EP3556844A1 - Instrument de culture - Google Patents

Instrument de culture Download PDF

Info

Publication number
EP3556844A1
EP3556844A1 EP16924151.0A EP16924151A EP3556844A1 EP 3556844 A1 EP3556844 A1 EP 3556844A1 EP 16924151 A EP16924151 A EP 16924151A EP 3556844 A1 EP3556844 A1 EP 3556844A1
Authority
EP
European Patent Office
Prior art keywords
vessels
microplate
lid
component
intermediate plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16924151.0A
Other languages
German (de)
English (en)
Other versions
EP3556844A4 (fr
EP3556844B1 (fr
Inventor
Chihiro Uematsu
Hiroko Fujita
Akira Masuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Publication of EP3556844A1 publication Critical patent/EP3556844A1/fr
Publication of EP3556844A4 publication Critical patent/EP3556844A4/fr
Application granted granted Critical
Publication of EP3556844B1 publication Critical patent/EP3556844B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50853Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates with covers or lids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/38Caps; Covers; Plugs; Pouring means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M37/00Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/82Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a precipitate or turbidity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/042Caps; Plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/80Indicating pH value

Definitions

  • This disclosure relates to a culturing device used for examining bacteria, fungi, and the like.
  • a culture medium and cells are introduced into a culture vessel to culture the cells.
  • a lid is disposed on the culture vessel for the purpose of the prevention of the infection of the cells with bacteria, the inhibition of the increase in the pH of the culture medium, and the like.
  • the observation of the change in the form with time, the motility, the invasive ability, and the like of the culture cells is often performed while the lid is disposed on the culture vessel.
  • Patent Literature 1 discloses a cell incubator for microscope including a culture dish and a lid provided in its center portion with a recessed portion.
  • Patent Literature 1 Japanese Unexamined Utility Model Application Publication No. 3104790
  • Patent Literature 1 when the cell culture vessel for microscope according to Patent Literature 1 is applied to the well of the microplate, there is a possibility that, into the well, the culture medium from the adjacent well having different culture conditions is mixed at the time of performing the operation of removing the lid. On the other hand, when the opening is simply provided in the lid to eliminate the operation of removing the lid, the infection with bacteria cannot be prevented.
  • This disclosure has been made in view of the above points, and provides a culturing device where an interior of each of culture vessels can be observed with high accuracy and that can reduce a risk of contamination.
  • This disclosure includes a plurality of means for solving the above problems, and as an example, provides a culturing device including a microplate having a plurality of vessels, each of the vessels having a bottom surface having light transmittance and having an opening at an upper portion, a lid having light transmittance and covering an upper surface of the microplate, and an intermediate plate having light transmittance and being sandwiched between the lid and the microplate, the intermediate plate having a plurality of convex portions on a surface of the intermediate plate facing the microplate, provided with a plurality of through holes corresponding to the plurality of convex portions.
  • the plurality of convex portions and the plurality of through holes are disposed so that when the intermediate plate and the microplate are overlapped, each of the plurality of convex portions is inserted into each of the plurality of vessels and each of the plurality of through holes coincides with the opening of each of the plurality of vessels.
  • the lid comes into contact with the intermediate plate so as to close the plurality of through holes provided in the intermediate plate.
  • this disclosure provides a culturing device including a microplate including a plurality of vessels, each of the plurality of vessels having a bottom surface having light transmittance and into which a component is attached, the component extending from an upper end of the vessel to an interior of the vessel so as to have an opening and having light transmittance, and a lid having light transmittance and covering an upper surface of the microplate.
