EP3547340A1 - Mittelspannungs-lasttrennschalter - Google Patents

Mittelspannungs-lasttrennschalter Download PDF

Info

Publication number
EP3547340A1
EP3547340A1 EP18164674.6A EP18164674A EP3547340A1 EP 3547340 A1 EP3547340 A1 EP 3547340A1 EP 18164674 A EP18164674 A EP 18164674A EP 3547340 A1 EP3547340 A1 EP 3547340A1
Authority
EP
European Patent Office
Prior art keywords
medium
voltage switch
self
contact
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18164674.6A
Other languages
English (en)
French (fr)
Inventor
Marvin Bendig
Paul Gregor Nikolic
Florian Pleye
Martin Schaak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Rheinisch Westlische Technische Hochschuke RWTH
Original Assignee
Siemens AG
Rheinisch Westlische Technische Hochschuke RWTH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Rheinisch Westlische Technische Hochschuke RWTH filed Critical Siemens AG
Priority to EP18164674.6A priority Critical patent/EP3547340A1/de
Publication of EP3547340A1 publication Critical patent/EP3547340A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/36Contacts characterised by the manner in which co-operating contacts engage by sliding
    • H01H1/38Plug-and-socket contacts
    • H01H1/385Contact arrangements for high voltage gas blast circuit breakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7023Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle
    • H01H33/703Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle having special gas flow directing elements, e.g. grooves, extensions

