EP3553408A1 - Hybrid heating device and method for operating a hybrid heating device - Google Patents

Hybrid heating device and method for operating a hybrid heating device Download PDF

Info

Publication number
EP3553408A1
EP3553408A1 EP19160242.4A EP19160242A EP3553408A1 EP 3553408 A1 EP3553408 A1 EP 3553408A1 EP 19160242 A EP19160242 A EP 19160242A EP 3553408 A1 EP3553408 A1 EP 3553408A1
Authority
EP
European Patent Office
Prior art keywords
heat source
heat
operated
power
flow temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19160242.4A
Other languages
German (de)
French (fr)
Other versions
EP3553408B1 (en
Inventor
Lars Thum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP3553408A1 publication Critical patent/EP3553408A1/en
Application granted granted Critical
Publication of EP3553408B1 publication Critical patent/EP3553408B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/36Control of heat-generating means in heaters of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/107Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/144Measuring or calculating energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2028Continuous-flow heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature

Definitions

  • the invention relates to a method for operating a hybrid heater and a hybrid heater.
  • a hybrid heater in the context of this invention is a heater that generates heat from both the combustion of a fossil fuel such as natural gas and from an electrical energy source and provides for the heating of a building.
  • heaters work monovalent, ie the heat is sourced only from one source of energy. For economic and ecological reasons, this is often natural gas. For technical reasons, however, the range between minimum and maximum power is limited, since the flow rate of the combustion air required for mixture formation is too low. In the patent application EP2735793A2 this is done by additional device features in the mixture forming device.
  • the modulation range can be extended downwards, ie in the range of lower powers.
  • Modulation ranges or power ratios between minimum and maximum power of 1:20 are very good values according to the prior art. Nevertheless, there is still a need for heaters covering an even smaller area.
  • this object is achieved with a hybrid heater with a burner according to the prior art and an additional electric heater according to the method of claim 1.
  • hybrid heaters or heating systems are known from the prior art.
  • the utility model DE 9004025 U1 shows an additional integrated in a radiator electric immersion heater. It is disclosed that this heating cartridge is put into operation in case of failure of the heater.
  • the publication DE 3109990 A1 shows a comparable heating cartridge outside the radiator, but also outside the heater.
  • the DE 3109990 A1 teaches to use the electric heating cartridge with low heating demand. Explicit here are called the antifreeze function in the absence or the operation outside the normal heating periods. Again, an either-or-operation is provided.
  • the DE 3325822 A1 shows a boiler with electric preheater. This serves to avoid condensation.
  • the method according to the invention according to claim 1 the heat demand of heat sinks for small outputs, which are below the minimum power of the first heat source, in this case a gas burner, to cover by a second electric heat source.
  • the second heat source as well as the first heat source is integrated in a heating circuit and transfers the heat to a heat transfer medium.
  • the two heat sources for large heat demand can also be operated simultaneously.
  • the modulation range can also be extended in the direction of larger powers.
  • the current heat demand can be defined for example by a desired flow temperature of the heat transfer medium in the heating circuit.
  • a desired flow temperature is determined as a function of the outside temperature and the desired room temperature on the basis of a mathematical building model (heating curves).
  • a heater adjusts its power by means of a regulator so that the actual flow temperature of the desired flow temperature corresponds.
  • the inventive method is carried out on the basis of the flow temperature.
  • the first heat source is not operated below its minimum power.
  • the switching to the first heat source according to claim 4 or 5 carried out according to two alternative process variants.
  • Either the second heat source is operated with a maximum of the minimum power or a power slightly above the minimum power of the first heat source.
  • An increased heat requirement leads to a drop in the flow temperature, which leads after exceeding a certain difference over a certain period of time according to the method described above.
  • the second heat source is turned off and the first heat source is turned on.
  • the power of the second heat source may be increased beyond the minimum power of the first heat source. If the second heat source is operated with a power above the minimum power of the first heat source for a certain period of time, this leads according to the invention to switch off the second heat source and to switch on the first heat source.
  • the difference amounts of the flow temperatures are less than 1 K, more preferably less than 0.5 K.
  • the measurement periods within which the temperature deviation of the actual flow temperature must be greater than the difference in order to effect a switching of the heat source is preferably at least the circulation time of the heat transfer medium in the heating circuit.
  • Under circulation duration is understood as the, which is needed for a complete circulation of the heat transfer medium in the heating circuit. This time depends on the volume flow of the circulation pump and the total volume of the heating circuit.
  • the minimum power and the maximum power of the first heat source is determined by measures that are already known in the system. This is the speed of the fan, a calculated from the speed of the fan and the power consumption of the fan air mass flow, an air mass flow measured by a volume or mass flow sensor.
  • FIG. 1 shows an apparatus for carrying out the method according to the invention.
  • the heater 1 comprises the first heat source 3 and the second heat source 4.
  • the first heat source 3 is a burner operated with fuel gas, to which a fuel gas-air mixture is supplied via a blower 2. About a not shown here exhaust pipe, the exhaust gases are removed.
  • the heat produced by the combustion transferred to a heat transfer medium that circulates in a heating circuit 11 by means of a circulating pump 12.
  • the heat transfer medium transfers the heat to a heat sink 8, for example, a heater for a building or a heat sink 9, for example, a hot water tank for service water.
  • the heating circuit 11 can be adjusted so that the heated heat transfer medium is passed either through the heat sink 8 or through the secondary heat exchanger 6, which transfers the heat to the heat sink hot water tank 9.
  • a second heat source 4 is arranged in the flow direction of the heat transfer medium behind the first heat source 3.
  • it is an electrical heater in the form of, for example, a heating cartridge, which is surrounded by the heat transfer medium.
  • the second heat source 4 can transmit heat to the heat transfer medium alternately or together with the first heat source 3.
  • a control unit 5 controls via the blower 2, the heat source 3 and the heat source 4.
  • the information about the current flow temperature via the control unit 5 is set up, via an outside temperature sensor 7, the selected room temperature and a mathematical model of the Building to specify the current heat demand. This can be done for example in the form of a desired flow temperature.
  • the first heat source 3 and the second heat source 4 can be controlled.
  • the first heat source 3 is designed such that it has a minimum power and a maximum power.
  • the heat source 3 can not deliver heat below the minimum power without being turned off periodically.
  • the second heat source 4 is connected in series behind the first heat source 3, which can heat the heat transfer medium with low power by means of electrical energy.
  • FIG. 2 and 3 show graphically illustrated courses of heat demand 101, deviation of the flow temperature 102 and heat outputs 103, 104 of the first 3 and second heat source 4 Figures 2 and 3 differ by different process variants switch from the second heat source 4 to the first heat source 3 at time t4. Below are the Figures 2 and 3 described together and pointed to differences.
  • the description is based on a heat demand 101 which is initially above the minimum power P 1, min and below the maximum power P 2, max of the first heat source 3.
  • the heat requirement is initially covered exclusively by the first heat source 3.
  • the heat demand sings continuously at first.
  • the heat requirement falls below the minimum power P 1, min of the first heat source 3.
  • the power of the first heat source 3 can not be further reduced, so that the deviation of the flow temperature slowly rises.
  • the flow temperature exceeds a first difference amount ⁇ T 1 .
  • this first difference .DELTA.T 1 is present over a minimum period .DELTA.t 1, it is recognized that a certain duration .DELTA.t 1 is a lower demand for heat.
  • the first heat source 3 is turned off, the graph of the graph 103 falls to zero.
  • the second heat source 4 is put into operation, so that the graph 104 increases from zero. Since there is already an excess temperature of the flow temperature, the power of the second heat source 4 only slowly approaches the course of the heat demand.
  • the described threshold values in the form of the first measurement space ⁇ t 1 and the first difference ⁇ T 1 serve to ensure that the switchover from the first heat source 3 to the second heat source 4 takes place only when the heat requirement 101 has dropped safely. Thus, a frequent switching back and forth between the heat sources 3 and 4 is avoided in the transition region.
  • the heat demand 101 then rises again and exceeds the minimum power of the first heat source at time t3.
  • the maximum power of the second heat source is limited to the minimum power of the first heat source.
  • a certain time is also waited for at the times t3 and t4, in which the actual flow temperature falls below the desired flow temperature by the difference amount ⁇ T 2 .
  • the second heat source 4 is turned off, so that the graph 104 falls to zero.
  • the first heat source is switched on again, so that the graph 103 rises from zero and initially shoots beyond the course of the graph of the heat demand 101 to compensate for the deviation of the flow temperature. Subsequently, the graph 103 of the heating power of the first heat source 3 follows the graph 101 of the heat demand.
  • the heat demand 101 exceeds the maximum power P 1, max of the first heat source 3.
  • the second heat source 4 is now operated in addition to the first heat source 3, which can be recognized by the rising graph 104.
  • the services 103 of the first heat source 3 and 104 of the second heat source 4 in total cover the heat demand 101.

