EP3553408A1 - Verfahren zum betreiben eines hybriden heizgerätes und hybrides heizgerät - Google Patents
Verfahren zum betreiben eines hybriden heizgerätes und hybrides heizgerät Download PDFInfo
- Publication number
- EP3553408A1 EP3553408A1 EP19160242.4A EP19160242A EP3553408A1 EP 3553408 A1 EP3553408 A1 EP 3553408A1 EP 19160242 A EP19160242 A EP 19160242A EP 3553408 A1 EP3553408 A1 EP 3553408A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat source
- heat
- operated
- power
- flow temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000010438 heat treatment Methods 0.000 title claims description 30
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 238000002485 combustion reaction Methods 0.000 claims abstract description 6
- 239000002737 fuel gas Substances 0.000 claims abstract description 4
- 238000012546 transfer Methods 0.000 claims description 22
- 238000005259 measurement Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000002528 anti-freeze Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/30—Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
- F24H15/355—Control of heat-generating means in heaters
- F24H15/36—Control of heat-generating means in heaters of burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/10—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
- F24H1/101—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/10—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
- F24H1/107—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using fluid fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/10—Control of fluid heaters characterised by the purpose of the control
- F24H15/144—Measuring or calculating energy consumption
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/238—Flow rate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/30—Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
- F24H15/355—Control of heat-generating means in heaters
- F24H15/37—Control of heat-generating means in heaters of electric heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/20—Arrangement or mounting of control or safety devices
- F24H9/2007—Arrangement or mounting of control or safety devices for water heaters
- F24H9/2014—Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
- F24H9/2028—Continuous-flow heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/212—Temperature of the water
- F24H15/219—Temperature of the water after heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/258—Outdoor temperature
Definitions
- the invention relates to a method for operating a hybrid heater and a hybrid heater.
- a hybrid heater in the context of this invention is a heater that generates heat from both the combustion of a fossil fuel such as natural gas and from an electrical energy source and provides for the heating of a building.
- heaters work monovalent, ie the heat is sourced only from one source of energy. For economic and ecological reasons, this is often natural gas. For technical reasons, however, the range between minimum and maximum power is limited, since the flow rate of the combustion air required for mixture formation is too low. In the patent application EP2735793A2 this is done by additional device features in the mixture forming device.
- the modulation range can be extended downwards, ie in the range of lower powers.
- Modulation ranges or power ratios between minimum and maximum power of 1:20 are very good values according to the prior art. Nevertheless, there is still a need for heaters covering an even smaller area.
- this object is achieved with a hybrid heater with a burner according to the prior art and an additional electric heater according to the method of claim 1.
- hybrid heaters or heating systems are known from the prior art.
- the utility model DE 9004025 U1 shows an additional integrated in a radiator electric immersion heater. It is disclosed that this heating cartridge is put into operation in case of failure of the heater.
- the publication DE 3109990 A1 shows a comparable heating cartridge outside the radiator, but also outside the heater.
- the DE 3109990 A1 teaches to use the electric heating cartridge with low heating demand. Explicit here are called the antifreeze function in the absence or the operation outside the normal heating periods. Again, an either-or-operation is provided.
- the DE 3325822 A1 shows a boiler with electric preheater. This serves to avoid condensation.
- the method according to the invention according to claim 1 the heat demand of heat sinks for small outputs, which are below the minimum power of the first heat source, in this case a gas burner, to cover by a second electric heat source.
- the second heat source as well as the first heat source is integrated in a heating circuit and transfers the heat to a heat transfer medium.
- the two heat sources for large heat demand can also be operated simultaneously.
- the modulation range can also be extended in the direction of larger powers.
- the current heat demand can be defined for example by a desired flow temperature of the heat transfer medium in the heating circuit.
- a desired flow temperature is determined as a function of the outside temperature and the desired room temperature on the basis of a mathematical building model (heating curves).
- a heater adjusts its power by means of a regulator so that the actual flow temperature of the desired flow temperature corresponds.
- the inventive method is carried out on the basis of the flow temperature.
- the first heat source is not operated below its minimum power.
- the switching to the first heat source according to claim 4 or 5 carried out according to two alternative process variants.
- Either the second heat source is operated with a maximum of the minimum power or a power slightly above the minimum power of the first heat source.
- An increased heat requirement leads to a drop in the flow temperature, which leads after exceeding a certain difference over a certain period of time according to the method described above.
- the second heat source is turned off and the first heat source is turned on.
- the power of the second heat source may be increased beyond the minimum power of the first heat source. If the second heat source is operated with a power above the minimum power of the first heat source for a certain period of time, this leads according to the invention to switch off the second heat source and to switch on the first heat source.
- the difference amounts of the flow temperatures are less than 1 K, more preferably less than 0.5 K.
- the measurement periods within which the temperature deviation of the actual flow temperature must be greater than the difference in order to effect a switching of the heat source is preferably at least the circulation time of the heat transfer medium in the heating circuit.
- Under circulation duration is understood as the, which is needed for a complete circulation of the heat transfer medium in the heating circuit. This time depends on the volume flow of the circulation pump and the total volume of the heating circuit.
- the minimum power and the maximum power of the first heat source is determined by measures that are already known in the system. This is the speed of the fan, a calculated from the speed of the fan and the power consumption of the fan air mass flow, an air mass flow measured by a volume or mass flow sensor.