Definitions

  • the invention relates to a medium-voltage switch-disconnector according to the preamble of patent claim 1.
  • Sulfur hexafluoride is currently still used as insulating gas in medium-voltage systems as well as in high-voltage systems, and it is used in another function as an extinguishing gas for an arc occurring between two contacts. Due to its very high global warming potential, different insulating media and extinguishing media are currently being tested as possible replacement solutions for sulfur hexafluoride. However, the extinguishing properties for arcs in the insulation media investigated so far are not yet completely satisfactory.
  • the object of the invention is to provide a medium-voltage switch-disconnector, which has a better extinguishing effect of arcs compared to the usual used in the medium voltage switch disconnectors.
  • the medium-voltage switch-disconnector according to the invention has two contacts, a moving contact and a fixed contact, wherein one of the contacts is at least partially surrounded by an insulating nozzle.
  • the invention is characterized in that at least one self-blowing volume is provided, and that this is arranged in the insulating material nozzle.
  • the arc When disconnecting the contact in the switch-disconnector, there is always an arc that continues to flow.
  • the arc generates, especially in a first phase of a high-current phase, a positive energy balance, which causes the insulating gas in the quenching chamber heats up. This simultaneously leads to a pressure build-up in the already mentioned self-blowing volume.
  • the self-blowing volume is a volume separated with respect to the quenching chamber, but connected thereto by a channel or an opening. In this Diblasvolumen is also the extinguishing gas, which is heated by the action of heat of the arc, resulting in an increase in the pressure of the extinguishing gas in the self-blow volume.
  • the quenching gas flows from the self-blowing volume into the quenching chamber and blows out the arc.
  • the time of this flow reversal is short of the current zero crossing of the current to be interrupted. Since the power loss of the arc is reduced at the same time as sinking current, due to the cooling, a negative energy balance results and also the thermal quenching of the arc occurs at the time of the current zero crossing.
  • a switch-disconnector for medium-voltage applications is provided by arranging the self-blowing volume in an insulating nozzle.
  • the insulating nozzle preferably encloses a tulip contact into which a movable contact can be inserted.
  • the self-blowing volume is arranged in the insulating nozzle.
  • the self-blowing volume or the self-blowing volumes are arranged to save space in the insulating material and serve when opening the medium-voltage circuit breaker to blow directly at the point of origin an arc by means of the named principle.
  • the medium-voltage switch-disconnector is used at rated voltages U m ⁇ 52 kV.
  • the medium-voltage switch-disconnector is preferably constructed in such a way that the insulating material nozzle rotationally symmetrically surrounds the one contact that surrounds it.
  • this contact is preferably the fixed contact, which is surrounded by the insulating material at least partially rotationally symmetrical and this fixed contact is in turn preferably constructed in the form of a tulip contact.
  • This is an embodiment that is conceptually known from high-voltage engineering, but the main difference is that a self-blowing volume is arranged in the insulating nozzle, which achieves a sufficient blowing effect for medium-voltage applications and is extremely space-saving and significantly reduces the manufacturing costs ,
  • openings of the self-blowing volume are aligned in towards a switching axis, ie the opening is pointing at an angle between 0 degrees and 180 degrees to the switching axis. This causes the gas to come out of the self-blowing volume flows out, is directed to the resulting arc and thus a blow-out is enhanced.
  • the medium-voltage switch-disconnector is preferably designed for currents between 200 A and 1900 A.
  • the self-blowing volume has a volume which is between 10 ml and 200 ml, in particular between 20 ml and 90 ml. These volumes are relatively small compared to high voltage applications, but they are sufficient to cause the corresponding arc blowing effects in the medium voltage.
  • circuit breakers are connected in parallel and are operated by a central drive or are in communication with this.
  • three phases of a line can be operated with a switch class. It is only a drive necessary.
  • the insulating nozzle is preferably made of a different material than the contact that surrounds it. Preference is given here to a high-temperature-resistant plastic, in particular polytetrafluoroethylene used.
  • FIG. 1 schematically a medium-voltage circuit breaker is shown, comprising a movable contact 4 and a fixed contact 6.
  • the moving contact 4 is designed in the form of a pin contact
  • the fixed contact 6 is configured in the form of a tulip contact 12.
  • this arrangement could basically be configured reversed, then the moving contact of the tulip contact and the fixed contact of the pin contact.
  • the pin contact 4 is suitably, as in FIG. 1 shown movably mounted along a switching axis 18 in the directions which are represented by the movement arrow 20.
  • FIG. 1 shown form of the medium-voltage switch-disconnector 2 is shown in an open state.
  • the pin contact 4 When the pin contact 4 is moved in the direction of the tulip contact 12, it first passes through a region which is surrounded by an insulating material nozzle 10 before it is retracted into the tulip contact 12.
  • This closed state is in FIG. 2 shown.
  • an arc 24 is produced between the pin contact 4 and the tulip contact 12 (FIG. FIG. 3 ).
  • FIG. 3 shows the opening the switch, it is of technical importance that the arc 24 is erased as quickly as possible.
  • an insulating medium 22 which is in particular a gaseous insulating medium, and which is present in a quenching chamber 14, heated by the heat input of the arc 24 and thereby compacted.
  • the insulating medium 22 is also present in the self-blowing volumes 10, which are connected to the quenching chamber 14 via the openings 16 of the self-blowing volumes 10.
  • the insulating medium 22 is particularly heated in this area around the openings 16 around and thus the pressure of the insulating medium 22 is increased locally in the Dblasvolumina 10.
  • the plural of the term self-blow volume 10 is used, since, depending on the design and requirement, one or more self-blowing volumes are expedient.
  • the insulating medium 22 with increased pressure in the Diblasvolumina 10 is now provided with the reference numeral 22 '. From a certain pressure, the insulating medium 22 'has in the self-blow volumes 10, there is a backflow, which is illustrated by the arrows 23.
  • the flow velocity of the insulating medium 22 'along the arrows 23 is so high that the arc 24 is preferably extinguished at time t L , but at least until time t 0 , ie to the zero crossing of the current curve and not ignited after the zero crossing of the current curve ,
  • the self-blowing volumes 10 have a relatively small volume, which is between 10 ml and 200 ml, preferably between 20 ml and 90 ml. For a medium-voltage switch-disconnector 2, this is sufficient to extinguish the arc 24. This, in turn, makes it possible to arrange one or more self-blowing volumes 10 in the insulating nozzle 8, which, compared to a self-blowing switch known from high-voltage engineering, means a significant reduction in the design-related complexity of the switch. Thus, the switch can also be produced significantly cheaper and find application in medium voltage technology.
  • insulating medium 22 may classic sulfur hexafluoride (SF 6 ), however, also newer investigated media such as gas mixtures based on other fluorinated gases, such as fluoroketones or fluoronitriles are used. Particularly useful is the use of the described medium-voltage circuit breaker using insulating media 22, which have worse extinguishing properties than the sulfur hexafluoride. Such media may require an additional blowing function by the self-blowing volumes 10 to safely extinguish the arc 24.
  • natural gases and air components such as air itself, carbon dioxide or nitrogen can be used as insulating media.
  • These media can also be used as mixed gases or carrier gases to fluorinated gases, such as fluoronitriles or fluoroketones.

