EP3563038B1 - Meisselwechselhalter - Google Patents

Meisselwechselhalter Download PDF

Info

Publication number
EP3563038B1
EP3563038B1 EP17808434.9A EP17808434A EP3563038B1 EP 3563038 B1 EP3563038 B1 EP 3563038B1 EP 17808434 A EP17808434 A EP 17808434A EP 3563038 B1 EP3563038 B1 EP 3563038B1
Authority
EP
European Patent Office
Prior art keywords
chisel
trailing
leading
holder
interchangeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17808434.9A
Other languages
English (en)
French (fr)
Other versions
EP3563038A1 (de
Inventor
Karsten Buhr
Andreas Jost
Thomas Lehnert
Sebastian Hofrath
Martin Lenz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wirtgen GmbH
Original Assignee
Wirtgen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wirtgen GmbH filed Critical Wirtgen GmbH
Publication of EP3563038A1 publication Critical patent/EP3563038A1/de
Application granted granted Critical
Publication of EP3563038B1 publication Critical patent/EP3563038B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/18Mining picks; Holders therefor
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/08Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades
    • E01C23/085Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades using power-driven tools, e.g. vibratory tools
    • E01C23/088Rotary tools, e.g. milling drums
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/12Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor
    • E01C23/122Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor with power-driven tools, e.g. oscillated hammer apparatus
    • E01C23/127Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor with power-driven tools, e.g. oscillated hammer apparatus rotary, e.g. rotary hammers
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/18Mining picks; Holders therefor
    • E21C35/183Mining picks; Holders therefor with inserts or layers of wear-resisting material
    • E21C35/1833Multiple inserts
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/18Mining picks; Holders therefor
    • E21C35/183Mining picks; Holders therefor with inserts or layers of wear-resisting material
    • E21C35/1835Chemical composition or specific material
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/18Mining picks; Holders therefor
    • E21C35/19Means for fixing picks or holders
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/18Mining picks; Holders therefor
    • E21C35/183Mining picks; Holders therefor with inserts or layers of wear-resisting material