- FIG. 1 shows an apparatus for carrying out the method according to the invention.
- the heater 1 comprises the first heat source 3 and the second heat source 4.
- the first heat source 3 is a burner operated with fuel gas, to which a fuel gas-air mixture is supplied via a blower 2. About a not shown here exhaust pipe, the exhaust gases are removed.
- the heat produced by the combustion transferred to a heat transfer medium that circulates in a heating circuit 11 by means of a circulating pump 12.
- the heat transfer medium transfers the heat to a heat sink 8, for example, a heater for a building or a heat sink 9, for example, a hot water tank for service water.
- the heating circuit 11 can be adjusted so that the heated heat transfer medium is passed either through the heat sink 8 or through the secondary heat exchanger 6, which transfers the heat to the heat sink hot water tank 9.
- a second heat source 4 is arranged in the flow direction of the heat transfer medium behind the first heat source 3.
- it is an electrical heater in the form of, for example, a heating cartridge, which is surrounded by the heat transfer medium.
- the second heat source 4 can transmit heat to the heat transfer medium alternately or together with the first heat source 3.
- a control unit 5 controls via the blower 2, the heat source 3 and the heat source 4.
- the information about the current flow temperature via the control unit 5 is set up, via an outside temperature sensor 7, the selected room temperature and a mathematical model of the Building to specify the current heat demand. This can be done for example in the form of a desired flow temperature.
- the first heat source 3 and the second heat source 4 can be controlled.
- the first heat source 3 is designed such that it has a minimum power and a maximum power.
- the heat source 3 can not deliver heat below the minimum power without being turned off periodically.
- the second heat source 4 is connected in series behind the first heat source 3, which can heat the heat transfer medium with low power by means of electrical energy.
- FIG. 2 and 3 show graphically illustrated courses of heat demand 101, deviation of the flow temperature 102 and heat outputs 103, 104 of the first 3 and second heat source 4 Figures 2 and 3 differ by different process variants switch from the second heat source 4 to the first heat source 3 at time t4. Below are the Figures 2 and 3 described together and pointed to differences.
- the description is based on a heat demand 101 which is initially above the minimum power P 1, min and below the maximum power P 2, max of the first heat source 3.
- the heat requirement is initially covered exclusively by the first heat source 3.
- the heat demand sings continuously at first.
- the heat requirement falls below the minimum power P 1, min of the first heat source 3.
- the power of the first heat source 3 can not be further reduced, so that the deviation of the flow temperature slowly rises.
- the flow temperature exceeds a first difference amount ⁇ T 1 .
- this first difference .DELTA.T 1 is present over a minimum period .DELTA.t 1, it is recognized that a certain duration .DELTA.t 1 is a lower demand for heat.
- the first heat source 3 is turned off, the graph of the graph 103 falls to zero.
- the second heat source 4 is put into operation, so that the graph 104 increases from zero. Since there is already an excess temperature of the flow temperature, the power of the second heat source 4 only slowly approaches the course of the heat demand.
- the described threshold values in the form of the first measurement space ⁇ t 1 and the first difference ⁇ T 1 serve to ensure that the switchover from the first heat source 3 to the second heat source 4 takes place only when the heat requirement 101 has dropped safely. Thus, a frequent switching back and forth between the heat sources 3 and 4 is avoided in the transition region.
- the heat demand 101 then rises again and exceeds the minimum power of the first heat source at time t3.
- the maximum power of the second heat source is limited to the minimum power of the first heat source.
- a certain time is also waited for at the times t3 and t4, in which the actual flow temperature falls below the desired flow temperature by the difference amount ⁇ T 2 .
- the second heat source 4 is turned off, so that the graph 104 falls to zero.
- the first heat source is switched on again, so that the graph 103 rises from zero and initially shoots beyond the course of the graph of the heat demand 101 to compensate for the deviation of the flow temperature. Subsequently, the graph 103 of the heating power of the first heat source 3 follows the graph 101 of the heat demand.
- the heat demand 101 exceeds the maximum power P 1, max of the first heat source 3.
- the second heat source 4 is now operated in addition to the first heat source 3, which can be recognized by the rising graph 104.
- the services 103 of the first heat source 3 and 104 of the second heat source 4 in total cover the heat demand 101.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- Steam Or Hot-Water Central Heating Systems (AREA)
Abstract
Description
- Die Erfindung betrifft ein Verfahren zum Betreiben eines hybriden Heizgerätes sowie ein hybrides Heizgerät. Ein hybrides Heizgerät im Sinne dieser Erfindung ist ein Heizgerät, das Wärme sowohl aus der Verbrennung eines fossilen Energieträgers wie Erdgas als auch aus einer elektrischen Energiequelle erzeugt und für die Beheizung eines Gebäudes zur Verfügung stellt.
