkonstruktionen nach dem Stand der Technik eine neue Deckenkonstruktion, welche sich durch eine Erhöhung der Tragfähigkeit, ein geringes Eigengewicht, hohen Schallschutz, guten Brandschutz und eine geringe Aufbauhöhe auszeichnet. Die genannten Vorteile werden anhand der folgenden, in den Figuren 1 bis 5 dargestellten Anwendungsbeispielen diskutiert.
  • Die unten beschriebenen Ausführungsbeispiele beziehen sich auf bestehende Träger. Der Fachmann ist in der Lage, diese Ausführungsbeispiele auch zur Anwendung an bestehende Platten abzuändern. Der Fachmann ist in der Lage, die Figuren und die nachstehende Figurenbeschreibung mit der obigen Beschreibung zu kombinieren. Der Fachmann ist insbesondere in der Lage, die in den Figuren enthaltenen und in der folgenden Figurenbeschreibung beschriebenen Stahlelemente gemäß der obigen Beschreibung auszubilden.
  • Figur 1 und Figur 2 veranschaulichen die Herstellung einer Ausführungsform der erfindungsgemäßen Deckenkonstruktion. Figur 3 zeigt diese Ausführungsform der erfindungsgemäßen Deckenkonstruktion.
  • Figur 4 veranschaulicht die Herstellung einer weiteren Ausführungsform der erfindungsgemäßen Deckenkonstruktion.
  • In den Figuren sind die folgenden Elemente durch die nachstehenden Bezugszeichen gekennzeichnet.
  • 1
    Dippelbaum, Holzträger
    2
    ursprüngliche Schüttung
    3
    ursprünglicher Fußbodenaufbau
    4
    Ziegel
    5
    erster Dippelbaum
    6
    zweiter Dippelbaum
    7
    dritter Dippelbaum
    8
    Oberseite Holzdippelbaum, Holzträger
    9
    Schlitz
    10
    Klebstoff
    11
    Stahlelement
    12
    Oberkante Stahlelement
    13
    Höhenlage
    14
    geometrische Ebene
    15
    Fußbodenkonstruktion
    16
    Unterkante Fußbodenkonstruktion
    17
    Oberkante Fußbodenkonstruktion
    18
    Brettlage
    19
    Mittelfeld Holzträger
    20
    Enden Holzträger
    21
    Einbringungskante
    22
    Bohrung
  • Figur 1 zeigt eine klassische Dippelbaumdecke umfassend (von unten nach oben) Dippelbäume 1, eine ursprüngliche Schüttung 2 und einen ursprünglichen Fußbodenaufbau 3. Der ursprüngliche Fußbodenaufbau 3 besteht aus Ziegeln 3, welche auf die ursprüngliche Schüttung 2 aufgelegt sind. Als erster Schritt einer Sanierung einer solchen Dippelbaumdecke werden der ursprüngliche Fußbodenaufbau 3 und die ursprüngliche Schüttung abgeräumt.
  • In einem nachfolgenden Schritt werden ausgewählte Dippelbäume der freiliegenden Dippelbäume 1 geschlitzt und der hergestellte Schlitz in dem ausgewählten Dippelbaum mit einem Klebstoff ausgefüllt. In den mit Klebstoff ausgefüllten Schlitz wird anschließend vor der Erhärtung des Klebers ein Stahlelement als neuer Systemträger eingebracht.
  • Figur 2 veranschaulicht diesen Herstellungsprozess anhand einer Dippelbaumdecke, wobei ein erster ausgewählter Dippelbaum 5 an seiner Oberseite 8 geschlitzt ist, bei einem zweiten Dippelbaum 6 der hergestellte Schlitz 9 mit einem Klebstoff 10 ausgefüllt ist und bei einem dritten Dippelbaum 7 ein Stahlelement 11 als neuer Systemträger in den mit Klebstoff 10 aufgefüllten Schlitz 9 eingebracht ist.