Abstract

Die Erfindung betrifft einen Mittelspannungs-Lasttrennschalter mit zwei Kontakten (4, 6), einem beweglichen Kontakt (4) und einem Festkontakt (6), wobei ein Kontakt (4, 6) durch eine Isolierstoffdüse (8) zumindest teilweise umgeben ist. Die Erfindung zeichnet sich dadurch aus, dass mindestens ein Selbstblasvolumen in der Isolierstoffdüse angeordnet ist.

Description

  • Die Erfindung betrifft einen Mittelspannungs-Lasttrennschalter nach dem Oberbegriff des Patentanspruchs 1.
  • Sowohl in Mittelspannungsanlagen als auch in Hochspannungsanlagen wird derzeit noch Schwefelhexafluorid als Isoliergas eingesetzt und es findet in einer weiteren Funktion als Löschgas für einen auftretenden Lichtbogen zwischen zwei Kontakten Verwendung. Aufgrund seines sehr hohen Treibhauspotentiales , sind unterschiedliche Isoliermedien und Löschmedien als mögliche Ersatzlösungen für Schwefelhexafluorid derzeit in Erprobung. Die Löscheigenschaften für Lichtbögen sind bei den bisher untersuchten Isoliermedien jedoch bisher noch nicht vollständig zufriedenstellend. Im Hochspannungsbereich werden sogenannte Selbstblasleistungsschalter verwendet, die ein sogenanntes Selbstblasvolumen aufweisen, das Löschgas enthält und bei denen bedingt durch die während des Trennvorgangs vorherrschenden Druckbedingungen im Schalter eine Gasströmung eingeleitet wird, die zum Ausblasen des Lichtbogens beiträgt. Diese in der Hochspannung üblichen Selbstblasschalter sind jedoch äußerst aufwendig konstruierte und komplexe Systeme, die relativ hohe Fertigungskosten mit sich bringen. Aus diesem Grund hat sich das Selbstblasschalterprinzip in der Mittelspannung, in der ein niedrigerer Kostenspielraum für die Herstellung der Leistungsschalter besteht, bisher nicht durchsetzen können.
  • Die Aufgabe der Erfindung besteht darin, einen Mittelspannungs-Lasttrennschalter bereitzustellen, der gegenüber den üblichen in der Mittelspannung angewandten Lasttrennschaltern eine bessere Löschwirkung von Lichtbögen aufweist.
  • Die Lösung der Aufgabe besteht in einem Mittelspannungs-Lasttrennschalter mit den Merkmalen des Patentanspruches 1.
  • Der erfindungsgemäße Mittelspannungs-Lasttrennschalter weist zwei Kontakte auf, einen Bewegkontakt und einen Festkontakt, wobei einer der Kontakte durch eine Isolierstoffdüse zumindest teilweise umgeben ist. Die Erfindung zeichnet sich dadurch aus, dass mindestens ein Selbstblasvolumen vorgesehen ist, und dass dieses in der Isolierstoffdüse angeordnet ist.
  • Bei der Kontakttrennung im Lasttrennschalter entsteht immer ein Lichtbogen, über den weiterhin ein Stromfluss erfolgt. Der Lichtbogen erzeugt, insbesondere in einer ersten Phase einer Hochstromphase, eine positive Energiebilanz, welche dazu führt, dass sich das Isoliergas in der Löschkammer aufheizt. Dies führt gleichzeitig zu einem Druckaufbau in dem bereits erwähnten Selbstblasvolumen. Das Selbstblasvolumen ist ein bezüglich der Löschkammer abgetrenntes, mit dieser aber durch einen Kanal oder eine Öffnung verbundenes Volumen. In diesem Selbstblasvolumen liegt ebenfalls das Löschgas vor, das durch die Wärmeeinwirkung des Lichtbogens aufgeheizt wird, was in einem Anstieg des Druckes des Löschgases im Selbstblasvolumen resultiert. Mit sinkendem Strom bei Annäherung an den Stromnulldurchgang und ab einem bestimmten kritischen Druck im Selbstblasvolumen, der höher ist als der Druck in der Löschkammer, strömt das Löschgas aus dem Selbstblasvolumen in die Löschkammer und bläst dabei den Lichtbogen aus. Der Zeitpunkt dieser Strömungsumkehr liegt kurz von dem Stromnulldurchgang des zu unterbrechenden Stroms. Da sich gleichzeitig mit sinkendem Strom die Verlustleistung des Lichtbogens reduziert, entsteht bedingt durch die Kühlung eine negative Energiebilanz und es kommt auch zum thermischen Löschen des Lichtbogens zum Zeitpunkt des Stromnulldurchgangs.
  • Die Anordnung des Selbstblasvolumens und die Führung des Gases zwischen dem Selbstblasvolumen und der Löschkammer erfordert üblicherweise bei Hochspannungsschaltanlagen einen sehr hohen konstruktiven und fertigungstechnischen Aufwand. Insbesondere das Ausbilden der Strömungskanäle erfordert einen besonderen Aufwand. Außerdem sind zur Abschottung des Gases und des Selbstblasvolumens von anderen Reservoirs Ventile notwendig, die wiederum entsprechend gesteuert werden müssen. Erfindungsgemäß wird zur Umgehung dieser Problematiken ein Lasttrennschalter für Mittelspannungsanwendungen bereitgestellt, indem das Selbstblasvolumen in einer Isolierstoffdüse angeordnet ist. Die Isolierstoffdüse umschließt dabei bevorzugt einen Tulpenkontakt, in den ein beweglicher Kontakt einführbar ist. Das Selbstblasvolumen ist dabei in der Isolierstoffdüse angeordnet. Das Selbstblasvolumen bzw. die Selbstblasvolumina sind dabei platzsparend in der Isolierstoffdüse angeordnet und dienen beim Öffnen des Mittelspannungs-Lasttrennschalters dazu, direkt an der Entstehungsstelle einen Lichtbogen mittels des benannten Prinzips auszublasen. Der Einsatz des Mittelspannungs-Lasttrennschalters erfolgt bei Bemessungsspannungen Um ≤ 52 kV.
  • Der Mittelspannungs-Lasttrennschalter ist bevorzugt in derart aufgebaut, dass die Isolierstoffdüse den einen Kontakt, den sie umgibt, rotationssymmetrisch umgibt. Dabei ist dieser Kontakt bevorzugt der Festkontakt, der von der Isolierstoffdüse zumindest teilweise rotationssymmetrisch umgeben ist und dieser Festkontakt ist dabei wiederum bevorzugt in Form eines Tulpenkontaktes aufgebaut. Dabei handelt es sich um eine Ausgestaltungsform, die konzeptionell aus der Hochspannungstechnik bekannt ist, wobei jedoch der wesentliche Unterschied darin besteht, dass ein Selbstblasvolumen in der Isolierstoffdüse angeordnet ist, was für Mittelspannungsanwendungen einen ausreichenden Blaseffekt erzielt und dabei ausgesprochen platzsparend ist und die Herstellungskosten deutlich reduziert.
  • In einer weiteren vorteilhaften Ausgestaltungsform der Erfindung sind Öffnungen des Selbstblasvolumens in zu einer Schaltachse hin ausgerichtet d.h. die Öffnung ist zeigt aus einem Winkel zwischen 0 Grad und 180 Grad auf die Schaltachse. Dies bewirkt, dass das Gas, das aus dem Selbstblasvolumen ausströmt, direkt auf den entstandenen Lichtbogen gerichtet ist und eine Ausblaswirkung somit verstärkt wird.
  • Der Mittelspannungs-Lasttrennschalter ist bevorzugt für Stromstärken zwischen 200 A und 1900 A ausgelegt. Hierfür ist es zweckmäßig, wenn das Selbstblasvolumen ein Volumen aufweist, das zwischen 10 ml und 200 ml, insbesondere zwischen 20 ml und 90 ml liegt. Diese Volumina sind verglichen mit Hochspannungsanwendungen relativ klein, sie sind jedoch ausreichend, in der Mittelspannung die entsprechenden Ausblaseffekte für den Lichtbogen zu bewirken.
  • Ferner ist es zweckmäßig, wenn drei Lasttrennschalter parallel geschaltet sind und von einem zentralen Antrieb betrieben werden bzw. mit diesem in Verbindung stehen. So können drei Phasen einer Leitung mit einer Schalterklasse betätigt werden. Es ist lediglich ein Antrieb notwendig.
  • Die Isolierstoffdüse ist bevorzugt aus einem anderen Material ausgestaltet, als der Kontakt, den sie umgibt. Bevorzugt kommt hierbei ein hochtemperaturbeständiger Kunststoff, insbesondere Polytetrafluorethylen zum Einsatz.
  • Bevorzugte Ausgestaltungsformen der Erfindung und besondere Merkmale werden anhand der folgenden Figur näher erläutert. Dabei handelt es sich um exemplarische Ausgestaltungsformen, die keine Einschränkung des Schutzbereichs darstellen.
  • Dabei zeigt:
  • Figur 1
    einen Querschnitt durch einen Tulpenkontakt für einen Mittelspannungs-Lasttrennschalter mit einem Selbstblasvolumen in der Isolierstoffdüse in geöffneten Zustand.
    Figur 2
    den Lasttrennschalter in geschlossenen Zustand
    Figur 3
    den Lasttrennschalter gemäß Figur 1 in einem Zwi-schenzustand während eines Schließ- oder Öffnungs-vorgangs mit ausgebildetem Lichtbogen und
    Figur 4
    den Stromverlauf während es Ausschaltvorgangs.
  • In Figur 1 ist schematisch ein Mittelspannungs-Lasttrennschalter dargestellt, der einen beweglichen Kontakt 4 und einen Festkontakt 6 umfasst. Grundsätzlich wäre es auch möglich, dass zwei bewegliche Kontakte vorgesehen sind, was jedoch bezüglich der Antriebstechnologie einen größeren Aufwand bedeutet. Der Bewegkontakt 4 ist in Form eines Stiftkontaktes ausgestaltet, der feste Kontakt 6 ist in Form eines Tulpenkontaktes 12 ausgestaltet. Auch diese Anordnung könnte grundsätzlich umgekehrt ausgestaltet sein, dann wäre der Bewegkontakt der Tulpenkontakt und der Festkontakt der Stiftkontakt. Der Stiftkontakt 4 ist jedoch zweckmäßigerweise, wie in Figur 1 dargestellt, entlang einer Schaltachse 18 in die Richtungen, die durch den Bewegungspfeil 20 dargestellt sind, beweglich gelagert.
  • In der in Figur 1 dargestellten Form ist der Mittelspannungs-Lasttrennschalter 2 in einem geöffneten Zustand gezeigt. Wenn der Stiftkontakt 4 in Richtung des Tulpenkontaktes 12 bewegt wird, so durchläuft er erst einen Bereich, der von einer Isolierstoffdüse 10 umgeben ist, bevor er in den Tulpenkontakt 12 eingefahren wird. Dieser geschlossene Zustand ist in Figur 2 dargestellt. Während des Öffnens des Mittelspannungs-Lasttrennschalters 2 und auch kurz vor dem Schließzustand entsteht ein Lichtbogen 24 zwischen dem Stiftkontakt 4 und dem Tulpenkontakt 12 (Figur 3). Insbesondere beim Öffnen des Schalters ist es von technischer Bedeutung, dass der Lichtbogen 24 möglichst zügig gelöscht wird. In Figur 4 ist dargestellt, wie der Stromverlauf I in Abhängigkeit der Zeit t in etwa in Form einer Sinuskurve verläuft. Dabei ist es zweckmäßig, dass kurz vor dem Zeitpunkt t0, also der Nulldurchgang der Stromkurve I und der darauffolgenden Umpolung der Lichtbogen 24 gelöscht ist. Dazu ist es zweckmäßig zum Zeitpunkt tL, also zu einem Löschzeitpunkt das Ausblasen des Lichtbogens 24 einzuleiten. Hierbei wird ein Isoliermedium 22, das insbesondere ein gasförmiges Isoliermedium ist, und das in einer Löschkammer 14 vorliegt, durch den Wärmeeintrag des Lichtbogens 24 erhitzt und dadurch verdichtet. Das Isoliermedium 22 liegt natürlich auch in den Selbstblasvolumina 10 vor, die mit der Löschkammer 14 über die Öffnungen 16 der Selbstblasvolumina 10 verbunden sind. Durch den Lichtbogen 24 kommt es jedoch zu einer lokalen Temperaturerhöhung des Isoliermediums 22 im Bereich der Isolierstoffdüse 8, sodass das Isoliermedium 22 in diesem Bereich um die Öffnungen 16 herum besonders aufgeheizt wird und somit der Druck des Isoliermediums 22 in den Selbstblasvolumina 10 lokal erhöht wird. Es wird in diesem Beispiel der Plural des Begriffs Selbstblasvolumen 10 verwendet, da je nach Bauart und Anforderung ein oder mehr Selbstblasvolumina zweckmäßig sind. Das Isoliermedium 22 mit erhöhtem Druck in den Selbstblasvolumina 10 wird nun mit den Bezugszeichen 22' versehen. Ab einem bestimmten Druck, den das Isoliermedium 22' in den Selbstblasvolumina 10 aufweist, kommt es zu einer Rückströmung, die durch die Pfeile 23 veranschaulicht ist. Die Strömungsgeschwindigkeit des Isoliermediums 22' entlang der Pfeile 23 ist so hoch, dass der Lichtbogen 24 bevorzugt zum Zeitpunkt tL, aber mindestens bis zum Zeitpunkt t0, also zum Nulldurchgang der Stromkurve gelöscht wird und nach dem Nulldurchgang der Stromkurve sich auch nicht mehr entzündet.
  • Die Selbstblasvolumina 10 haben dabei ein relativ kleines Volumen, das zwischen 10 ml und 200 ml, bevorzugt zwischen 20 ml und 90 ml beträgt. Bei einem Mittelspannungs-Lasttrennschalter 2 ist dies ausreichend, um den Lichtbogen 24 zu löschen. Das wiederum ermöglicht es, eines oder mehrere Selbstblasvolumina 10 in der Isolierstoffdüse 8 anzuordnen, was gegenüber einem aus der Hochspannungstechnik bekannten Selbstblasschalter eine deutliche Reduzierung der bauartbedingten Komplexität des Schalters bedeutet. Somit kann der Schalter auch deutlich günstiger produziert werden und in der Mittelspannungstechnik Anwendung finden. Als Isoliermedium 22 kann dabei klassisches Schwefelhexafluorid (SF6) jedoch auch neuere untersuchte Medien wie Gasmischungen basierend auf anderen fluorierten Gasen, beispielsweise Fluorketonen oder Fluornitrilen zum Einsatz kommen. Besonders zweckmäßig ist der Einsatz des beschriebenen Mittelspannungs-Lasttrennschalters bei Verwendung von Isoliermedien 22, die schlechtere Löscheigenschaften als das Schwefelhexafluorid aufweisen. Derartige Medien können eine zusätzliche Blasfunktion durch die Selbstblasvolumina 10 zur sicheren Löschung des Lichtbogens 24 benötigen. Grundsätzlich können als Isoliermedien auch natürliche Gase und Luftbestandteile, wie Luft selbst, Kohlendioxid oder Stickstoff zum Einsatz kommen. Diese Medien können auch als Mischgase oder Trägergase zu fluorierten Gasen, wie beispielsweise Fluornitrile oder Fluorketone verwendet werden.

