EP3948912B1 - Mittelspannungs-lasttrennschalter - Google Patents

Mittelspannungs-lasttrennschalter Download PDF

Info

Publication number
EP3948912B1
EP3948912B1 EP20710860.6A EP20710860A EP3948912B1 EP 3948912 B1 EP3948912 B1 EP 3948912B1 EP 20710860 A EP20710860 A EP 20710860A EP 3948912 B1 EP3948912 B1 EP 3948912B1
Authority
EP
European Patent Office
Prior art keywords
contact
hollow
self
volume
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20710860.6A
Other languages
English (en)
French (fr)
Other versions
EP3948912A1 (de
Inventor
Marvin Bendig
Paul Gregor Nikolic
Florian Pleye
Martin Schaak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3948912A1 publication Critical patent/EP3948912A1/de
Application granted granted Critical
Publication of EP3948912B1 publication Critical patent/EP3948912B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7023Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/91Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism the arc-extinguishing fluid being air or gas

Definitions

  • the object of the invention is to provide a medium-voltage switch-disconnector that can be operated with an insulating medium that is alternative to the SF 6 , but has the same arc extinguishing behavior as a conventional SF 6 -operated switch-disconnector and can basically be operated with a drive unit, which also corresponds to a conventional size.
  • the medium-voltage switch-disconnector according to the invention according to claim 1 has two contacts that are mounted movably relative to one another.
  • One of the contacts is designed as a hollow contact, which is part of a hollow contact system.
  • an insulating material nozzle is provided which surrounds at least one of the two contacts, the insulating material nozzle having a self-blowing volume for receiving an insulating gas, the self-blowing volume in turn having an opening which is directed towards an arc space.
  • the invention is characterized in that the hollow contact comprises a contact hole for receiving a pin contact, which opens into the arc space on a first side and is connected to a compression volume on a second side, which is also part of the hollow contact system.
  • the compression volume is limited on a side facing away from the contact bore by a stamp that is movably mounted with respect to the hollow contact system.
  • the stamp When the contacts open, the stamp performs a translational movement with respect to the hollow contact system, which causes a reduction in the compression volume.
  • the invention reduces the mechanical energy required for application a blowing pressure that is necessary to blow the arc, so that the energy of the arc itself is used in combination with a blowing from the compression volume to build up pressure.
  • the switching performance is positively influenced by the corresponding gas flow.
  • the invention further reduces the mechanical effort required for blowing and thus successfully extinguishing the switching arc by using the energy input of the switching arc to extinguish the arc.
  • gas from the blowing from the compression volume, which is reduced by the stamp is accumulated on a contact side in the self-blowing volume, thus generating an additional blowing pressure in this self-blowing volume.
  • the hollow contact system is designed to be stationary during an opening movement of the contacts and the stamp is connected to a drive system to carry out the translational movement relative to the hollow contact system. Since the hollow contact system has a larger mass than the pin contact engaging in the hollow contact, it is expedient to move the pin contact since this requires less drive energy. Therefore, the hollow contact system or the hollow contact itself is designed as a fixed contact.
  • the stamp is connected to the drive; in a further preferred embodiment of the invention, the stamp and the pin contact are connected to a single drive unit via a mechanical device.
  • the hollow contact is designed as a tulip contact, which has a rounding at its opening, which is suitable for self-centering accommodating a likewise rounded pin contact, so that in a closed state of the switch-disconnector, the pin contact at least partially engages in the contact bore of the hollow contact.
  • the insulating material nozzle is arranged around the hollow contact and preferably surrounds it concentrically.
  • the self-blow volumes in principle one self-blow volume is sufficient, but as a rule several self-blow volumes are advantageous) are arranged with their openings very close to the edge of the hollow contact, so that in a preferred embodiment a portion of the hollow contact, preferably an outer edge of the hollow contact, in turn forms part of the opening of the self-blowing volume.
  • a stamp 24 is provided, which limits the compression volume 20 on a side 22 facing away from the contact bore 16.
  • the stamp 24 carries out a translational movement in the direction of the arrow 26.