  • the component has two surfaces substantially parallel to the bottom surface of the vessel, one of the two faces being located at the same height as the upper surface of the microplate or at a position higher than the upper surface of the microplate.
  • a lid When cells are cultured by using a culturing device, a lid is typically disposed so as to close an opening of each of vessels in order to prevent the intrusion of bacteria and the like. Since the cells are cultured at temperatures of approximately 30°C to 35°C, a culture medium is evaporated to often fog the lid. The fogging of the lid causes trouble in observing an interior of the vessel, and for example, it is difficult to precisely measure turbidity of the culture medium.
  • an intermediate plate or a component having light transmittance is sandwiched between the lid and the culture medium, so that the lid is not fogged at a position above each of convex portions included in the intermediate plate or above the component. Therefore, in the culturing device of this disclosure, the interior of the vessel can be observed through part of the lid.
  • the intermediate plate or the component is configured not to cover the entire opening of the vessel.
  • a reagent can be injected into the interior of the vessel even without removing the intermediate plate or the component. Therefore, unlike a case where the lid to which a large amount of the culture medium adheres is removed to inject the reagent, in the culturing device of this disclosure, a risk of contamination can be reduced. Also, in the culturing device of this disclosure, part of the member is immersed into the culture medium, so that the interior of the vessel can be observed satisfactorily through the lid and the member.
  • Fig. 1 is a diagram of assistance in explaining the configuration of a culturing device 1 according to a first embodiment.
  • the culturing device 1 includes a lid 11, a microplate 12 and an intermediate plate 13.
  • Fig. 1(a) is a perspective view illustrating the lid 11, the microplate 12, a portion enlargedly illustrating a surface of the intermediate plate 13 coming into contact with the microplate 12, and vessels 14 included in the microplate 12.
  • the shape of the lid 11 is substantially planar, and one of surfaces of the lid 11 comes into contact with one of surfaces of the intermediate plate 13.
  • the lid 11 has light transmittance, and covers an upper surface of the microplate 12.
  • the microplate 12 includes a plurality of the vessels 14 each having an opening at an upper portion. Each of the vessels 14 accommodates a culture medium and the like. In the example illustrated in Fig. 1(a) , the microplate 12 includes a total of 96 vessels 14 arrayed in 12 columns by 8 rows.
  • the intermediate plate 13 is used by being sandwiched between the lid 11 and the microplate 12.
  • the intermediate plate 13 has a plurality of convex portions 15 on the surface of the intermediate plate 13 facing the microplate 12, and in a periphery of each of the plurality of convex portions 15, each of a plurality of through holes 16 is provided.
  • Fig. 1(a) only two of the plurality of convex portions 15 are illustrated, but for example, the plurality of convex portions 15 equal in number to that of the vessels 14 included in the microplate 12 are provided on the intermediate plate 13.
  • the plurality of convex portions 15 and the plurality of through holes 16 included in the intermediate plate 13 are disposed so that when the intermediate plate 13 and the microplate 12 are overlapped, each of the plurality of convex portions 15 is inserted into each of the plurality of vessels 14 and each of the plurality of through holes 16 coincides with an opening 17 of each of the plurality of vessels 14.
  • the lid 11 comes into contact with the intermediate plate 13 so as to close the plurality of through holes 16 provided in the intermediate plate 13.
  • Fig. 1(b) is a diagram illustrating a state of an upper surface of each of the vessels 14 when the microplate 12 and the intermediate plate 13 are overlapped.
  • each of the convex portions 15 of the intermediate plate 13 is disposed so as to be located at a center of the vessel 14.
  • the opening 17 of the vessel 14 included in the microplate 12 is not completely covered due to the presence of each of the through holes 16 included in the intermediate plate 13 in a state where the lid 11 is not overlapped with the intermediate plate 13. Therefore, the interior of each of the vessels 14 can be accessed through the through hole 16.
  • a liquid can be added and suctioned from the through hole 16 of the intermediate plate 13 by removing the lid 11.