Definitions

  • the invention relates to a chisel change holder, which can be attached to a milling drum of a soil cultivating machine, with a leading chisel holder for exchangeably receiving a leading chisel, preferably a round shank chisel, and with a trailing chisel which is held on the chisel changeable holder, the trailing chisel based on a Working movement of the chisel change holder when used in the soil tillage machine is arranged behind the leading chisel holder,
  • the document shows a milling drum with a chisel holder designed to accommodate two milling chisels.
  • the chisels are arranged one after the other in the direction of rotation of the milling drum.
  • a first chisel which is at the front in the direction of rotation, is arranged in such a way that its chisel tip is moved over a larger radius around the axis of rotation of the milling drum than the chisel tip of the trailing second chisel.
  • the soil material is initially removed by engaging the first chisel. After breaking the first Chisel, the second chisel takes over the machining task.
  • the second chisel thus has a safety function, which enables further milling even if the first chisel is damaged or lost and at the same time protects the chisel holder and the milling drum.
  • the chisels are aligned parallel to each other. They are interchangeably connected to the chisel holder so that they can be exchanged when worn.
  • the same chisels or chisels in different lengths, but with the same holding mechanism for fastening to the chisel holder and the same structure of the chisel tips, can be provided.
  • the font U.S. 5,582,468 describes a chisel holder for a soil tillage machine that can be attached to a milling drum.
  • the chisel holder has two bores for receiving two chisels.
  • the chisels are arranged one behind the other in the direction of rotation of the milling drum.
  • the bores are aligned obliquely to a radial line of the milling drum and pointing in the direction of rotation, so that the chisels hit the substrate to be processed at a desired angle.
  • the bores are also arranged on different radii, the bore arranged further forward in the direction of rotation being on a smaller radius than the rear bore.
  • a tip of a chisel received in the rear bore is moved over a larger radius around the axis of rotation of the milling drum than a tip of an identical front chisel.
  • the rear chisel takes over the major part of the material removal. If the rear chisel breaks, the material removal is shifted towards the front chisel.
  • the front chisel is arranged so that it shields the bore and the outer edge of the rear bore in the direction of movement of the chisels. This protects the rear chisel holder from excessive abrasive wear even if the rear chisel is defective or lost.
  • the chisels are interchangeably connected to the chisel holder so that they can be exchanged in the event of advanced wear or damage.
  • a chisel point for a chisel as it can be used for a soil cultivation machine.
  • the tip has a substrate which carries a polycrystalline diamond (PCD).
  • PCD polycrystalline diamond
  • the polycrystalline diamond forms the cutting edge of the chisel tip. Due to the high hardness of the polycrystalline diamond, the chisel shows very little wear. As has been shown in practice, with such an arrangement the chisel holder wears faster than the chisel itself. As a result, a chisel receptacle in which the chisel is held can be exposed and the chisel can be lost.
  • the object of the invention is achieved in that the trailing chisel is held axially and fixedly on the chisel change holder in its circumferential direction.
  • the trailing chisel can be formed by a special machining tool that is abrasion-resistant. Because of their brittle chisel tip, such chisels are particularly sensitive to strong shock loads and vibrations. It has been shown that the fixed connection of the trailing chisel both in the axial direction and in the circumferential direction significantly reduces the risk of breakage of the trailing chisel. In addition, the trailing chisel can be accommodated in the slipstream of the leading chisel, protected at least in some areas.
  • the maintenance intervals are therefore based solely on the wear and tear of the leading chisel.
  • the leading chisel also protects the area in which the trailing chisel is held on the chisel change holder. This significantly reduces the wear of the bit change holder in the joining area between the trailing bit and the bit change holder. Loss of the trailing chisel can thus be avoided.
  • the less frequently required maintenance and the avoidance of losing the trailing chisel can significantly reduce the operating costs of the tillage machine.
  • the trailing chisel tip is formed at least in some areas from a super-hard material, in particular from a diamond material, a diamond-reinforced material, a silicon carbide material, from cubic boron nitride or from compounds of at least two of the aforementioned materials .
  • a super-hard material in particular from a diamond material, a diamond-reinforced material, a silicon carbide material, from cubic boron nitride or from compounds of at least two of the aforementioned materials.
  • a very high mechanical load-bearing capacity of the trailing chisel can be obtained by using the diamond material at least partially as a monocrystalline diamond or as a polycrystalline diamond or as a chemically deposited diamond or as a physically deposited diamond or as a natural diamond or as an infiltrated diamond or as a diamond layer or as successive diamond layers or is designed as a thermally stable diamond or as a silicon-bonded diamond.
  • monocrystalline diamonds chisel tips with the highest mechanical stability can be obtained.
  • degrees of hardness of the chisel tips can be achieved which at least approximately correspond to the hardness of monocrystalline diamonds.
  • Polycrystalline diamonds or chemically or physically deposited diamonds are more cost-effective to provide than monocrystalline diamonds.
  • the properties of the chisel tip can be adapted to the expected requirements and loads within a given framework.
  • the amount of diamond required can be adapted to the actual requirements by adjusting the layer thicknesses, thus reducing manufacturing costs.
  • the properties of the diamond layers can be adapted to the respective requirements through successive diamond layers. For example, an outer diamond layer can be made very hard and therefore mechanically resilient, while an inner diamond layer is adapted for a firm and permanent connection to a substrate as part of the chisel tip on which the diamond layers are deposited.
  • Thermally stable diamonds enable manufacturing processes for the chisel or the chisel tip that require high temperatures, for example soldering processes.
  • silicon-bonded diamond small diamond segments are connected by silicon.
  • the small diamond segments can be produced comparatively inexpensively and can be present as monocrystals, for example.
  • Silicon-bonded diamond can easily be adapted to the desired contour of the trailing chisel tip and its cutting edge.
  • a chisel tip that can withstand high loads and at the same time can be easily and mechanically stably connected to another workpiece can be obtained in that the trailing chisel tip is formed from a base carrier made of a hard material, preferably hard metal, which is covered by the super-hard material facing the trailing cutting edge .
  • the trailing edge is thus formed from the super-hard material.
  • the base carrier consisting of the hard material can be soldered to a further section of the trailing chisel, for example a chisel head.
  • a cost-effective production of the trailing chisel can be achieved in that the super-hard material is designed as a layer.
  • the shape of the trailing chisel tip or the trailing cutting edge can then be predetermined, for example, by the shape of a base support.
  • the super-hard material is applied as a layer on this, creating a very hard cutting edge.
  • the leading chisel is held axially and rotatably connected in its circumferential direction to the chisel change holder. Due to the rotatable mounting of the leading chisel, it is rotated about its longitudinal axis when it engages the soil material to be removed. This results in uniform, circumferential wear on the chisel tip and / or the chisel head. The service life of the leading chisel can thus be increased. Furthermore, the uniform circumferential wear causes the leading chisel to self-sharpen. As a result, the leading chisel can penetrate the material to be removed comparatively easily, which reduces the energy costs for operating the soil cultivating machine.
  • the cutting engagement of the trailing chisel tip can be achieved.
  • the life expectancy of the trailing chisel is thus in the range of the life expectancy of the changeable chisel holder.
  • the life expectancy of the leading chisel is lower than that of the trailing chisel and the chisel change holder due to its lower hardness and its higher mechanical load during use.
  • the trailing chisel is not interchangeably connected to the chisel holder and / or that the leading chisel is interchangeably connected to the changeable chisel holder.
  • the trailing chisel thus remains connected to the changeable chisel holder for the entire duration of use.
  • the leading chisel which is significantly more cost-effective to produce than the trailing chisel, can be replaced when its wear limit is reached.
  • the trailing chisel is formed from the trailing chisel tip, which is not detachably connected, in particular soldered, directly to the chisel changer holder, and / or that the trailing chisel is at least made up of the trailing chisel tip and a consequent indirect or direct connected shaft is formed and that the shaft is held in a trailing chisel receptacle of the chisel interchangeable holder, preferably by means of a material-locking, force-locking or form-locking connection.
  • a trailing chisel formed only from the trailing chisel tip can be produced comparatively inexpensively.
  • the trailing chisel can be formed from the base carrier from a hard material, preferably hard metal, which is covered by the super-hard material facing the trailing cutting edge.
  • the base carrier can be connected directly to the chisel carrier. You can use a Establish a reliable and inexpensive connection, for example by soldering.
  • the base support is dimensioned in such a way that it can be inserted into a production unit for connection to a super-hard material.
  • the chisel tip produced in this way can be connected directly to the chisel carrier. It is also possible to connect the chisel tip directly or indirectly, for example via a chisel head arranged between the chisel tip and the shank, to a shank.
  • the shank can then be connected to the bit carrier in the trailing bit holder.
  • the connection between the shank and the chisel receptacle can be made with a material fit, for example by soldering or gluing. Force-fit connections are also possible. Such a non-positive connection can be established, for example, by cold stretching or shrinking the shank into the trailing chisel holder.
  • the shaft is manufactured with an oversize, cooled and inserted into the trailing chisel holder. When it warms up, it expands and thus forms a firm connection to the chisel holder.
  • connection can be made by shrinking on, the chisel change holder being warmed up and the oversized shank of the trailing chisel being inserted into the trailing chisel receptacle which is enlarged by the increased temperature. It is also conceivable to provide a screw connection between the shank and the chisel change holder.
  • a uniform milling pattern can be obtained in that the trailing chisel is designed and arranged to rework a milling made by the leading chisel.
  • the milling pattern is retained, regardless of the state of wear of the leading chisel. This applies in particular to trailing chisels, each with a trailing chisel tip equipped with a super-hard material, which guarantees an almost unchanged cutting action over a long period of time.
  • a uniform milling pattern on the one hand and a comparatively low mechanical load and thus low wear of the trailing one Chisel on the other hand can be achieved in that the trailing chisel is designed and arranged to cut a smaller chip volume from the material to be removed compared to the leading chisel.
  • leading chisel and the trailing chisel are designed and arranged on the chisel change holder in such a way that, when a tool combination is mounted on a milling drum, the leading edge of the leading chisel tip of the leading chisel is arranged on a larger radius to an axis of rotation of the milling drum than the trailing edge of the trailing chisel tip of the trailing chisel or that the two cutting edges are arranged on essentially the same radii.
  • Essentially equal here means, in particular, radii that are equal to ⁇ 3 mm.
  • the trailing chisel removes a significantly smaller chip volume than the leading chisel. In this way, a uniform removal of the substrate to be processed can be achieved, which leads to a very even and homogeneous milling pattern. This is particularly desirable in fine milling, in which, for example, an upper layer of a roadway is removed.
  • the leading chisel first penetrates the substrate to be worked, followed by the trailing chisel.
  • the paths on which the leading edge and the trailing edge are guided through the material to be processed are dependent on at least the milling depth, the speed of the milling drum and the feed speed of the tillage machine.
  • the volume of material removed by each chisel therefore depends at least on these machine parameters and on the relative arrangement of the trailing edge of the trailing chisel to the leading edge of the leading chisel.
  • the distance between the cutting edges of the chisel tips and the radii on which the cutting edges of the chisel tips are arranged in a tool combination mounted on a milling drum are chosen so that at a given feed rate of the soil working machine and a given speed of the milling drum, the trailing chisel has a given depth of penetration into the material to be milled.
  • the coordinated machine parameters and the arrangement of the cutting edges can ensure that the leading chisel cuts a larger volume than the trailing chisel.
  • the leading chisel can be provided for roughing and the trailing chisel for finishing. The leading chisel removes most of the ground to be worked, while the following chisel creates the desired milling pattern.
  • An adaptation to common machine parameters of the tillage machine can be achieved in that the distance between the cutting edges of the leading chisel point and the trailing chisel point is between 45mm and 75mm, preferably between 50mm and 60mm, particularly preferably 54mm, and / or that the radius on which With a tool combination mounted on a milling drum, the trailing edge of the trailing chisel tip is arranged to be between 1mm and 7mm, preferably between 2mm and 5mm, particularly preferably 3mm, smaller than the radius on which the leading edge of the leading chisel tip is arranged.
  • a conceivable variant of the invention is such that the trailing chisel (30, 31) is aligned at a smaller angle (74) with respect to a radial line (72) running through the trailing cutting edge (35) than the longitudinal axis of the leading chisel receptacle (42) of the leading chisel (20) with respect to a die Longitudinal axis of the leading chisel holder (42) cutting through the leading cutting edge (23) running radial line (72), preferably that the trailing chisel (30, 31) at an angle of between 25 ° and 35 ° and the longitudinal axis of the leading chisel holder (42) of the leading chisels (20) are aligned at an angle of between 35 ° and 45 ° with respect to the respectively assigned radial line (72).
  • leading chisel Due to the larger setting angle of the leading chisel, in particular between 35 ° and 45 °, corresponding to the setting angle of the leading chisel holder, the leading chisel is self-sharpening for all common milling tasks. Due to the smaller setting angle of the trailing chisel, in particular in a range between 25 ° and 35 °, it is aligned in the direction of the resulting force, in particular during fine milling.
  • the leading chisel the chisel change holder or the wear protection element, the removed soil material is thus slid past the joining zone formed between the trailing chisel and the chisel change holder. This avoids excessive wear of the bit change holder in the area of the joining zone. A loss of the trailing chisel can thus be prevented.
  • the mechanical load on the trailing chisel which may not be nondestructively exchangeable, can be kept low by the fact that the longitudinal axis of the leading chisel receptacle is offset transversely to the working movement of the chisel change holder relative to the trailing chisel tip.
  • the soil material removed by the leading chisel is thus slid laterally past the trailing chisel. This can significantly increase the service life of the trailing chisel.
  • the leading chisel preferably projects beyond the trailing chisel on both sides.
  • Figure 1 shows a schematic representation and side view of a soil cultivating machine 10 in the form of a road milling machine.
  • a machine frame 12 is supported in a height-adjustable manner by trolleys 11.1, 11.2, for example crawler tracks, via four lifting columns 16.1, 16.2.
  • the soil cultivation machine 10 can be operated via a controller 17 arranged in the control station 13.
  • a milling drum 15 which is also arranged in a concealed manner and is shown in dashed lines, is rotatably mounted about an axis of rotation 15.1.
  • a conveyor 14 is used to transport away the milled material.
  • the machine frame 12 is moved over the substrate to be processed at a feed rate input via the control 17.
  • Figures 2 to 6 shown chisels 20, 30, 31 from the ground.
  • the height position and the speed of the milling drum 15 can be set by the controller 17.
  • the milling depth is set via the height position of the milling drum 15.
  • the height position of the milling drum can take place depending on the machine type via the height-adjustable lifting columns 16.1, 16.2.
  • the milling drum 15 can be adjustable in height relative to the machine frame 12.
  • Figure 2 shows a side view of a tool combination 50 with a chisel change holder 40, a leading chisel 20 and a first trailing chisel 30.
  • the leading chisel 20 has a chisel head 21 and a chisel head formed in one piece thereon, in Figure 6 chisel shank 24 shown.
  • the chisel head 21 carries a leading chisel tip 22, consisting of a hard material, for example hard metal. At the end, the leading chisel tip 22 forms a leading cutting edge 23.
  • the leading chisel tip 22 is usually soldered to the chisel head 21 along a contact surface.
  • a receptacle 21.2 is incorporated into the chisel head 21, into which the chisel tip 22 is inserted and soldered.
  • the chisel shank 24 carries a longitudinally slotted, cylindrical clamping sleeve 25. This is held on the chisel shank 24 so that it cannot be lost in the direction of the longitudinal extension of the leading chisel 22, but is freely rotatable in the circumferential direction.
  • a wear protection disk 26 is arranged in the area between the clamping sleeve 25 and the chisel head 21. In the assembled state, the wear protection disk 26 is supported on an opposing surface of the chisel change holder 40 and the chisel change holder 40 facing away from the underside of the chisel head 21, which is enlarged in diameter in this area by a collar 21.1.
  • the chisel change holder 40 is equipped with a leading extension 41 into which, as in FIG Figure 6 is shown, a leading chisel receptacle 42 is incorporated in the form of a cylindrical bore.
  • a leading chisel receptacle 42 is incorporated in the form of a cylindrical bore.
  • the clamping sleeve 25 is with its outer circumference on the inner wall of the bore held clamped.
  • the leading chisel receptacle 42 opens into an expulsion opening 47.
  • An expulsion mandrel (not shown) can be inserted through this for the purpose of dismantling the advancing chisel 20.
  • the leading extension 41 is molded onto a base 43 of the chisel change holder 40. Laterally offset and opposite to the leading projection 41, a plug-in projection 44 is connected in one piece to the base 43.
  • the plug-in extension 44 can be inserted into a plug-in receptacle of an in Figure 3 Base part 60 shown are introduced and clamped there by means of a clamping screw, not shown.
  • the plug-in extension 44 has an in Figure 2 shown clamping surface 44.1 on which the clamping screw engages.
  • the base part 43 has a contact surface 43.1 with which it is mounted on the in Figure 3 Base part 60 shown is pressed against.
  • the base part 60 itself is on its underside 61 on a milling drum tube in Figure 1 indicated milling drum 15 welded on.
  • a first trailing projection 45 is formed on the base 43 of the chisel change holder 40.
  • the leading extension 41 and the first trailing extension 45 are connected to one another along their sides facing one another.
  • the first trailing extension 45 forms a first front side 45.1.
  • a soldering recess 45.2 is formed in this first front side 45.1.
  • the first trailing chisel 30 is formed only from a trailing chisel tip 32. This has a base support 33.
  • the base support is cylindrical. It is made of a hard material, in this case hard metal.
  • the base support 33 is a super hard material 34, present in the form of a polycrystalline diamond connected.
  • the super-hard material 34 forms a trailing cutting edge 35 facing away from the base carrier 33.
  • it is conical and, facing the base support 33, is adapted to its outer cylindrical contour.
  • the base carrier 33 is completely covered at the end by the super-hard material 34.
  • the base support 33 is inserted into the soldering recess 45.2 of the first trailing attachment 45 and soldered to it.
  • Figure 3 shows in a side view the in Figure 2
  • the tool combination 50 shown mounted on the base part 60.
  • the chisel change holder 40 inserted with its plug-in attachment 44 into a plug-in receptacle of the base part 60 and fixed therein by means of a clamping screw.
  • the base part 60 is connected to the in Figure 3 Milling drum tube, not shown, of the in Figure 1 Milling drum 15 shown connected, in particular welded.
  • a larger radius 70 and a smaller radius 71 are represented by corresponding arrows.
  • the larger radius 70 characterizes a larger cutting circle 70.1 and the smaller radius 71 a smaller cutting circle 71.1.
  • the leading cutting edge 23 of the leading chisel 20 is arranged on the larger radius 70.
  • the trailing cutting edge 35 of the first trailing chisel 30 lies on the smaller radius 71.
  • two radial lines 72 are each through the leading edge 23 of the leading chisel 20 and the trailing cutting edge 35 of the first trailing chisel 30 out. There they cross a leading center line 73.1 of the leading chisel 20 or a trailing center line 73.2 of the first trailing chisel 30.
  • the leading center line 73.1 is aligned along the axis of symmetry of the leading chisel 20 in the direction of its longitudinal extent.
  • the trailing center line 73.2 runs along the axis of symmetry of the first trailing chisel 30.
  • the leading center line 73.1 specifies the orientation of the leading chisel 20, while the trailing center line 73.2 characterizes the orientation of the first trailing chisel 30.
  • the leading chisel 20 and the first trailing chisel 30 are each aligned at an angle of attack 74, indicated by a double arrow, with respect to the assigned radial line 72.
  • the setting angle 74 of the first trailing chisel 30 is selected to be smaller than the setting angle 74 of the leading chisel 20.
  • a tool combination 50 with a chisel change holder 40 a leading chisel 20 and a second trailing chisel 31 is shown in a side view.
  • the structure of the leading chisel 20 and its attachment to the chisel change holder 40 correspond to the structure described above or the attachment described above, so that reference is made to this description.
  • the leading extension 41, the base 43 and the plug-in extension 44 also correspond to the description of FIGS Figures 2 , 3 and 6th .
  • the second trailing chisel 31 has a base 36 which is integral with an in Figure 6 Shank 37 shown is connected. Starting from the cylindrical shaft 37, the base 36 tapers down to the diameter of the base carrier 33 of the trailing chisel tip 32.
  • the base 36 is formed from a hard material, in the present case from hard metal.
  • the base support 33 of the trailing chisel tip 32 is placed on the base 36 and connected to it, in particular soldered.
  • a super hard material 34 in the present case in the form of a polycrystalline diamond, covers the base support 33.
  • the super-hard material 34 is firmly connected to the base carrier 33.
  • the super-hard material 34 facing away from the base carrier 33, forms the trailing cutting edge 35 of the second trailing chisel 31.
  • the shaft 37 of the second trailing chisel 31 is held in a trailing chisel receptacle 46.2.
  • the trailing chisel receptacle 46.2 is designed as a bore in a second trailing shoulder 46 of the chisel change holder 40.
  • the trailing chisel receptacle 46.2 is formed in the latter, starting from a second front side 46.1 of the second trailing extension 46.
  • the shaft 37 of the second trailing chisel 31 is fixed both in the circumferential direction and axially in the trailing chisel receptacle 46.2.
  • the non-positive connection between the shank 37 and the trailing chisel receptacle 46.2 takes place in the present case by means of cold expansion or shrinking.
  • the shaft 37 is manufactured with an interference fit with respect to the trailing chisel holder 46.2.
  • the shank 37 is cooled so far that it can be pushed into the trailing chisel receptacle 46.2.
  • non-positive connection is formed between the shaft 37 and the trailing chisel holder 46.2.
  • other non-positive, positive or material-locking connections are also conceivable. These can be designed, for example, as a screw connection, a soldered connection, a welded connection or an adhesive connection.
  • the shaft 37 is also preferably formed from a hard material, in particular from hard metal.
  • the second trailing attachment 46 is arranged behind the leading attachment 41 with respect to the working movement 76 of the material combination 50.
  • the second trailing chisel 31 is thus also positioned behind the leading chisel 20 in relation to the working movement 76.
  • the leading edge 23 is arranged on the larger radius 70 and the trailing edge 35 of the second trailing chisel 31 is arranged on the smaller radius 71, as shown in FIG Figure 3 for a tool combination 50 with a first trailing chisel 30 is shown.
  • the second trailing chisel 31 is also at a smaller angle of attack 74 (see Figure 3 ) aligned with respect to an assigned radial line 72 as the leading chisel 20.
  • Figure 5 shows the in Figure 4 Tool combination 50 shown in a plan view.
  • the same components are given the same names as previously introduced.
  • a central plane 75 of the tool combination 50 is marked by a dashed line.
  • the center plane 75 relates to the plug attachment 44, the base 43 and the leading attachment 41 of the chisel change holder 40 as well as the leading chisel 20. It accordingly runs centrally through the leading chisel tip 22.
  • the second trailing chisel 31 is laterally offset from the center plane 75 arranged.
  • the oblique arrangement ensures that the leading chisel 20, which is mounted rotatably about its central longitudinal axis, penetrates obliquely into the soil material to be removed. This has the effect that the leading chisel 20 rotates about its central longitudinal axis and is thereby worn evenly along its circumference.
  • Figure 6 shows the in the Figures 4 and 5 Tool combination 50 shown in a lateral sectional view.
  • the leading chisel 20 is held on its chisel shank 24 by means of the clamping sleeve 25 so that it can rotate, but is axially blocked, in the leading chisel receptacle 42 of the chisel change holder 40.
  • the second trailing chisel 31 is fixed with its shank 37 both in the circumferential direction and axially blocked in the trailing chisel receptacle 46.2 of the second trailing shoulder.
  • the tool combinations 50 shown are the leading chisel 20 and the respective trailing chisel 30, 31 arranged with respect to one another in such a way that, in the case of one mounted on a milling drum 15 Tool combination 50, the trailing chisel 30, 31 is moved along the same milling line as the leading chisel 20.
  • the respective trailing chisel 30, 31 is thus arranged behind the leading chisel 20 in relation to the working movement 76 of the tool combination 50.
  • the trailing chisel 30, 31 is arranged protected by the leading chisel 20.
  • the leading chisel 20 is dimensioned larger transversely to the working movement 76 than the trailing chisel 30, 31, so that it projects beyond this on both sides. As a result, the soil material removed by the leading chisel 20 is largely guided past the trailing chisel 30, 31.
  • the leading chisel 20 and / or the wear protection disk 26 and / or the leading attachment 41 also covers the joining area between the trailing chisel 30, 31 and the trailing attachment 45, 46 of the bit change holder 40 along the working movement 76.
  • the joining area between the trailing chisel 30, 31 and the trailing shoulder 45, 46 of the chisel change holder 40 is thus protected from high abrasive wear.
  • the trailing chisel tip 32 of the trailing chisel 30, 31 is at least partially formed from a super-hard material.
  • the trailing chisel tip 32 is thus made harder in comparison to the leading chisel tip 22 of the leading chisel 20, which is preferably made of a hard metal.
  • the trailing chisel tip 32 and thus the trailing chisel 30, 31 are thus designed to be significantly more resistant to abrasive wear than the leading chisel tip 22 and thus the leading chisel 20. Combined with the previously described, protected arrangement of the trailing chisel 30, 31, this has a significantly longer service life than the leading chisel 20.
  • the service life of the trailing chisel 30, 31 is included Corresponding design and arrangement of the trailing chisel 30, 31 in the order of magnitude of the service life of the chisel change holder 40.
  • the trailing chisel 30, 31 cannot be interchangeably connected to the chisel change holder 40, in particular cannot be connected to the chisel change holder 40 in a non-destructive manner.
  • the leading chisel 20, which is exposed to strong mechanical wear, is, however, fastened to the chisel change holder 40 such that it can be easily replaced. If the leading chisel 20 is worn, it can thus be easily replaced.
  • the super-hard material is a polycrystalline diamond.
  • it can be formed as a diamond material, as a diamond-reinforced material, as a silicon carbide material, as a cubic boron nitride or as a compound of at least two of the aforementioned materials. All of these materials or material combinations have a greater hardness than the hard metal from which the leading chisel is made, and thus a greater resistance to wear.
  • a monocrystalline diamond, chemically deposited diamond, physically deposited diamond, natural diamond, infiltrated diamond, one or more successive diamond layers, thermally stable diamond or silicon-bonded diamond can also be used as diamond material.
  • the tool combination 50 is moved through the soil material to be removed due to the rotation of the milling drum 15 and the advance of the soil working machine 10.
  • the trailing cutting edge 35 of the trailing chisel 30, 31 is, based on the axis of rotation 15.1 of the milling drum 15, on a smaller radius 71 or the same radius as the leading one
  • the cutting edge 23 of the leading chisel 20 is arranged.
  • the trailing chisel 30, 31 is designed and arranged for the milling of the leading chisel Chisel 20 to be reworked.
  • the leading chisel 20 carries out a coarser milling and the trailing chisel 30, 31 carries out a finer milling.
  • the trailing edge 32 of the trailing chisel 30, 31 is spatially arranged opposite the leading edge 23 of the leading chisel 20 that, given the given operating parameters of the soil tillage machine 10, each of the chisels 20, 30, 31 has a penetration depth into the soil material suitable for its task .
  • a penetration depth of less than 15 mm for the trailing chisel 30, 31 is suitable for performing fine milling.
  • Typical operating parameters of the soil working machine 10 for such a milling process are a speed of the milling drum 15 of 130 revolutions / min, a feed speed of the soil working machine 10 of 20 m / min and a milling depth of 100 mm.
  • the larger cutting circle 70.1 of the leading edge 23 is approximately 980 mm, for example.
  • the milling depth of 100 mm and the larger cutting circle 70.1 result in a milling angle of 37.25 °, within which the chisels 20, 30, 31 engage in the soil material when the soil tillage machine 10 is operated with feed.
  • the soil cultivating machine 10 moves approximately 15 mm forwards.
  • the smaller radius 71 on which the trailing edge 35 of the trailing chisel 30, 31 is arranged must accordingly be 3 mm be selected to be smaller than the larger radius 70 on which the leading edge 23 of the leading chisel 20 is arranged.
  • the suitable arrangement of the trailing cutting edge 35 of the trailing chisel 30, 31, based on the leading edge 23 of the leading chisel 20, can thus the depth of penetration of the trailing chisel into the soil material can be determined and predetermined for predetermined operating parameters of the soil cultivating machine 10.
  • the trailing chisel 30, 31 thus reworks the milling of the leading chisel 20. He thus determines the milling pattern obtained. Due to the very low wear of the trailing chisel 30, 31, this milling pattern remains at least largely the same even after a long period of use of the tool combination 50 and high wear of the leading chisel 20.
  • the leading chisel 20 is held rotatably about its central longitudinal axis in the leading chisel receptacle 42 of the chisel change holder 40.
  • the leading chisel 20 engages in the excavated soil material, it is rotated about its central longitudinal axis.
  • the trailing chisel 30, 31, on the other hand, is not rotatably connected to the chisel change holder 40.