  • This translational movement 26 reduces the compression volume 20, which is indicated by the dashed line on the stamp 24 Figure 2 is shown.
  • the movement of the stamp 24 and the reduction of the compression volume 20 creates an insulating gas which is in Figure 2 illustrated by a cold gas stream 32, pressed through the contact hole 16 into the arc space 14.
  • the cold gas stream 32 splits there, part of which is directed directly at the switching arc 30 and cools it in the process.
  • a partial flow 34 of the cold gas flow runs in the direction of the self-blowing volume, which results in a pressure increase in the self-blowing volume 10.
  • the increase in pressure in the self-blowing volume 10 results, on the one hand, from the increasing amount of gas there, and, on the other hand, from the increased temperature of the former cold gas flowing in there, which is already heated by the switching arc 30.
  • the energy of the switching arc 30 is thus used to heat the former cold gas 32, which causes the pressure in the self-blasting volume 10 to rise to a critical pressure P k .
  • the critical pressure P k in the self-blow volume 10 is reached, the gas flow from the self-blow volume reverses, which leads to increased blowing of the switching arc 30 and is indicated by the arrow 36 in Figure 2 is illustrated.
  • FIG. 3 A diagram is shown purely schematically, which is based on experimental measured values, but which is shown here purely qualitatively.
  • a blowing pressure P is indicated on the This is a measure of the switching capacity of the medium-voltage switch-disconnector. A higher value means a higher breaking power.
  • the curve 48 qualitatively shows the course of this interruptible current steepness when the switching arc 30 is blown through the hollow contact 4 due to the reduction in the compression volume 20. When this curve 48 was recorded, the use of self-blowing volumes 10 was omitted. There is a continuous increase in the breaking power as the blowing pressure P increases.
  • a drive unit is preferably provided, which is designed such that the stamp 24 and the moving contact 18 are moved by a central drive unit.
  • the pin contact 18 and the stamp 24 are connected via a mechanical deflection unit, also not shown, so that the translational movement 26, which essentially also corresponds to the translational movement of the pin contact 18, is carried out synchronously.
  • Through the simultaneous movement of the Stamp 24 with the already necessary movement of the pin contact 18 can already be used drive energy to move both components synchronously.
  • the drive energy already present is also used to blow additional insulating gas into the arc space 14 and to accelerate the extinguishing of the switching arc 30.
  • the energy of the switching arc 30 is used further to fill the self-blow volumes 10 up to a critical pressure and to cause a return flow from the self-blow volumes 10.
  • This return flow which is also referred to as hot gas flow 38, also contributes to extinguishing the switching arc 30.
  • the self-blowing volumes 10 are preferably arranged rotationally symmetrically around the hollow contact 4 in such a way that the edge of the hollow contact 4, which also forms the so-called tulip, preferably represents a part of the opening 12 of the volume 10.
  • the opening 12 of the volume 10 is understood to mean not only the opening itself, but also an opening channel, which is partially formed by the outer edge of the hollow contact 4. In this way, the opening 12 is arranged very close to the point of origin of the switching arc 30 and can therefore have its greatest effect.
  • SF 6 -free gases are used as the insulating gas, whereby organofluorine compounds from the fluoronitrile or fluoroketone series can be used.
  • SF 6 -free gases are used as the insulating gas, whereby organofluorine compounds from the fluoronitrile or fluoroketone series can be used.
  • purified air clean air
  • the heat of the switching arc 30 can cause the material of the insulating material nozzle 8 to burn off, which can occur on the surface. It may be advisable to add oxygen to the insulating gas in order, for example, to bind the resulting carbon again during this combustion.
  • the ones in the Figures 1 , 2 , or 3 therefore represent a combination of extinguishing the switching arc 30 as quickly as possible and with little technical effort and low drive energy.
  • the measure of the compression volume 20 and the movement of the stamp 24 are relied upon, which is supported by the self-blowing volumes 10, which are additionally filled by the stamp movement 22.
  • the mechanical effort required to blow and successfully extinguish the switching arc 30 is thus reduced. This happens because the energy input of the switching arc 30 is used to extinguish the arc, as already described.
  • insulating gas from the blowing is supplied to the self-blowing volume 10, blown back after reaching a critical temperature and thus an additional blowing pressure is built up from the self-blowing volumes.

Landscapes

  • Circuit Breakers (AREA)