  • a reagent for identifying bacteria can be injected from the through hole 16 into each of the vessels 14.
  • the culture medium is changed in color after the injection of the reagent, it is possible to determine that bacteria grow in the culture medium.
  • Examples of the reagent added to the vessel 14 include a Kovac's reagent for determining that indole has been generated, sodium hydroxide and ⁇ -naphthol for determining a VP (Voges-Proskauer) reaction, a sulfanilic acid and an ⁇ -naphthylamine solution for determining a silver nitrate reducibility, phenol red, bromocresol purple, and bromothymol blue that are pH indicators, and the like.
  • a Kovac's reagent for determining that indole has been generated sodium hydroxide and ⁇ -naphthol for determining a VP (Voges-Proskauer) reaction
  • a sulfanilic acid and an ⁇ -naphthylamine solution for determining a silver nitrate reducibility
  • phenol red, bromocresol purple, and bromothymol blue that are pH indicators, and the like.
  • Fig. 1(c) is a side cross-sectional view illustrating a state where each of the plurality of vessels 14 accommodates a culture medium 18, and the lid 11, the microplate 12 and the intermediate plate 13 are overlapped.
  • each of the plurality of convex portions 15 has a surface 15A substantially parallel to a bottom surface 14A of each of the plurality of vessels 14 when the intermediate plate 13 is overlapped with the microplate 12.
  • a length of the convex portion 15 is adjusted so that the surface 15A is immersed into the culture medium 18. Also, of the surfaces that the intermediate plate 13 has, the surface coming into contact with the lid 11 is located at a position higher than an upper edge of the opening 17 of the vessel 14. The lid 11 and the intermediate plate 13 are in substantially contact with each other without sandwiching an air layer, or the lid 11 and the portion of the intermediate plate 13 having the convex portion 15 are in contact with each other without sandwiching an air layer. Therefore, when the culturing device 1 is used, the light is prevented from being refracted, so that the interior of the vessel 14 can be observed satisfactorily.
  • the lid 11, the intermediate plate 13 and at least the bottom surface 14A portion of each of the vessels 14 of the microplate 12 are formed of a material having light transmittance.
  • the material having light transmittance used for the culturing device 1 of this disclosure include, for example, polypropylene, polystyrene, and polycarbonate.
  • each of the lid 11 and the intermediate plate 13 has light transmittance. Also, when a position of a liquid level of the culture medium 18 is located at a position where the surface 15A of each of the convex portions 15 is immersed, the surface 15A of the convex portion 15 is not fogged due to the dew condensation of the evaporated culture medium 18. Further, a portion of the lid 11 located on an upper portion of the convex portion 15 of the intermediate plate 13 is not fogged. Therefore, when the culturing device 1 according to the first embodiment is used, the interior of each of the vessels 14 can be observed satisfactorily through the surface 15A even in the state where the lid 11 and the intermediate plate 13 are overlapped with the microplate 12.
  • At least the bottom surface 14A of each of the vessels 14 is formed of the material having light transmittance, so that the culturing device 1 of this disclosure can measure the turbidity of the culture medium 18 accommodated in the vessel 14 by using a dichroic mirror and a photodiode.
  • each of the through holes 16 coincides with the opening 17 in the state where the intermediate plate 13 is overlapped with the microplate 12. Therefore, in the culturing device 1, the injection of the reagent and the extraction of the culture medium are enabled from the through hole 16 by removing the lid 11 even without removing the intermediate plate 13 to which a large amount of the culture medium 18 adheres. Therefore, in the culturing device 1, the culture medium 18 having different ingredients can be prevented from mixing into each other.
  • Fig. 2 is a diagram of assistance in explaining an optical system S for measuring turbidity.
  • the optical system S includes a light source 19, a dichroic mirror 20, a first photodiode (PD) 21, a second photodiode (PD) 22 and the culturing device 1.
  • PD photodiode
  • PD photodiode
  • the dichroic mirror 20 Part of a light emitted from the light source 19 transmits through the dichroic mirror 20, and another part of the light is reflected by the dichroic mirror 20.
  • the light transmitted through the dichroic mirror 20 is detected by the first photodiode 21.