  • Der Fachmann füllt den Schlitz 9 - wie in Figur 2 dargestellt - nur zu einem Teilbereich aus, sodass bei Einbringung des Stahlelementes 11 ein überschüssiger Klebstoff 10 nicht aus dem Schlitz 9 getrieben wird.
  • Das Stahlelement 11 kontaktiert mit Stahlelementteilbereichen die Schlitzoberfläche, sodass eine Haftreibung zwischen dem Stahlelement 11 und dem dritten Dippelbaum 7 besteht. Unter Überwindung dieser Haftreibung und bei nicht erstarrtem Klebstoff 10 kann das Stahlelement 11 in seiner Höhe zum dritten Dippelbaum 7 ausgerichtet werden.
  • Figur 3 zeigt eine hergestellte Ausführungsform der erfindungsgemäßen Deckenkonstruktion. Es sind ausgewählte Dippelbäume 5, 6, 7 an ihren Oberflächen geschlitzt, wobei in die hergestellten Schlitze 9 ein Klebstoff 10 und ein Stahlelement 11 eingebracht sind. Die Stahlelemente 11 und die Oberflächen der Schlitze 9 stehen in Reibungskontakt, sodass die Stahlelemente 11 unter Überwindung der Reibungskräfte zwischen dem Stahlelement 11 und dem ausgewählten Dippelbaum 5, 6, 7 in ihrer Höhenlage zu den jeweiligen Dippelbäumen 5, 6, 7 ausgerichtet werden können, sodass die Oberkante 12 der Stahlelemente 11 eine Höhenlage 13 ausbilden. Es wird durch die Oberkanten 12 der Stahlelemente 11 eine geometrische Ebene 14 ausgebildet, welche geometrische Ebene 14 sich über mehrere Dippelbäume 1 und oberhalb dieser Dippelbäume 1 erstreckt.
  • Die geometrische Ebene 14 verläuft bei Anlenkung einer biegesteifen Fußbodenkonstruktion 15 an die Oberkanten der Stahlelemente 11 deckungsgleich mit der Unterkante 16 der Fußbodenkonstruktion 15. Die biegesteife Fußbodenkonstruktion 15 erstreckt sich über die zueinander beabstandeten Stahlelemente 11.
  • Im Anlenkungsbereich zwischen Fußbodenkonstruktion 15 und Stahlelement 11 ist eine in Figur 3 nicht dargestellte Trittschalldämmung angeordnet.
  • Die statischen Elemente der Deckenkonstruktion, nämlich die Fußbodenkonstruktion 15, die Stahlelemente 11 und die Holzdippelbäume 1 sind konstruktiv miteinander verbunden, sodass bei einer Beanspruchung der Deckenkonstruktion durch Biegung die Holzdippelbäume 1 auf Zug und Druck, die Fußbodenkonstruktion 15 auf Druck belastet sind. Die die Holzdippelbäume 1 und die Fußbodenkonstruktion 15 verbindenden Stahlelemente 11 sind auf Schub belastet.
  • Die Fußbodenkonstruktion 15 ist aus Aluminiumelementen nach dem Stand der Technik hergestellt. Der Fachmann erkennt, dass unter anderem wegen dem Fehlen der Schüttung 2 die erfindungsgemäße Deckenkonstruktion ein deutlich geringeres Gewicht aufweist als die ursprüngliche, in Figur 1 gezeigte Deckenkonstruktion.
  • Figur 4 zeigt eine weitere Ausführungsform der erfindungsgemäßen Deckenkonstruktion, welche auf einer Holztramdecke nach dem Stand der Technik aufbaut. Bei einer nach Stand der Technik hinreichend bekannten und sohin in Figur 4 nicht dargestellten Holztramdecke werden alle Elemente bis auf die Holzträger 1 und einer auf den Holzträgern 1 aufliegenden Brettlage 18 entfernt. Die Brettlage 18 kann bei der erfindungsgemäßen Deckenkonstruktion aus vorwiegend optischen Gründen erhalten bleiben, zumal die Brettlage 18 bei bestehenden Decken an ihrer Unterschicht Ornamente aufweisen kann.