Description

  • Die Erfindung betrifft einen Mittelspannungs-Lasttrennschalter nach dem Oberbegriff des Patentanspruchs 1.
  • Zur Substitution des Isoliergases Schwefelhexafluorid (SF6), das wegen seines hohen Treibhauspotenzials durch Alternativen ersetzt werden soll, werden verschiedene elektrisch isolierende Gase bzw. Flüssigkeiten untersucht. Insbesondere werden im Stand der Technik fluororganische Verbindungen beschrieben, unter denen insbesondere die Fluorketone und die Fluornitrile hervorgehoben werden. Aufgrund einer möglichen Toxizität von Fluornitrilen und aufgrund eines ungünstigen Aggregatszustandes der Fluorketone bei Betriebsbedingungen von Isoliergasen in Stromunterbrechern, werden jedoch auch Luft, synthetische Luft oder Mischungen aus natürlichen Gasen wie Kohlenstoffdioxid, Stickstoff oder Sauerstoff eingehend untersucht. Zum derzeitigen Stand haben die beschriebenen Alternativgase zwar ihre grundsätzliche Eignungsfähigkeit als Ersatz für das sehr gut isolierende Schwefelhexafluorid unter Beweis gestellt, dennoch bieten sie letztlich nicht in ihrer Gesamtheit die positiven, insbesondere elektrisch isolierenden Eigenschaften des Schwefelhexafluorids. Aus diesem Grund bedarf es in einigen Anwendungen von Stromunterbrechern auch konstruktiver Änderungen im System, um dasselbe Isolierverhalten bzw. auch dasselbe Lichtbogenlöschverhalten zu erzielen wie das mit einem Stromunterbrecher mit einer SF6-Isolierung der Fall ist.
  • Dokument JP H11 213827 A offenbart einen Lasttrennschalter nach dem Oberbegriff des Anspruchs 1.
  • Die Aufgabe der Erfindung besteht darin, einen Mittelspannungs-Lasttrennschalter bereitzustellen, der mit einem zum SF6 alternativen Isoliermedium betreibbar ist, jedoch das gleiche Lichtbogenlöschverhalten an den Tag legt, wie ein herkömmlicher SF6-betriebener Lasttrennschalter und dabei grundsätzlich mit einem Antriebsaggregat betreibbar ist, das ebenfalls einer herkömmlichen Größe entspricht.
  • Die Lösung der Aufgabe besteht in einem Mittelspannungs-Lasttrennschalter mit den Merkmalen des Patentanspruchs 1.
  • Der erfindungsgemäße Mittelspannungs-Lasttrennschalter gemäß Patentanspruch 1 weist zwei zueinander beweglich gelagerte Kontakte auf. Einer der Kontakte ist dabei als Hohlkontakt ausgestaltet, der Teil eines Hohlkontaktsystems ist. Ferner ist eine Isolierstoffdüse vorgesehen, die mindestens einen der beiden Kontakte umgibt, wobei die Isolierstoffdüse ein Selbstblasvolumen zur Aufnahme eines Isoliergases aufweist, wobei das Selbstblasvolumen wiederum eine Öffnung aufweist, die zu einem Lichtbogenraum hin gerichtet ist. Die Erfindung zeichnet sich dadurch aus, dass der Hohlkontakt eine Kontaktbohrung zur Aufnahme eines Stiftkontaktes umfasst, die an einer ersten Seite in den Lichtbogenraum mündet und an einer zweiten Seite mit einem Kompressionsvolumen in Verbindung steht, das ebenfalls Bestandteil des Hohlkontaktsystems ist. Das Kompressionsvolumen ist an einer der Kontaktbohrung abgewandten Seite von einem bezüglich des Hohlkontaktsystems beweglich gelagerten Stempel begrenzt. Der Stempel vollzieht bei einer Öffnungsbewegung der Kontakte eine translatorische Bewegung bezüglich des Hohlkontaktsystems, was eine Verkleinerung des Kompressionsvolumens bewirkt.
  • Die Kombination der beschriebenen Merkmale bewirkt, dass durch die Verkleinerung des Kompressionsvolumens Isoliergas, das in dem Kompressionsvolumen vorhanden ist, durch die Kontaktbohrung in den Lichtbogenraum strömt, wobei dieses Isoliergas einerseits einen dort vorhandenen Lichtbogen kühlt, sich dabei erhitzt und in das Selbstblasvolumen, das in der Isolierstoffdüse vorhanden ist, einfließt. Ab Erreichen eines kritischen Drucks und einer kritischen Temperatur sowohl im Lichtbogenraum als auch in dem Selbstblasvolumen strömt dieses Isoliergas zurück in den Lichtbogenraum und kühlt diesen, sodass es beim darauffolgenden Nulldurchgang eines Wechselstroms zu einem Erlöschen des Lichtbogens kommt. Die Erfindung reduziert