  • the light reflected by the dichroic mirror 20 transmits through the lid 11, the intermediate plate 13, the culture medium 18 and the bottom surface 14A of each of the vessels 14 of the culturing device 1, and is detected by the second photodiode 22.
  • the turbidity of the culture medium 18 can be measured by comparing the light amount detected by the first photodiode 21 and the light amount detected by the second photodiode 22.
  • the dichroic mirror 20 may be a semi-transparent mirror.
  • Fig. 3 is a diagram comparing the measurement results of turbidity.
  • series 1 is a result of the turbidity measurement using the culturing device 1 according to the first embodiment
  • series 2 is a result of the turbidity measurement using a conventional culturing device without the intermediate plate 13.
  • the measurement result does not vary.
  • the microplate 12 includes the 96 vessels 14, but the number of the vessels 14 included in the microplate 12 is not limited to the above value.
  • the microplate 12 can include an arbitrary number of vessels 14.
  • Fig. 4 is a diagram illustrating the microplate 12 including a total of 24 vessels 14.
  • the 24 vessels 14 are arrayed in 6 columns by 4 rows.
  • the intermediate plate 13 has 24 convex portions 15.
  • cells can be cultured at the same time under different conditions.
  • the lid 11, the bottom surface 14A of each of the plurality of vessels 14, and the intermediate plate 13 have desirably substantially the same optical characteristic.
  • the lid 11, the bottom surface 14A of each of the plurality of vessels 14, and the intermediate plate 13 may be formed of a material having the same refractive index. In this way, it is possible to prevent the deformation of a target to be observed due to the refraction of the light between the configuring elements and to prevent the lowering of the accuracy of the turbidity measurement.
  • the surface of the intermediate plate 13 substantially comes into contact with the lid 11, but the entire surface of the intermediate plate 13 is not necessarily required to come into contact with the lid 11.
  • the shape of the lid 11 and the intermediate plate 13 is the shape that prevents dew condensation on the lid 11 due to the adherence of the evaporated culture medium 18.
  • a culturing device of a second embodiment is different from the culturing device 1 of the first embodiment in that in place of sandwiching the intermediate plate 13, a component having light transmittance is attached into each of the vessels 14.
  • Fig. 5 is a diagram of assistance in explaining the configuration of a culturing device 2 of the second embodiment.
  • the culturing device 2 according to the second embodiment includes, in place of the typical microplate 12, a microplate in which a component 23 having light transmittance is attached into each of the vessels 14 included in the microplate 12 described in the first embodiment.
  • a material of the component 23 can be selected from the same material as the material forming the lid 11, the microplate 12 and the intermediate plate 13 described in the first embodiment.
  • Fig. 5 (a) is a perspective view of assistance in explaining each of the vessels 14 included in the microplate.
  • the component 23 illustrated in Fig. 5(a) is bonded to the vessel 14.
  • the component 23 has a substantially rectangular parallelepiped shape, and has a curved surface coming into contact with the surface of the interior of the vessel 14.
  • Fig. 5(b) is a diagram illustrating the upper surface of each of the vessels 14 into which the component 23 is attached.
  • the component 23 is designed to have a size in which the upper opening end of the vessel 14 is not closed, and a surface of the component 23 on the opposite side of the curved surface of the component 23 coming into contact with the vessel 14 is located near the center of the vessel 14. Therefore, like the microplate 12, the vessel 14 included in the microplate has the opening 17.
  • the culturing device 2 according to the second embodiment also enables the injection and suction of the liquid from the opening 17.
  • Fig. 5 (c) is a side cross-sectional view of the culturing device 2 in which the lid 11 and the microplate are overlapped.
  • the component 23 has a surface 23A and a surface 23B substantially parallel to the bottom surface 14A of each of the vessels 14, and the component 23 is attached at a position where the surface 23A substantially comes into contact with the lid 11. That is, the surface 23A of the component 23 is located at the same height as the upper surface of the microplate or at the position slightly higher than the upper surface of the microplate.