- Meist arbeiten Heizgeräte monovalent, d.h. die Wärme wird nur aus einem Energieträger bezogen. Aus ökonomischen und ökologischen Gründen ist dies häufig Erdgas. Aus technischen Gründen ist jedoch der Bereich zwischen minimaler und maximaler Leistung begrenzt, da die für die Gemischbildung benötigten Strömungsgeschwindigkeit der Verbrennungsluft zu gering ist. In der Patentanmeldung
EP2735793A2 erfolgt dies durch zusätzliche Vorrichtungsmerkmale in der Gemischbildungseinrichtung. - Dadurch kann zwar der Modulationsbereich nach unten, also im Bereich niedriger Leistungen erweitert werden. Modulationsbereiche bzw. Leistungsverhältnisse zwischen minimaler und maximaler Leistung von 1:20 sind nach dem Stand der Technik sehr gute Werte. Dennoch besteht weiterhin der Bedarf nach Heizgeräten, die einen noch geringeren Bereich abdecken.
- Erfindungsgemäß wird diese Aufgabe mit einem hybriden Heizgerät mit einem Brenner gemäß dem Stand der Technik und einem zusätzlichen elektrischen Heizer nach dem Verfahren gemäß Anspruch 1 gelöst.
- Grundsätzlich sind hybride Heizgeräte oder Heizsysteme aus dem Stand der Technik bekannt. Das Gebrauchsmuster
DE 9004025 U1 zeigt eine zusätzliche in einem Radiator integrierte elektrische Heizpatrone. Es ist offenbart, dass diese Heizpatrone beim Ausfall des Heizgeräts in Betrieb genommen wird. - Die Offenlegungsschrift
DE 3109990 A1 zeigt eine vergleichbare Heizpatrone außerhalb des Radiators, aber auch außerhalb des Heizgerätes. DieDE 3109990 A1 lehrt, die elektrische Heizpatrone bei geringem Heizbedarf zu verwenden. Explizit sind hier die Frostschutzfunktion bei Abwesenheit oder der Betrieb außerhalb der normalen Heizperioden genannt. Auch hier ist ein Entweder-Oder-Betrieb vorgesehen. - Die
DE 3325822 A1 zeigt einen Heizkessel mit elektrischer Vorwärmeinrichtung. Diese dient dazu, Kondensation zu vermeiden. - Keine der offenbarten Verfahren zum Betrieb der vorgenannten hybriden Heizsysteme oder Heizgeräte ist jedoch geeignet, den Modulationsbereich eines auf Verbrennung fossiler Energieträger während des laufenden Betriebes nach unten zu erweitern.
- Daher sieht das erfindungsgemäße Verfahren gemäß Anspruch 1 vor, den Wärmebedarf von Wärmesenken für kleine Leistungen, die unterhalb der Minimalleistung der ersten Wärmequelle, in diesem Fall ein Gas-Brenner, liegen, durch eine zweite elektrische Wärmequelle zu decken. Dabei ist die zweite Wärmequelle ebenso wie die erste Wärmequelle in einem Heizkreislauf eingebunden und gibt die Wärme an ein Wärmeträgermedium ab. Der Vorteil ist, dass nach außen hin das Heizgerät einen zu kleineren Leistungen hin erweiterten Modulationsbereich aufweist.
- In einer Weiterbildung der Erfindung gemäß Anspruch 2 können die beiden Wärmequellen für großen Wärmebedarf auch gleichzeitig betrieben werden. Somit kann der Modulationsbereich auch in Richtung größerer Leistungen erweitert werden.
- Der aktuelle Wärmebedarf kann beispielsweise durch eine Soll-Vorlauftemperatur des Wärmeträgermediums im Heizkreislauf definiert werden. Bei konstantem Volumenstrom des Wärmeträgermediums, also bei konstanter Drehzahl der Umwälzpumpe besteht eine direkte Proportionalität zwischen dem aktuellen Wärmebedarf und der Soll-Vorlauftemperatur. Nach dem Stand der Technik wird die Soll-Vorlauftemperatur in Abhängigkeit von der Außentemperatur und der gewünschten Raumtemperatur auf der Basis eines mathematischen Gebäudemodells (Heizkurven) ermittelt. Nach dem Stand der Technik passt ein Heizgerät seine Leistung mittels eines Reglers so an, dass die Ist-Vorlauftemperatur der Soll-Vorlauftemperatur entspricht. Gemäß Anspruch 3 wird daher das erfindungsgemäße Verfahren auf der Basis der Vorlauftemperatur durchgeführt. Dabei wird die erste Wärmequelle nicht unterhalb ihrer Minimalleistung betrieben. Für den Fall, dass diese Leistung oberhalb des aktuellen Wärmebedarfs liegt, führt dies zu einem Anstieg der Ist-Vorlauftemperatur. Sobald über einen bestimmten Zeitraum bei Betrieb mit Minimalleistung die Ist-Vorlauftemperatur um einen bestimmten Differenzbetrag oberhalb der Soll-Vorlauftemperatur liegt, wird die erste Wärmequelle abgeschaltet und die zweite Wärmequelle eingeschaltet, die nun die Wärmesenken mit Wärme versorgt. Dabei wird weiterhin die Vorlauftemperatur geregelt.