Description

  • Die Erfindung betrifft einen Meißelwechselhalter, welcher an einer Fräswalze einer Bodenbearbeitungsmaschine befestigbar ist, mit einer vorlaufenden Meißelaufnahme zur auswechselbaren Aufnahme eines vorlaufenden Meißels, vorzugsweise eines Rundschaftmeißels und mit einem nachlaufenden Meißel, welcher an dem Meißelwechselhalter gehalten ist, wobei der nachlaufende Meißel, bezogen auf eine Arbeitsbewegung des Meißelwechselhalters bei Einsatz in der Bodenbearbeitungsmaschine, hinter der vorlaufenden Meißelaufnahme angeordnet ist,
  • Aus der US 4,342,486 ist eine Werkzeugkombination bekannt. Die Schrift zeigt eine Fräswalze mit einem zur Aufnahme von zwei Fräsmeißeln ausgelegten Meißelhalter. Die Meißel sind in Drehrichtung der Fräswalze nacheinander angeordnet. Dabei ist ein in Drehrichtung vorderer erster Meißel so angeordnet, dass seine Meißelspitze auf einem größeren Radius um die Drehachse der Fräswalze bewegt wird als die Meißelspitze des nachlaufenden zweiten Meißels. Der Abtrag des Bodenmaterials erfolgt zunächst durch den Eingriff des ersten Meißels. Nach einem Bruch des ersten Meißels übernimmt der zweite Meißel die Bearbeitungsaufgabe Der zweite Meißel übernimmt somit eine Sicherungsfunktion, welche ein weiteres Fräsen auch bei, Beschädigung oder Verlust des ersten Meißels ermöglicht und gleichzeitig einen Schutz des Meißelhalters und der Fräswalze bewirkt. Die Meißel sind dazu parallel zueinander ausgerichtet. Sie sind austauschbar mit dem Meißelhalter verbunden, so dass sie bei entsprechendem Verschleiß ausgetauscht werden können. Dabei können gleiche Meißel oder Meißel in unterschiedlichen Längen, aber mit gleichem Haltemechanismus zur Befestigung an dem Meißelhalter und gleichem Aufbau der Meißelspitzen, vorgesehen sein.
  • Die Schrift US 5,582,468 beschreibt einen Meißelhalter für eine Bodenbearbeitungsmaschine, der an einer Fräswalze festgelegt werden kann. Der Meißelhalter weist zwei Bohrungen zur Aufnahme von zwei Meißeln auf. Die Meißel sind in Drehrichtung der Fräswalze hintereinander angeordnet. Die Bohrungen sind schräg zu jeweils einer Radiallinie der Fräswalze und in Drehrichtung weisend ausgerichtet, so dass die Meißel in einem gewünschten Winkel auf den zu bearbeitenden Untergrund auftreffen. Die Bohrungen sind weiterhin auf unterschiedlichen Radien angeordnet, wobei die in Drehrichtung weiter vorne angeordnete Bohrung auf einem geringeren Radius als die hintere Bohrung liegt. Dadurch wird eine Spitze eines in der hinteren Bohrung aufgenommenen Meißels auf einem größeren Radius um die Drehachse der Fräswalze bewegt als eine Spitze eines baugleichen vorderen Meißels. Der hintere Meißel übernimmt den wesentlichen Anteil des Materialabtrages. Bei einem Bruch des hinteren Meißels verlagert sich der Materialabtrag hin zum vorderen Meißel. Der vordere Meißel ist so angeordnet, dass er die Bohrung und den äußeren Rand der hinteren Bohrung in Bewegungsrichtung der Meißel abschirmt. Dadurch wird die hintere Meißelaufnahme auch bei Defekt oder Verlust des hinteren Meißels vor zu hohem abrasiven Verschleiß geschützt. Die Meißel sind austauschbar mit dem Meißelhalter verbunden, so dass sie bei fortgeschrittenem Verschleiß oder bei Beschädigung ausgetauscht werden können.
  • In der WO 2013/064433 ist eine Meißelspitze für einen Meißel beschrieben, wie er für eine Bodenbearbeitungsmaschine eingesetzt werden kann. Die Spitze weist ein Substrat auf, welches einen polykristallinen Diamanten (PKD) trägt. Der polykristalline Diamant bildet die Schneide der Meißelspitze. Bedingt durch die große Härte des polykristallinen Diamanten weist der Meißel einen sehr geringen Verschleiß auf. Wie sich in der Anwendung gezeigt hat, verschleißt bei einer solchen Anordnung der Meißelhalter schneller als der Meißel selbst. Dadurch kann eine Meißelaufnahme, in welcher der Meißel gehalten ist, freigelegt werden und der Meißel verlorengehen. Weiterhin kann es vorkommen, dass ein benutzter Meißel auf Grund seines, wenn auch geringen, Verschleißes im Verbindungsbereich nicht mehr in einen neuen Meißelhalter eingebaut werden kann. Wegen der Diamantbestückung sind die Meißel in ihrer Herstellung sehr teuer. Durch verlorengegangene oder nicht mehr zu verwendende Meißel steigen die Betriebskosten der Bodenbearbeitungsmaschine signifikant an.
  • Es ist Aufgabe der Erfindung, ein Werkzeug für eine Bodenbearbeitungsmaschine zu schaffen, welches bei langen Wartungsintervallen einen kostengünstigen Betrieb der Bodenbearbeitungsmaschine ermöglicht.
  • Die Aufgabe der Erfindung wird dadurch gelöst, dass der nachlaufende Meißel axial und in seiner Umfangsrichtung festliegend an dem Meißelwechselhalter gehalten ist.
  • Bei einem solchen Meißelwechselhalter kann der nachlaufende Meißel von einem speziellen Bearbeitungswerkzeug gebildet sein, der eine Abrasionsbeständigkeit aufweist. Solche Meißel sind aufgrund ihrer spröden Meißelspitze insbesondere empfindlich gegen starke Stoßbelastungen und Vibrationen. Es hat sich gezeigt, dass durch die feste Anbindung des nachlaufenden Meißels sowohl in Achsrichtung als auch in Umfangsrichtung eine Bruchgefahr des nachlaufenden Meißels deutlich reduziert wird. Zudem kann der nachlaufende Meißel im Windschatten des vorlaufenden Meißels zumindest bereichsweise geschützt untergebracht werden Durch die größere Härte der nachlaufenden Meißelspitze, kombiniert mit der verringerten mechanischen Belastung, kann die Standzeit des nachlaufenden Meißels derart verlängert werden, dass er nicht mehr oder nur sehr selten getauscht werden muss. Die Wartungsintervalle richten sich somit alleine nach dem Verschleiß des vorlaufenden Meißels. Weiterhin schützt der vorlaufende Meißel den Bereich, in dem der nachlaufende Meißel an dem Meißelwechselhalter gehalten ist. Damit wird der Verschleiß des Meißelwechselhalters im Fügebereich zwischen dem nachlaufenden Meißel und dem Meißelwechselhalter maßgeblich reduziert. Ein Verlust des nachlaufenden Meißels kann so vermieden werden. Durch die seltener erforderlichen Wartungen und die Vermeidung des Verlustes der nachlaufenden Meißel können die Betriebskosten der Bodenbearbeitungsmaschine deutlich gesenkt werden.
  • Entsprechend einer besonders bevorzugten Ausgestaltungsvariante der Erfindung kann es vorgesehen sein, dass die nachlaufende Meißelspitze zumindest bereichsweise aus einem superharten Werkstoff, insbesondere aus einem Diamantwerkstoff, einem diamantverstärkten Werkstoff, einem Siliciumcarbid-Werkstoff, aus kubischem Bornitrid oder aus Verbindungen zumindest zweier der vorgenannten Werkstoffe gebildet ist. Durch die Verwendung eines solchen superharten Werkstoffs zur zumindest teilweisen Ausbildung der nachlaufenden Meißelspitze kann die Standzeit des nachlaufenden Meißels auf die Standzeit des Meißelwechselhalters verlängert werden. Ein Austausch des nachlaufenden Meißels ist somit nicht mehr erforderlich und die Wartungsintervalle der Meißel richten sich alleine nach dem Verschleiß des vorlaufenden Meißels. Mit der Verwendung von Diamantwerkstoffen oder diamantverstärkten Werkstoffen können extrem widerstandsfähige Meißel bereitgestellt werden, welche auch bei vergleichsweise hoher mechanischer Belastung des nachlaufenden Meißels eine Standzeit im Bereich der Standzeit des Meißelwechselhalters aufweisen. Meißelspitzen, die zumindest bereichsweise aus einem Siliciumcarbid-Werkstoff oder aus kubischem Bornitrid gebildet sind, sind hingegen kostengünstiger herzustellen. Dabei weisen sie, beispielsweise für Anordnungen und Anwendungen, bei denen die nachlaufende Meißelspitze einer geringeren mechanischen Belastung ausgesetzt ist, eine an die Einsatzdauer des Meißelwechselhalters angepasste Lebenserwartung auf. Durch entsprechende Verbindungen der genannten Werkstoffe kann die Beständigkeit des nachlaufenden Meißels an die erwartete Belastung angepasst werden.
  • Eine sehr hohe mechanische Belastbarkeit des nachlaufenden Meißels kann dadurch erhalten werden, dass der Diamantwerkstoff zumindest anteilig als monokristalliner Diamant oder als polykristalliner Diamant oder als chemisch abgeschiedener Diamant oder als physikalisch abgeschiedener Diamant oder als natürlicher Diamant oder als infiltrierter Diamant oder als Diamantschicht oder als aufeinanderfolgende Diamantschichten oder als thermisch stabiler Diamant oder als siliciumgebundener Diamant ausgebildet ist. Durch den Einsatz monokristalliner Diamanten können Meißelspitzen mit höchster mechanischer Stabilität erhalten werden. Bei der Verwendung polykristalliner Diamanten bzw. chemisch oder physikalisch abgeschiedener Diamanten können Härtegrade der Meißelspitzen erreicht werden, welche zumindest annähernd der Härte monokristalliner Diamanten entspricht. Dabei sind polykristalline Diamanten bzw. chemisch oder physikalisch abgeschiedene Diamanten im Vergleich zu monokristallinen Diamanten kostengünstiger bereitzustellen. Durch infiltrierte Diamanten können die Eigenschaften der Meißelspitze in einem vorgegebenen Rahmen an die erwarteten Anforderungen und Belastungen angepasst werden. Mittels Diamantschichten kann über die Einstellung der Schichtdicken die Menge an benötigtem Diamant an die tatsächlichen Erfordernisse angepasst und damit die Herstellkosten reduziert werden. Dabei können durch aufeinanderfolgende Diamantschichten die Eigenschaften der Diamantschichten an die jeweiligen Anforderungen angepasst werden. So kann beispielsweise eine äußere Diamantschicht sehr hart und damit mechanisch belastbar ausgeführt werden, während eine innere Diamantschicht für eine feste und dauerhafte Verbindung zu einem Substrat als Teil der Meißelspitze, auf dem die Diamantschichten abgeschieden werden, angepasst ist. Thermisch stabile Diamanten ermöglichen Herstellprozesse für den Meißel bzw. die Meißelspitze, welche hohe Temperaturen erfordern, beispielsweise Lötprozesse. Bei siliciumgebundenem Diamant sind kleine Diamantsegmente mittels Silicium verbunden. Die kleinen Diamantsegmente sind vergleichsweise kostengünstig herstellbar und können beispielsweise als Monokristalle vorliegen. Siliciumgebundener Diamant kann einfach an die gewünschte Kontur der nachlaufenden Meißelspitze und deren Schneide angepasst werden.
  • Eine hoch belastbare und gleichzeitig einfach und mechanisch stabil mit einem weiteren Werkstück verbindbare Meißelspitze kann dadurch erhalten werden, dass die nachlaufende Meißelspitze aus einem Basisträger aus einem Hartwerkstoff, bevorzugt aus Hartmetall, gebildet ist, welcher zur nachlaufenden Schneide hin weisend von dem superharten Werkstoff abgedeckt ist. Die nachlaufende Schneide ist somit von dem superharten Werkstoff gebildet. Der aus dem Hartwerkstoff bestehende Basisträger kann mit einem weiteren Abschnitt des nachlaufenden Meißels, beispielsweise einem Meißelkopf, verlötet werden.
  • Eine kostengünstige Herstellung des nachlaufenden Meißels kann dadurch erreicht werden, dass der superharte Werkstoff als Schicht ausgebildet ist. Die Form der nachlaufenden Meißelspitze bzw. der nachlaufenden Schneide kann dann beispielsweise durch die Form eines Basisträgers vorgegeben werden. Auf diesen ist der superharte Werkstoff als Schicht aufgebracht, wodurch eine sehr harte Schneide gebildet ist.
  • Entsprechend einer bevorzugten Ausgestaltungsvariante der Erfindung kann es vorgesehen sein, dass der vorlaufende Meißel axial gehalten und in seiner Umfangsrichtung drehbar mit dem Meißelwechselhalter verbunden ist. Durch die drehbare Lagerung des vorlaufenden Meißels wird dieser bei Eingriff in das abzutragende Bodenmaterial um seine Längsachse gedreht. Dadurch ergibt sich ein gleichmäßiger, umlaufender Verschleiß der Meißelspitze und/oder des Meißelkopfes. Die Standzeit des vorlaufenden Meißels kann so erhöht werden. Weiterhin tritt durch den gleichmäßigen umlaufenden Verschleiß eine Selbstschärfung des vorlaufenden Meißels ein. Dadurch kann der vorlaufende Meißel vergleichsweise einfach in das abzutragende Material eindringen, wodurch die Energiekosten zum Betrieb der Bodenbearbeitungsmaschine sinken.