die notwendige mechanische Energie zur Aufbringung eines Beblasungsdrucks, der notwendig ist, um den Lichtbogen zu beblasen, sodass die Energie des Lichtbogens selbst in Kombination mit einer Beblasung aus dem Kompressionsvolumen zum Druckaufbau genutzt wird. Durch die Positionierung des Selbstblasvolumens in der Isolierstoffdüse wird dabei durch die entsprechende Gasströmung die Ausschaltleistung positiv beeinflusst. Die Erfindung reduziert im Weiteren den zur Beblasung und damit zur erfolgreichen Löschung des Schaltlichtbogens aufzubringenden mechanischen Aufwand dadurch, dass der Energieeintrag des Schaltlichtbogens zur Lichtbogenlöschung eingesetzt wird. Gleichzeitig wird im Selbstblasvolumen Gas aus der Beblasung aus dem Kompressionsvolumen, das durch den Stempel reduziert wird, auf einer Kontaktseite aufgestaut und so ein zusätzlicher Beblasungsdruck in diesem Selbstblasvolumen erzeugt.
  • In einer Ausführungsform der Erfindung ist das Hohlkontaktsystem bei einer Öffnungsbewegung der Kontakte stationär ausgestaltet und der Stempel ist dabei zur Ausführung der translatorischen Bewegung gegenüber des Hohlkontaktsystems mit einem Antriebssystem in Verbindung. Da das Hohlkontaktsystem eine größere Masse aufweist als der in den Hohlkontakt eingreifende Stiftkontakt ist es zweckmäßig, den Stiftkontakt zu bewegen, da dies weniger Antriebsenergie erfordert. Daher ist das Hohlkontaktsystem bzw. der Hohlkontakt an sich als Festkontakt ausgestaltet. Der Stempel ist dabei mit dem Antrieb verbunden, in einer weiteren bevorzugten Ausgestaltungsform der Erfindung stehen der Stempel und der Stiftkontakt über eine mechanische Vorrichtung mit einem einzigen Antriebsaggregat in Verbindung.
  • Der Hohlkontakt ist in bevorzugter Ausgestaltungsform als anzuwendender Tulpenkontakt ausgestaltet, der an seiner Öffnung eine Abrundung aufweist, was dazu geeignet ist, einen ebenfalls abgerundeten Stiftkontakt selbstzentrierend aufzunehmen, sodass in einem geschlossenen Zustand des Lasttrennschalters der Stiftkontakt zumindest teilweise in die Kontaktbohrung des Hohlkontaktes eingreift.
  • In einer weiteren bevorzugten Ausgestaltungsform der Erfindung ist die Isolierstoffdüse um den Hohlkontakt herum angeordnet und umgibt diesen dabei bevorzugt konzentrisch. Die Selbstblasvolumina (grundsätzlich ist ein Selbstblasvolumen ausreichend, in der Regel sind jedoch mehrere Selbstblasvolumina von Vorteil) sind mit ihren Öffnungen dabei sehr nahe am Rand des Hohlkontaktes angeordnet, sodass in einer bevorzugten Ausgestaltungsform ein Teilbereich des Hohlkontaktes, bevorzugt ein äußerer Rand des Hohlkontaktes, wiederum einen Teil der Öffnung des Selbstblasvolumens bildet.
  • Weitere Ausgestaltungsformen der Erfindung und weitere Merkmale werden anhand der folgenden Figuren näher erläutert. Dabei handelt es sich um rein schematische und exemplarische Darstellungen, die keine Einschränkung des Schutzbereichs darstellen. Dabei zeigen:
  • Figur 1
    einen Querschnitt durch einen Mittelspannungs-Lasttrennschalter mit Kompressionsvolumen im Hohlkontaktsystem und Selbstblasvolumen während des Auftretens eines Schaltlichtbogens,
    Figur 2
    der gleiche Lasttrennschaler gemäß Figur 1 mit verringertem Kompressionsvolumen und gelöschtem Schaltlichtbogen, und
    Figur 3
    eine schematische Darstellung der Löscheigenschaften in Abhängigkeit des Druckes.
  • In Figur 1 sind schematisch die Kontakte eines Mittelspannungs-Lasttrennschalters 2 dargestellt. Der Einfachheit halber wird auf die Darstellung von Peripheriesysteme sowie das Gehäuse des Lasttrennschalters 2 verzichtet. In Figur 1 sind lediglich ein Hohlkontaktsystem 6, das einen Hohlkontakt 4, der als Tulpenkontakt 5 ausgestaltet ist, sowie ein Stiftkontakt 18 und eine den Hohlkontakt 5 umgebenden Isolierstoffdüse 8 dargestellt. Das Hohlkontaktsystem 6 umfasst dabei neben dem Hohlkontakt 4 und eine Isolierstoffdüsenhalterung 28 ein Gehäuse 44, in das der Hohlkontakt 4 eingebracht ist und das zumindest teilweise ein Kompressionsvolumen 20 umschließt. Der Hohlkontakt 4 weist dabei, wie dies bereits der Name sagt, eine Kontaktbohrung 16 auf, die an einer ersten Seite mit einem Lichtbogenraum in Verbindung steht und an ihrer zweiten Seite, dem Lichtbogenraum 14 abgewandten Seite in das Kompressionsvolumen 20 mündet.