  • the lid 11 comes into contact with the microplate and the surface 23A of the component 23 so as to close the opening 17 of the vessel 14. In this case, a portion of the lid 11 coming into contact with the surface 23A is not fogged due to the occurrence of dew condensation.
  • the lid 11 comes into contact with the surface 23A of the component 23, and covers the opening 17 of the vessel 14 without closing the opening 17. Also in this case, the portion of the lid 11 coming into contact with the surface 23A is not fogged due to the occurrence of dew condensation. It should be noted that although in this case, the opening 17 of the vessel 14 is not completely closed, there is no change to the fact that the lid 11 covers above the opening 17, so that the inclusion of any foreign substances can be prevented. Also, since a gap between the opening 17 and the lid 11 is sufficiently small, the culture medium 18 in the interior of the vessel 14 is hardly evaporated.
  • the size of the component 23 is adjusted so that the surface 23B of the component 23 is immersed into the culture medium 18.
  • the fogging of the surface 23B of the component 23 due to dew condensation can be prevented, so that the interior of the vessel 14 can be observed satisfactorily, and the measurement accuracy of turbidity can be improved.
  • the lid 11, the bottom surface 14A of the vessel 14 and the component 23 preferably have substantially the same optical characteristic.
  • the microplate can include an arbitrary number of vessels 14.
  • a culturing device 3 of a third embodiment is different from the culturing device 2 of the second embodiment in that a component 24 having light transmittance is pressed or fitted into the interior of the vessel 14.
  • Fig. 6 is a diagram of assistance in explaining the configuration of the culturing device 3 according to the third embodiment.
  • the culturing device 3 includes a microplate in which the component 24 having light transmittance is attached into each of the vessels 14 included in the microplate 12 described in the first embodiment.
  • the component 24 has a substantially rectangular parallelepiped shape, and has, at both ends, curved surfaces that can come into contact with the inner surface of the vessel 14.
  • a diameter of the component 24 is designed to be slightly larger than an inside diameter of the vessel 14. Therefore, when the component 24 is pressed into the vessel 14, the position of the component 24 can be fixed.
  • a material of the component 24 can be selected from the same material as the material forming the lid 11, the microplate 12 and the intermediate plate 13 described in the first embodiment.
  • Fig. 6 (a) is a perspective view of assistance in explaining each of the vessels 14 included in the microplate.
  • the component 24 illustrated in Fig. 6(a) is pressed into the vessel 14.
  • Fig. 6(b) is a diagram illustrating the upper surface of the vessel 14 into which the component 24 is attached.
  • the component 24 is designed to have a size and a shape so that the upper opening end of each of the vessels 14 is not closed and the position of the component 24 can be fixed when the component 24 is pressed into the vessel 14. Therefore, like the microplate 12, the vessel 14 included in the microplate has the opening 17.
  • the culture vessel 2 according to the second embodiment also enables the injection and suction of the liquid from the opening 17.
  • Fig. 6(c) is a diagram illustrating a state where an antibacterial agent 25 is coated onto the bottom surface in the interior of each of the vessels 14 in freeze-dried state.
  • the antibacterial agent 25 is desirably coated onto the bottom surface of the vessel 14 before the component 24 is pressed into the vessel 14.
  • the antibacterial agent 25 is dissolved to prepare the culture medium 18 and the antibacterial agent 25 necessary for conducting an antibacterial susceptibility test at appropriate concentration.
  • the antibacterial agent 25 or the culture medium 18 in freeze-dried state is previously accommodated in the interior of the vessel 14, so that by adding the necessary liquid, the culturing of cells can be easily started.
  • Fig. 6(d) is a cross-sectional view of the culturing device 3 in which the lid 11 and the microplate are overlapped.
  • the component 24 has a surface 24A and a surface 24B substantially parallel to the bottom surface 14A of each of the vessels 14, and the component 24 is attached at the position where the surface 24A substantially comes into contact with the lid 11. That is, like the component 23, the surface 24A of the component 24 is located at the same height as the upper surface of the microplate or at the position slightly higher than the upper surface of the microplate.