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines hybriden Heizgerätes (1) und ein hybrides Heizgerät (1). Das Heizgerät (1) umfasst eine erste Wärmequelle (3) auf Basis der Verbrennung eines Gemisches aus Brenngas und Luft und eine zweite Wärmequelle (4) auf der Basis elektrischer Energie. Unterschreitet der Wärmebedarf (101) die Minimalleistung (P) der ersten Wärmequelle, wird auf die zweite Wärmequelle (4) umgeschaltet und umgekehrt.The invention relates to a method for operating a hybrid heater (1) and a hybrid heater (1). The heater (1) comprises a first heat source (3) based on the combustion of a mixture of fuel gas and air and a second heat source (4) based on electrical energy. If the heat requirement (101) falls below the minimum power (P) of the first heat source, the system switches to the second heat source (4) and vice versa.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines hybriden Heizgerätes sowie ein hybrides Heizgerät. Ein hybrides Heizgerät im Sinne dieser Erfindung ist ein Heizgerät, das Wärme sowohl aus der Verbrennung eines fossilen Energieträgers wie Erdgas als auch aus einer elektrischen Energiequelle erzeugt und für die Beheizung eines Gebäudes zur Verfügung stellt.The invention relates to a method for operating a hybrid heater and a hybrid heater. A hybrid heater in the context of this invention is a heater that generates heat from both the combustion of a fossil fuel such as natural gas and from an electrical energy source and provides for the heating of a building.

Meist arbeiten Heizgeräte monovalent, d.h. die Wärme wird nur aus einem Energieträger bezogen. Aus ökonomischen und ökologischen Gründen ist dies häufig Erdgas. Aus technischen Gründen ist jedoch der Bereich zwischen minimaler und maximaler Leistung begrenzt, da die für die Gemischbildung benötigten Strömungsgeschwindigkeit der Verbrennungsluft zu gering ist. In der Patentanmeldung EP2735793A2 erfolgt dies durch zusätzliche Vorrichtungsmerkmale in der Gemischbildungseinrichtung.Usually, heaters work monovalent, ie the heat is sourced only from one source of energy. For economic and ecological reasons, this is often natural gas. For technical reasons, however, the range between minimum and maximum power is limited, since the flow rate of the combustion air required for mixture formation is too low. In the patent application EP2735793A2 this is done by additional device features in the mixture forming device.

Dadurch kann zwar der Modulationsbereich nach unten, also im Bereich niedriger Leistungen erweitert werden. Modulationsbereiche bzw. Leistungsverhältnisse zwischen minimaler und maximaler Leistung von 1:20 sind nach dem Stand der Technik sehr gute Werte. Dennoch besteht weiterhin der Bedarf nach Heizgeräten, die einen noch geringeren Bereich abdecken.As a result, the modulation range can be extended downwards, ie in the range of lower powers. Modulation ranges or power ratios between minimum and maximum power of 1:20 are very good values according to the prior art. Nevertheless, there is still a need for heaters covering an even smaller area.

Erfindungsgemäß wird diese Aufgabe mit einem hybriden Heizgerät mit einem Brenner gemäß dem Stand der Technik und einem zusätzlichen elektrischen Heizer nach dem Verfahren gemäß Anspruch 1 gelöst.According to the invention this object is achieved with a hybrid heater with a burner according to the prior art and an additional electric heater according to the method of claim 1.

Grundsätzlich sind hybride Heizgeräte oder Heizsysteme aus dem Stand der Technik bekannt. Das Gebrauchsmuster DE 9004025 U1 zeigt eine zusätzliche in einem Radiator integrierte elektrische Heizpatrone. Es ist offenbart, dass diese Heizpatrone beim Ausfall des Heizgeräts in Betrieb genommen wird.Basically, hybrid heaters or heating systems are known from the prior art. The utility model DE 9004025 U1 shows an additional integrated in a radiator electric immersion heater. It is disclosed that this heating cartridge is put into operation in case of failure of the heater.

Die Offenlegungsschrift DE 3109990 A1 zeigt eine vergleichbare Heizpatrone außerhalb des Radiators, aber auch außerhalb des Heizgerätes. Die DE 3109990 A1 lehrt, die elektrische Heizpatrone bei geringem Heizbedarf zu verwenden. Explizit sind hier die Frostschutzfunktion bei Abwesenheit oder der Betrieb außerhalb der normalen Heizperioden genannt. Auch hier ist ein Entweder-Oder-Betrieb vorgesehen.The publication DE 3109990 A1 shows a comparable heating cartridge outside the radiator, but also outside the heater. The DE 3109990 A1 teaches to use the electric heating cartridge with low heating demand. Explicit here are called the antifreeze function in the absence or the operation outside the normal heating periods. Again, an either-or-operation is provided.