  • Ferner ist ein Stempel 24 vorgesehen, der das Kompressionsvolumen 20 an einer der Kontaktbohrung 16 abgewandten Seite 22 begrenzt. Der Stempel 24 vollzieht bei einer Öffnungsbewegung der Kontakte 4, 18 eine translatorische Bewegung in Richtung des Pfeiles 26. Durch diese translatorische Bewegung 26 wird das Kompressionsvolumen 20 verringert, was durch die gestrichelte Andeutung des Stempels 24 in Figur 2 dargestellt ist. Durch die Bewegung des Stempels 24 und die Verringerung des Kompressionsvolumens 20 wird ein Isoliergas, das in Figur 2 durch einen Kaltgasstrom 32 veranschaulicht ist, durch die Kontaktbohrung 16 in den Lichtbogenraum 14 gepresst. Dort spaltet sich der Kaltgasstrom 32 auf, ein Teil davon ist direkt auf den Schaltlichtbogen 30 gerichtet und kühlt diesen dabei. Ein Teilstrom 34 des Kaltgasstromes verläuft dabei jedoch in Richtung des Selbstblasvolumens, wodurch es in dem Selbstblasvolumen 10 zu einem Druckanstieg kommt. Der Druckanstieg im Selbstblasvolumen 10 resultiert zum einen aus der dort ansteigenden Gasmenge, und zum anderen auch durch die erhöhte Temperatur des dort einströmenden ehemaligen Kaltgases, das bereits durch den Schaltlichtbogen 30 erwärmt ist. Die Energie des Schaltlichtbogens 30 wird somit zur Erwärmung des ehemaligen Kaltgases 32 verwandt, was den Druck im Selbstblasvolumen 10 bis zu einem kritischen Druck Pk ansteigen lässt. Bei Erreichen des kritischen Druckes Pk im Selbstblasvolumen 10 kommt es zu einer Umkehr des Gasstromes aus dem Selbstblasvolumen heraus, was zu einer verstärkten Beblasung des Schaltlichtbogens 30 führt und durch den Pfeil 36 in Figur 2 veranschaulicht ist.
  • In Figur 3 ist rein schematisch ein Diagramm dargestellt, das auf experimentellen Messwerten beruht, das hier jedoch rein qualitativ dargestellt ist. Auf der X-Achse ist dabei ein Beblasungsdruck P angegeben, auf der Y-Achse ist die durch den Mittelspannungslasttrennschalter bei einem Beblasungsdruck P unterbrechbare maximale Stromsteilheit des Wechselstroms im Stromnulldurchgang (di/dtkrit) dargestellt. Diese ist ein Maß für die Schaltleistung des Mittelspannungslasttrennschalters. Ein höherer Wert bedeutet eine höhere Ausschaltleistung. Die Kurve 48 zeigt qualitativ den Verlauf dieser unterbrechbaren Stromsteilheit bei einer Beblasung des Schaltlichtbogens 30 durch den Hohlkontakt 4 aufgrund der Verkleinerung des Kompressionsvolumens 20. Bei der Aufnahme dieser Kurve 48 wurde auf die Anwendung von Selbstblasvolumina 10 verzichtet. Es ist ein kontinuierlicher Anstieg der Ausschaltleistung mit steigendem Beblasungsdruck P zu verzeichnen. Ein noch deutlicherer Anstieg der Ausschaltleistung ist jedoch in der qualitativ dargestellten Kurve 46 zu verzeichnen, die unter Verwendung von Selbstblasvolumina und ansonsten gleichen Bedingungen, wie in Figur 1 und 2 dargestellt, aufgenommen ist. Dies zeigt, dass das Zusammenwirken der Selbstblasvolumina 10 und des Stempels 24, der das Kompressionsvolumen 20 reduziert und somit das Beblasen des Schaltlichtbogens 30 vornimmt, zu einer signifikanten Steigerung der Ausschaltleistung führt, was ein Maß für die effektive Löschung des Schaltlichtbogens 30 darstellt.