  • Durch die zumindest bereichsweise größere Härte der nachlaufenden Meißelspitze, insbesondere bei einer nachlaufenden Meißelspitze, die zumindest teilweise aus einem superharten Werkstoff hergestellt ist, sowie durch die im Vergleich zur vorlaufenden Meißelspitze geringeren mechanischen Belastung der nachlaufenden Meißelspitze, kann über lange Zeit ein nahezu unveränderter Schneideingriff der nachlaufenden Meißelspitze erreicht werden. Die Lebenserwartung des nachlaufenden Meißels liegt damit im Bereich der Lebenserwartung des Meißelwechselhalters. Die Lebenserwartung des vorlaufenden Meißels ist aufgrund seiner geringeren Härte und seiner höheren mechanischen Belastung während des Einsatzes geringer als die des nachlaufenden Meißels und des Meißelwechselhalters. Daher kann es vorgesehen sein, dass der nachlaufende Meißel nicht zerstörungsfrei auswechselbar mit dem Meißelwechselhalter verbunden ist und/oder dass der vorlaufende Meißel auswechselbar mit dem Meißelwechselhalter verbunden ist. Der nachlaufende Meißel bleibt somit über die gesamte Einsatzdauer des Meißelwechselhalters mit diesem verbunden. Der im Vergleich zum nachlaufenden Meißel deutlich kostengünstiger herzustellende, vorlaufende Meißel kann bei Erreichen seiner Verschleißgrenze ausgetauscht werden.
  • Gemäß der Erfindung kann es vorgesehen sein, dass der nachlaufende Meißel aus der nachlaufenden Meißelspitze gebildet ist, welche unmittelbar mit dem Meißelwechselhalter nicht lösbar verbunden, insbesondere verlötet, ist und/oder dass der nachlaufende Meißel zumindest aus der nachlaufenden Meißelspitze und einem damit mittelbar oder unmittelbar verbundenen Schaft gebildet ist und dass der Schaft in einer nachlaufenden Meißelaufnahme des Meißelwechselhalters gehalten ist, vorzugsweise mittels einer stoffschlüssigen, einer kraftschlüssigen oder einer formschlüssigen Verbindung. Ein lediglich aus der nachlaufenden Meißelspitze gebildeter, nachlaufender Meißel kann vergleichsweise kostengünstig hergestellt werden. Dabei kann der nachlaufende Meißel aus dem Basisträger aus einem Hartwerkstoff, bevorzugt aus Hartmetall, gebildet sein, welcher zur nachlaufenden Schneide hin weisend von dem superharten Werkstoff abgedeckt ist. Der Basisträger kann unmittelbar mit dem Meißelträger verbunden sein. Dabei lässt sich eine belastbare und kostengünstige Verbindung beispielsweise durch Löten herstellen. Der Basisträger ist derart dimensioniert, dass er in ein Fertigungsaggregat zur Verbindung mit einem superharten Werkstoff eingebracht werden kann. Die so hergestellte Meißelspitze kann unmittelbar mit dem Meißelträger verbunden werden. Ebenfalls möglich ist es, die Meißelspitze unmittelbar oder mittelbar, beispielsweise über einen zwischen der Meißelspitze und dem Schaft angeordneten Meißelkopf, mit einem Schaft zu verbinden. Der Schaft kann dann in der nachlaufenden Meißelaufnahme mit dem Meißelträger verbunden werden. Die Verbindung zwischen dem Schaft und der Meißelaufnahme kann stoffschlüssig, beispielsweise über Löten oder Kleben, erfolgen. Ebenfalls möglich sind kraftschlüssige Verbindungen. Eine solche kraftschlüssige Verbindung kann beispielsweise durch Kaltdehnen bzw. Einschrumpfen des Schaftes in die nachlaufende Meißelaufnahme hergestellt werden. Dabei wird der Schaft mit einem Übermaß gefertigt, abgekühlt und in die nachlaufende Meißelaufnahme eingeführt. Beim Aufwärmen dehnt er sich aus und bildet so eine feste Verbindung zur nachlaufenden Meißelaufnahme. Entsprechend kann die Verbindung durch Aufschrumpfen hergestellt werden, wobei der Meißelwechselhalter aufgewärmt und der mit einem Übermaß gefertigte Schaft des nachlaufenden Meißels in die durch die erhöhte Temperatur erweiterte, nachlaufende Meißelaufnahme eingesteckt wird. Es ist auch denkbar, eine Schraubverbindung zwischen dem Schaft und dem Meißelwechselhalter vorzusehen.
  • Ein gleichmäßiges Fräsbild kann dadurch erhalten werden, dass der nachlaufende Meißel dazu ausgebildet und angeordnet ist, eine durch den vorlaufenden Meißel durchgeführte Fräsung nachzubearbeiten. Durch die Nachbearbeitung der Fräsung durch den nachlaufenden Meißel bleibt das Fräsbild, unabhängig vom Verschleißzustand des vorlaufenden Meißels, erhalten. Dies gilt insbesondere für nachlaufende Meißel mit jeweils einer mit einem superharten Werkstoff ausgerüsteten, nachlaufenden Meißelspitze, welche über lange Zeit einen nahezu unveränderten Schneideingriff garantieren.
  • Ein gleichmäßiges Fräsbild auf der einen Seite und eine vergleichsweise geringe mechanischer Belastung und damit ein geringer Verschleiß des nachlaufenden Meißels auf der anderen Seite kann dadurch erreicht werden, dass der nachlaufende Meißel dazu ausgebildet und angeordnet ist, ein gegenüber dem vorlaufenden Meißel kleineres Spanvolumen aus dem abzutragenden Material zu schneiden.
  • Um die Fräsung des vorlaufenden Meißels durch den nachlaufenden Meißel nachzubearbeiten kann es vorgesehen sein, dass der vorlaufende Meißel und der nachlaufende Meißel derart ausgebildet und an dem Meißelwechselhalter angeordnet sind, dass bei einer an einer Fräswalze montierten Werkzeugkombination die vorlaufende Schneide der vorlaufenden Meißelspitze des vorlaufenden Meißels auf einem größeren Radius zu einer Drehachse der Fräswalze angeordnet ist als die nachlaufende Schneide der nachlaufenden Meißelspitze des nachlaufenden Meißels oder dass die beiden Schneiden auf im Wesentlichen gleichen Radien angeordnet sind. Im Wesentlichen gleich bedeutet dabei insbesondere auf ± 3 mm gleiche Radien. Der nachlaufende Meißel trägt bei dieser Anordnung der Meißelspitzen ein deutlich kleineres Spanvolumen ab als der vorlaufende Meißel. Dadurch kann ein gleichmäßiger Abtrag des zu bearbeitenden Untergrunds erreicht werden, was zu einem sehr gleichmäßigen und homogenen Fräsbild führt. Dies ist insbesondere beim Feinfräsen, bei dem beispielsweise eine obere Schicht einer Fahrbahn abgetragen wird, erwünscht.
  • Der vorlaufende Meißel dringt zuerst in den zu bearbeitenden Untergrund ein, gefolgt von dem nachlaufenden Meißel. Die Bahnen, auf welchen die vorlaufende Schneide und die nachlaufende Schneide durch das zu bearbeitende Material geführt werden, sind abhängig von zumindest der Frästiefe, der Drehzahl der Fräswalze und der Vorschubgeschwindigkeit der Bodenbearbeitungsmaschine. Das von jedem Meißel abgetragene Materialvolumen hängt somit zumindest von diesen Maschinenparameter sowie von der relativen Anordnung der nachlaufenden Schneide des nachlaufenden Meißels zu der vorlaufenden Schneide des vorlaufenden Meißels ab. Um das gewünschte gleichmäßige Fräsbild zu erhalten kann es vorgesehen sein, dass der Abstand der Schneiden der Meißelspitzen zueinander und die Radien, auf denen bei einer auf einer Fräswalze montierten Werkzeugkombination die Schneiden der Meißelspitzen angeordnet sind, derart gewählt sind, dass bei einer vorgegebenen Vorschubgeschwindigkeit der Bodenbearbeitungsmaschine und einer vorgegebenen Drehzahl der Fräswalze der nachlaufende Meißel eine vorgegebene Eindringtiefe in das zu fräsende Material aufweist. Durch die aufeinander abgestimmten Maschinenparameter und Anordnung der Schneiden kann erreicht werden, dass der vorlaufende Meißel ein größeres Volumen als der nachlaufende Meißel schneidet. Damit kann beispielsweise der vorlaufende Meißel zum Schruppen und der nachlaufende Meißel zum Schlichten vorgesehen sein. Durch den vorlaufenden Meißel wird dabei der größte Teil des zu bearbeitenden Untergrunds abgetragen, während durch den nachlaufenden Meißel das gewünschte Fräsbild hergestellt wird.
  • Eine Anpassung an gängige Maschinenparameter der Bodenbearbeitungsmaschine kann dadurch erreicht werden, dass der Abstand zwischen den Schneiden der vorlaufenden Meißelspitze und der nachlaufenden Meißelspitze zwischen 45mm und 75mm, vorzugsweise zwischen 50mm und 60mm, besonders bevorzugt 54mm, beträgt und/oder dass der Radius, auf dem bei einer auf einer Fräswalze montierten Werkzeugkombination die nachlaufende Schneide der nachlaufenden Meißelspitze angeordnet ist, zwischen 1mm und 7mm, vorzugsweise zwischen 2mm und 5mm, besonders bevorzugt 3mm, kleiner gewählt ist als der Radius, auf dem die vorlaufende Schneide der vorlaufenden Meißelspitze angeordnet ist.
  • Eine denkbare Erfindungsvariante ist derart,
    dass der nachlaufende Meißel (30, 31) in einem kleineren Anstellwinkel (74) gegenüber einer durch die nachlaufende Schneide (35) verlaufenden Radiallinie (72) ausgerichtet ist als die Längsachse der vorlaufenden Meißelaufnahme (42) der vorlaufende Meißel (20) gegenüber einer die Längsachse der vorlaufenden Meißelaufnahme (42) schneidenden durch die vorlaufende Schneide (23) verlaufenden Radiallinie (72), vorzugsweise dass der nachlaufende Meißel (30, 31) in einem Anstellwinkel zwischen 25° und 35° und die Längsachse der vorlaufenden Meißelaufnahme (42) der vorlaufende Meißel (20) in einem Anstellwinkel zwischen 35° und 45° gegenüber der jeweils zugeordneten Radiallinie (72) ausgerichtet sind.
  • Durch den größeren Anstellwinkel des, entsprechend des Anstellwinkels der vorlaufenden Meißelaufnahme, vorlaufenden Meißels, insbesondere zwischen 35° und 45°, wird eine Selbstschärfung des vorlaufenden Meißels bei allen gängigen Fräsaufgaben erreicht. Durch den kleineren Anstellwinkel des nachlaufenden Meißels, insbesondere in einem Bereich zwischen 25° und 35°, ist dieser in Richtung der resultierenden Kraft, insbesondere beim Feinfräsen, ausgerichtet.
  • Entsprechend einer besonders bevorzugten Ausgestaltungsvariante der Erfindung kann es vorgesehen sein, dass eine zwischen dem nachlaufenden Meißel und dem Meißelwechselhalter ausgebildete Fügezone entlang der Arbeitsbewegung der Werkzeugkombination zumindest teilweise von dem vorlaufenden Meißel, oder einem Körperbereich des Meißelwechselhalters, oder eine zwischen dem Meißelwechselhalter und dem vorlaufenden Meißel angeordneten Verschleißschutzelement, abgedeckt ist. Durch den vorlaufenden Meißel, den Meißelwechselhalter bzw. das Verschleißschutzelement wird somit das abgetragene Bodenmaterial an der zwischen dem nachlaufenden Meißel und dem Meißelwechselhalter ausgebildeten Fügezone vorbeigleitet. Dadurch wird ein übermäßiger Verschleiß des Meißelwechselhalters im Bereich der Fügezone vermieden. Einem Verlust des nachlaufenden Meißels kann so vorgebeugt werden.
  • Die mechanische Belastung des gegebenenfalls nicht zerstörungsfrei austauschbaren, nachlaufenden Meißels kann dadurch gering gehalten werden, dass die Längsachse der vorlaufenden Meißelaufnahme quer zur Arbeitsbewegung des Meißelwechselhalters gegenüber der nachlaufenden Meißelspitze versetzt ist. Das von dem vorlaufenden Meißel abgetragene Bodenmaterial wird so seitlich an dem nachlaufenden Meißel vorbeigleitet. Dadurch kann die Standzeit des nachlaufenden Meißels signifikant erhöht werden. Vorzugsweise steht der vorlaufende Meißel beidseitig über den nachlaufenden Meißel über.
  • Die Erfindung wird im Folgenden anhand eines in den Zeichnungen dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:
  • Fig. 1
    in schematischer Darstellung und Seitenansicht eine Bodenbearbeitungsmaschine in Form einer Straßenfräsmaschine,
    Fig. 2