Die DE 3325822 A1 zeigt einen Heizkessel mit elektrischer Vorwärmeinrichtung. Diese dient dazu, Kondensation zu vermeiden.The DE 3325822 A1 shows a boiler with electric preheater. This serves to avoid condensation.

Keine der offenbarten Verfahren zum Betrieb der vorgenannten hybriden Heizsysteme oder Heizgeräte ist jedoch geeignet, den Modulationsbereich eines auf Verbrennung fossiler Energieträger während des laufenden Betriebes nach unten zu erweitern.However, none of the disclosed methods of operating the aforementioned hybrid heating systems or heaters is capable of extending down the modulation range of fossil fuel burning during operation.

Daher sieht das erfindungsgemäße Verfahren gemäß Anspruch 1 vor, den Wärmebedarf von Wärmesenken für kleine Leistungen, die unterhalb der Minimalleistung der ersten Wärmequelle, in diesem Fall ein Gas-Brenner, liegen, durch eine zweite elektrische Wärmequelle zu decken. Dabei ist die zweite Wärmequelle ebenso wie die erste Wärmequelle in einem Heizkreislauf eingebunden und gibt die Wärme an ein Wärmeträgermedium ab. Der Vorteil ist, dass nach außen hin das Heizgerät einen zu kleineren Leistungen hin erweiterten Modulationsbereich aufweist.Therefore, the method according to the invention according to claim 1, the heat demand of heat sinks for small outputs, which are below the minimum power of the first heat source, in this case a gas burner, to cover by a second electric heat source. In this case, the second heat source as well as the first heat source is integrated in a heating circuit and transfers the heat to a heat transfer medium. The advantage is that, to the outside, the heater has a modulation range extended to lower powers.

In einer Weiterbildung der Erfindung gemäß Anspruch 2 können die beiden Wärmequellen für großen Wärmebedarf auch gleichzeitig betrieben werden. Somit kann der Modulationsbereich auch in Richtung größerer Leistungen erweitert werden.In a development of the invention according to claim 2, the two heat sources for large heat demand can also be operated simultaneously. Thus, the modulation range can also be extended in the direction of larger powers.

Der aktuelle Wärmebedarf kann beispielsweise durch eine Soll-Vorlauftemperatur des Wärmeträgermediums im Heizkreislauf definiert werden. Bei konstantem Volumenstrom des Wärmeträgermediums, also bei konstanter Drehzahl der Umwälzpumpe besteht eine direkte Proportionalität zwischen dem aktuellen Wärmebedarf und der Soll-Vorlauftemperatur. Nach dem Stand der Technik wird die Soll-Vorlauftemperatur in Abhängigkeit von der Außentemperatur und der gewünschten Raumtemperatur auf der Basis eines mathematischen Gebäudemodells (Heizkurven) ermittelt. Nach dem Stand der Technik passt ein Heizgerät seine Leistung mittels eines Reglers so an, dass die Ist-Vorlauftemperatur der Soll-Vorlauftemperatur entspricht. Gemäß Anspruch 3 wird daher das erfindungsgemäße Verfahren auf der Basis der Vorlauftemperatur durchgeführt. Dabei wird die erste Wärmequelle nicht unterhalb ihrer Minimalleistung betrieben. Für den Fall, dass diese Leistung oberhalb des aktuellen Wärmebedarfs liegt, führt dies zu einem Anstieg der Ist-Vorlauftemperatur. Sobald über einen bestimmten Zeitraum bei Betrieb mit Minimalleistung die Ist-Vorlauftemperatur um einen bestimmten Differenzbetrag oberhalb der Soll-Vorlauftemperatur liegt, wird die erste Wärmequelle abgeschaltet und die zweite Wärmequelle eingeschaltet, die nun die Wärmesenken mit Wärme versorgt. Dabei wird weiterhin die Vorlauftemperatur geregelt.The current heat demand can be defined for example by a desired flow temperature of the heat transfer medium in the heating circuit. At constant flow rate of the heat transfer medium, ie at constant speed of the circulation pump, there is a direct proportionality between the current heat demand and the desired flow temperature. According to the prior art, the desired flow temperature is determined as a function of the outside temperature and the desired room temperature on the basis of a mathematical building model (heating curves). According to the prior art, a heater adjusts its power by means of a regulator so that the actual flow temperature of the desired flow temperature corresponds. According to claim 3, therefore, the inventive method is carried out on the basis of the flow temperature. The first heat source is not operated below its minimum power. In the event that this power is above the current heat demand, this leads to an increase in the actual flow temperature. As soon as the actual flow temperature is above the desired flow temperature by a certain amount above a certain period of time during operation with minimum power, the first heat source is switched off and the second heat source is switched on, which now supplies the heat sinks with heat. In this case, the flow temperature is still regulated.

Steigt nun der Wärmebedarf wieder an, so wird erfindungsgemäß die Umschaltung auf die erste Wärmequelle gemäß Anspruch 4 oder 5 nach zwei alternativen Verfahrensvarianten durchgeführt. Entweder wird die zweite Wärmequelle mit maximal der Minimalleistung oder einer Leistung geringfügig oberhalb der Minimalleistung der ersten Wärmequelle betrieben. Ein erhöhter Wärmebedarf führt zu einem Absinken der Vorlauftemperatur, was nach dem oben beschriebenen Verfahren nach einem Überschreiten eines bestimmten Differenzbetrages über einen bestimmten Zeitraum führt. Dies wird erfindungsgemäß dazu, dass die zweite Wärmequelle abgeschaltet und die erste Wärmequelle eingeschaltet wird. Alternativ kann auch die Leistung der zweiten Wärmequelle über die Minimalleistung der ersten Wärmequelle hinaus erhöht werden. Wird die zweite Wärmequelle über einen bestimmten Zeitraum mit einer Leistung oberhalb der Minimalleistung der ersten Wärmequelle betrieben, führt dies erfindungsgemäß zum Abschalten der zweiten Wärmequelle und zum Einschalten der ersten Wärmequelle.Now increases the heat demand again, so according to the invention, the switching to the first heat source according to claim 4 or 5 carried out according to two alternative process variants. Either the second heat source is operated with a maximum of the minimum power or a power slightly above the minimum power of the first heat source. An increased heat requirement leads to a drop in the flow temperature, which leads after exceeding a certain difference over a certain period of time according to the method described above. This is according to the invention, that the second heat source is turned off and the first heat source is turned on. Alternatively, the power of the second heat source may be increased beyond the minimum power of the first heat source. If the second heat source is operated with a power above the minimum power of the first heat source for a certain period of time, this leads according to the invention to switch off the second heat source and to switch on the first heat source.

Bevorzugt sind die Differenzbeträge der Vorlauftemperaturen kleiner 1 K, besonders bevorzugt kleiner 0,5 K.Preferably, the difference amounts of the flow temperatures are less than 1 K, more preferably less than 0.5 K.

Die Messzeiträume, innerhalb derer die Temperaturabweichung der Ist-Vorlauftemperatur größer als der Differenzbetrag sein muss, um ein umschalten der Wärmequelle zu bewirken, ist bevorzugt mindestens die Umlaufdauer des Wärmeträgermediums im Heizkreislauf. Unter Umlaufdauer wird die da verstanden, die für ein vollständiges Umwälzen des Wärmeträgermediums im Heizkreislauf benötigt wird. Diese Zeit hängt ab vom Volumenstrom der Umwälzpumpe und vom Gesamtvolumen des Heizkreislaufs.The measurement periods within which the temperature deviation of the actual flow temperature must be greater than the difference in order to effect a switching of the heat source is preferably at least the circulation time of the heat transfer medium in the heating circuit. Under circulation duration is understood as the, which is needed for a complete circulation of the heat transfer medium in the heating circuit. This time depends on the volume flow of the circulation pump and the total volume of the heating circuit.

Die Minimalleistung und die Maximalleistung der ersten Wärmequelle wird bestimmt durch Messgrößen, die ohnehin im System bekannt sind. Dies ist die Drehzahl des Gebläses, ein aus der Drehzahl des Gebläses und der Stromaufnahme des Gebläses berechneter Luftmassenstrom, ein durch ein Volumen-oder Massenstromsensors gemessener Luftmassenstrom.The minimum power and the maximum power of the first heat source is determined by measures that are already known in the system. This is the speed of the fan, a calculated from the speed of the fan and the power consumption of the fan air mass flow, an air mass flow measured by a volume or mass flow sensor.

Eine Vorrichtung zum Durchführen des Verfahrens ist gemäß dem unabhängigen Vorrichtungsanspruch geschützt.An apparatus for carrying out the method is protected according to the independent apparatus claim.

Die Erfindung wird nun anhand der Figuren detailliert erläutert.The invention will now be explained in detail with reference to FIGS.

Es stellen dar:

  • Figur 1: eine Vorrichtung zum Durchführen des erfindungsgemäßen Verfahrens
  • Figur 2, 3: Leistungsverlauf der ersten und zweiten Wärmequelle und Vorlauftemperaturabweichungsverlauf während des Durchführens des erfindungsgemäßen Verfahrens
They show:
  • FIG. 1 a device for carrying out the method according to the invention
  • FIG. 2 . 3 : Performance curve of the first and second heat source and flow temperature deviation course during the implementation of the method according to the invention

Figur 1 zeigt eine Vorrichtung zum Durchführen des erfindungsgemäßen Verfahrens. Das Heizgerät 1 umfasst die erste Wärmequelle 3 und die zweite Wärmequelle 4. Die erste Wärmequelle 3 ist ein mit Brenngas betriebener Brenner, dem über ein Gebläse 2 ein Brenngas-Luft-Gemisch zugeführt wird. Über einen hier nicht dargestelltes Abgasrohr werden die Abgase abgeführt. In der Wärmequelle 3 führt die durch die Verbrennung entstehende Wärme auf ein Wärmeträgermedium übertragen, dass in einem Heizkreislauf 11 mithilfe einer Umwälzpumpe 12 zirkuliert. Dabei überträgt das Wärmeträgermedium die Wärme auf eine Wärmesenke 8, beispielsweise eine Heizung für ein Gebäude oder auf eine Wärmesenke 9, beispielsweise ein Warmwasserspeicher für Brauchwasser. Über ein Dreiwegeventil 12 kann der Heizkreislauf 11 so eingestellt werden, dass das erwärmte Wärmeträgermedium entweder durch die Wärmesenke 8 oder durch den Sekundärwärmetauscher 6 geleitet wird, welcher die Wärme auf die Wärmesenke Warmwasserspeicher 9 überträgt. FIG. 1 shows an apparatus for carrying out the method according to the invention. The heater 1 comprises the first heat source 3 and the second heat source 4. The first heat source 3 is a burner operated with fuel gas, to which a fuel gas-air mixture is supplied via a blower 2. About a not shown here exhaust pipe, the exhaust gases are removed. In the heat source 3, the heat produced by the combustion transferred to a heat transfer medium that circulates in a heating circuit 11 by means of a circulating pump 12. In this case, the heat transfer medium transfers the heat to a heat sink 8, for example, a heater for a building or a heat sink 9, for example, a hot water tank for service water. Via a three-way valve 12, the heating circuit 11 can be adjusted so that the heated heat transfer medium is passed either through the heat sink 8 or through the secondary heat exchanger 6, which transfers the heat to the heat sink hot water tank 9.

In Strömungsrichtung des Wärmeträgermediums ist hinter der ersten Wärmequelle 3 eine zweite Wärmequelle 4 angeordnet. Im vorliegenden Fall handelt es sich um eine elektrische Heizung in Form beispielsweise einer Heizpatrone, die von dem Wärmeträgermedium umspült wird. Die zweite Wärmequelle 4 kann alternierend oder zusammen mit der ersten Wärmequelle 3 Wärme auf das Wärmeträgermedium übertragen. Ein Steuergerät 5 steuert über das Gebläse 2 die Wärmequelle 3 sowie die Wärmequelle 4. Zudem liegt über den Vorlauftemperatursensor 13 dem Steuergerät 5 die Information über die aktuelle Vorlauftemperatur vor. Weiterhin ist das Steuergerät 5 eingerichtet, über einen Außentemperaturfühler 7, die gewählte Raumtemperatur und ein mathematisches Modell des Gebäudes den aktuellen Wärmebedarf vorzugeben. Dies kann beispielsweise in Form einer Soll-Vorlauftemperatur geschehen. Durch Vergleich mit der mittels des Vorlauftemperatursensors gemessenen Ist-Vorlauftemperatur können die erste Wärmequelle 3 und die zweite Wärmequelle 4 angesteuert werden.In the flow direction of the heat transfer medium behind the first heat source 3, a second heat source 4 is arranged. In the present case, it is an electrical heater in the form of, for example, a heating cartridge, which is surrounded by the heat transfer medium. The second heat source 4 can transmit heat to the heat transfer medium alternately or together with the first heat source 3. A control unit 5 controls via the blower 2, the heat source 3 and the heat source 4. In addition, via the flow temperature sensor 13 to the controller 5, the information about the current flow temperature. Furthermore, the control unit 5 is set up, via an outside temperature sensor 7, the selected room temperature and a mathematical model of the Building to specify the current heat demand. This can be done for example in the form of a desired flow temperature. By comparison with the measured by the flow temperature sensor actual flow temperature, the first heat source 3 and the second heat source 4 can be controlled.

Dabei ist die erste Wärmequelle 3 so ausgeführt, dass sie über eine Minimalleistung und eine Maximalleistung verfügt. Die Wärmequelle 3 kann keine Wärme unterhalb der minimalen Leistung liefern, ohne periodisch abgeschaltet zu werden. Aus diesem Grund ist in Reihe hinter die erste Wärmequelle 3 die zweite Wärmequelle 4 geschaltet, die mithilfe elektrischer Energie das Wärmeträgermedium mit geringen Leistungen beheizen kann.In this case, the first heat source 3 is designed such that it has a minimum power and a maximum power. The heat source 3 can not deliver heat below the minimum power without being turned off periodically. For this reason, the second heat source 4 is connected in series behind the first heat source 3, which can heat the heat transfer medium with low power by means of electrical energy.

Weiterhin ist es möglich, für hohen Wärmebedarf die erste Wärmequelle 3 und die zweite Wärmequelle 4 gleichzeitig zu betreiben.Furthermore, it is possible for high heat demand, the first heat source 3 and the second heat source 4 to operate simultaneously.

Figur 2 und 3 zeigen anhand von grafisch dargestellten Verläufen von Wärmebedarf 101, Abweichung der Vorlauftemperatur 102 und Heizleistungen 103, 104 der ersten 3 und zweiten Wärmequelle 4. Die Figuren 2 und 3 unterscheiden sich durch unterschiedliche Verfahrensvarianten umschalten von der zweiten Wärmequelle 4 auf die erste Wärmequelle 3 zum Zeitpunkt t4. Nachfolgend werden die Figuren 2 und 3 gemeinsam beschrieben und auf Unterschiede hingewiesen. FIG. 2 and 3 show graphically illustrated courses of heat demand 101, deviation of the flow temperature 102 and heat outputs 103, 104 of the first 3 and second heat source 4 Figures 2 and 3 differ by different process variants switch from the second heat source 4 to the first heat source 3 at time t4. Below are the Figures 2 and 3 described together and pointed to differences.

Die Beschreibung erfolgt anhand eines Wärmebedarfs 101 der zunächst oberhalb der Minimalleistung P1,min und unterhalb der Maximalleistung P2,max der ersten Wärmequelle 3 ist. Der Wärmebedarf wird zunächst ausschließlich durch die erste Wärmequelle 3 gedeckt. Der Wärmebedarf singt zunächst kontinuierlich. Zum Zeitpunkt t1 unterschreitet der Wärmebedarf die Minimalleistung P1,min der ersten Wärmequelle 3. Die Leistung der ersten Wärmequelle 3 kann nicht weiter reduziert werden, so dass die Abweichung der Vorlauftemperatur langsam ansteigt. Die Vorlauftemperatur überschreitet einen ersten Differenzbetrag ΔT1. Nachdem dieser erste Differenzbetrag ΔT1 über einen Mindestzeitraum Δt1 vorliegt, wird zum Zeitpunkt t2 erkannt, dass über eine gewisse Dauer Δt1 ein niedrigerer Wärmebedarf vorliegt. Die erste Wärmequelle 3 wird abgeschaltet, der Verlauf des Graphen 103 fällt auf Null. Zeitgleich wird die zweite Wärmequelle 4 in Betrieb genommen, so dass der Graph 104 von Null ansteigt. Da bereits eine Übertemperatur der Vorlauftemperatur vorliegt, nähert sich die Leistung der zweiten Wärmequelle 4 nur langsam dem Verlauf des Wärmebedarf an.The description is based on a heat demand 101 which is initially above the minimum power P 1, min and below the maximum power P 2, max of the first heat source 3. The heat requirement is initially covered exclusively by the first heat source 3. The heat demand sings continuously at first. At time t1, the heat requirement falls below the minimum power P 1, min of the first heat source 3. The power of the first heat source 3 can not be further reduced, so that the deviation of the flow temperature slowly rises. The flow temperature exceeds a first difference amount ΔT 1 . After this at time t2, this first difference .DELTA.T 1 is present over a minimum period .DELTA.t 1, it is recognized that a certain duration .DELTA.t 1 is a lower demand for heat. The first heat source 3 is turned off, the graph of the graph 103 falls to zero. At the same time, the second heat source 4 is put into operation, so that the graph 104 increases from zero. Since there is already an excess temperature of the flow temperature, the power of the second heat source 4 only slowly approaches the course of the heat demand.

Die beschriebenen Schwellwerte in Form des ersten Messeraums Δt1 und dem ersten Differenzbetrag ΔT1 dienen dazu, sicherzustellen dass die Umschaltung von der ersten Wärmequelle 3 auf die zweite Wärmequelle 4 nur dann erfolgt, wenn der Wärmebedarf 101 sicher abgesunken ist. Damit wird im Übergangsbereich ein häufiges hin und herschalten zwischen den Wärmequellen 3 und 4 vermieden.The described threshold values in the form of the first measurement space Δt 1 and the first difference ΔT 1 serve to ensure that the switchover from the first heat source 3 to the second heat source 4 takes place only when the heat requirement 101 has dropped safely. Thus, a frequent switching back and forth between the heat sources 3 and 4 is avoided in the transition region.

Der Wärmebedarf 101 steigt danach wieder an und überschreitet zum Zeitpunkt t3 die Minimalleistung der ersten Wärmequelle. In dem in Figur 2 gezeigten Verfahren ist die maximale Leistung der zweiten Wärmequelle begrenzt auf die minimale Leistung der ersten Wärmequelle. Alternativ ist es auch möglich, eine Leistungsbegrenzung knapp oberhalb, beispielsweise bei 110 % der Minimalleistung P1,min der ersten Wärmequelle 3 vorzusehen. Analog zu dem oben beschriebenen Verfahren bei den Zeitpunkten t1 und t2 wird auch bei den Zeitpunkten t3 und t4 erst eine gewisse Zeit abgewartet, in der die Ist-Vorlauftemperatur die Soll-Vorlauftemperatur um den Differenzbetrag ΔT2 unterschreitet. Dann wird zum Zeitpunkt t4 die zweite Wärmequelle 4 abgeschaltet, so dass der Graph 104 auf Null fällt. Zeitgleich wird die erste Wärmequelle wieder eingeschaltet, so dass der Graph 103 von Null aus ansteigt und zunächst über dem Verlauf des Graphen des Wärmebedarfs 101 hinaus schießt, um die Abweichung der Vorlauftemperatur auszugleichen. Anschließend folgt der Graph 103 der Heizleistung der ersten Wärmequelle 3 dem Graphen 101 des Wärmebedarfs.The heat demand 101 then rises again and exceeds the minimum power of the first heat source at time t3. In the in FIG. 2 As shown, the maximum power of the second heat source is limited to the minimum power of the first heat source. Alternatively, it is also possible to provide a power limitation just above, for example, 110% of the minimum power P 1, min of the first heat source 3. Analogous to the method described above at the times t1 and t2, a certain time is also waited for at the times t3 and t4, in which the actual flow temperature falls below the desired flow temperature by the difference amount ΔT 2 . Then, at time t4, the second heat source 4 is turned off, so that the graph 104 falls to zero. At the same time, the first heat source is switched on again, so that the graph 103 rises from zero and initially shoots beyond the course of the graph of the heat demand 101 to compensate for the deviation of the flow temperature. Subsequently, the graph 103 of the heating power of the first heat source 3 follows the graph 101 of the heat demand.