  • Die Holzträger 1 umfassen einen Schlitz 9, welcher Schlitz 9 zu einem Teil mit einem Klebstoff 10 gefüllt ist. Es wird in jeweils einen Schlitz 9 bei nicht aushärtendem oder nicht ausgehärtetem Klebstoff 10 ein Stahlelement 11 eingeschoben. Die Stahlelemente 11 werden in ihrer Höhenlage 13 so zum Holzträger 1 ausgerichtet, dass die Oberkanten 12 der Stahlelemente 11 eine geometrische Ebene 14 definieren. Die geometrische Ebene 14 erstreckt sich über mehrere Holzträger 1 und verläuft oberhalb der Holzträger 1. Durch Anlenkung einer Fußbodenkonstruktion 15 an den Stahlelementen 11 wird ein aus Holzträgern 1, Stahlelementen 11 und Fußbodenkonstruktion 15 gebildeter Verbundträger geschaffen.
  • Figur 5 zeigt einen Längsschnitt des in Figur 4 im Querschnitt dargestellten Holzträger 1. Es sind über die Länge des Holzträgers 1 verteilt mehrere Stahlelemente 1 angeordnet. Die Stahlelemente 11 an den Enden 20 des Holzträgers 1 weisen eine kürzere Länge als das Stahlelement 11 im Mittelfeld 19 des Holzträgers 1. Bei einer Beanspruchung des Holzträgers 1 auf Biegung mit einer über die Länge des Holzträgers gleichmäßigen Last tritt im Mittelfeld 19 des Holzträgers 1 nach gängiger Lehre das Maximum der Biegebelastung und hieraus resultierend das Maximum der Zugkräfte und Druckkräfte (aus der Biegung) und das Maximum der Schubkräfte auf.
  • Bei einer Klebeverbindung zwischen dem Stahlelement 11 und dem Holzträger 1 - wie dies in Figur 4 dargestellt ist - wird die über den Verbund von Stahlelement 11 und Holzträger 1 übertragbare Schubkraft im Wesentlichen durch die Größe der Kontaktfläche von Holzträger 1 und Stahlelement 11 bestimmt. Aus diesem Grund weist das Stahlelement 11 im Mittelfeld 19 eine größere Länge auf als die Stahlelemente 11 an den Enden 20 des Holzträgers 1.
  • Es ist in Figur 5 weiter gut zu erkennen, dass sich der Schlitz 9, in welchen Schlitz 9 das Stahlelement 11 formschlüssig eingebracht ist, über die Brettlage 18 und den Holzträger 1 erstreckt. Bei der Herstellung des Schlitzes wird beispielsweise mittels einer Kreissäge der Schlitz 9 durch Sägen des Brettlage 18 und des Holzträgers hergestellt. Gegebenenfalls wird die Brettlage 18 zuvor am Holzträger 1 befestigt.
  • Figur 4 und Figur 5 zeigen, dass der Raum zwischen Fußbodenkonstruktion 15 und Brettlage 18 als Luftraum ausgebildet ist. Der Fachmann kann in diesem Raum auch ein Dämmmaterial anordnen.
  • Figur 6 zeigt eine weitere nicht erfindungsgemäße Ausführungsform de Deckenkonstruktion. Die Deckenkonstruktion umfasst bestehende, plastisch verformte Träger 1, welche Träger 1 unter Belastung eine Druckzone und eine Zugzone aufweisen. Es ist zumindest jeweils ein Stahlelement 11 mit der Oberfläche eines Trägers mechanisch und/oder adhäsiv verbunden, wobei die Stahlelemente 11 ein in der Höhe verstellbares Stellelement zur Ausbildung einer sich über mehrere Träger und oberhalb der Träger erstreckenden, waagrechten geometrischen Ebene umfassen, welche geometrische Ebene 14 durch die Oberkanten 12 der Stahlelemente 11 punktförmig und/oder linienförmig definiert wird und als eine an den Stahlelementen 11 angelenkte, biegesteife Fußbodenkonstruktion ausgebildet ist.