  • a length of the component 24 is adjusted so that the surface 24B of the component 24 is immersed into the culture medium 18.
  • the fogging of the surface 24B of the component 24 due to dew condensation can be prevented, so that the interior of the vessel 14 can be observed satisfactorily.
  • the measurement accuracy of turbidity can be improved.
  • the lid 11, the bottom surface 14A of the vessel 14 and the component 24 preferably have substantially the same optical characteristic.
  • the microplate can include an arbitrary number of vessels 14.
  • the attaching position of the component 24 is preferably the position suitable for the observation of the interior of the vessel 14.
  • Fig. 7 is a diagram illustrating another example of the component 24 pressed into each of the vessels 14.
  • protrusions 26b extend in four directions from a center portion 26a in a cylindrical shape. That is, unlike the component 24, the component 26 is configured to thrust in two directions, and the opening 17 that the vessel 14 has is divided into four.
  • the vessel 14 into which the component 26 is pressed enables the injection and suction of the liquid from the opening 17.
  • the component 26 is designed so that a diameter of the component 26 is slightly larger than the diameter of the interior of the vessel 14, and can be pressed or fitted into the vessel 14.
  • the component 26 has an upper surface and a lower surface substantially parallel to the bottom surface 14A of the vessel 14, and the component 26 is attached at a position where the upper surface of the component 26 substantially comes into contact with the lid 11. That is, like the component 24, the upper surface of the component 26 is located at the same height as the upper surface of the microplate or at the position higher than the upper surface of the microplate.
  • the material of the component 26 the same material as the material of the component 24 can be selected.
  • the center portion 26a of the component 26 is cylindrical, and the component 26 makes an observation region when the optical measurement is performed wider than the component 24. Also, the component 26 makes the opening 17 narrower than the component 24, so that the liquid is hard to be spilled when the culturing device 3 is conveyed.
  • Fig. 8 is a diagram of assistance in explaining a state where the component 26 prevents dew condensation on the lid 11.
  • each of the vessels 14 shown at an upper portion is the vessel 14 into which the culture medium 18 is not injected
  • the vessel 14 shown at a center of a middle portion is the vessel 14 into which the component 26 is attached
  • each of other vessels 14 is the conventional vessel 14 into which the culture medium 18 is injected.
  • the lid 11 is not fogged at a portion located above the component 26.
  • the lid 11 is not fogged at the portion of the lid 11 located above the component 23, and in the case of the vessel 14 into which the component 24 is attached, the lid 11 is not fogged at the portion of the lid 11 located above the component 24. Also, likewise, in the first embodiment, the lid 11 is not fogged at the portion of the lid 11 located above the convex portion 15 included in the intermediate plate 13.
  • the culturing device may be provided in a state where an antibacterial agent 27 that is frozen is accommodated in each of the vessels 14.
  • the antibacterial agent 27 in the culturing device that is freeze-kept is dissolved at room temperature, and by adding the necessary culture medium 18 and specimen, a medium suitable for the antibacterial susceptibility test can be prepared. It should be noted that, not only the antibacterial agent 27, but also the culture medium 18 and other chemical agents, may be accommodated in frozen state.
  • Fig. 9 is a diagram illustrating the microplate 12 in which the antibacterial agent 27 and the culture medium 18 in frozen state are accommodated.
  • the antibacterial agent 27 and the culture medium 18 in frozen state are previously accommodated in the microplate 12, for example, after they are unfrozen at room temperature, as illustrated in Fig. 1(c) , the intermediate plate 13 and the lid 11 are overlapped with the microplate 12, so that the culturing of cells can be easily started.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hematology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
EP16924151.0A 2016-12-14 2016-12-14 Instrument de culture Active EP3556844B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087301 WO2018109886A1 (fr) 2016-12-14 2016-12-14 Instrument de culture

Publications (3)

Publication Number Publication Date
EP3556844A1 true EP3556844A1 (fr) 2019-10-23
EP3556844A4 EP3556844A4 (fr) 2020-07-22
EP3556844B1 EP3556844B1 (fr) 2023-11-01

Family

ID=62558185

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16924151.0A Active EP3556844B1 (fr) 2016-12-14 2016-12-14 Instrument de culture

Country Status (5)

Country Link
US (1) US11618873B2 (fr)
EP (1) EP3556844B1 (fr)
JP (1) JP6832954B2 (fr)
CN (1) CN110023480B (fr)
WO (1) WO2018109886A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023016834A1 (fr) * 2021-08-08 2023-02-16 Cytena Bioprocess Solutions Co., Ltd Système d'acquisition d'image pour acquisition d'une image d'échantillon liquide

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102193016B1 (ko) * 2018-12-17 2020-12-18 엠비디 주식회사 바이오 칩용 필라 구조체
CN110992784B (zh) * 2019-11-20 2021-11-09 万有造诣(深圳)教育科技有限公司 一种教育科技用科学试验装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720463A (en) * 1985-03-01 1988-01-19 Sherwood Medical Company Automated microbiological testing apparatus
JP2876080B2 (ja) 1989-09-16 1999-03-31 本田技研工業株式会社 自動2輪車のエンジンカバー装置
US5141718A (en) * 1990-10-30 1992-08-25 Millipore Corporation Test plate apparatus
CA2142868C (fr) * 1992-08-21 2001-07-24 Yuichi Kinoshita Trousse pour essais chimiques et microbiologiques
US5366893A (en) * 1993-01-13 1994-11-22 Becton, Dickinson And Company Culture vessel
US6153400A (en) 1999-03-12 2000-11-28 Akzo Nobel N.V. Device and method for microbial antibiotic susceptibility testing
DE10204531A1 (de) * 2002-02-01 2003-08-21 Inst Chemo Biosensorik Deckelelement
JP3104790U (ja) 2004-04-22 2004-10-14 有限会社金沢大学ティ・エル・オー 顕微鏡用細胞培養器
DK1893738T3 (en) * 2005-06-10 2019-01-28 Nunc As CULTURAL ACTION CARRIER, CULTURE ACTION AND CULTURAL ACTION SYSTEM
JP2007300853A (ja) 2006-05-11 2007-11-22 Nikon Corp 培養容器および自動培養装置
US20090082600A1 (en) * 2007-06-06 2009-03-26 Shengde Zhou Native homoethanol Pathway for ethanol production in E. coli
CN102719352B (zh) * 2012-06-06 2014-01-29 西安交通大学 一种用于制备微阵列细胞芯片的细胞芯片片基及制备方法
CN103013829B (zh) * 2012-12-28 2015-04-22 江南大学 深孔细胞培养板板盖的结构
US9790465B2 (en) * 2013-04-30 2017-10-17 Corning Incorporated Spheroid cell culture well article and methods thereof
JP5768174B1 (ja) 2014-06-24 2015-08-26 日本写真印刷株式会社 培養容器
CN203960224U (zh) * 2014-08-06 2014-11-26 青岛易邦生物工程有限公司 新型细胞培养板
JP6479368B2 (ja) * 2014-08-18 2019-03-06 オリンパス株式会社 培養容器、多光子励起顕微鏡、及び観察方法
JP5731704B1 (ja) 2014-09-05 2015-06-10 日本写真印刷株式会社 培養容器
WO2016137341A1 (fr) 2015-02-27 2016-09-01 Mastaplex Limited Identification de bactéries et test de sensibilité aux antimicrobiens
US10625264B2 (en) 2015-02-27 2020-04-21 Corning Incorporated Fitted lid for multi-well plate
CN204874491U (zh) * 2015-07-17 2015-12-16 杭州秀川科技有限公司 一种细菌培养板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023016834A1 (fr) * 2021-08-08 2023-02-16 Cytena Bioprocess Solutions Co., Ltd Système d'acquisition d'image pour acquisition d'une image d'échantillon liquide