- Steigt nun der Wärmebedarf wieder an, so wird erfindungsgemäß die Umschaltung auf die erste Wärmequelle gemäß Anspruch 4 oder 5 nach zwei alternativen Verfahrensvarianten durchgeführt. Entweder wird die zweite Wärmequelle mit maximal der Minimalleistung oder einer Leistung geringfügig oberhalb der Minimalleistung der ersten Wärmequelle betrieben. Ein erhöhter Wärmebedarf führt zu einem Absinken der Vorlauftemperatur, was nach dem oben beschriebenen Verfahren nach einem Überschreiten eines bestimmten Differenzbetrages über einen bestimmten Zeitraum führt. Dies wird erfindungsgemäß dazu, dass die zweite Wärmequelle abgeschaltet und die erste Wärmequelle eingeschaltet wird. Alternativ kann auch die Leistung der zweiten Wärmequelle über die Minimalleistung der ersten Wärmequelle hinaus erhöht werden. Wird die zweite Wärmequelle über einen bestimmten Zeitraum mit einer Leistung oberhalb der Minimalleistung der ersten Wärmequelle betrieben, führt dies erfindungsgemäß zum Abschalten der zweiten Wärmequelle und zum Einschalten der ersten Wärmequelle.
- Bevorzugt sind die Differenzbeträge der Vorlauftemperaturen kleiner 1 K, besonders bevorzugt kleiner 0,5 K.
- Die Messzeiträume, innerhalb derer die Temperaturabweichung der Ist-Vorlauftemperatur größer als der Differenzbetrag sein muss, um ein umschalten der Wärmequelle zu bewirken, ist bevorzugt mindestens die Umlaufdauer des Wärmeträgermediums im Heizkreislauf. Unter Umlaufdauer wird die da verstanden, die für ein vollständiges Umwälzen des Wärmeträgermediums im Heizkreislauf benötigt wird. Diese Zeit hängt ab vom Volumenstrom der Umwälzpumpe und vom Gesamtvolumen des Heizkreislaufs.
- Die Minimalleistung und die Maximalleistung der ersten Wärmequelle wird bestimmt durch Messgrößen, die ohnehin im System bekannt sind. Dies ist die Drehzahl des Gebläses, ein aus der Drehzahl des Gebläses und der Stromaufnahme des Gebläses berechneter Luftmassenstrom, ein durch ein Volumen-oder Massenstromsensors gemessener Luftmassenstrom.
- Eine Vorrichtung zum Durchführen des Verfahrens ist gemäß dem unabhängigen Vorrichtungsanspruch geschützt.
- Die Erfindung wird nun anhand der Figuren detailliert erläutert.
- Es stellen dar:
-
Figur 1 : eine Vorrichtung zum Durchführen des erfindungsgemäßen Verfahrens -
Figur 2 ,3 : Leistungsverlauf der ersten und zweiten Wärmequelle und Vorlauftemperaturabweichungsverlauf während des Durchführens des erfindungsgemäßen Verfahrens -
Figur 1 zeigt eine Vorrichtung zum Durchführen des erfindungsgemäßen Verfahrens. Das Heizgerät 1 umfasst die erste Wärmequelle 3 und die zweite Wärmequelle 4. Die erste Wärmequelle 3 ist ein mit Brenngas betriebener Brenner, dem über ein Gebläse 2 ein Brenngas-Luft-Gemisch zugeführt wird. Über einen hier nicht dargestelltes Abgasrohr werden die Abgase abgeführt. In der Wärmequelle 3 führt die durch die Verbrennung entstehende Wärme auf ein Wärmeträgermedium übertragen, dass in einem Heizkreislauf 11 mithilfe einer Umwälzpumpe 12 zirkuliert. Dabei überträgt das Wärmeträgermedium die Wärme auf eine Wärmesenke 8, beispielsweise eine Heizung für ein Gebäude oder auf eine Wärmesenke 9, beispielsweise ein Warmwasserspeicher für Brauchwasser. Über ein Dreiwegeventil 12 kann der Heizkreislauf 11 so eingestellt werden, dass das erwärmte Wärmeträgermedium entweder durch die Wärmesenke 8 oder durch den Sekundärwärmetauscher 6 geleitet wird, welcher die Wärme auf die Wärmesenke Warmwasserspeicher 9 überträgt. - In Strömungsrichtung des Wärmeträgermediums ist hinter der ersten Wärmequelle 3 eine zweite Wärmequelle 4 angeordnet. Im vorliegenden Fall handelt es sich um eine elektrische Heizung in Form beispielsweise einer Heizpatrone, die von dem Wärmeträgermedium umspült wird. Die zweite Wärmequelle 4 kann alternierend oder zusammen mit der ersten Wärmequelle 3 Wärme auf das Wärmeträgermedium übertragen. Ein Steuergerät 5 steuert über das Gebläse 2 die Wärmequelle 3 sowie die Wärmequelle 4. Zudem liegt über den Vorlauftemperatursensor 13 dem Steuergerät 5 die Information über die aktuelle Vorlauftemperatur vor. Weiterhin ist das Steuergerät 5 eingerichtet, über einen Außentemperaturfühler 7, die gewählte Raumtemperatur und ein mathematisches Modell des Gebäudes den aktuellen Wärmebedarf vorzugeben. Dies kann beispielsweise in Form einer Soll-Vorlauftemperatur geschehen. Durch Vergleich mit der mittels des Vorlauftemperatursensors gemessenen Ist-Vorlauftemperatur können die erste Wärmequelle 3 und die zweite Wärmequelle 4 angesteuert werden.