  • Figur 7 zeigt eine Ansicht und ein Schnittbild einer Ausführungsform eines Stahlelementes 11 mit einer in Teilbereichen rau ausgebildeten Oberfläche. Das Stahlelement 11 weist an seiner Einbringungskante 21 als Teilbereich der Oberfläche des Stahlelementes 11 eine gezackte Form auf. Das Stahlelement 11 wird durch Einpressen der Einbringungsoberfläche 21 in einen in Figur 7 nicht dargestellten Holztram 1 eingepresst. Der Benutzer kann zum Einbringen des Stahlelementes 11 einen Schlitz 9 im Holztram 1 vorsehen oder den Schlitz 9 im Holztram 1 durch Einpressen des Stahlelementes 11 erzeugen.
  • Die raue Oberfläche des Stahlelementes, welche bei der in Figur 7 gezeigten Ausführungsform des Stahlelementes 11 in Form von Zacken an der Einbringungskante 21 ausgeführt ist, dient der Erhöhung der Übertragung der Schubkräfte zwischen dem in Figur 7 nicht dargestellten Holztram 1 und dem Stahlelement, da die in den Holztram 1 eingebrachten Zacken als Widerlager wirken.
  • Die in Figur 7 enthaltene Detailzeichnung des Details A zeigt eine mögliche Dimensionierung der Zacken, sodass die in den Holztram 1 eingebrachten Zacken Schubkräfte in den Holztram 1 weiterleiten können. Der Fachmann kann in Abhängigkeit der Materialeigenschaften des Holztrams 1 oder des Trägers überhaupt andere Dimensionen als die in der Detailzeichnung zu dem Detail A von Figur 7 wählen.
  • Das Stahlelement 11 umfasst weiters Bohrungen 22 in unmittelbarer Nähe zu der Einbringungskante 21. Der Fachmann kann vor Einbringen des Stahlelementes 11 in den Holztram 1 einen Schlitz 9 im Holztram 1 gemäß obiger Beschreibung vorsehen. Der Fachmann verfüllt weiters den Schlitz 9 mit einem Klebstoff und bringt anschließend das in Figur 7 gezeigte Stahlelement 11 in den Holztram 1. Der noch flüssige Klebstoff erstreckt sich durch die Bohrungen 22 und erstarrt als ein sich durch die Bohrungen 22 erstreckender Körper. Durch den sich so ergebenden Formschluss wird die zwischen dem Stahlelement 11 und dem Holztram 1 zu übertragende maximale Kraft weiter erhöht. Diese Kraft kann in Berechnungen als Schubkraft berücksichtigt werden.
  • Der noch nicht erstarrte Klebstoff kann sich weiters zwischen den Zacken an der Einbringungskante 21 erstrecken und als ein solcher Körper erstarren. Auch hierdurch wird die maximal zwischen dem Stahlelement 11 und dem Holztram 1 übertragbare Kraft, welche Kraft in Berechnungen als Schubkraft berücksichtigt werden kann, durch den sich einstellenden Formschluss erhöht werden.
  • Figur 8 zeigt teilweise eine weitere nicht erfindungsgemäße Ausführungsform der Deckenkonstruktion.
  • Die Figur 8 zeigt zwei Träger 1, deren Oberkanten ein unterschiedliches Höhenniveau aufweisen. Das unterschiedliche Höhenniveau ist durch die Höhenkoten veranschaulicht.
  • Das unterschiedliche Höhenniveau der Oberkanten kann beispielsweise durch eine plastische Verformung oder durch eine ungenaue Verlegung der Träger 1 zueinander bedingt sein.