    in einer Seitenansicht eine Werkzeugkombination mit einem Meißelwechselhalter, einem vorlaufenden Meißel und einem ersten nachlaufenden Meißel,
    Fig. 3
    in einer Seitenansicht die in Fig. 2 gezeigte Werkzeugkombination, montiert auf einem Basisteil,
    Fig. 4
    in einer Seitenansicht eine Werkzeugkombination mit einem Meißelwechselhalter, einem vorlaufenden Meißel und einem zweiten nachlaufenden Meißel,
    Fig. 5
    die in Fig. 4 gezeigte Werkzeugkombination in einer Draufsicht und
    Fig. 6
    die in den Figuren 4 und 5 gezeigte Werkzeugkombination in einer seitlichen Schnittdarstellung.
  • Figur 1 zeigt in schematischer Darstellung und Seitenansicht eine Bodenbearbeitungsmaschine 10 in Form einer Straßenfräsmaschine. Ein Maschinenrahmen 12 ist über vier Hubsäulen 16.1, 16.2 höhenverstellbar von Fahrwerken 11.1, 11.2, beispielsweise Kettenlaufwerken, getragen. Die Bodenbearbeitungsmaschine 10 kann, ausgehend von einem Leitstand 13, über eine in dem Leitstand 13 angeordnete Steuerung 17 bedient werden. In einem verdeckt angeordneten Fräswalzenkasten ist eine ebenfalls verdeckt angeordnete und in der Darstellung gestrichelt gezeichnete Fräswalze 15 um eine Drehachse 15.1 drehbar gelagert. Eine Fördereinrichtung 14 dient dem Abtransport des Fräsgutes.
  • Im Einsatz wird der Maschinenrahmen 12 mit einer über die Steuerung 17 eingegebenen Vorschubgeschwindigkeit über den zu bearbeitenden Untergrund bewegt. Dabei tragen auf der sich drehenden Fräswalze 15 angeordnete und in den
  • Figuren 2 bis 6 gezeigte Meißel 20, 30, 31 den Untergrund ab. Die Höhenposition sowie die Drehzahl der Fräswalze 15 können von der Steuerung 17 aus eingestellt werden. Über die Höhenposition der Fräswalze 15 wird die Frästiefe eingestellt. Die Höhenposition der Fräswalze kann dabei je nach Maschinentyp über die höhenverstellbaren Hubsäulen 16.1, 16.2 erfolgen. Alternativ kann die Fräswalze 15 relativ zum Maschinenrahmen 12 in der Höhe verstellbar sein.
  • Figur 2 zeigt in einer Seitenansicht eine Werkzeugkombination 50 mit einem Meißelwechselhalter 40, einem vorlaufenden Meißel 20 und einem ersten nachlaufenden Meißel 30. Der vorlaufende Meißel 20 weist einen Meißelkopf 21 und einen daran einteilig angeformten, in Figur 6 gezeigten Meißelschaft 24 auf. Der Meißelkopf 21 trägt eine vorlaufende Meißelspitze 22, bestehend aus einem Hartwerkstoff, beispielsweise aus Hartmetall. Endseitig bildet die vorlaufende Meißelspitze 22 eine vorlaufende Schneide 23 aus.
  • Die vorlaufende Meißelspitze 22 ist üblicherweise mit dem Meißelkopf 21 entlang einer Kontaktfläche verlötet. In den Meißelkopf 21 ist dazu eine Aufnahme 21.2 eingearbeitet, in welche die Meißelspitze 22 eingesetzt und verlötet ist.
  • Wie in Figur 6 gezeigt, trägt der Meißelschaft 24 eine längs geschlitzte, zylindrische Spannhülse 25. Diese ist in Richtung der Längserstreckung des vorlaufenden Meißels 22 unverlierbar, jedoch in Umfangsrichtung frei drehbar, am Meißelschaft 24 gehalten. Im Bereich zwischen der Spannhülse 25 und dem Meißelkopf 21 ist eine Verschleißschutzscheibe 26 angeordnet. Im montierten Zustand stützt sich die Verschleißschutzscheibe 26 auf einer Gegenfläche des Meißelwechselhalters 40 und dem Meißelwechselhalter 40 abgekehrt an der Unterseite des Meißelkopfes 21, der in diesem Bereich durch einen Bund 21.1 in seinem Durchmesser erweitert ist, ab.
  • Der Meißelwechselhalter 40 ist mit einem vorlaufenden Ansatz 41 ausgestattet, in den, wie in Figur 6 gezeigt ist, eine vorlaufende Meißelaufnahme 42 in Form einer zylindrischen Bohrung eingearbeitet ist. In dieser vorlaufenden Meißelaufnahme 42 ist die Spannhülse 25 mit ihrem Außenumfang an der Bohrungsinnenwandung geklemmt gehalten. Die vorlaufende Meißelaufnahme 42 mündet in eine Austreiböffnung 47. Durch diese kann zum Zweck der Demontage des vorlaufenden Meißels 20 ein Austreibdorn (nicht gezeigt) eingeführt werden. Dieser wirkt derart auf das Ende des Meißelschaftes 24 ein, dass unter Überwindung der Spannkraft der Spannhülse 25 der vorlaufende Meißel 20 aus der vorlaufenden Meißelaufnahme 42 ausgeschoben wird.
  • Der vorlaufende Ansatz 41 ist an eine Basis 43 des Meißelwechselhalters 40 angeformt. Seitlich versetzt und gegenüberliegend zum vorlaufenden Ansatz 41 ist ein Steckansatz 44 einstückig mit der Basis 43 verbunden. Der Steckansatz 44 kann in eine Steckaufnahme eines in Figur 3 gezeigten Basisteils 60 eingeführt und dort mittels einer nicht gezeigten Spannschraube festgeklemmt werden. Dazu weist der Steckansatz 44 eine in Figur 2 gezeigte Klemmfläche 44.1 auf, an welcher die Spannschraube angreift. Seitlich vom Steckansatz 44 weist das Basisteil 43 eine Anlagefläche 43.1 auf, mit der es montiert unter Krafteinwirkung der Spannschraube an das in Figur 3 gezeigte Basisteil 60 anpresst wird. Das Basisteil 60 selbst ist über seine Unterseite 61 auf ein Fräswalzenrohr der in Figur 1 angedeuteten Fräswalze 15 aufgeschweißt.
  • Durch die Drehung der Fräswälze 15 und den Vorschub der Bodenbearbeitungsmaschine 10 wird die Werkzeugkombination 50 entsprechend einer durch einen Pfeil angedeuteten Arbeitsbewegung 76 bewegt. Bezogen auf diese Arbeitsbewegung 76 ist hinter dem vorlaufenden Ansatz 41 ein erster nachlaufender Ansatz 45 an die Basis 43 des Meißelwechselhalters 40 angeformt. Der vorlaufende Ansatz 41 und der erste nachlaufende Ansatz 45 sind entlang ihrer einander zugewandten Seiten miteinander verbunden. An seinem der Basis 43 abgewandten Ende bildet der erste nachlaufende Ansatz 45 eine erste Vorderseite 45.1 aus. In diese erste Vorderseite 45.1 ist eine Lötausnehmung 45.2 eingeformt. Der erste nachlaufende Meißel 30 ist in der gezeigten Ausführung lediglich aus einer nachlaufenden Meißelspitze 32 gebildet. Diese weist einen Basisträger 33 auf. Der Basisträger ist zylinderförmig ausgebildet. Er ist aus einem Hartwerkstoff, vorliegend aus Hartmetall, hergestellt. Mit dem Basisträger 33 ist ein superharter Werkstoff 34, vorliegend in Form eines polykristallinen Diamanten, verbunden. Der superharte Werkstoff 34 bildet dem Basisträger 33 abgewandt eine nachlaufende Schneide 35 aus. Er ist dazu kegelförmig ausgebildet und dem Basisträger 33 zugewandt an dessen äußere zylindrische Kontur angepasst. Dadurch ist der Basisträger 33 endseitig vollständig von dem superharten Werkstoff 34 abgedeckt. Gegenüberliegend zur nachlaufenden Schneide 35 ist der Basisträger 33 in die Lötausnehmung 45.2 des ersten nachlaufenden Ansatzes 45 eingesetzt und mit diesem verlötet.
  • Figur 3 zeigt in einer Seitenansicht die in Figur 2 gezeigte Werkzeugkombination 50, montiert auf dem Basisteil 60. Dazu ist, wie bereits zu Figur 2 beschrieben, der Meißelwechselhalter 40 mit seinem Steckansatz 44 in eine Steckaufnahme des Basisteils 60 eingesteckt und darin mittels einer Spannschraube festgelegt. Das Basisteil 60 ist entlang seiner Unterseite 61 mit dem in Figur 3 nicht dargestellten Fräswalzenrohr der in Figur 1 gezeigten Fräswalze 15 verbunden, insbesondere verschweißt.
  • Ausgehend von der in Figur 1 gezeigten Drehachse 15.1 der Fräswalze 15 sind ein größerer Radius 70 und ein kleinerer Radius 71 durch entsprechende Pfeile dargestellt. Der größere Radius 70 kennzeichnet einen größeren Schnittkreis 70.1 und der kleinere Radius 71 einen kleineren Schnittkreis 71.1. Die vorlaufende Schneide 23 des vorlaufenden Meißels 20 ist auf dem größeren Radius 70 angeordnet. Die nachlaufende Schneide 35 des ersten nachlaufenden Meißels 30 liegt auf dem kleineren Radius 71. Bei Drehung der Fräswalze 15 entlang der durch den Pfeil gekennzeichneten Arbeitsbewegung 76 wird somit ohne Vorschub der Bodenbearbeitungsmaschine 10 die vorlaufende Schneide 23 des vorlaufenden Meißels 20 entlang des größeren Schnittkreises 70.1 und die nachlaufende Schneide 35 des ersten nachlaufenden Meißels 30 entlang des kleineren Schnittkreises 71.1 bewegt.
  • Ausgehend von der Drehachse 15.1 der Fräswalze 15 sind zwei Radiallinien 72 jeweils durch die vorlaufende Schneide 23 des vorlaufenden Meißels 20 und die nachlaufende Schneide 35 des ersten nachlaufenden Meißels 30 geführt. Sie kreuzen dort eine vorlaufende Mittellinie 73.1 des vorlaufenden Meißels 20 bzw. eine nachlaufende Mittellinie 73.2 des ersten nachlaufenden Meißels 30. Die vorlaufende Mittellinie 73.1 ist entlang der Symmetrieachse des vorlaufenden Meißels 20 in Richtung von dessen Längserstreckung ausgerichtet. Entsprechend verläuft die nachlaufende Mittellinie 73.2 entlang der Symmetrieachse des ersten nachlaufenden Meißels 30. Die vorlaufende Mittellinie 73.1 gibt die Ausrichtung des vorlaufenden Meißels 20 an, während die nachlaufende Mittellinie 73.2 die Ausrichtung des ersten nachlaufenden Meißels 30 kennzeichnet. Der vorlaufende Meißel 20 und der erste nachlaufende Meißel 30 sind jeweils in einem durch einen Doppelpfeil gekennzeichneten Anstellwinkel 74 gegenüber der zugeordneten Radiallinie 72 ausgerichtet. Dabei ist der Anstellwinkel 74 des ersten nachlaufenden Meißels 30 kleiner gewählt als der Anstellwinkel 74 des vorlaufenden Meißels 20.
  • In Fig. 4 ist in einer Seitenansicht eine Werkzeugkombination 50 mit einem Meißelwechselhalter 40, einem vorlaufenden Meißel 20 und einem zweiten nachlaufenden Meißel 31 gezeigt. Der Aufbau des vorlaufenden Meißels 20 sowie dessen Befestigung an dem Meißelwechselhalter 40 entsprechen dem zuvor beschriebenen Aufbau bzw. der zuvor beschriebenen Befestigung, so dass auf diese Beschreibung Bezug genommen wird. Auch der vorlaufende Ansatz 41, die Basis 43 und der Steckansatz 44 entsprechen der Beschreibung zu den Figuren 2, 3 und 6.
  • Der zweite nachlaufende Meißel 31 weist einen Sockel 36 auf, der einstückig mit einem in Figur 6 gezeigten Schaft 37 verbunden ist. Ausgehend von dem zylinderförmig ausgeführten Schaft 37 verjüngt sich der Sockel 36 bis auf den Durchmesser des Basisträgers 33 der nachlaufenden Meißelspitze 32. Der Sockel 36 ist aus einem Hartwerkstoff, vorliegend aus Hartmetall, gebildet. Der Basisträger 33 der nachlaufenden Meißelspitze 32 ist auf den Sockel 36 aufgesetzt und mit diesem verbunden, insbesondere verlötet. Gegenüberliegend zum Sockel 36 deckt ein superharter Werkstoff 34, vorliegend in Form eines polykristallinen Diamanten, den Basisträger 33 ab. Der superharte Werkstoff 34 ist dabei fest mit dem Basisträger 33 verbunden. Dem Basisträger 33 abgewandt bildet der superharte Werkstoff 34 die nachlaufende Schneide 35 des zweiten nachlaufenden Meißels 31 aus. Wie in Figur 6 dargestellt, ist der Schaft 37 des zweiten nachlaufenden Meißels 31 in einer nachlaufenden Meißelaufnahme 46.2 gehalten. Die nachlaufende Meißelaufnahme 46.2 ist dabei als Bohrung in einen zweiten nachlaufenden Ansatz 46 des Meißelwechselhalters 40 ausgebildet. Dabei ist die nachlaufende Meißelaufnahme 46.2 ausgehend von einer zweiten Vorderseite 46.1 des zweiten nachlaufenden Ansatzes 46 in diesen eingeformt. Der Schaft 37 des zweiten nachlaufenden Meißels 31 ist sowohl in Umfangsrichtung als auch axial in der nachlaufenden Meißelaufnahme 46.2 festgelegt. Die kraftschlüssige Verbindung zwischen dem Schaft 37 und der nachlaufenden Meißelaufnahme 46.2 erfolgt vorliegend mittels Kaltdehnen bzw. Einschrumpfen. Dazu wird der Schaft 37 mit einer Übermaßpassung gegenüber der nachlaufenden Meißelaufnahme 46.2 gefertigt. Zum Fügen wird der Schaft 37 so weit abgekühlt, dass er in die nachlaufende Meißelaufnahme 46.2 eingeschoben werden kann. Bei dem nachfolgenden Aufwärmen des Schaftes 37 dehnt sich dieser auf Grund der Wärmedehnung aus, so dass eine kraftschlüssige Verbindung zwischen dem Schaft 37 und der nachlaufenden Meißelaufnahme 46.2 ausgebildet wird. Neben der kraftschlüssigen Verbindung des Schaftes 37 mit der nachlaufenden Meißelaufnahme 46.2 mittels Kaltdehnen bzw. Einschrumpfen sind auch andere kraft-, form- oder stoffschlüssig Verbindungen denkbar. Diese können beispielsweise als Schraubverbindung, als Lötverbindung, als Schweißverbindung oder als Klebeverbindung ausgeführt sein. Vorzugsweise ist auch der Schaft 37 aus einem Hartwerkstoff, insbesondere aus Hartmetall, gebildet.