- Dabei ist die erste Wärmequelle 3 so ausgeführt, dass sie über eine Minimalleistung und eine Maximalleistung verfügt. Die Wärmequelle 3 kann keine Wärme unterhalb der minimalen Leistung liefern, ohne periodisch abgeschaltet zu werden. Aus diesem Grund ist in Reihe hinter die erste Wärmequelle 3 die zweite Wärmequelle 4 geschaltet, die mithilfe elektrischer Energie das Wärmeträgermedium mit geringen Leistungen beheizen kann.
- Weiterhin ist es möglich, für hohen Wärmebedarf die erste Wärmequelle 3 und die zweite Wärmequelle 4 gleichzeitig zu betreiben.
-
Figur 2 und3 zeigen anhand von grafisch dargestellten Verläufen von Wärmebedarf 101, Abweichung der Vorlauftemperatur 102 und Heizleistungen 103, 104 der ersten 3 und zweiten Wärmequelle 4. DieFiguren 2 und3 unterscheiden sich durch unterschiedliche Verfahrensvarianten umschalten von der zweiten Wärmequelle 4 auf die erste Wärmequelle 3 zum Zeitpunkt t4. Nachfolgend werden dieFiguren 2 und3 gemeinsam beschrieben und auf Unterschiede hingewiesen. - Die Beschreibung erfolgt anhand eines Wärmebedarfs 101 der zunächst oberhalb der Minimalleistung P1,min und unterhalb der Maximalleistung P2,max der ersten Wärmequelle 3 ist. Der Wärmebedarf wird zunächst ausschließlich durch die erste Wärmequelle 3 gedeckt. Der Wärmebedarf singt zunächst kontinuierlich. Zum Zeitpunkt t1 unterschreitet der Wärmebedarf die Minimalleistung P1,min der ersten Wärmequelle 3. Die Leistung der ersten Wärmequelle 3 kann nicht weiter reduziert werden, so dass die Abweichung der Vorlauftemperatur langsam ansteigt. Die Vorlauftemperatur überschreitet einen ersten Differenzbetrag ΔT1. Nachdem dieser erste Differenzbetrag ΔT1 über einen Mindestzeitraum Δt1 vorliegt, wird zum Zeitpunkt t2 erkannt, dass über eine gewisse Dauer Δt1 ein niedrigerer Wärmebedarf vorliegt. Die erste Wärmequelle 3 wird abgeschaltet, der Verlauf des Graphen 103 fällt auf Null. Zeitgleich wird die zweite Wärmequelle 4 in Betrieb genommen, so dass der Graph 104 von Null ansteigt. Da bereits eine Übertemperatur der Vorlauftemperatur vorliegt, nähert sich die Leistung der zweiten Wärmequelle 4 nur langsam dem Verlauf des Wärmebedarf an.
- Die beschriebenen Schwellwerte in Form des ersten Messeraums Δt1 und dem ersten Differenzbetrag ΔT1 dienen dazu, sicherzustellen dass die Umschaltung von der ersten Wärmequelle 3 auf die zweite Wärmequelle 4 nur dann erfolgt, wenn der Wärmebedarf 101 sicher abgesunken ist. Damit wird im Übergangsbereich ein häufiges hin und herschalten zwischen den Wärmequellen 3 und 4 vermieden.
- Der Wärmebedarf 101 steigt danach wieder an und überschreitet zum Zeitpunkt t3 die Minimalleistung der ersten Wärmequelle. In dem in
Figur 2 gezeigten Verfahren ist die maximale Leistung der zweiten Wärmequelle begrenzt auf die minimale Leistung der ersten Wärmequelle. Alternativ ist es auch möglich, eine Leistungsbegrenzung knapp oberhalb, beispielsweise bei 110 % der Minimalleistung P1,min der ersten Wärmequelle 3 vorzusehen. Analog zu dem oben beschriebenen Verfahren bei den Zeitpunkten t1 und t2 wird auch bei den Zeitpunkten t3 und t4 erst eine gewisse Zeit abgewartet, in der die Ist-Vorlauftemperatur die Soll-Vorlauftemperatur um den Differenzbetrag ΔT2 unterschreitet. Dann wird zum Zeitpunkt t4 die zweite Wärmequelle 4 abgeschaltet, so dass der Graph 104 auf Null fällt. Zeitgleich wird die erste Wärmequelle wieder eingeschaltet, so dass der Graph 103 von Null aus ansteigt und zunächst über dem Verlauf des Graphen des Wärmebedarfs 101 hinaus schießt, um die Abweichung der Vorlauftemperatur auszugleichen. Anschließend folgt der Graph 103 der Heizleistung der ersten Wärmequelle 3 dem Graphen 101 des Wärmebedarfs. - Abweichend davon wird in dem
Figur 3 gezeigten Verlauf der Heizleistung der zweiten Wärmequelle diese Heizleistung auch weiterhin den Wärmebedarf 101 nachgeführt. Nach dem dritten Mindestzeitraum Δt3 wird der erhöhte Wärmebedarf erkannt und wie inFigur 2 zum Zeitpunkt t4 die zweite Wärmequelle 4 abgeschaltet und die erste Wärmequelle 3 angeschaltet. - Schließlich überschreitet zum Zeitpunkt t5 der Wärmebedarf 101 die Maximalleistung P1,max der ersten Wärmequelle 3. in einer optionalen Weiterbildung der Erfindung wird nun zusätzlich zu der ersten Wärmequelle 3 die zweite Wärmequelle 4 betrieben, was an dem ansteigenden Graphen 104 zu erkennen ist. Dabei decken die Leistungen 103 der erste Wärmequelle 3 und 104 der zweiten Wärmequelle 4 in Summe den Wärmebedarf 101.