Abweichend davon wird in dem Figur 3 gezeigten Verlauf der Heizleistung der zweiten Wärmequelle diese Heizleistung auch weiterhin den Wärmebedarf 101 nachgeführt. Nach dem dritten Mindestzeitraum Δt3 wird der erhöhte Wärmebedarf erkannt und wie in Figur 2 zum Zeitpunkt t4 die zweite Wärmequelle 4 abgeschaltet und die erste Wärmequelle 3 angeschaltet.Deviating from this is in the FIG. 3 shown course of the heating power of the second heat source, this heating power continues to track the heat demand 101. After the third minimum period Δt 3 , the increased heat demand is detected and as in FIG. 2 At time t4, the second heat source 4 is turned off and the first heat source 3 is turned on.

Schließlich überschreitet zum Zeitpunkt t5 der Wärmebedarf 101 die Maximalleistung P1,max der ersten Wärmequelle 3. in einer optionalen Weiterbildung der Erfindung wird nun zusätzlich zu der ersten Wärmequelle 3 die zweite Wärmequelle 4 betrieben, was an dem ansteigenden Graphen 104 zu erkennen ist. Dabei decken die Leistungen 103 der erste Wärmequelle 3 und 104 der zweiten Wärmequelle 4 in Summe den Wärmebedarf 101.Finally, at time t5, the heat demand 101 exceeds the maximum power P 1, max of the first heat source 3. In an optional development of the invention, the second heat source 4 is now operated in addition to the first heat source 3, which can be recognized by the rising graph 104. The services 103 of the first heat source 3 and 104 of the second heat source 4 in total cover the heat demand 101.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Heizgerätheater
22
Gebläsefan
33
Erste WärmequelleFirst heat source
44
Zweite WärmequelleSecond heat source
55
Steuergerätcontrol unit
66
SekundärwärmetauscherSecondary heat exchanger
77
AußentemperaturfühlerOutdoor temperature sensor
88th
Wärmesenke HeizungHeat sink heating
99
Wärmesenke WarmwasserspeicherHeat sink Hot water tank
1010
DreiwegeventilThree-way valve
1111
Heizkreislaufheating circuit
1212
Umwälzpumpecirculating pump
1313
VorlauftemperatursensorFlow temperature sensor
101101
Wärmebedarfheat demand
102102
Abweichung der VorlauftemperaturDeviation of the flow temperature
103103
Heizleistung der ersten WärmequelleHeating power of the first heat source
104104
Heizleistung der zweiten WärmequelleHeating power of the second heat source
P1,min P 1, min
Minimalleistung der ersten WärmequelleMinimum power of the first heat source
P1,max P 1, max
Maximalleistung der ersten WärmequelleMaximum power of the first heat source
ΔT1 ΔT 1
Erster Differenzbetrag der VorlauftemperaturFirst difference amount of the flow temperature
ΔT2 ΔT 2
Zweiter Differenzbetrag der VorlauftemperaturSecond differential amount of the flow temperature
Δt1 Δt 1
Erster MesszeitraumFirst measurement period
Δt2 Δt 2
Zweiter MesszeitraumSecond measurement period
Δt3 Δt 3
Dritter MesszeitraumThird measurement period
t1 - t5t1 - t5
Zeitpunkttime

Claims (10)