  • Der zweite nachlaufende Ansatz 46 ist, bezogen auf die Arbeitsbewegung 76 der Werkstoffkombination 50, hinter dem vorlaufenden Ansatz 41 angeordnet. Damit ist auch der zweite nachlaufende Meißel 31, bezogen auf die Arbeitsbewegung 76, hinter dem vorlaufenden Meißel 20 positioniert. Bei montierter Werkzeugkombination 50 ist die vorlaufende Schneide 23 auf dem größeren Radius 70 und die nachlaufende Schneide 35 des zweiten nachlaufenden Meißels 31 auf dem kleineren Radius 71 angeordnet, wie dies in Figur 3 für eine Werkzeugkombination 50 mit einem ersten nachlaufenden Meißel 30 gezeigt ist. Der zweite nachlaufende Meißel 31 ist ebenfalls in einem kleineren Anstellwinkel 74 (siehe Figur 3) gegenüber einer zugeordneten Radiallinie 72 ausgerichtet als der vorlaufende Meißel 20.
  • Figur 5 zeigt die in Figur 4 gezeigte Werkzeugkombination 50 in einer Draufsicht. Gleiche Bauteile sind dabei wie zuvor eingeführt gleich bezeichnet.
  • Eine Mittenebene 75 der Werkzeugkombination 50 ist durch eine gestrichelte Linie markiert. Die Mittenebene 75 bezieht sich dabei auf den Steckansatz 44, die Basis 43 und den vorlaufenden Ansatz 41 des Meißelwechselhalters 40 sowie den vorlaufenden Meißel 20. Sie verläuft demnach zentrisch durch die vorlaufende Meißelspitze 22. Der zweite nachlaufende Meißel 31 ist seitlich versetzt zu der Mittenebene 75 angeordnet. Dadurch kann die Werkzeugkombination 50 mit den beiden Meißeln 20, 30, 31 in Richtung der Längserstreckung der Fräswalze 15 schräg geneigt an dieser befestigt werden, wobei der zweite nachlaufende Meißel 31 bei einer Drehung der Fräswalze 15 der Bahn des vorlaufenden Meißels 20 folgt. Durch die schräge Anordnung wird erreicht, dass der um seine Mittellängsachse drehbar gelagerte, vorlaufende Meißel 20 schräg in das abzutragende Bodenmaterial eindringt. Dadurch wird bewirkt, dass sich der vorlaufende Meißel 20 um seine Mittellängsachse dreht und dadurch entlang seines Umfangs gleichmäßig abgenutzt wird.
  • Figur 6 zeigt die in den Figuren 4 und 5 gezeigte Werkzeugkombination 50 in einer seitlichen Schnittdarstellung. Wie zuvor beschrieben, ist der vorlaufende Meißel 20 an seinem Meißelschaft 24 mittels der Spannhülse 25 drehbar, aber axial blockiert, in der vorlaufenden Meißelaufnahme 42 des Meißelwechselhalters 40 gehalten. Der zweite nachlaufende Meißel 31 ist mit seinem Schaft 37 sowohl in Umfangsrichtung als auch axial blockiert in der nachlaufenden Meißelaufnahme 46.2 des zweiten nachlaufenden Ansatzes festgelegt.
  • Bei den in den Figuren 2 bis 6 gezeigten Werkzeugkombinationen 50 sind der vorlaufende Meißel 20 und der jeweilige nachlaufende Meißel 30, 31 derart zueinander angeordnet, dass bei einer auf einer Fräswalze 15 montierten Werkzeugkombination 50 der nachlaufende Meißel 30, 31 entlang der gleichen Fräslinie bewegt wird wie der vorlaufende Meißel 20. Der jeweilige nachlaufende Meißel 30, 31 ist somit bezogen auf die Arbeitsbewegung 76 der Werkzeugkombination 50 hinter dem vorlaufenden Meißel 20 angeordnet. Dadurch ist der nachlaufende Meißel 30, 31 durch den vorlaufenden Meißel 20 geschützt angeordnet.
  • Der vorlaufende Meißel 20 ist quer zur Arbeitsbewegung 76 größer dimensioniert als der nachlaufende Meißel 30, 31, sodass er beidseitig über diesen übersteht. Dadurch wird das von dem vorlaufenden Meißel 20 abgetragene Bodenmaterial an dem nachlaufenden Meißel 30, 31 weitestgehend vorbeigeführt. Ebenfalls deckt der vorlaufende Meißel 20 und/oder die Verschleißschutzscheibe 26 und/oder der vorlaufende Ansatz 41 den Fügebereich zwischen dem nachlaufenden Meißel 30, 31 und dem nachlaufenden Ansatz 45, 46 des Meißelwechselhalters 40 entlang der Arbeitsbewegung 76 ab. Der Fügebereich zwischen dem nachlaufenden Meißel 30, 31 und dem nachlaufenden Ansatz 45, 46 des Meißelwechselhalters 40 ist somit vor hohem abrasiven Verschleiß geschützt. Dadurch kann sicher vermieden werden, dass der nachlaufende Ansatz 45, 46 auswäscht und dabei die Fügefläche zwischen dem nachlaufenden Meißel 30, 31 und dem nachlaufenden Ansatz 45, 46 freigelegt wird. Damit wird vermieden, dass der nachlaufende Meißel 30, 31 aufgrund des Verschleißes des Meißelwechselhalters 40 verloren geht.
  • Die nachlaufende Meißelspitze 32 des nachlaufenden Meißels 30, 31 ist zumindest teilweise aus einem superharten Werkstoff gebildet. Damit ist die nachlaufende Meißelspitze 32 im Vergleich zur vorlaufenden Meißelspitze 22 des vorlaufenden Meißels 20, die vorzugsweise aus einem Hartmetall hergestellt ist, härter ausgebildet. Die nachlaufende Meißelspitze 32 und damit der nachlaufende Meißel 30, 31 sind somit deutlich beständiger gegenüber abrasiv bewirkten Verschleiß ausgebildet als die vorlaufende Meißelspitze 22 und damit der vorlaufende Meißel 20. Kombiniert mit der zuvor beschriebenen, geschützten Anordnung des nachlaufenden Meißels 30, 31 weist dieser eine deutlich längere Standzeit als der vorlaufende Meißel 20 auf. Die Standzeit des nachlaufenden Meißels 30, 31 liegt bei entsprechender Ausführung und Anordnung des nachlaufenden Meißels 30, 31 in der Größenordnung der Standzeit des Meißelwechselhalters 40. Dadurch kann der nachlaufende Meißel 30, 31 nicht auswechselbar mit dem Meißelwechselhalter 40 verbunden werden, insbesondere nicht zerstörungsfrei auswechselbar mit dem Meißelwechselhalter 40 verbunden werden. Der einem starken mechanischen Verschleiß ausgesetzte vorlaufende Meißel 20 ist hingegen leicht auswechselbar an dem Meißelwechselhalter 40 befestigt. Bei verschlissenem vorlaufendem Meißel 20 kann dieser somit leicht ausgetauscht werden. Da der nachlaufende Meißel 30, 31 aufgrund seiner hohen Standzeit nicht mehr ausgetauscht werden muss, sind Wartungen mit entsprechenden Stillstandzeiten der Bodenbearbeitungsmaschine 10 nur noch für den Austausch des vorlaufenden Meißels 20 vorzusehen. Dadurch können die Betriebskosten der Bodenbearbeitungsmaschine 10 gering gehalten werden.
  • Der superharte Werkstoff ist vorliegend als polykristalliner Diamant ausgeführt. Er kann entsprechend der vorliegenden Erfindung als Diamantwerkstoff, als diamantverstärkter Werkstoff, als Siliciumcarbid-Werkstoff, als kubisches Bornitrid oder als Verbindungen zumindest zweier der vorgenannten Werkstoffe gebildet sein. Alle diese Werkstoffe oder Werkstoffkombinationen weisen eine größere Härte als das Hartmetall, aus dem der vorlaufende Meißel gefertigt ist, und damit eine größere Beständigkeit gegenüber Verschleiß auf. Neben dem polykristallinen Diamanten kann als Diamantwerkstoff auch ein monokristalliner Diamant, chemisch abgeschiedener Diamant, physikalisch abgeschiedener Diamant, natürlicher Diamant, infiltrierter Diamant, eine oder mehrerer aufeinanderfolgende Diamantschichten, thermisch stabiler Diamant oder siliciumgebundener Diamant verwendet sein.
  • Während eines Fräsprozesses wird die Werkzeugkombination 50 aufgrund der Drehung der Fräswalze 15 und dem Vorschub der Bodenbearbeitungsmaschine 10 durch das abzutragende Bodenmaterial bewegt. Die nachlaufende Schneide 35 des nachlaufenden Meißels 30, 31 ist, bezogen auf die Drehachse 15.1 der Fräswalze 15, auf einem kleineren Radius 71 oder einem gleichen Radius wie die vorlaufende Schneide 23 des vorlaufenden Meißels 20 angeordnet. Dadurch und durch die verkleinerte Geometrie des nachlaufenden Meißels 30, 31 gegenüber dem vorlaufenden Meißel 20 schneidet der vorlaufende Meißel 20 ein größeres Volumen als der nachlaufende Meißel 30, 31. Erfindungsgemäß ist der nachlaufende Meißel 30, 31 dazu ausgelegt und angeordnet, die Fräsung des vorlaufenden Meißels 20 nachzubearbeiten. Dabei wird insbesondere von dem vorlaufenden Meißel 20 eine gröbere Fräsung und von dem nachlaufenden Meißel 30, 31 eine feinere Fräsung durchgeführt. Entsprechend ist die nachlaufende Schneide 32 des nachlaufenden Meißels 30, 31 derart räumlich gegenüber der vorlaufenden Schneide 23 des vorlaufenden Meißels 20 angeordnet, dass bei vorgegebenen Betriebsparametern der Bodenbearbeitungsmaschine 10 jeder der Meißel 20, 30, 31 eine für seine Aufgabe geeignete Eindringtiefe in das Bodenmaterial aufweist.
  • Zur Durchführung einer Feinfräsung ist beispielsweise eine Eindringtiefe von weniger als 15 mm für den nachlaufenden Meißel 30, 31 geeignet. Typische Betriebsparameter der Bodenbearbeitungsmaschine 10 für einen solchen Fräsprozess sind eine Drehzahl der Fräswalze 15 von 130 Umdrehungen/min, eine Vorschubgeschwindigkeit der Bodenbearbeitungsmaschine 10 von 20 m/min und eine Frästiefe von 100 mm. Der größere Schnittkreis 70.1 der vorlaufenden Schneide 23 beträgt beispielsweise in etwa 980 mm. Aus der Frästiefe von 100 mm und dem größeren Schnittkreis 70.1 ergibt sich ein Fräswinkel von 37,25°, innerhalb dem die Meißel 20, 30, 31 bei mit Vorschub betriebener Bodenbearbeitungsmaschine 10 in das Bodenmaterial eingreifen. Vom Eingriff der Werkzeugkombination in den Boden bis zu deren Austritt aus dem Boden bewegt sich die Bodenbearbeitungsmaschine 10 ca. 15 mm nach vorne. Um eine gewünschte Schnitttiefe des nachlaufenden Meißels 30, 31 von beispielsweise 12 mm zu erhalten, wie sie zur Durchführung einer Feinfräsung geeignet ist, muss der kleinere Radius 71, auf dem die nachlaufende Schneide 35 des nachlaufenden Meißels 30, 31 angeordnet ist, demnach 3 mm kleiner gewählt sein als der größere Radius 70, auf dem die vorlaufende Schneide 23 des vorlaufenden Meißels 20 angeordnet ist. Durch die geeignete Anordnung der nachlaufenden Schneide 35 des nachlaufenden Meißels 30, 31, bezogen auf die vorlaufende Schneide 23 des vorlaufenden Meißels 20, kann somit die Eindringtiefe des nachlaufenden Meißels in das Bodenmaterial für vorgegebene Betriebsparameter der Bodenbearbeitungsmaschine 10 bestimmt und vorgegeben werden. Dadurch wird es möglich, dass der vorlaufende Meißel 20 zum Beispiel eine grobe Fräsaufgabe, beispielsweise schruppen, ausführt, während der nachlaufende Meißel 30, 31 für eine feine Fräsung, beispielsweise schlichten, ausgelegt ist. Der nachlaufende Meißel 30, 31 arbeitet somit die Fräsung des vorlaufenden Meißels 20 nach. Er bestimmt damit das erhaltene Fräsbild. Aufgrund des sehr geringen Verschleißes des nachlaufenden Meißels 30, 31 bleibt dieses Fräsbild auch nach langer Einsatzdauer der Werkzeugkombination 50 und hohem Verschleiß des vorlaufenden Meißels 20 zumindest weitestgehend gleich.
  • Der vorlaufende Meißel 20 ist um seine Mittellängsachse drehbar in der vorlaufenden Meißelaufnahme 42 des Meißelwechselhalters 40 gehalten. Bei Eingriff des vorlaufenden Meißels 20 in das abgetragene Bodenmaterial wird dieser um seine Mittellängsachse gedreht. Dadurch wird der vorlaufende Meißel 20 umlaufend gleichmäßig abgenutzt, wodurch sich seine Standzeit deutlich verlängert. Der nachlaufende Meißel 30, 31 ist hingegen nicht drehbar mit dem Meißelwechselhalter 40 verbunden. Aufgrund der sehr großen Härte der nachlaufenden Meißelspitze 32 tritt nur ein unwesentlicher Verschleiß des nachlaufenden Meißels 30, 31 auf, sodass keine drehbare Lagerung des nachlaufenden Meißels 30, 31 erforderlich ist. Durch die starre Verbindung des nachlaufenden Meißels 30, 31 mit dem Meißelwechselhalter 40 können Schwingungen in der nachlaufenden Meißelspitze 32 vermieden werden. Solche Schwingungen können zum Bruch des superharten Werkstoffes 34 führen.