-
- 1
- Heizgerät
- 2
- Gebläse
- 3
- Erste Wärmequelle
- 4
- Zweite Wärmequelle
- 5
- Steuergerät
- 6
- Sekundärwärmetauscher
- 7
- Außentemperaturfühler
- 8
- Wärmesenke Heizung
- 9
- Wärmesenke Warmwasserspeicher
- 10
- Dreiwegeventil
- 11
- Heizkreislauf
- 12
- Umwälzpumpe
- 13
- Vorlauftemperatursensor
- 101
- Wärmebedarf
- 102
- Abweichung der Vorlauftemperatur
- 103
- Heizleistung der ersten Wärmequelle
- 104
- Heizleistung der zweiten Wärmequelle
- P1,min
- Minimalleistung der ersten Wärmequelle
- P1,max
- Maximalleistung der ersten Wärmequelle
- ΔT1
- Erster Differenzbetrag der Vorlauftemperatur
- ΔT2
- Zweiter Differenzbetrag der Vorlauftemperatur
- Δt1
- Erster Messzeitraum
- Δt2
- Zweiter Messzeitraum
- Δt3
- Dritter Messzeitraum
- t1 - t5
- Zeitpunkt
Claims (10)
- Verfahren zum Betreiben eines hybriden Heizgerätes (1), wobei das Heizgerät (1) eine erste Wärmequelle (3) auf Basis der Verbrennung eines Gemisches aus Brenngas und Luft umfasst, wobei das Gemisch oder die Luft mit einem Gebläse (2) zugeführt wird, wobei das Heizgerät (1) eine zweite Wärmequelle (4) auf der Basis elektrischer Energie umfasst, wobei die erste (3) und die zweite Wärmequelle (4) die Wärme auf ein flüssiges Wärmeträgermedium überträgt, welches mittels einer Umwälzpumpe (12) zwischen dem Heizgerät (1) und einer oder mehreren Wärmesenken (8, 9) in einem Heizkreislauf (11) zirkuliert, wobei ein Steuergerät (5) die erste (3) und die zweite Wärmequelle (4) so ansteuert, dass ein vorgegebener Wärmebedarf der Wärmesenken (8, 9) befriedigt wird, und wobei die erste Wärmequelle (3) eine Minimalleistung (P1,min) und eine Maximalleistung (P1,max) aufweist, dadurch gekennzeichnet, dass der aktuelle Wärmebedarf oder eine Kenngröße für den aktuelle Wärmebedarf kontinuierlich ermittelt wird und dass die zweite Wärmequelle (4) mit dem Wärmebedarf betrieben wird, wenn der aktuelle Wärmebedarf kleiner als die Minimalleistung (P1,min) der ersten Wärmequelle (3) ist, oder dass die erste Wärmequelle (3) mit dem Wärmebedarf betrieben wird, wenn der aktuelle Wärmebedarf größer oder gleich der Minimalleistung (P1,min) der ersten Wärmequelle (3) ist.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die erste Wärmequelle (3) mit der Maximalleistung (P1,max) betrieben wird und dass die zweite Wärmequelle (4) mit der Differenz zwischen dem aktuellen Wärmebedarf und der Maximalleistung (P1,max) der ersten Wärmequelle (3) betrieben wird, wenn der Wärmebedarf größer als die Maximalleistung (P1,max) der ersten Wärmequelle (3) ist.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der aktuelle Wärmebedarf durch eine Soll-Vorlauftemperatur des Wärmeträgermediums definiert wird und das Steuergerät (5) die Leistung der ersten (3) oder der zweiten Wärmequelle (4) so einstellt, dass die Ist-Vorlauftemperatur an die Soll-Vorlauftemperatur angeglichen wird, wobei in dem Fall, dass die erste Wärmequelle (3) mit der Minimalleistung (P1,min) betrieben wird und die Ist-Vorlauftemperatur zumindest über einen ersten Messzeitraum (Δt1) zumindest um einen ersten Differenzbetrag (ΔT1) oberhalb der Soll-Vorlauftemperatur ist, die erste Wärmequelle (3) abgeschaltet wird und die zweite Wärmequelle (4) betrieben wird.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die zweite Wärmequelle (4) maximal mit einer Leistung gleich oder oberhalb der Minimalleistung (P1,min) der ersten Wärmequelle (3) betrieben wird und dass in dem Fall, dass die zweite Wärmequelle (4) mit der maximalen Leistung betrieben wird und die Ist-Vorlauftemperatur zumindest über einen zweiten Messzeitraum (Δt2) zumindest um einen zweiten Differenzbetrag (ΔT2) unterhalb der Soll-Vorlauftemperatur ist, die zweite Wärmequelle abgeschaltet wird und die erste Wärmequelle (3) betrieben wird.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in dem Fall, dass die zweite Wärmequelle (4) mit einer Leistung über einem dritten Messzeitraum (Δt3) oberhalb der Minimalleistung (P1,min) der ersten Wärmequelle (3) betrieben, die zweite Wärmequelle (4) abgeschaltet wird und die erste Wärmequelle betrieben wird.
- Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass der erste und/oder zweite Differenzbetrag (ΔT1, ΔT2) kleiner 1 K ist.
- Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass der erste und/oder zweite Differenzbetrag (ΔT1, ΔT2) kleiner 0,5 K ist.
- Verfahren nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass der erste (Δt1) und/oder zweite (Δt2) und/oder dritte Messzeitraum (Δt3) mindestens die Umlaufdauer des Wärmeträgermediums im Heizkreislauf (11) ist.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Minimalleistung (P1,min) oder Maximalleistung (P1,max) der ersten Wärmequelle (3) durch die Drehzahl des Gebläses (2), durch einen aus Drehzahl und Leistungsaufnahme des Gebläses (2) gebildeten Massenstromkennwert oder durch einen mittels eines Volumen- oder Massenstromsensors gemessenen Volumen- oder Massenstroms der Luft, des Gases oder des Gas-Luft-Gemisches ermittelt wird.
- Hybrides Heizgerät (1) mit einer ersten Wärmequelle (3) auf Basis der Verbrennung eines Gemisches aus Brenngas und Luft, wobei das Gemisch oder die Luft mit einem Gebläse (2) zugeführt wird wobei und die erste Wärmequelle (3) eine Minimalleistung (P1,min) und eine Maximalleistung (P1,max) aufweist, mit einer zweiten Wärmequelle (4) auf der Basis elektrischer Energie, wobei die erste (3) und die zweite Wärmequelle (4) die Wärme auf ein flüssiges Wärmeträgermedium überträgt, mit einer Umwälzpumpe (12), welche im Betrieb das Wärmeträgermedium zwischen dem Heizgerät (1) und einer oder mehreren an das Heizgerät (1) in einem Heizkreislauf (11) anschließbaren Wärmesenken (8, 9) zirkuliert, und mit einem Steuergerät (5), das die erste (3) und die zweite Wärmequelle (4) ansteuert, , dadurch gekennzeichnet, dass die zweite Wärmequelle (4) im Heizkreislauf (11) in Förderrichtung der Umwälzpumpe (12) in Reihe hinter ersten Wärmequelle (3) angeordnet ist und dass das Steuergerät (5) so ausgebildet ist, dass es das Verfahren nach einem der Ansprüche 1 bis 9 ausführt.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018108800.0A DE102018108800A1 (de) | 2018-04-13 | 2018-04-13 | Verfahren zum Betreiben eines hybriden Heizgerätes und hybrides Heizgerät |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3553408A1 true EP3553408A1 (de) | 2019-10-16 |
EP3553408B1 EP3553408B1 (de) | 2020-12-16 |
Family
ID=65657355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19160242.4A Active EP3553408B1 (de) | 2018-04-13 | 2019-03-01 | Verfahren zum betreiben eines hybriden heizgerätes und hybrides heizgerät |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3553408B1 (de) |
DE (1) | DE102018108800A1 (de) |
ES (1) | ES2863534T3 (de) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3109990A1 (de) | 1981-03-14 | 1982-09-23 | Wella Ag, 6100 Darmstadt | Elektrischer durchlauferhitzer als zusatz-heizeinrichtung fuer zentralheizungsanlagen |
DE3325822A1 (de) | 1983-07-18 | 1985-02-07 | Hans Dr.h.c. 3559 Battenberg Vießmann | Heizungskessel |
DE9004025U1 (de) | 1989-08-03 | 1990-12-06 | Bossert, Gerdi, 7730 Villingen-Schwenningen | Zusatzheizeinrichtung |
DE102004029376A1 (de) * | 2004-06-17 | 2006-02-02 | Robert Bosch Gmbh | Heizgerät mit elektrischer Zusatzheizung und Verfahren zum Betreiben desselben |
EP2189729A2 (de) * | 2008-11-25 | 2010-05-26 | Viessmann Werke GmbH & Co. KG | Verfahren zum Betrieb einer Heizungsanlage |
EP2615385A1 (de) * | 2012-01-13 | 2013-07-17 | STIEBEL ELTRON GmbH & Co. KG | Systemmanager für leistungsgeregelte Energiewandler |
EP2735793A2 (de) | 2012-11-26 | 2014-05-28 | Vaillant GmbH | Brenngas-Luft-Mischvorrichtung |
CA2901659A1 (en) * | 2015-08-25 | 2017-02-25 | Miclau-S.R.I. Inc. | Dual/multi energy gas water heater |
-
2018
- 2018-04-13 DE DE102018108800.0A patent/DE102018108800A1/de not_active Withdrawn
-
2019
- 2019-03-01 EP EP19160242.4A patent/EP3553408B1/de active Active
- 2019-03-01 ES ES19160242T patent/ES2863534T3/es active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3109990A1 (de) | 1981-03-14 | 1982-09-23 | Wella Ag, 6100 Darmstadt | Elektrischer durchlauferhitzer als zusatz-heizeinrichtung fuer zentralheizungsanlagen |
DE3325822A1 (de) | 1983-07-18 | 1985-02-07 | Hans Dr.h.c. 3559 Battenberg Vießmann | Heizungskessel |
DE9004025U1 (de) | 1989-08-03 | 1990-12-06 | Bossert, Gerdi, 7730 Villingen-Schwenningen | Zusatzheizeinrichtung |
DE102004029376A1 (de) * | 2004-06-17 | 2006-02-02 | Robert Bosch Gmbh | Heizgerät mit elektrischer Zusatzheizung und Verfahren zum Betreiben desselben |
EP2189729A2 (de) * | 2008-11-25 | 2010-05-26 | Viessmann Werke GmbH & Co. KG | Verfahren zum Betrieb einer Heizungsanlage |
EP2615385A1 (de) * | 2012-01-13 | 2013-07-17 | STIEBEL ELTRON GmbH & Co. KG | Systemmanager für leistungsgeregelte Energiewandler |
EP2735793A2 (de) | 2012-11-26 | 2014-05-28 | Vaillant GmbH | Brenngas-Luft-Mischvorrichtung |
CA2901659A1 (en) * | 2015-08-25 | 2017-02-25 | Miclau-S.R.I. Inc. | Dual/multi energy gas water heater |