Verfahren zum Betreiben eines hybriden Heizgerätes (1), wobei das Heizgerät (1) eine erste Wärmequelle (3) auf Basis der Verbrennung eines Gemisches aus Brenngas und Luft umfasst, wobei das Gemisch oder die Luft mit einem Gebläse (2) zugeführt wird, wobei das Heizgerät (1) eine zweite Wärmequelle (4) auf der Basis elektrischer Energie umfasst, wobei die erste (3) und die zweite Wärmequelle (4) die Wärme auf ein flüssiges Wärmeträgermedium überträgt, welches mittels einer Umwälzpumpe (12) zwischen dem Heizgerät (1) und einer oder mehreren Wärmesenken (8, 9) in einem Heizkreislauf (11) zirkuliert, wobei ein Steuergerät (5) die erste (3) und die zweite Wärmequelle (4) so ansteuert, dass ein vorgegebener Wärmebedarf der Wärmesenken (8, 9) befriedigt wird, und wobei die erste Wärmequelle (3) eine Minimalleistung (P1,min) und eine Maximalleistung (P1,max) aufweist, dadurch gekennzeichnet, dass der aktuelle Wärmebedarf oder eine Kenngröße für den aktuelle Wärmebedarf kontinuierlich ermittelt wird und dass die zweite Wärmequelle (4) mit dem Wärmebedarf betrieben wird, wenn der aktuelle Wärmebedarf kleiner als die Minimalleistung (P1,min) der ersten Wärmequelle (3) ist, oder dass die erste Wärmequelle (3) mit dem Wärmebedarf betrieben wird, wenn der aktuelle Wärmebedarf größer oder gleich der Minimalleistung (P1,min) der ersten Wärmequelle (3) ist.A method of operating a hybrid heater (1), wherein the heater (1) comprises a first heat source (3) based on combustion of a mixture of fuel gas and air, the mixture or air being supplied with a blower (2) the heating device (1) comprises a second heat source (4) based on electrical energy, wherein the first (3) and the second heat source (4) transfers the heat to a liquid heat transfer medium which is conveyed by means of a circulating pump (12) between the heater ( 1) and one or more heat sinks (8, 9) circulates in a heating circuit (11), wherein a control device (5) controls the first (3) and the second heat source (4) such that a predetermined heat requirement of the heat sinks (8, 9) is satisfied, and wherein the first heat source (3) has a minimum power (P 1, min ) and a maximum power (P 1, max ), characterized in that the current heat demand or a characteristic for the current heat edarf is determined continuously and that the second heat source (4) is operated with the heat demand when the current heat demand is less than the minimum power (P 1, min ) of the first heat source (3), or that the first heat source (3) with the Heat requirement is operated when the current heat demand is greater than or equal to the minimum power (P 1, min ) of the first heat source (3). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die erste Wärmequelle (3) mit der Maximalleistung (P1,max) betrieben wird und dass die zweite Wärmequelle (4) mit der Differenz zwischen dem aktuellen Wärmebedarf und der Maximalleistung (P1,max) der ersten Wärmequelle (3) betrieben wird, wenn der Wärmebedarf größer als die Maximalleistung (P1,max) der ersten Wärmequelle (3) ist.A method according to claim 1, characterized in that the first heat source (3) with the maximum power (P 1, max ) is operated and that the second heat source (4) with the difference between the current heat demand and the maximum power (P 1, max ) the first heat source (3) is operated when the heat demand is greater than the maximum power (P 1, max ) of the first heat source (3). Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der aktuelle Wärmebedarf durch eine Soll-Vorlauftemperatur des Wärmeträgermediums definiert wird und das Steuergerät (5) die Leistung der ersten (3) oder der zweiten Wärmequelle (4) so einstellt, dass die Ist-Vorlauftemperatur an die Soll-Vorlauftemperatur angeglichen wird, wobei in dem Fall, dass die erste Wärmequelle (3) mit der Minimalleistung (P1,min) betrieben wird und die Ist-Vorlauftemperatur zumindest über einen ersten Messzeitraum (Δt1) zumindest um einen ersten Differenzbetrag (ΔT1) oberhalb der Soll-Vorlauftemperatur ist, die erste Wärmequelle (3) abgeschaltet wird und die zweite Wärmequelle (4) betrieben wird.A method according to claim 1 or 2, characterized in that the current heat demand is defined by a desired flow temperature of the heat transfer medium and the controller (5) adjusts the power of the first (3) or the second heat source (4) so that the actual Flow temperature is equalized to the desired flow temperature, wherein in the case that the first heat source (3) with the minimum power (P 1, min ) is operated and the actual flow temperature at least over a first measurement period (At 1 ) at least a first Difference amount (.DELTA.T 1 ) is above the target flow temperature, the first heat source (3) is turned off and the second heat source (4) is operated. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die zweite Wärmequelle (4) maximal mit einer Leistung gleich oder oberhalb der Minimalleistung (P1,min) der ersten Wärmequelle (3) betrieben wird und dass in dem Fall, dass die zweite Wärmequelle (4) mit der maximalen Leistung betrieben wird und die Ist-Vorlauftemperatur zumindest über einen zweiten Messzeitraum (Δt2) zumindest um einen zweiten Differenzbetrag (ΔT2) unterhalb der Soll-Vorlauftemperatur ist, die zweite Wärmequelle abgeschaltet wird und die erste Wärmequelle (3) betrieben wird.A method according to claim 3, characterized in that the second heat source (4) is operated at a maximum power equal to or above the minimum power (P 1, min ) of the first heat source (3) and that in the case that the second heat source (4 ) is operated at the maximum power and the actual flow temperature is at least a second difference (ΔT 2 ) at least a second difference (ΔT 2 ) below the target flow temperature, the second heat source is turned off and the first heat source (3) operated becomes. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in dem Fall, dass die zweite Wärmequelle (4) mit einer Leistung über einem dritten Messzeitraum (Δt3) oberhalb der Minimalleistung (P1,min) der ersten Wärmequelle (3) betrieben, die zweite Wärmequelle (4) abgeschaltet wird und die erste Wärmequelle betrieben wird.A method according to claim 3, characterized in that in the case that the second heat source (4) with a power over a third measuring period (At 3 ) above the minimum power (P 1, min ) of the first heat source (3) operated, the second Heat source (4) is turned off and the first heat source is operated. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass der erste und/oder zweite Differenzbetrag (ΔT1, ΔT2) kleiner 1 K ist.Method according to one of claims 3 to 5, characterized in that the first and / or second difference amount (.DELTA.T 1, .DELTA.T 2 ) is less than 1 K. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass der erste und/oder zweite Differenzbetrag (ΔT1, ΔT2) kleiner 0,5 K ist.Method according to one of claims 3 to 6, characterized in that the first and / or second difference amount (.DELTA.T 1 , .DELTA.T 2 ) is less than 0.5 K. Verfahren nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass der erste (Δt1) und/oder zweite (Δt2) und/oder dritte Messzeitraum (Δt3) mindestens die Umlaufdauer des Wärmeträgermediums im Heizkreislauf (11) ist.Method according to one of claims 3 to 7, characterized in that the first (At 1 ) and / or second (At 2 ) and / or third measuring period (At 3 ) is at least the circulation time of the heat transfer medium in the heating circuit (11). Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Minimalleistung (P1,min) oder Maximalleistung (P1,max) der ersten Wärmequelle (3) durch die Drehzahl des Gebläses (2), durch einen aus Drehzahl und Leistungsaufnahme des Gebläses (2) gebildeten Massenstromkennwert oder durch einen mittels eines Volumen- oder Massenstromsensors gemessenen Volumen- oder Massenstroms der Luft, des Gases oder des Gas-Luft-Gemisches ermittelt wird.Method according to one of the preceding claims, characterized in that the minimum power (P 1, min ) or maximum power (P 1, max ) of the first heat source (3) by the speed of the blower (2), by a speed and power consumption of the blower (2) formed mass flow characteristic or by a measured by a volume or mass flow sensor volume or mass flow of the air, the gas or the gas-air mixture is determined. Hybrides Heizgerät (1) mit einer ersten Wärmequelle (3) auf Basis der Verbrennung eines Gemisches aus Brenngas und Luft, wobei das Gemisch oder die Luft mit einem Gebläse (2) zugeführt wird wobei und die erste Wärmequelle (3) eine Minimalleistung (P1,min) und eine Maximalleistung (P1,max) aufweist, mit einer zweiten Wärmequelle (4) auf der Basis elektrischer Energie, wobei die erste (3) und die zweite Wärmequelle (4) die Wärme auf ein flüssiges Wärmeträgermedium überträgt, mit einer Umwälzpumpe (12), welche im Betrieb das Wärmeträgermedium zwischen dem Heizgerät (1) und einer oder mehreren an das Heizgerät (1) in einem Heizkreislauf (11) anschließbaren Wärmesenken (8, 9) zirkuliert, und mit einem Steuergerät (5), das die erste (3) und die zweite Wärmequelle (4) ansteuert, , dadurch gekennzeichnet, dass die zweite Wärmequelle (4) im Heizkreislauf (11) in Förderrichtung der Umwälzpumpe (12) in Reihe hinter ersten Wärmequelle (3) angeordnet ist und dass das Steuergerät (5) so ausgebildet ist, dass es das Verfahren nach einem der Ansprüche 1 bis 9 ausführt.A hybrid heater (1) having a first heat source (3) based on the combustion of a mixture of fuel gas and air, the mixture or air being supplied with a fan (2), the first heat source (3) having a minimum power (P 1 , min ) and a maximum power (P 1, max ), with a second heat source (4) based on electrical energy, wherein the first (3) and the second heat source (4) transfers the heat to a liquid heat transfer medium, with a Circulation pump (12), which circulates during operation the heat transfer medium between the heater (1) and one or more to the heater (1) in a heating circuit (11) connectable heat sinks (8, 9), and with a control unit (5), the the first (3) and the second heat source (4) drives, characterized in that the second heat source (4) in the heating circuit (11) in the conveying direction of the circulation pump (12) in series behind the first heat source (3) is arranged and that S Expensive device (5) is designed so that it carries out the method according to one of claims 1 to 9.
EP19160242.4A 2018-04-13 2019-03-01 Hybrid heating device and method for operating a hybrid heating device Active EP3553408B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018108800.0A DE102018108800A1 (en) 2018-04-13 2018-04-13 Method of operating a hybrid heater and hybrid heater