Claims (12)

  1. Mittelspannungs-Lasttrennschalter mit zwei Kontakten (4, 6), einem beweglichen Kontakt (4) und einem Festkontakt (6), wobei ein Kontakt (4, 6) durch eine Isolierstoffdüse (8) zumindest teilweise umgeben ist, dadurch gekennzeichnet, dass mindestens ein Selbstblasvolumen in der Isolierstoffdüse angeordnet ist.
  2. Mittelspannungs-Lasttrennschalter nach Anspruch 1, dadurch gekennzeichnet, dass die Isolierstoffdüse (10) den einen Kontakt (4, 6) rotationssymmetrisch umgibt.
  3. Mittelspannungs-Lasttrennschalter nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Festkontakt (6) von der Isolierstoffdüse (10) zumindest teilweise umgeben ist.
  4. Mittelspannungs-Lasttrennschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der feststehende Kontakt (6) ein Tulpenkontakt (12) ist.
  5. Mittelspannungs-Lasttrennschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Öffnungen (16) des Selbstblasvolumens zu einer Schaltachse hin(18) ausgerichtet sind.
  6. Mittelspannungs-Lasttrennschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Lasttrennschalter (2) für eine Stromstärke zwischen 200 A bis 1900 A ausgelegt ist.
  7. Mittelspannungs-Lasttrennschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Selbstblasvolumen (10) ein Volumen zwischen 10 ml und 200 ml aufweist.
  8. Mittelspannungs-Lasttrennschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Selbstblasvolumen (10) ein Volumen zwischen 20 ml und 90 ml aufweist.
  9. Mittelspannungs-Lasttrennschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass drei Lasttrennschalter (2) mit einem zentralen Antrieb in Verbindung stehen.
  10. Mittelspannungs-Lasttrennschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Isolierstoffdüse aus einem anderen Material als der Kontakt besteht.
  11. Mittelspannungs-Lasttrennschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Isolierstoffdüse (8) aus einem Kunststoff bestehet.
  12. Mittelspannungs-Lasttrennschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Isolierstoffdüse (8) aus Polytetrafluorethylen umfasst.
EP18164674.6A 2018-03-28 2018-03-28 Mittelspannungs-lasttrennschalter Withdrawn EP3547340A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18164674.6A EP3547340A1 (de) 2018-03-28 2018-03-28 Mittelspannungs-lasttrennschalter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18164674.6A EP3547340A1 (de) 2018-03-28 2018-03-28 Mittelspannungs-lasttrennschalter