Also Published As
Publication number | Publication date |
---|---|
EP3553408B1 (de) | 2020-12-16 |
ES2863534T3 (es) | 2021-10-11 |
DE102018108800A1 (de) | 2019-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2653789A2 (de) | Verfahren und System zum Temperieren von Bauteilen | |
EP0208256B1 (de) | Einrichtung zur Regelung der Raumtemperatur | |
EP1212570A1 (de) | Steuer- oder regeleinrichtung eines kochherdes | |
DE2843929A1 (de) | Anordnung zur steuerung der raumtemperatur | |
EP2530391A1 (de) | Wärmepumpenvorrichtung sowie Verfahren zum Steuern einer Wärmepumpenvorrichtung | |
EP2369244A1 (de) | Verfahren zum rechtzeitigen Erreichen von Temperatursollwerten durch einen oder mehrere Aufheizprozesse in einer Heizungsanlage eines Gebäudes | |
EP2604946A2 (de) | Warmwasserspeicher mit Bereitschaftstemperatureinstellung auf Basis von Durchflussinformation | |
EP3553408A1 (de) | Verfahren zum betreiben eines hybriden heizgerätes und hybrides heizgerät | |
DE3539328C2 (de) | Verfahren zum Aufheizen wenigstens eines Raumheizkreises und eines Brauchwasserspeichers | |
DE3248762A1 (de) | Verfahren zur steuerung der temperatur und messung der waermeabgabe von heizkoerpern sowie vorrichtung zur durchfuehrung des verfahrens | |
DE102010056301B4 (de) | Verfahren zur automatischen Optimierung einer Aufheizphase eines Heizsystems sowie ein Heizsystem | |
DE2307109A1 (de) | Heizgeraet fuer brauch- und heizwasser | |
DE3539327A1 (de) | Verfahren zur steuerung einer waermequelle und steuergeraet zur durchfuehrung des verfahrens | |
EP1003089B2 (de) | Bedarfsgerechte Wärmeübertragerregelung | |
DE102015113340A1 (de) | Heizungsanlage und Verfahren zum Betreiben einer Heizungsanlage | |
DE3538934A1 (de) | Verfahren zur absenkung eines temperaturniveaus | |
EP1310736A2 (de) | Regelverfahren und Regler zur Regelung eines Brenners | |
DE102010047913A1 (de) | Intelligenter Heizkreisverteiler und Verfahren zum Betrieb desselben | |
EP2863135A1 (de) | Optimierung der Sollwerttemperatur für einen Bereitschaftsteil in Heizungsanlagen, insbesondere zur Erwärmung von Trinkwasser | |
DE2631476A1 (de) | Verfahren und einrichtung zur beeinflussung der temperatur mindestens eines gebaeuderaumes | |
DE10114990B4 (de) | Heizungs- und Warmwasseranlage für Gebäude | |
EP2578952B1 (de) | Temperaturdifferenzregler in Einrohrheizsystemen | |
DE3702080A1 (de) | Verfahren zum steuern der umschaltung eines waermeaufnehmenden verbrauchers zwischen einer brennstoff- oder strombeheizten waermequelle und einer waermepumpe und einrichtung zur durchfuehrung des verfahrens | |
DE19613744A1 (de) | Steuer- oder Regelvorrichtung für einen Wasserheizer | |
DE2630920A1 (de) | Verfahren und einrichtung zur beeinflussung der temperatur mindestens eines gebaeuderaumes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200326 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
D17P | Request for examination filed (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200731 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
INTG | Intention to grant announced |
Effective date: 20200731 |
|
R17P | Request for examination filed (corrected) |
Effective date: 20200403 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019000521 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1345956 Country of ref document: AT Kind code of ref document: T Effective date: 20210115 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 36724 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210316 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210416 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019000521 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210416 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2863534 Country of ref document: ES Kind code of ref document: T3 Effective date: 20211011 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
26N | No opposition filed |
Effective date: 20210917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210301 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20190301 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240228 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240228 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240228 Year of fee payment: 6 Ref country code: CZ Payment date: 20240226 Year of fee payment: 6 Ref country code: GB Payment date: 20240228 Year of fee payment: 6 Ref country code: SK Payment date: 20240223 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240227 Year of fee payment: 6 Ref country code: IT Payment date: 20240327 Year of fee payment: 6 Ref country code: FR Payment date: 20240321 Year of fee payment: 6 Ref country code: BE Payment date: 20240228 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240401 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240401 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |