EP3521556A1 - Multi-function frame used in tunnel construction - Google Patents

Multi-function frame used in tunnel construction Download PDF

Info

Publication number
EP3521556A1
EP3521556A1 EP18154521.1A EP18154521A EP3521556A1 EP 3521556 A1 EP3521556 A1 EP 3521556A1 EP 18154521 A EP18154521 A EP 18154521A EP 3521556 A1 EP3521556 A1 EP 3521556A1
Authority
EP
European Patent Office
Prior art keywords
steel
layer
formwork
tunnel
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18154521.1A
Other languages
German (de)
French (fr)
Inventor
Peter Hofstetter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Icw Ingenieur Consult Wuerzburg Peter Hofstetter
Original Assignee
Icw Ingenieur Consult Wuerzburg Peter Hofstetter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Icw Ingenieur Consult Wuerzburg Peter Hofstetter filed Critical Icw Ingenieur Consult Wuerzburg Peter Hofstetter
Priority to EP18154521.1A priority Critical patent/EP3521556A1/en
Priority to EP19154313.1A priority patent/EP3521557B1/en
Publication of EP3521556A1 publication Critical patent/EP3521556A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/14Lining predominantly with metal
    • E21D11/15Plate linings; Laggings, i.e. linings designed for holding back formation material or for transmitting the load to main supporting members
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/14Lining predominantly with metal
    • E21D11/18Arch members ; Network made of arch members ; Ring elements; Polygon elements; Polygon elements inside arches
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F1/00Ventilation of mines or tunnels; Distribution of ventilating currents

Definitions

  • the present invention relates to a frame structure in tunneling or in the tunnel renovation of tunnel tubes, in particular a multi-functional frame for the expansion of the inner shell of a tunnel tube, and a method for performing the construction of the inner shell of a tunnel tube in the renovation or even in the construction of new tunnel tubes.
  • Passable tunnels especially those with a track bed and two or more tracks, but also provided with road surface tunnel tubes must be rehabilitated after a certain period of operation, which affects not only the actual roadway or the tracks, but especially the tunnel wall.
  • it usually comes to wear due to corrosion and also to eruptions, which represents a threat to the people and machines passing through the tunnel tube.
  • the tunnel wall can be cleaned, drilled, solidified or plastered out broken sections of the tunnel wall with material and sealed sealing material in the renovation of some tunnels only during the dorm or the low-traffic periods.
  • material and sealed sealing material in the renovation of some tunnels only during the dorm or the low-traffic periods.
  • the required machinery and building materials are parked on site, brought out of the tunnel tube after completion or interruption of the work and stored in suitable places to be then brought back into the tunnel tube for the next working hours. This requires a high logistical effort and thus costs.
  • the outer and inner shell of a tunnel building are usually sealed against each other by means of a sealing foil, which protects the inner shell and the interior from aggressive mountain water. So that the sealing foil or the plastic sealing membrane (KDB) is not damaged, the reinforcement of the inner shell must not be fixed directly to the outer shell of the tunnel building. This requires self-supporting reinforcing frames, consisting of support sheets with interposed reinforcing layers, which are often designed as a double layer.
  • Such reinforcement frames are for example in the DE 20 2017 105 802 U1 , the AT 362 739 B , or the DE 39 27 446 C1 described.
  • a disadvantage of these constructions, however, is that for Betonauf- or-hinter filling of the reinforcement frame formwork carriages are used, which is very complex, costly and therefore only possible with complete route blocking.
  • a frame structure for removing the inner shell of a tunnel building having a plurality of frame members comprising: a steel girder arch having an inner side and an outer side, a reinforcing layer on the inner side and / or the outer side of the steel girder arch attached to the steel girder arch by means of holding members is a removable formwork layer at a predetermined distance from the inside of the steel beam arch, first spacers on the Outside of the steel girder arch for support on the outer wall or the mountain wall of the tunnel building and second spacers on the inside of the steel girder arch for fixing the formwork, the frame structure is adapted to be partially filled with concrete or backfilled and thereby absorb the hydrostatic pressure of the concrete ,
  • This construction allows a section-wise expansion of a tunnel building with a self-supporting reinforced concrete inner shell, without occupying the tunnel route with blocking periods for too long because, for example, no formwork with formwork carriage is necessary due to the shortened working sections and work packages.
  • Sectionwise means both vertical and horizontal, with the already concreted sections additionally stabilizing the frame construction.
  • the construction bears with the reinforcement itself and is supported in the side walls of the tunnel against the mountain wall or the Alttunnelschale. Even a hitherto often necessary complex use of expensive shotcrete is avoided.
  • a flexible positioning of the frame elements as well as the reinforcement is possible by the adjustment options, whereby the required safety distances can be easily met.
  • each steel support arch has at its two ends a base plate which is fixable on a foundation.
  • the frame construction is optimally anchored to the underground of the tunnel building and provides a central load transfer.
  • the base plate is welded to the front side of the steel beam arch.
  • the foundation can be flexibly designed as a point foundation or alternatively as at least partially continuous foundation strips each at the edge of the tunnel building.
  • the frame construction has a plurality of frame elements arranged one behind the other in the tunnel direction in series. This contributes to the modularity and thus, for example, to a step-by-step approach to tunnel remediation.
  • suitable selection of the length of the frame elements special conditions of the outbreak or an old tunnel such as joints and the like can be considered.
  • a steel carrier sheet is designed as a double-T carrier with HEA or HEB profile.
  • HEA or HEB profile Such standardized profiled steels are for most public tenders required.
  • other profile steels are also conceivable, for example with U-profile or T-profile.
  • the steel carrier sheet is designed in several parts and in such a way that a plurality of steel carrier sheets can be connected to each other in their longitudinal direction.
  • the steel girder arch can be prepared outside the tunnel building, placed on top of one another and screwed together using suitable connecting plates, for example. This increases the flexibility of the design, and costs can be reduced.
  • the holding elements are designed such that the distance between the reinforcement layer and the steel carrier sheet is adjustable. This creates the opportunity to ensure the necessary minimum concrete coverage of the reinforced concrete components depending on the geometry on site by appropriate adjustment.
  • the holding element having an L-shaped profile sheet and a straight retaining plate with slot and threaded rod. This construction is simple, easy to handle and adjust and sufficiently stable and can be carried out with standard profiles. This distance adjustment can still be made after attaching the reinforcement layer (s), which provides additional flexibility.
  • the reinforcement layer has a plurality of reinforcing bars as longitudinal and transverse reinforcement.
  • the reinforcement layer which is precisely adjusted by means of the retaining elements consists essentially of commercially available reinforcing steel rods which satisfy the relevant standards.
  • the reinforcing steel bars are fastened by dislocation of the bars, that is by binding together by means of tie wire, so that a close-meshed network and thus support structure of reinforcing steel bars is formed. Also conceivable is the use of prefabricated reinforcing mats, which are fixed accordingly by means of the holding elements to the steel beam arch.
  • the first spacers on a load distribution plate which is particularly mounted on the wall side. Since the loads on the sealed tunnel wall can be significant and damage to the sealing film must be avoided at all costs, such load distribution plates are used, which may have, for example, a square (for example 25 cm x 25 cm) or a circular shape, to the quasi Point-like load of the first spacer to distribute in the area.
  • the spacers may have threads, whereby the distance between the sealed tunnel wall and steel support arch is precisely adjustable. Alternative are also other distance mechanisms such. B. by means of transverse rods in peripheral holes possible.
  • a method for carrying out the removal of the inner shell of a tunnel building with the following steps: a) fixing a plurality of steel support arch on foundations therefor, b) attaching a reinforcement layer on the inside and / or on the outside of the steel support arch by means of holding elements in one adjustable distance, c) attaching a first formwork layer of a first formwork height on the inside of the steel support arch by means of spacers each beginning at the base of the steel girder arch on both sides of the tunnel building, d) concreting a first concrete layer corresponding to the first formwork height of the first formwork layer, e) attaching a next higher Formwork layer of a predetermined formwork height on the inside of the steel beam arch by means of spacers starting at the free end of the lower formwork layers, f) concreting a next higher concrete layer respectively de r predetermined formwork height of the next higher formwork layers, g) repeating steps e) and f) until the concrete layers abut each other on
  • This method also allows vertical installation of a very stable, self-supporting inner shell in a tunnel building, so that the route operation does not have to be interrupted for a longer time. As a result, among other things, the expensive and time-consuming use of a formwork carriage is avoided. Furthermore, the method allows a very accurate, even later still changeable positioning of the reinforcement layers, so that the necessary minimum concrete cover can be met. The self-supporting additional support in the ridge area is not required.
  • the distance of the reinforcement layer (s) is adjusted by means of the holding elements in step b). This gives a flexibility that can compensate for existing large tolerances, for example, to ensure the minimum concrete cover of the installed reinforced concrete components of about 5 cm. Even after attaching the inner or outer reinforcement layer adjustment of the distance is still possible.
  • the method further preferably comprises the step of removing the shuttering layers.
  • the formwork of an already concrete section, whether vertical or horizontal, can be quickly removed, cleaned, optionally lubricated after drying or fixation of the concrete and then used again for the next section. This saves additional building material, which also saves time in the rehabilitation of railway tunnels without full closure for short working hours.
  • steps d) and f) are carried out using in-situ concrete.
  • the costly use of shotcrete, which is more expensive and less durable than in-situ concrete, can be avoided.
  • Fig. 1 shows a cross section through a tunnel building in which a preferred embodiment of the frame construction 1 according to the invention is installed.
  • a tunnel building of a railway tunnel to be rehabilitated is shown in which the frame structure 1, which consists of a plurality of frame elements 2, which are arranged in the longitudinal direction of the tunnel building, forms the basis for a concrete inner shell, which on the inside of an already existing outer shell 3 of an old tunnel is attached.
  • the floor of the tunnel building comprises a track bed 5, on which two tracks 7 are arranged substantially in the middle, so that a single-rail train operation in this railway tunnel is possible.
  • the present invention may also relate to multi-track railway tunnels or tunnel buildings having lorry or passenger roadways.
  • the frame element 2 itself comprises as the base element a steel carrier sheet 9, which in the illustrated embodiment is formed as a double T-carrier from an HEB S355 steel profile.
  • the steel support arch 9 is provided at each of its ends with a welded base plate 11 which is mounted on a foundation 13.
  • the foundation 13 may be continuous in the longitudinal direction of the tunnel building, but it is also possible that the foundations 13 are provided only partially or in sections as a point foundations within the tunnel building, namely where the steel support arch 9 meet on the floor of the tunnel building. In any case, sufficient anchoring in the floor of the tunnel building through the foundation must be ensured.
  • the steel support sheets 9A have on their inner side and also on their outer side, but not directly on their flanges, in each case a reinforcement layer 15, 17, which are fixed by means of holding elements to the steel support sheet 9. Details of this are described in the present description with respect to the following figures.
  • the frame structure 1 Since the outer shell 3 of the tunnel building with a sealing film 4, ie a plastic sealing membrane, is watertight for the purpose of sealing the inside of the tunnel from the ingress of mountain water, the frame structure 1 must not be connected to the outer shell 3 so that the sealing layer is interrupted or damaged becomes. Therefore, the steel support sheets 9 are connected to the inner surface of the sealing film 4 via first spacers, the first spacers 19 being provided with load distribution plates 20 as described with reference to FIG Fig. 2 described in detail below.
  • the load distribution plates 20 are not fixed on the sealing film 4, but pressed after positioning the steel support sheet 9 against the sealing film 4.
  • the first spacers 19 are provided with corresponding threads for this purpose.
  • tolerances in the space between the outer shell 3 of the tunnel building and the steel support sheet 9 can be compensated in a simple manner.
  • the material of the first spacers 19 and the load distribution plates 20 and their dimensions are selected such that the supporting forces of the frame structure 1 on the sealing film 4 comply with the permissible loads for the film.
  • a shuttering layer 23 is attached via second spacers 21, which includes a plurality of shuttering elements 24.
  • the formwork layer 23 is divided into different formwork elements of different heights, so that a section concreting, d. H. a backfill of the corresponding formwork elements with concrete, is made possible. A detailed description of the method is given below in this description.
  • the steel support sheets 9 are usually dimensioned so that they do not cover the entire tunnel arc in their longitudinal extent, but are divided into two or three sub-segments. These subsegments may be interconnected via one or more fasteners 25 that are mounted on at least one side of the web, as in FIG Fig. 1 shown in the ridge area of the tunnel building.
  • the backfilling of the frame construction 1 with reinforced concrete preferably takes place in sections in such a way that initially a first, lower formwork layer 23, ie up to a height of a first formwork element 24 is boarded and subsequently cast concrete is poured behind the formwork, so that the complete longitudinal section of Frame construction 1 up to the height of the first shuttering element 24th backfilled with in situ concrete, wherein the concrete mass moves in all spaces around the steel support arch 9, the inner and outer reinforcement layers 15, 17 and the first and second spacers 19, 21 and the support members 14 around and due to the compression substantially no air pockets or other voids between the outer shell 3 and the formwork layer 23 are present.
  • Fig. 2 shows a detail of the presentation Fig. 1
  • the transition region between the outer shell 3 of the tunnel building to the frame structure 1 is shown in detail.
  • a sealing film 4 in Fig. 2 dash-dotted lines is shown.
  • the sealing film 4 is consistently about 2 mm thick and robust, so that from the outside no mountain water can penetrate into the interior of the tunnel.
  • geotextile or similar materials may be arranged to protect the sealing film 4 from damage and to ensure the most uniform force distribution.
  • the load distribution plates 20 are mounted inwardly, which are formed in the preferred embodiment of plastic with a size of about 25 cm x 25 cm and glued to the sealing film 4 and in the middle have a threaded portion in which a first spacer 19 can engage, which is also provided with a thread.
  • the first spacer 19 and the load distribution plate 20 may be formed of plastic to minimize the risk of corrosion of the reinforced concrete elements.
  • the first spacer 19 is screwed to the outer flange of the steel support arch 9. This makes it possible, depending on the design of the gap tolerances in the distance between the outer shell 3 and the steel support arch 9 compensate.
  • Fig. 2 also visible is the outer reinforcing layer 17, which has bowing arranged in the rebar and perpendicular thereto arranged reinforcing bars.
  • the attachment of the outer reinforcement layer 17 is effected by Verrödelung by means of wire to the reinforcement sheet 16, which in Fig. 2 are shown immediately adjacent to the outer flange of the steel beam arch 9 and their attachment in detail with reference to the Fig. 3 is described.
  • Fig. 3 shows a detail of the frame structure 1 according to the invention in the preferred embodiment. Special attention is given in the description of the Fig. 3 on the inside Location of the frame construction 1 laid. As the details towards the outside wall are already referring to Fig. 2 have been described, these statements are not repeated here.
  • the inner reinforcing layer 15 is formed in mirror image to the outer reinforcing layer 17, ie a reinforcing sheet 16 is also arranged parallel to the inner flange of the steel carrier sheet 9, this reinforcing sheet 16 being screwed to the web of the steel carrier sheet 9 via holding elements 14. Details of the retaining element will be described with reference to FIGS 6 and 7 described.
  • the inner reinforcement layer 15 is connected or crosslinked analogously to the outer reinforcing layer 17 with the corresponding reinforcement sheet 16 with tie wire. This step performs the reinforcement troop, wherein in the frame construction according to the invention preferably the outer reinforcement layer 17 is mounted first and then the inner reinforcement layer 15. It is also possible in principle, the corresponding steel support arch 9 with inner and outer reinforcement layer 15, 17 already outside the tunnel building or prepare before mounting the steel girder arch on the foundation 13 accordingly.
  • a plurality of second spacers 21 is attached to the inner flange of the steel support arch 9, at the other end of the shuttering layer 23 is attached.
  • the second spacers 21 are formed in the embodiment shown here as steel screws, which are surrounded by a protective plastic sheath, so that the plastic sheath prevents a direct connection between reinforced concrete and spacers.
  • the design as a screw allows, similar to the first spacers 19, that the distance between the shuttering layer 23 and the inner flange of the steel support sheet 9 can be set exactly, and so tolerances can be compensated.
  • the formwork layer 23 includes commercial formwork boards, which may be formed of plastic, wood or metal. Preference is given to usual wood cladding.
  • Fig. 3 It can also be seen that after backfilling the frame construction and after corresponding compaction, the reinforced concrete 27 fills the entire gap between the outer shell 3 and the shuttering layer 23, without cavities or other inclusions remaining.
  • Fig. 4 is a detail from the Fig. 1 shown enlarged, which lies in the ridge area of the tunnel building.
  • the frame structure 1 on the right and left each have a steel support arch 9, which abut one another in the ridge region substantially and there by means of a connecting element 25 are interconnected.
  • the connecting element 25 is arranged on at least one side of the web of the steel carrier sheet and screwed to the respective end.
  • the connecting element 25 is arranged on both sides of the web to provide an even more stable connection.
  • two, three, four or even more subsegments of steel girder arch 9 can form the complete arch of the frame structure 1, which can then be connected to one another in each case in their end regions by means of at least one connecting element 25.
  • Fig. 4 On a repetition of the already referring to the FIGS. 2 and 3 described elements Fig. 4 will be omitted here.
  • Fig. 5 shows the section Fig. 1 in which the steel carrier sheet 9 is connected to the foundation 13 provided for this purpose.
  • a foot plate 11 is welded on the front side of the double-T-carrier sheet 9.
  • This substantially square base plate 11 has in each of its corner regions a bore through which a threaded rod 31 is guided.
  • This threaded rod 31 is fixed on both sides of the base plate 11 with a fastening nut 29 and an adjusting nut 30 and is embedded in holes in the foundation 13 by means of a potting 12.
  • fastening shown here other possibilities conceivable to connect the base plate 11 with the foundation 13, so that there is a stable position.
  • Fig. 6 shows in plan view a cross-sectional view of a side of the frame structure 1 according to the invention near the bottom. It can be seen that the foot plate 11 fully rests on the foundation 13 and is attached to it.