Claims (15)

  1. Meißelwechselhalter (40), welcher an einer Fräswalze (15) einer Bodenbearbeitungsmaschine (10) befestigbar ist, mit einer vorlaufenden Meißelaufnahme (42) zur auswechselbaren Aufnahme eines vorlaufenden Meißels (20), vorzugsweise eines Rundschaftmeißels und mit einem nachlaufenden Meißel (30, 31), welcher an dem Meißelwechselhalter (40) gehalten ist, wobei der nachlaufende Meißel (30, 31), bezogen auf eine Arbeitsbewegung (76) des Meißelwechselhalters (40) bei Einsatz in der Bodenbearbeitungsmaschine (10), hinter der vorlaufenden Meißelaufnahme (42) angeordnet ist,
    dadurch gekennzeichnet,
    dass der nachlaufende Meißel (30, 31) axial und in seiner Umfangsrichtung festliegend an dem Meißelwechselhalter (40) gehalten ist.
  2. Meißelwechselhalter (40) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die nachlaufende Meißelspitze (32) des nachlaufenden Meißels (30, 31) zumindest bereichsweise aus einem superharten Werkstoff, insbesondere aus einem Diamantwerkstoff, einem diamantverstärkten Werkstoff, einem Siliciumcarbid-Werkstoff, aus kubischem Bornitrid oder aus Verbindungen zumindest zweier der vorgenannten Werkstoffe gebildet ist.
  3. Meißelwechselhalter (40) nach Anspruch 2,
    dadurch gekennzeichnet,
    dass der Diamantwerkstoff zumindest anteilig als monokristalliner Diamant oder als polykristalliner Diamant oder als chemisch abgeschiedener Diamant oder als physikalisch abgeschiedener Diamant oder als natürlicher Diamant oder als infiltrierter Diamant oder als Diamantschicht oder als aufeinanderfolgende Diamantschichten oder als thermisch stabiler Diamant oder als siliciumgebundener Diamant ausgebildet ist.
  4. Meißelwechselhalter (40) nach Anspruch 2 oder 3,
    dadurch gekennzeichnet,
    dass die nachlaufende Meißelspitze (32) aus einem Basisträger (33) aus einem Hartwerkstoff, bevorzugt aus Hartmetall, gebildet ist, welcher zur nachlaufenden Schneide (35) hin weisend von dem superharten Werkstoff abgedeckt ist.
  5. Meißelwechselhalter (40) nach einem der Ansprüche 2 bis 4,
    dadurch gekennzeichnet,
    dass der superharte Werkstoff als Schicht ausgebildet ist.
  6. Meißelwechselhalter (40) nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass der nachlaufende Meißel (30, 31) nicht auswechselbar mit dem Meißelwechselhalter (40) verbunden ist.
  7. Meißelwechselhalter (40) nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass der nachlaufende Meißel (30, 31) aus der nachlaufenden Meißelspitze (32) gebildet ist, welche unmittelbar mit dem Meißelwechselhalter (40) nicht lösbar verbunden, insbesondere verlötet, ist und/oder dass der nachlaufende Meißel (30, 31) zumindest aus der nachlaufenden Meißelspitze (32) und einem damit mittelbar oder unmittelbar verbundenen Schaft (37) gebildet ist und dass der Schaft (37) in einer nachlaufenden Meißelaufnahme (46.2) des Meißelwechselhalters (40) gehalten ist, vorzugsweise mittels einer stoffschlüssigen, einer kraftschlüssigen oder einer formschlüssigen Verbindung.
  8. Meißelwechselhalter (40) nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    dass der nachlaufende Meißel (30, 31) dazu ausgebildet und angeordnet ist, eine durch den vorlaufenden Meißel (20) durchgeführte Fräsung nachzubearbeiten.
  9. Meißelwechselhalter (40) nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    dass der nachlaufende Meißel (30, 31) dazu ausgebildet und angeordnet ist, ein gegenüber dem vorlaufenden Meißel (20) kleineres Spanvolumen aus dem abzutragenden Material zu schneiden.
  10. Meißelwechselhalter (40) nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet,
    dass der vorlaufende Meißel (20) und der nachlaufende Meißel (30, 31) derart ausgebildet und an dem Meißelwechselhalter (40) angeordnet sind, dass bei einer an einer Fräswalze (15) montierten Werkzeugkombination (50) die vorlaufende Schneide (23) der vorlaufenden Meißelspitze (22) des vorlaufenden Meißels (20) auf einem größeren Radius (70) zu einer Drehachse (15.1) der Fräswalze (15) angeordnet ist als die nachlaufende Schneide (35) der nachlaufenden Meißelspitze (32) des nachlaufenden Meißels (30, 31) oder dass die beiden Schneiden auf im Wesentlichen gleichen Radien angeordnet sind.
  11. Meißelwechselhalter (40) nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet,
    dass der Abstand der Schneiden (23, 35) der Meißelspitzen (22, 32) zueinander und die Radien (70, 71), auf denen bei einer auf einer Fräswalze (15) montierten Werkzeugkombination (50) die Schneiden (23, 35) der Meißelspitzen (22, 32) angeordnet sind, derart gewählt sind, dass bei einer vorgegebenen Vorschubgeschwindigkeit der Bodenbearbeitungsmaschine (10) und einer vorgegebenen Drehzahl der Fräswalze (15) der nachlaufende Meißel (30, 31) eine vorgegebene Eindringtiefe in das zu fräsende Material aufweist.
  12. Meißelwechselhalter (40) nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet,
    dass der Abstand zwischen den Schneiden (23, 35) der vorlaufenden Meißelspitze (20) und der nachlaufenden Meißelspitze (32) zwischen 45mm und 75mm, vorzugsweise zwischen 50mm und 60mm, besonders bevorzugt 54mm, beträgt und/oder dass der Radius (70, 71), auf dem bei einer auf einer Fräswalze (15) montierten Werkzeugkombination (50) die nachlaufende Schneide (35) der nachlaufenden Meißelspitze (32) angeordnet ist, zwischen 1mm und 7mm, vorzugsweise zwischen 2mm und 5mm, besonders bevorzugt 3mm, kleiner gewählt ist als der Radius (70, 71), auf dem die vorlaufende Schneide (23) der vorlaufenden Meißelspitze (22) angeordnet ist.
  13. Meißelwechselhalter (40) nach einem der Ansprüche 1 bis 12,
    dadurch gekennzeichnet,
    dass der nachlaufende Meißel (30, 31) in einem kleineren Anstellwinkel (74) gegenüber einer durch die nachlaufende Schneide (35) verlaufenden Radiallinie (72) ausgerichtet ist als die Längsachse der vorlaufenden Meißelaufnahme (42) gegenüber einer die Längsachse der vorlaufenden Meißelaufnahme (42) schneidenden Radiallinie (72), vorzugsweise dass der nachlaufende Meißel (30, 31) in einem Anstellwinkel zwischen 25° und 35° und die Längsachse der vorlaufenden Meißelaufnahme (42) in einem Anstellwinkel zwischen 35° und 45° gegenüber der jeweils zugeordneten Radiallinie (72) ausgerichtet sind.
  14. Meißelwechselhalter (40) (50) nach einem der Ansprüche 1 bis 13,
    dadurch gekennzeichnet,
    dass eine zwischen dem nachlaufenden Meißel (30, 31) und dem Meißelwechselhalter (40) ausgebildete Fügezone entlang der Arbeitsbewegung (76) der Werkzeugkombination (50) zumindest teilweise von dem vorlaufenden Meißel (20) oder einem Körperbereich des Meißelwechselhalters (40) oder einem zwischen dem Meißelwechselhalter (40) und dem vorlaufenden Meißel (20) angeordneten Verschleißschutzelement abgedeckt ist.
  15. Meißelwechselhalter (40) (50) nach einem der Ansprüche 1 bis 14,
    dadurch gekennzeichnet,
    dass die Längsachse der vorlaufenden Meißelaufnahme (42) quer zur Arbeitsbewegung (76) des Meißelwechselhalters (40) (50) gegenüber der nachlaufenden Meißelspitze (35) des nachlaufenden Meißels (30, 31) versetzt ist.
EP17808434.9A 2016-12-30 2017-11-30 Meisselwechselhalter Active EP3563038B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016125917.9A DE102016125917A1 (de) 2016-12-30 2016-12-30 Meißelwechselhalter
PCT/EP2017/081016 WO2018121955A1 (de) 2016-12-30 2017-11-30 Meisselwechselhalter

Publications (2)

Publication Number Publication Date
EP3563038A1 EP3563038A1 (de) 2019-11-06
EP3563038B1 true EP3563038B1 (de) 2020-09-09

Family

ID=60569908

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17808434.9A Active EP3563038B1 (de) 2016-12-30 2017-11-30 Meisselwechselhalter

Country Status (6)

Country Link
US (1) US10968740B2 (de)
EP (1) EP3563038B1 (de)
CN (2) CN208440957U (de)
DE (1) DE102016125917A1 (de)
TW (1) TW201822980A (de)
WO (1) WO2018121955A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11572665B2 (en) 2021-02-26 2023-02-07 Caterpillar Paving Products Inc. Milling systems and methods for a milling machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110396907A (zh) * 2019-07-30 2019-11-01 苏州五元素机械制造有限公司 一种刀架

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3614164A (en) * 1969-08-01 1971-10-19 Carmet Co The Mine tool adapter
US3834764A (en) * 1972-08-11 1974-09-10 Cincinnati Mine Machinery Co Core breaking means
ZA796174B (en) 1978-11-25 1980-11-26 Hall & Pickles Ltd Tools for cutting heads
DE2950108C2 (de) * 1979-12-13 1981-12-24 Halbach & Braun, 5600 Wuppertal Werkzeugaggregat für Schrämwerkzeuge
US4342486A (en) 1980-09-19 1982-08-03 Joy Manufacturing Company Cutter bit holder
US4674802A (en) * 1982-09-17 1987-06-23 Kennametal, Inc Multi-insert cutter bit
US5374111A (en) 1993-04-26 1994-12-20 Kennametal Inc. Extraction undercut for flanged bits
DE4322401C2 (de) * 1993-07-06 1996-06-20 Betek Bergbau & Hartmetall Befestigung eines Schrämwerkzeugs an einem Schrämkörper
US5582468A (en) 1995-08-15 1996-12-10 Keystone Engineering & Manufacturing Corporation Double tooth cutter
US20010004946A1 (en) 1997-11-28 2001-06-28 Kenneth M. Jensen Enhanced non-planar drill insert
IL157111A0 (en) 2003-07-27 2004-02-08 Iscar Ltd Milling cutter and insert therefor
DE102004057302B4 (de) 2004-11-26 2011-01-13 Wirtgen Gmbh Meißelhalter
ATE386191T1 (de) * 2005-10-25 2008-03-15 Bauer Maschinen Gmbh Fräszahn für ein bodenbearbeitungsgerät
US7959234B2 (en) * 2008-03-15 2011-06-14 Kennametal Inc. Rotatable cutting tool with superhard cutting member
CN101418686A (zh) 2008-12-09 2009-04-29 杨晓军 一种采煤及工程用截齿
GB201118739D0 (en) 2011-10-31 2011-12-14 Element Six Abrasives Sa Tip for a pick tool, method of making same and pick tool comprising same
CN103205958B (zh) 2012-01-16 2015-05-20 哈姆股份公司 地面碾压机的碾压机辊
GB201201120D0 (en) 2012-01-24 2012-03-07 Element Six Abrasives Sa Pick tool and assembly comprising same
DE102012101719A1 (de) * 2012-03-01 2013-09-05 Wirtgen Gmbh Meißelhalter
CN202611693U (zh) 2012-06-21 2012-12-19 中铁隧道装备制造有限公司 复合式悬臂掘进机
US20150211365A1 (en) * 2014-01-30 2015-07-30 David R. Hall Multiple Cutters on a Degradation Pick
US9752434B2 (en) * 2014-07-25 2017-09-05 Novatek Ip, Llc Block capable of supporting multiple picks
US10648330B1 (en) * 2015-09-25 2020-05-12 Us Synthetic Corporation Cutting tool assemblies including superhard working surfaces, cutting tool mounting assemblies, material-removing machines including the same, and methods of use
DE102016125921A1 (de) 2016-12-30 2018-07-05 Wirtgen Gmbh Werkzeugkombination mit einem Meißelhalter und zwei Meißeln

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11572665B2 (en) 2021-02-26 2023-02-07 Caterpillar Paving Products Inc. Milling systems and methods for a milling machine

Also Published As

Publication number Publication date
WO2018121955A1 (de) 2018-07-05
US10968740B2 (en) 2021-04-06
CN108265607B (zh) 2021-06-01
US20190338639A1 (en) 2019-11-07
TW201822980A (zh) 2018-07-01
EP3563038A1 (de) 2019-11-06
CN208440957U (zh) 2019-01-29
DE102016125917A1 (de) 2018-07-05
CN108265607A (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
EP3563000B1 (de) Werkzeugkombination mit einem meisselhalter und zwei meisseln
EP2685007B1 (de) Fräsrad für eine Schlitzwandfräse
EP2915642B1 (de) Baumaschine
EP1008721B1 (de) Schneid- oder Brechwerkzeug sowie Schneideinsatz für dieses
DE60207371T2 (de) Stumpfvermahlungsgerät
DE602004010043T2 (de) Drehschneideinsatz mit materialablenkleiste
DE102011117148B4 (de) Rotationswerkzeug sowie Verfahren zum Herstellen eines Rotationswerkzeuges sowie eines Schneideinsatzes
WO2010129977A2 (de) Schneidwerkzeug für eine bergbaumaschine
DE102016102069A1 (de) Werkzeughalter- und Sockelmontagebaugruppe
EP2820243B1 (de) Meisselhalter
WO2010025788A1 (de) Meisselhalter mit schweissung als verschleissschutzelement
EP3137254B1 (de) Werkzeug
EP3563038B1 (de) Meisselwechselhalter
DE4434025C2 (de) Verfahren zum Bohren spröder Werkstoffe, Bohrer zur Durchführung des Verfahrens und Verwendung des Bohrers
DE102005051695A1 (de) Fräs- und/oder Drehwerkzeug sowie Fräs- und/oder Drehverfahren
DE2917664C2 (de) Drehbohrmeißel für Tiefbohrungen
DE10300756A1 (de) Stumpfzerkleinerungsmeissel
DE102015115548B4 (de) Stabmesserkopf
DE112008000082B4 (de) Schneidplatte und Verfahren zur Herstellung einer Schneidplatte
EP3370495A1 (de) Werkzeug mit einem hartstoffmaterial
EP3250788B1 (de) Meissel, insbesondere rundschaftmeissel
DE10112165B4 (de) Stabmesserkopf zum Verzahnen
DE102004014659A1 (de) Entgratmesser zum Entgraten von Bohrungsrändern
DE19720635A1 (de) Schaftmeißel
WO2007025679A1 (de) Werkzeug zur spanenden bearbeitung von werkstücken

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190730

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200506

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1311802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017007236

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201210

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017007236

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

26N No opposition filed

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1311802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231130

Year of fee payment: 7

Ref country code: FR

Payment date: 20231124

Year of fee payment: 7

Ref country code: DE

Payment date: 20231120

Year of fee payment: 7