  • Bevorzugt ist eine in den Figuren nicht dargestellte Antriebseinheit vorgesehen, die so ausgestaltet ist, dass der Stempel 24 und der Bewegkontakt 18 durch eine zentrale Antriebseinheit bewegt wird. Der Stiftkontakt 18 und der Stempel 24 stehen dabei über eine ebenfalls nicht dargestellte mechanische Umlenkeinheit in Verbindung, sodass die translatorische Bewegung 26, die im Wesentlichen auch der translatorischen Bewegung des Stiftkontaktes 18 entspricht, synchron ausgeführt wird. Somit kann auf eine zusätzliche kostenintensive Antriebseinheit, die zusätzlichen Bauraum benötigen würde, verzichtet werden. Durch die gleichzeitige Bewegung des Stempels 24 mit der ohnehin notwendigen Bewegung des Stiftkontaktes 18 kann dabei bereits vorhandene Antriebsenergie genutzt werden, um beide Bauteile synchron zu bewegen. Dadurch wird die bereits vorhandene Antriebsenergie auch dazu genutzt, zusätzliches Isoliergas in den Lichtbogenraum 14 zu blasen und das Löschen des Schaltlichtbogens 30 zu beschleunigen. Ferner wird die Energie des Schaltlichtbogens 30 noch weiter genutzt, um die Selbstblasvolumina 10 bis zu einem kritischen Druck zu füllen und einen Rückstrom aus dem Selbstblasvolumina 10 zu bewirken. Dieser Rückstrom, der auch als Heißgasstrom 38 bezeichnet wird, trägt zusätzlich zum Löschen des Schaltlichtbogens 30 bei.
  • Die Selbstblasvolumina 10 sind bevorzugt rotationssymmetrisch um den Hohlkontakt 4 in der Art angeordnet, so dass der Rand des Hohlkontaktes 4, der auch die sogenannte Tulpe bildet, bevorzugt einen Teil der Öffnung 12 des Volumens 10 darstellt. Hierbei wird unter der Öffnung 12 des Volumens 10 nicht nur die Öffnung an sich, sondern ein Öffnungskanal verstanden, der eben teilweise von der äußeren Berandung des Hohlkontaktes 4 gebildet wird. Auf diese Weise ist die Öffnung 12 sehr nah am Entstehungsort des Schaltlichtbogens 30 angeordnet und kann damit ihre stärkste Wirkung entfalten.
  • Als Isoliergas werden hierbei insbesondere SF6-freie Gase verwendet, wobei fluororganische Verbindungen aus den Reihen der Fluornitrile oder Fluorketone zum Einsatz kommen können. Bevorzugt werden jedoch weniger problematische und leichter handzuhabende natürliche Gase bzw. Mischungen aus diesen Gasen verwendet. Hierbei kann zum Beispiel gereinigte Luft (Clean Air), die bevorzugt synthetisch hergestellt wird, verwendet werden. Je nach Verwendung des Materials der Isolierstoffdüse 8 kann es durch die Wärme des Schaltlichtbogens 30 zu einem Abbrand des Materials der Isolierstoffdüse 8 kommen, der oberflächlich von Statten gehen kann. Hierbei kann es zweckmäßig sein, dem Isoliergas Sauerstoff beizumischen, um beispielsweise entstehenden Kohlenstoff bei diesem Abbrand erneut zu binden.
  • Die in den Figuren 1, 2, bzw. 3 beschriebenen Maßnahmen stellen somit eine Kombination dar, den Schaltlichtbogen 30 möglichst zeitnah und mit geringem technischem Aufwand und geringen Antriebsenergien zu löschen. Dabei wird einerseits auf die Maßnahme des Kompressionsvolumens 20 und die Bewegung des Stempels 24 gesetzt, was durch die Selbstblasvolumina 10, die durch die Stempelbewegung 22 zusätzlich gefüllt werden, unterstützt wird. Somit wird der zur Beblasung und erfolgreichen Löschung des Schaltlichtbogens 30 aufzubringende mechanische Aufwand reduziert. Dies geschieht dadurch, dass der Energieeintrag des Schaltlichtbogens 30 zur Lichtbogenlöschung eingesetzt wird, wie bereits beschrieben ist. Gleichzeitig wird in dem Selbstblasvolumen 10 Isoliergas aus der Beblasung zugeführt, nach Erreichen einer kritischen Temperatur zurückgeblasen und so ein zusätzlicher Beblasungsdruck aus den Selbstblasvolumina aufgebaut.
  • Bezugszeichenliste
  • 2
    Lasttrennschalter
    4
    Hohlkontakt
    5
    Tulpenkontakt
    6
    Hohlkontaktsystem
    8
    Isolierstoffdüse
    10
    Selbstblasvolumen
    12
    Öffnung Volumen
    14
    Lichtbogenraum
    16
    Kontaktbohrung
    17
    erste Seite Kontaktbohrung
    18
    Stiftkontakt
    19
    zweite Seite Kontaktbohrung
    20
    Kompressionsvolumen
    22
    Seite Kontaktbohrung abgerundet
    24
    Stempel
    26
    translatorische Bewegung
    28
    Isolierstoffdüsenhalter
    30
    Lichtbogen
    32
    Kaltgasstrom
    34
    Kaltgasstrom im Selbstblasvolumen
    36
    Selbstblasstrom
    38
    Heißgasstrom
    40
    Festkontakt
    42
    Bewegkontakt
    44
    Gehäuse Hohlkontaktsystem
    46
    Verlauf mit Selbstblasvolumen
    48
    Verlauf ohne Selbstblasvolumen