Publications (2)

Publication Number Publication Date
EP3553408A1 true EP3553408A1 (en) 2019-10-16
EP3553408B1 EP3553408B1 (en) 2020-12-16

Family

ID=65657355

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19160242.4A Active EP3553408B1 (en) 2018-04-13 2019-03-01 Hybrid heating device and method for operating a hybrid heating device

Country Status (3)

Country Link
EP (1) EP3553408B1 (en)
DE (1) DE102018108800A1 (en)
ES (1) ES2863534T3 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3109990A1 (en) 1981-03-14 1982-09-23 Wella Ag, 6100 Darmstadt Electrical continuous-flow heater as an additional heating device for central heating systems
DE3325822A1 (en) 1983-07-18 1985-02-07 Hans Dr.h.c. 3559 Battenberg Vießmann Heating boiler
DE9004025U1 (en) 1989-08-03 1990-12-06 Bossert, Gerdi, 7730 Villingen-Schwenningen, De
DE102004029376A1 (en) * 2004-06-17 2006-02-02 Robert Bosch Gmbh Heating apparatus with burner and auxiliary electric heater, switches electric heater on at switching threshold
EP2189729A2 (en) * 2008-11-25 2010-05-26 Viessmann Werke GmbH & Co. KG Method for operating a heating assembly
EP2615385A1 (en) * 2012-01-13 2013-07-17 STIEBEL ELTRON GmbH & Co. KG System manager for energy converters with adjustable power
EP2735793A2 (en) 2012-11-26 2014-05-28 Vaillant GmbH Combustible gas-air mixing device
CA2901659A1 (en) * 2015-08-25 2017-02-25 Miclau-S.R.I. Inc. Dual/multi energy gas water heater

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3109990A1 (en) 1981-03-14 1982-09-23 Wella Ag, 6100 Darmstadt Electrical continuous-flow heater as an additional heating device for central heating systems
DE3325822A1 (en) 1983-07-18 1985-02-07 Hans Dr.h.c. 3559 Battenberg Vießmann Heating boiler
DE9004025U1 (en) 1989-08-03 1990-12-06 Bossert, Gerdi, 7730 Villingen-Schwenningen, De
DE102004029376A1 (en) * 2004-06-17 2006-02-02 Robert Bosch Gmbh Heating apparatus with burner and auxiliary electric heater, switches electric heater on at switching threshold
EP2189729A2 (en) * 2008-11-25 2010-05-26 Viessmann Werke GmbH & Co. KG Method for operating a heating assembly
EP2615385A1 (en) * 2012-01-13 2013-07-17 STIEBEL ELTRON GmbH & Co. KG System manager for energy converters with adjustable power
EP2735793A2 (en) 2012-11-26 2014-05-28 Vaillant GmbH Combustible gas-air mixing device
CA2901659A1 (en) * 2015-08-25 2017-02-25 Miclau-S.R.I. Inc. Dual/multi energy gas water heater

Also Published As

Publication number Publication date
ES2863534T3 (en) 2021-10-11
DE102018108800A1 (en) 2019-10-17
EP3553408B1 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
EP2653789A2 (en) Method and system for tempering components
EP0208256B1 (en) Space temperature regulation device
DE2843929A1 (en) ARRANGEMENT FOR CONTROLLING THE ROOM TEMPERATURE
EP2530391A1 (en) Heat pump device and method for operating same
EP2369244A1 (en) Method for reaching on time target temperatures using one or more heating processes in a building heating system
EP3553408A1 (en) Hybrid heating device and method for operating a hybrid heating device
DE3539328C2 (en) Method for heating at least one space heating circuit and a domestic hot water tank
EP2604946A2 (en) Hot water tank with delivery temperature setting based on flow information
DE3248762A1 (en) Method for controlling the temperature and measuring the heat emission of radiators, and a device for carrying out the method
DE102010056301B4 (en) Method for the automatic optimization of a heating-up phase of a heating system and a heating system
DE2307109A1 (en) HEATING UNIT FOR HOT WATER AND HOT WATER
DE3539327A1 (en) Method of controlling a heat source and control device for implementing the method
EP1003089B2 (en) Demand-responsive control for a heat transfer device
DE102015113340A1 (en) Heating system and method for operating a heating system
DE3538934A1 (en) Method for reducing a temperature level
EP3023709B1 (en) Method for heating a fluid in a storage device in a heating system and heating system for same
DE102010047913A1 (en) System of intelligent heating circuit distributor or control for distribution of heating power of heating system during heating rooms of e.g. building, has electrical and/or electronic bus system for communication and/or data distribution
EP2863135A1 (en) Optimizing the setpoint temperature for a standby part in heating installations, in particular for heating drinking water
DE2631476A1 (en) Central heating system controlled by outside conditions - uses monitoring and comparison system to regulate fuel supply
DE10114990B4 (en) Heating and hot water system for buildings
EP2578952B1 (en) Temperature difference regulator in single pipe heating systems
DE3702080A1 (en) Method for controlling the switching of a heat consumer between a heat source heated with fuel or electricity and a heat pump, and device for implementing the method
DE19613744A1 (en) Control device for water heater
DE3607978C2 (en)
DE2630920A1 (en) Central heating system controlled by outside conditions - uses monitoring and comparison system to regulate fuel supply

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200326

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

D17P Request for examination filed (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200731

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20200731

R17P Request for examination filed (corrected)

Effective date: 20200403

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019000521

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1345956

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 36724

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019000521

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2863534

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211011

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

26N No opposition filed

Effective date: 20210917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210301

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230228

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230322

Year of fee payment: 5

Ref country code: CZ

Payment date: 20230224

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230301

Year of fee payment: 5

Ref country code: SK

Payment date: 20230223

Year of fee payment: 5

Ref country code: GB

Payment date: 20230228

Year of fee payment: 5

Ref country code: DE

Payment date: 20230228

Year of fee payment: 5

Ref country code: BE

Payment date: 20230228

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230331

Year of fee payment: 5

Ref country code: ES

Payment date: 20230403

Year of fee payment: 5

Ref country code: CH

Payment date: 20230401

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240228

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240228

Year of fee payment: 5

Ref country code: AT

Payment date: 20240228

Year of fee payment: 4

Ref country code: AT

Payment date: 20240228

Year of fee payment: 3

Ref country code: AT

Payment date: 20240228

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 6

Ref country code: CZ

Payment date: 20240226

Year of fee payment: 6

Ref country code: GB

Payment date: 20240228

Year of fee payment: 6

Ref country code: SK

Payment date: 20240223

Year of fee payment: 6