  • Es sind an der Oberkante der Träger 1, welche Oberkante einen Teil der Oberfläche des Trägers 1 darstellt, Stahlelemente 11 angeordnet, welche Stahlelemente 11 durch Schrauben 23 mit dem Träger 1 verbunden sind. Der Fachmann kann anstelle der in Figur 8 eingetragenen Schrauben 23 auch weitere geeignete Verbindungsmittel für einen mechanischen und/oder adhäsiven Verbund von einem Stahlelement 11 mit einer Oberfläche eines Trägers 1 vorsehen.
  • Durch das Setzen der Schrauben 23 zur Herstellung eines Verbundes zwischen einem Träger 1 und einem Stahlelement 11 ist das Stahlelement 11 in seiner Höhenposition zum Träger 1 einstellbar. Der Fachmann kann sohin über die Höhenjustierung der Stahlelemente 11 eine durch die Oberkante der Stahlelemente 11 definierte, sich über mehrere Träger 1 erstreckende geometrische Ebene 14 ausbilden.
  • Der Fachmann kann zur Höheneinstellung der Stahlträger 11 Keile in einen Hohlraum zwischen einem Träger 1 und einem Stahlträger 11 einbringen.
  • Figur 9 zeigt ein Schnittbild einer weiteren Ausführungsform der erfindungsgemäßen Deckenkonstruktion.
  • Die erfindungsgemäße Deckenkonstruktion baut wie auch die oben beschriebenen Ausführungsformen auf bestehende, plastisch verformte Träger 1 auf, wobei die Oberkanten der Träger 1 unterschiedliche Höhenniveaus aufweisen, wie dies in Figur 9 anhand der Höhenkoten veranschaulicht ist.
  • Die Träger 1 umfassen jeweils einen Schlitz 9, welcher Schlitz 9 mit einem Klebstoff 1 versehen ist. Es wird in jeweils einen Schlitz 9 ein Stahlelement 11 eingebracht, wobei an der Oberkante des Stahlelementes ein nach unten offener U-Träger als ein weiteres Stahlelement 24 angeschlossen ist. Die Einbringung des Stahlelementes 11 in den mit Klebstoff gefüllten Schlitz erfolgt nach dem Gesichtspunkt der Herstellung einer Mindesthaftfläche zwischen dem Stahlelement 11 und dem Kleber sowie nach dem Gesichtspunkt der Herstellung einer geometrischen Ebene 14, welche Ebene 14 durch die Oberkante der weiteren Stahlelemente 24 definiert ist.
  • Bei einer Belastung der Deckenkonstruktion auf Biegung kann der Holzträger 1 mit einer Zugkraft belastet werden, während der weitere Stahlträger 24 durch eine Druckkraft belastet wird. Die am weiteren Stahlträger 24 angeschlossene, biegesteife Fußbodenkonstruktion (in Figur 9 durch die Ebene 14 symbolisiert) verhindert ein Ausknicken der weiteren Stahlelemente bei Druckbelastung.
  • Die obige Beschreibung und die Figurenbeschreibung offenbart eine Deckenkonstruktion, wobei oberhalb zu plastisch verformten Trägern Stahlelemente und eine biegesteife Fußbodenkonstruktion unter Herstellung eines statischen Verbundes zwischen dem bestehenden, plastisch verformten Träger, den Stahlelementen und der biegesteifen Fußbodenkonstruktion angeordnet sind. Es ist jedoch auch möglich, die Stahlelemente und die biegesteife Fußbodenkonstruktion unterhalb des bestehenden, plastisch verformten Trägers unter Herstellung eines statischen Verbundes zwischen dem bestehenden Träger, der Stahlelemente und der Fußbodenkonstruktion anzuordnen.

Claims (10)

  1. Deckenkonstruktion umfassend
    bestehende, plastisch verformte Träger (1), welche Träger (1) unter Belastung eine Druckzone und eine Zugzone aufweisen,
    Stahlelemente (11),
    wobei zumindest jeweils ein Stahlelement (11) mit jeweils einem Träger (1) durch Einbringen in einen an der Oberseite des Träges (1) angeordneten Schlitz (9) mechanisch und/oder adhäsiv unter Herstellung eines Verbundträgers verbunden ist,
    wobei die Stahlelemente (11) in der Druckzone der Träger (1) oder in der Zugzone der Träger (1) angeordnet sind,
    dadurch gekennzeichnet, dass
    die Stahlelemente (11) im Schlitz (9) zur Ausbildung einer sich über mehrere Träger und oberhalb der Träger erstreckenden, waagrechten geometrischen Ebene ausgerichtet sind, welche geometrische Ebene (14) als eine sich ausschließlich durch die Oberkanten (12) der Stahlelemente (11) erstreckende Ebene punktförmig und/oder linienförmig definiert wird und welche geometrische Ebene (14) als eine ausschließlich an den Oberkanten (12) der Stahlelemente (11) angelenkte, biegesteife Fußbodenkonstruktion ausgebildet ist, welche geometrische Ebene (14) bei Anlenkung der biegesteifen Fußbodenkonstruktion (15) an die Oberkanten der Stahlelemente (11) deckungsgleich mit der Unterkante (16) der Fußbodenkonstruktion (15) verläuft.
  2. Deckenkonstruktion umfassend
    eine bestehende, plastisch verformte Platte, welche Platte unter Belastung eine Druckzone und eine Zugzone aufweist,
    über die Flächenausdehnung der Platte verteilte Stahlelemente (11) , welche Stahlelemente (11) mit der Platte durch Einbringen in einen an der Oberseite der Platte angeordneten Schlitz (9)
    mechanisch und/oder adhäsiv unter Herstellung einer Verbundplatte verbunden sind,
    wobei die Stahlelemente (11) in der Druckzone oder in der Zugzone der Platte angeordnet sind, dadurch gekennzeichnet, dass
    die Stahlelemente (11) im Schlitz (9) zur Ausbildung einer sich über die Platte erstreckenden, waagrechten geometrischen Ebene (14) ausgerichtet sind,
    welche geometrische Ebene (14) als eine sich ausschließlich durch die Oberkanten (12) der Stahlelemente erstreckende Ebene punktförmig und/oder linienförmig definiert wird und welche geometrische Ebene (14) als eine ausschließlich an den Oberkanten (12) der Stahlelemente (11) angelenkte, biegesteife Fußbodenkonstruktion ausgebildet ist, welche geometrische Ebene (14) bei Anlenkung der biegesteifen Fußbodenkonstruktion (15) an die Oberkanten der Stahlelemente (11) deckungsgleich mit der Unterkante (16) der Fußbodenkonstruktion (15) verläuft.
  3. Deckenkonstruktion nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Stahlelemente (11) ein in seiner Höhenstreckung verstellbares Stellelement zur Ausbildung der sich über mehrere Träger und oberhalb der Träger erstreckenden, waagrechten geometrischen Ebene umfasst.
  4. Deckenkonstruktion nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass
    die Stahlelemente (11) über stiftförmige Verbindungselemente mit den Trägern (1) beziehungsweise mit der Platte verbunden sind.
  5. Deckenkonstruktion nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass
    ein Teilbereich der Stahlelementoberfläche der Stahlelemente (11) rauh ausgebildet ist.
  6. Deckenkonstruktion nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass
    die Stahlelemente (12) über Widerlager und/oder über eine zackenförmige Ausbildung eines Teilbereiches der Stahlelementoberfläche mit den Trägern (1) beziehungsweise mit der Platte verbunden sind.
  7. Deckenkonstruktion nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass
    die Stahlelemente (11) eine gewellte Form aufweisen.
  8. Deckenkonstruktion nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass
    die Stahlelemente (11) eine Bohrung aufweisen.
  9. Deckenkonstruktion nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Stahlelemente (11) Auflager zur Aufnahme der Fußbodenkonstruktion umfassen.
  10. Deckenkonstruktion nach Anspruch 9, dadurch gekennzeichnet, dass
    die Auflager ein Trittschalldämmelement umfassen.
EP19175583.4A 2018-07-04 2019-05-21 Deckenkonstruktion Active EP3591130B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50578/2018A AT521425A1 (de) 2018-07-04 2018-07-04 Deckenkonstruktion

Publications (3)

Publication Number Publication Date
EP3591130A1 EP3591130A1 (de) 2020-01-08
EP3591130B1 true EP3591130B1 (de) 2023-07-12
EP3591130C0 EP3591130C0 (de) 2023-07-12

Family

ID=66625835

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19175583.4A Active EP3591130B1 (de) 2018-07-04 2019-05-21 Deckenkonstruktion

Country Status (2)

Country Link
EP (1) EP3591130B1 (de)
AT (1) AT521425A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0939175A2 (de) * 1998-02-27 1999-09-01 Fischerwerke Arthur Fischer GmbH & Co. KG Verbindungselement zum Verbinden von Holz und Beton
CN103195204A (zh) * 2013-03-29 2013-07-10 苏州皇家整体住宅系统股份有限公司 木材-混凝土复合结构
WO2016091227A1 (en) * 2014-12-12 2016-06-16 Vysoká Škola Báňská - Technická Univerzita Ostrava Coupling element for a timber-concrete ceiling composite construction

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE63145C (de) V. MÖBIUS in Oldisleben, Thüringen Verfahren und Apparat zur Wiedergewinnung der Kohlensäure aus abgezapften Fässern und aus Flaschen oder Fässern, die vor dem Füllen mit Kohlensäure gefüllt sind
DE880939C (de) 1940-11-02 1953-06-25 Hoechst Ag Verfahren zur Polymerisation ungesaettigter Verbindungen
FI60752C (fi) * 1980-06-05 1982-03-10 Poutanen Tuoma Tapani Foerstaerkt platta och foerfarande foer dess tillverkning
GB2134956A (en) 1983-02-10 1984-08-22 Rickards Timber Treatment Limi Upgrading or restoring a timber beam
FR2606057B1 (fr) 1986-11-04 1990-10-12 Wolf Philippe Renforcement d'elements de charpente par insertion de plaques a haute resistance
DE8804939U1 (de) * 1988-04-14 1988-10-20 Rheinhold & Mahla GmbH, 8000 München Stahlprofil zur Sanierung von Holzbalkendecken
AT398797B (de) 1990-09-13 1995-01-25 Stracke Ing Markus Verfahren zur unterstellungsfreien wiederherstellung der tragfähigkeit von altgeschossdecken bei gleichzeitiger verbesserung der wärmedämmung
FR2692924B1 (fr) * 1992-04-28 1996-07-26 Blouet Claude Structure porteuse telle qu'un plancher, comprenant des poutres et une dalle de beton et procede pour son obtention.
FR2728293A1 (fr) * 1994-12-14 1996-06-21 Brochard Francois Xavier Perfectionnement aux dispositifs de renforcement des charpentes en bois
FR2760478A1 (fr) 1997-03-06 1998-09-11 Francois Aubert Element de construction de type poutre
FR2848232A1 (fr) 2002-12-10 2004-06-11 Jean Luc Sandoz Structure antibruit
AU2003900295A0 (en) * 2003-01-23 2003-02-06 Onesteel Reinforcing Pty Ltd A structural formwork member
DE20316376U1 (de) 2003-10-23 2004-02-26 Bathon, Leander Holz-Beton-Verbundsysteme aus Holzbauteilen, Zwischenschichten und Betonbauteilen
CH698330B1 (de) 2005-10-14 2009-07-15 Wey Modulbau Ag Holz-Beton-Verbundelement und Verfahren zu seiner Herstellung.
DE202011005658U1 (de) * 2011-04-28 2011-07-20 Georg Ritter System zur Sanierung von Fachwerkdecken
DE102017119096A1 (de) * 2017-08-21 2019-02-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Holz-Beton-Verbunddecke

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0939175A2 (de) * 1998-02-27 1999-09-01 Fischerwerke Arthur Fischer GmbH & Co. KG Verbindungselement zum Verbinden von Holz und Beton
CN103195204A (zh) * 2013-03-29 2013-07-10 苏州皇家整体住宅系统股份有限公司 木材-混凝土复合结构
WO2016091227A1 (en) * 2014-12-12 2016-06-16 Vysoká Škola Báňská - Technická Univerzita Ostrava Coupling element for a timber-concrete ceiling composite construction

Also Published As

Publication number Publication date
EP3591130A1 (de) 2020-01-08
EP3591130C0 (de) 2023-07-12
AT521425A1 (de) 2020-01-15

Similar Documents

Publication Publication Date Title
EP1007809B1 (de) Verstärkungsvorrichtung für tragstrukturen
DE3222409C2 (de)
EP0803020B1 (de) Befestigung von verstärkungslamellen
EP0040815B1 (de) Verbundträger in Montagebauweise
AT511220A1 (de) Deckenelement zur ausbildung von gebäudedecken
EP0059171B1 (de) Dorn und Hülse für die Aufnahme und Ubertragung einer Querkraft
EP2787140B1 (de) Flachdecke in Holz-Beton-Verbundbauweise und Verfahren zur Herstellung einer solchen Flachdecke
EP2821561B1 (de) Holzbauteil und Holz-Beton-Verbundkonstruktion
AT520303B1 (de) Verfahren zur herstellung von verbunddecken
DE19828607A1 (de) Verfahren zum Verstärken von Stahl- und Spannbetonbauteilen
DE10254043B4 (de) Verbundkonstruktion hoher Tragfähigkeit
EP2715013A1 (de) Verbindungsanordnung und verfahren zur herstellung einer durchstanzsicherung einer nachträglichen querkraftverstärkung bzw. eines bewehrungsanschlusses
DE102019215009A1 (de) Holz-Beton-Verbundplatte, insbesondere zum Einsatz als Gebäude-Decken- oder -Wandplatte und Verfahren zu deren Herstellung
AT396151B (de) Anschlusselement fuer kragplatten sowie aus mehreren anschlusselementen zusammengesetztes anschlusselement
DE202006015693U1 (de) Holz-Beton-Verbundelement
EP2821562B1 (de) Holz-Beton-Verbundkonstruktion
EP3591130B1 (de) Deckenkonstruktion
EP3546666A1 (de) Holz-beton-verbindungsbausatz
EP1799926B1 (de) Gebäudedach sowie dämmschichtaufbau und mineralfaserdämmstoffelement für ein gebäudedach
DE202022105282U1 (de) Wand-, Decken- oder Dachelement mit Knaggen
DE69518396T2 (de) Holz-Beton Verbundkonstruktion, insbesondere für die Herstellung von Brückendecken
DE102012002168A1 (de) Bauelement zum Einbau in Trennfugen von Gebäuden
DE102015003338A1 (de) Holz-Beton-Verbundkonstruktion und Verfahren zu deren Herstellung
DE202007018856U1 (de) Decke für ein Bauwerk
DE102018006790A1 (de) Balkenverstärkungsverbund

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200624

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220531

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230131

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230606

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019008462

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230802

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230808

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230804

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231012

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231112

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231013

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019008462

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

U20 Renewal fee paid [unitary effect]

Year of fee payment: 6

Effective date: 20240321

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240521

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240602

Year of fee payment: 6