Claims (7)

  1. Mittelspannungs-Lasttrennschalter mit
    - zwei zueinander beweglich gelagerten Kontakten, wobei ein erster der Kontakte ein Stiftkontakt (18) ist und der zweite der Kontakte ein Hohlkontakt (4) mit einer Kontaktbohrung (16) zur Aufnahme des Stiftkontakts (18) ist,
    - einem Hohlkontaktsystem (6), das den Hohlkontakt (4) und ein Kompressionsvolumen (20) umfasst,
    - einem Lichtbogenraum (14),
    - einem Stempel (24), der zum Hohlkontaktsystem (6) beweglich gelagert ist,
    wobei
    - die Kontaktbohrung (16) an einer ersten Seite (17) in den Lichtbogenraum (14) mündet und an einer zweiten Seite (19) mit dem Kompressionsvolumen (20) in Verbindung steht,
    - das Kompressionsvolumen (20) an einer von der Kontaktbohrung (16) abgewandten Seite (22) vom Stempel (24) begrenzt ist,
    - der Stempel (24) bei einer Öffnungsbewegung der Kontakte (4, 18) eine translatorische Bewegung (26) bezüglich des Hohlkontaktsystems (6) vollzieht und eine Verkleinerung des Kompressionsvolumens (20) bewirkt,
    gekennzeichnet durch eine Isolierstoffdüse (8), die mindestens einen der Kontakte (4, 18) umgibt und ein Selbstblasvolumen (10) zur Aufnahme eines Isoliergases umfasst, wobei das Selbstblasvolumen (10) eine Öffnung (12) zum Lichtbogenraum (14) aufweist.
  2. Mittelspannung-Lasttrennschalter nach Anspruch 1, dadurch gekennzeichnet, dass das Hohlkontaktsystem (6) bei einer Öffnungsbewegung stationär ausgestaltet ist und der Stempel (24) zur Ausführung der translatorischen Bewegung (26) gegenüber des Hohlkontaktsystems (6) mit einem Antriebssystem in Verbindung steht.
  3. Mittelspannung-Lasttrennschalter nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Hohlkontakt (4) als Tulpenkontakt (5) ausgestaltet ist.
  4. Mittelspannung-Lasttrennschalter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein Bewegkontakt (42) als Stiftkontakt (18) ausgebildet ist und in einem geschlossenen Zustand des Lasttrennschalters (2) zumindest teilweise in die Kontaktbohrung (16) des Hohlkontaktes (4) eingreift.
  5. Mittelspannung-Lasttrennschalter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Isolierstoffdüse (8) um den Hohlkontakt (4) angeordnet ist.
  6. Mittelspannung-Lasttrennschalter nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass der Stempel (24) und der Stiftkontakt (18) gekoppelt durch ein Antriebsaggregat bewegbar angeordnet sind.
  7. Mittelspannung-Lasttrennschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Öffnung (12) des Selbstblasvolumens (10) zumindest teilweise durch einen Teilbereich des Hohlkontaktes (4) gebildet ist.
EP20710860.6A 2019-05-10 2020-03-05 Mittelspannungs-lasttrennschalter Active EP3948912B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019206807.3A DE102019206807A1 (de) 2019-05-10 2019-05-10 Mittelspannungs-Lasttrennschalter
PCT/EP2020/055866 WO2020229011A1 (de) 2019-05-10 2020-03-05 Mittelspannungs-lasttrennschalter