Also Published As

Publication number Publication date
EP3556844A4 (fr) 2020-07-22
EP3556844B1 (fr) 2023-11-01
US20190292505A1 (en) 2019-09-26
JPWO2018109886A1 (ja) 2019-10-24
JP6832954B2 (ja) 2021-02-24
CN110023480B (zh) 2022-11-11
CN110023480A (zh) 2019-07-16
US11618873B2 (en) 2023-04-04
WO2018109886A1 (fr) 2018-06-21

Similar Documents

Publication Publication Date Title
EP3556844B1 (fr) Instrument de culture
EP2987851B1 (fr) Équipement d'essai de culture cellulaire à base de multiples puits microfluidiques
US10620419B2 (en) Arrangement for light sheet microscopy
EP2270573B1 (fr) Couvercle de comptage, d'évaluation de viabilite, d'analyse et de manipulation
US20240058810A1 (en) Cuvette assembly having chambers for containing samples to be evaluated through optical measurement
KR101711105B1 (ko) 신속한 항생제 감수성 검사를 위한 멀티-웰 기반의 세포배양검사 장치
US10118177B2 (en) Single column microplate system and carrier for analysis of biological samples
JP6619544B2 (ja) 検査装置
CN101006342A (zh) 根据核形态型鉴定干细胞的方法
KR20120089769A (ko) 생물학적 유기체의 시간-관련 현미경 검사용 시스템 및 방법
CN108138108B (zh) 用于调配液体特别是体液的装置和方法
US20200131459A1 (en) Microplate covers for environmental control and automation
Uribe et al. Immunohistochemistry on cryosections from embryonic and adult zebrafish eyes
Steinritz et al. Assessment of endothelial cell migration after exposure to toxic chemicals
US20170211032A1 (en) Temperature regulating container
KR102132630B1 (ko) 섬 구조물을 포함하는 신속한 세포배양검사 장치
Wollrab et al. Ordering single cells and single embryos in 3D confinement: a new device for high content screening
JP6636109B2 (ja) 検査装置
US10619182B2 (en) Method, device and system for testing drug sensitivity
KR102132635B1 (ko) 유체막 두께가 일정한 신속한 세포배양검사 장치
ITTO20100026U1 (it) Dispositivo per la coltura cellulare
JP2016204327A (ja) 生体組織固定用組成物及び生体組織固定用組成物入り容器
CN113661235B (zh) 盒组件
US11571698B2 (en) Bacterial test plate having antibacterial agent introduced thereinto, and transparent plate
Klein et al. Assays for detecting chromosomal aberrations

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190529

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HITACHI HIGH-TECH CORPORATION

A4 Supplementary search report drawn up and despatched

Effective date: 20200624

RIC1 Information provided on ipc code assigned before grant

Ipc: C12M 1/32 20060101ALI20200618BHEP

Ipc: C12M 1/34 20060101AFI20200618BHEP

Ipc: C12M 1/00 20060101ALI20200618BHEP

Ipc: B01L 3/00 20060101ALI20200618BHEP

Ipc: G01N 21/00 20060101ALI20200618BHEP

REG Reference to a national code

Ref document number: 602016083929

Country of ref document: DE

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: C12M0001340000

Ipc: G01N0021250000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B01L 3/00 20060101ALI20230405BHEP

Ipc: C12M 1/00 20060101ALI20230405BHEP

Ipc: C12M 1/32 20060101ALI20230405BHEP

Ipc: C12M 1/34 20060101ALI20230405BHEP

Ipc: G01N 21/82 20060101ALI20230405BHEP

Ipc: G01N 21/78 20060101ALI20230405BHEP

Ipc: G01N 21/25 20060101AFI20230405BHEP

INTG Intention to grant announced

Effective date: 20230424

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MASUYA, AKIRA

Inventor name: FUJITA, HIROKO

Inventor name: UEMATSU, CHIHIRO

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016083929

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231226

Year of fee payment: 8

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1627740

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240202

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240201

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240201

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101