Publications (1)

Publication Number Publication Date
EP3547340A1 true EP3547340A1 (de) 2019-10-02

Family

ID=61832443

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18164674.6A Withdrawn EP3547340A1 (de) 2018-03-28 2018-03-28 Mittelspannungs-lasttrennschalter

Country Status (1)

Country Link
EP (1) EP3547340A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207447A (en) * 1977-03-24 1980-06-10 Mitsubishi Denki Kabushiki Kaisha Gas interrupter having narrow and wide arc passages
DE102005019424A1 (de) * 2005-04-25 2006-11-02 Abb Technology Ag Lasttrennschalter
DE102009043195A1 (de) * 2009-09-26 2011-03-31 Rwth Aachen Abbrandelement zur Anordnung an einem Schaltkontakt eines Leistungsschalters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207447A (en) * 1977-03-24 1980-06-10 Mitsubishi Denki Kabushiki Kaisha Gas interrupter having narrow and wide arc passages
DE102005019424A1 (de) * 2005-04-25 2006-11-02 Abb Technology Ag Lasttrennschalter
DE102009043195A1 (de) * 2009-09-26 2011-03-31 Rwth Aachen Abbrandelement zur Anordnung an einem Schaltkontakt eines Leistungsschalters

Similar Documents

Publication Publication Date Title
DE112013002015T5 (de) Leistungsschalter
EP1859463A1 (de) Kurvenprofilschalter
DE2209287B2 (de)
DE102009057703A1 (de) Leistungsschalteranordnung
EP2343721A1 (de) Gasisolierter Hochspannungsschalter
EP0016983B1 (de) Autopneumatischer Druckgasschalter
DE102013200913A1 (de) Schaltanordnung
WO2016151002A1 (de) Isolierdüse und elektrische schalteinrichtung mit der isolierdüse
EP3928344B1 (de) Optimierter dreistellungsschalter
EP3948912B1 (de) Mittelspannungs-lasttrennschalter
EP3547340A1 (de) Mittelspannungs-lasttrennschalter
WO2009124582A1 (de) Gasisolierter hochspannungsschalter
DE2811510A1 (de) Stromkreisunterbrecher
EP3039703B1 (de) Gasisolierter hochspannungsschalter
EP3803931B1 (de) Gasisolierter schalter
DE3412566C2 (de)
DE102006014286A1 (de) Unterbrechereinheit mit Einschaltwiderstand
DE676169C (de) Druckgasschalter, insbesondere fuer hohe Spannungen
DE102017207422A1 (de) Trennschalter
WO2016124175A1 (de) Leistungsschalter
WO2020229035A1 (de) Mittelspannungs-lasttrennschalter
DE202015009816U1 (de) Vorrichtung zum Unterbrechen von ausschließlich Nicht-Kurzschlussströmen, insbesondere Trennschalter oder Erdungsschalter
DE2501607C2 (de) Elektrischer Leistungsschalter
DE901195C (de) Mehrfachunterbrecher
EP0069694A2 (de) Kontaktsystem für Druckgas-Leistungsschalter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603