Publications (2)

Publication Number Publication Date
EP3948912A1 EP3948912A1 (de) 2022-02-09
EP3948912B1 true EP3948912B1 (de) 2023-12-20

Family

ID=69804859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20710860.6A Active EP3948912B1 (de) 2019-05-10 2020-03-05 Mittelspannungs-lasttrennschalter

Country Status (4)

Country Link
EP (1) EP3948912B1 (de)
CN (1) CN113966542A (de)
DE (1) DE102019206807A1 (de)
WO (1) WO2020229011A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4024425A1 (de) * 2020-12-28 2022-07-06 Fritz Driescher KG Spezialfabrik für Elektrizitätswerksbedarf GmbH & Co. Schaltvorrichtung mit beweglichem düsenelement

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR828466A (fr) * 1937-01-28 1938-05-18 Alsthom Cgee Perfectionnement apporté aux interrupteurs, à soufflage de l'arc par gaz sous pression, fonctionnant en auto-compresseurs
CH556602A (de) * 1973-01-12 1974-11-29 Sprecher & Schuh Ag Druckgasschalter.
JPS52133575A (en) * 1976-05-04 1977-11-09 Hitachi Ltd Buffer gas breaker
DE3440212A1 (de) * 1984-10-10 1986-04-17 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Druckgasschalter
CN1008415B (zh) * 1985-09-30 1990-06-13 Bbc勃朗勃威力有限公司 气吹开关
JPH11213827A (ja) * 1998-01-22 1999-08-06 Hitachi Ltd パッファ式ガス遮断器
JP4174094B2 (ja) * 1998-01-29 2008-10-29 株式会社東芝 ガス遮断器
CN101006539B (zh) * 2004-08-23 2012-10-10 Abb技术有限公司 大功率开关
JP2006164673A (ja) * 2004-12-06 2006-06-22 Hitachi Ltd パッファ形ガス遮断器の電流遮断方法およびそれに用いるパッファ形ガス遮断器
FR2906929B1 (fr) * 2006-10-09 2009-01-30 Areva T & D Sa Actionnement par des contacts d'une chambre de coupure a double mouvement par un tube isolant
DE102013200913A1 (de) * 2013-01-22 2014-07-24 Siemens Aktiengesellschaft Schaltanordnung
WO2015097143A1 (en) * 2013-12-23 2015-07-02 Abb Technology Ag Electrical switching device
DE102015218003A1 (de) * 2015-09-18 2017-03-23 Siemens Aktiengesellschaft Mittel- oder Hochspannungsschaltanlage mit einem gasdichten Isolierraum
CN109564832B (zh) * 2016-06-03 2020-09-01 Abb瑞士股份有限公司 气体绝缘式低压或中压断载开关
EP3261107A1 (de) * 2016-06-20 2017-12-27 ABB Schweiz AG Gasisolierter nieder- oder mittelspannungsschalter mit wirbelungsvorrichtung
DE102016219812A1 (de) * 2016-10-12 2018-04-12 Siemens Aktiengesellschaft Schaltanordnung

Also Published As

Publication number Publication date
EP3948912A1 (de) 2022-02-09
DE102019206807A1 (de) 2020-11-12
CN113966542A (zh) 2022-01-21
WO2020229011A1 (de) 2020-11-19

Similar Documents

Publication Publication Date Title
DE2039240C3 (de) Druckgasschalter mit einer Einrichtung zur Erzeugung eines Löschgasstromes
DE112013002015T5 (de) Leistungsschalter
EP2343721A1 (de) Gasisolierter Hochspannungsschalter
EP0126929B2 (de) Druckgasschalter
EP1226597B1 (de) Druckgas-leistungsschalter
DE69109508T2 (de) Mittelspannungsschalter mit Selbstbeblasung.
EP3948912B1 (de) Mittelspannungs-lasttrennschalter
DE68911479T2 (de) Hochspannungsdruckgasschalter.
CH662903A5 (de) Gasisolierter lasttrenner.
EP2387057A1 (de) Gasisolierter Hochspannungsschalter
WO2016151002A1 (de) Isolierdüse und elektrische schalteinrichtung mit der isolierdüse
EP0002685A1 (de) Druckgasschalter
DE69007532T2 (de) Hochspannungs-Lastschalter mit dielektrischem Löschgas.
EP0290950B1 (de) Druckgasschalter
EP1811537A1 (de) Schaltkammer für einen gasisolierten Hochspannungsschalter
EP3803931B1 (de) Gasisolierter schalter
DE676169C (de) Druckgasschalter, insbesondere fuer hohe Spannungen
DE911280C (de) Elektrischer Schalter mit Lichtbogenloeschung durch ein stroemendes Druckmittel, wie Druckgas
DE69309174T2 (de) Leistungsschalter mit zwei konzentrischen Trennkammern
DE3140466C2 (de)
EP0753873A1 (de) Hochspannungs-Leistungsschalter mit einem Isolierstoffkörper
DE2759265A1 (de) Druckgasschalter
DE2703550C2 (de) Elektrischer Schalter
EP1837889A2 (de) Unterbrechereinheit mit Einschaltwiderstand
DE102017207422A1 (de) Trennschalter

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211025

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230623

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20230817

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020006443

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240321

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240321

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240306

Year of fee payment: 5

Ref country code: IT

Payment date: 20240321

Year of fee payment: 5

Ref country code: FR

Payment date: 20240319

Year of fee payment: 5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2974369

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240627