  • the foundation 13 is executed as shown here as a point foundation, but it could also be formed throughout the entire length of the tunnel building with the width shown here.
  • the steel support arch 9 is firmly welded to the base plate 11.
  • the representation in Fig. 6 should serve the flexible adjustable attachment of the inner and outer reinforcing layers 15, 17 on the steel support arch 9 by means of the holding elements 14 to explain in more detail.
  • the holding element 14 comprises an L-shaped angle profile sheet 32 which is fixed in each case on one side of the web of the steel support sheet 9, for. B.
  • a holding plate 34 is arranged, whose extension is also parallel to the web surface of the steel carrier sheet 9.
  • the connection is made by means of a threaded rod or a conventional screw / nut connection, wherein the retaining plate 34 can be moved along a centrally disposed slot 35.
  • a free end of the retaining plate 34 of the reinforcing rod 16 is arranged, which runs quasi parallel to the inner or outer flange of the steel support arch 9 and serves as a basis for the fixation of the inner and outer reinforcing layers 15, 17.
  • connection between the retaining plate 34 and reinforcing bar 16 is usually a welded connection, but can also be done in other ways, such as. B. gluing and the like.
  • Fig. 6 It can be seen how to the reinforcing bar 16, first the perpendicularly extending reinforcing bars are attached as a longitudinal reinforcement, which in turn then further out the transverse reinforcing rods of the inner or outer reinforcing layer 15, 17 are attached. The attachment takes place by means of decay, ie by attaching wire loops of Rödeldraht at the intersections of the reinforcing bars.
  • Fig. 7 is in detail again the holding member 14 shown with its components, the angle profile sheet 32 and the support plate 34.
  • Such sheets may be formed of a suitable section steel, for example with a U-profile.
  • the distance of the inner and outer reinforcing layers 15, 17 can be adjusted to the flanges of the steel support arch 9 via a corresponding fixation of the holding elements 14. This allows tolerances to be taken into account.
  • the process according to the invention will be described in detail below.
  • the outer wall is sealed by a sealing film 4 substantially waterproof against mountain water
  • the steel support arch 9 are introduced and fixed on the previously established for this foundation 13.
  • more than one steel beam arch 9 can form the entire tunnel arc; a corresponding connection can be brought about for example via connecting elements 25.
  • the distance between the steel carrier sheet 9 and sealing film 4 is about first spacer 19 set, which are preferably arranged by means of load distribution plates 20 on the sealing film 4.
  • the attachment of the load distribution plates 20 takes place by pressing, ie by the existing on the spacers 19 thread, which allow rotation and thus the adjustment of the distance and the contact pressure on the sealing film 4.
  • This first step is carried out by a trained construction team and removed accordingly after completion.
  • the assembly of the inner and / or the outer reinforcing layers 15, 17 take place.
  • the brackets 14 with angle profile sheet 32 and retaining plate 34 are already attached to the webs of the steel beam arch 9 or are now welded there.
  • the holding elements 14 are arranged for the inner reinforcing layer 15 on the same one web side and for the outer reinforcing layer 17 on the other, opposite side.
  • the reinforcing rods 16 are first attached parallel to the steel carrier sheet 9, preferably by means of welded connection. Other fastening techniques are possible such as soldering, gluing, screwing or the like.
  • the reinforcing steels of the inner and / or outer reinforcing layers running transversely to the reinforcing bars 16 are fastened, i. running in the tunnel longitudinal direction.
  • a twisted-wire wire which, after being arranged at the desired location, is twisted by means of a tool and thus ensures a sufficiently strong connection of two intersecting reinforcing steels.
  • the more distant reinforcement layer can be fixed in the same manner. The result is a relatively close-meshed network of reinforcing steels, which expands at least to the extent that the first section to be cast is sufficiently covered with reinforcement.
  • the distance between the inner and outer reinforcement layers 15, 17 can still be adjusted even after attachment of the reinforcing bars. This may be necessary to compensate for tolerances or to respond to previously measured below minimum clearances.
  • the formwork layer is attached.
  • the second spacers 21, which are in the in Fig. 4 embodiment shown are provided with a plastic sheath, rotated in the designated threaded holes in the inner flange of the steel beam arch and thus fastened there taking into account the bridged distance. If all second spacers 21 are present for the section, the shuttering boards of the shuttering layer 23 are attached by screw connection.
  • another technique may be useful when fixing. In the example shown, a wooden shuttering is used, which can be removed after concreting, cleaned, processed and reused. The advantage of the present invention is at this point that only the area is to be provided with a formwork to be concreted directly after.
  • the present frame construction is self-supporting and self-reinforcing, as an already-concreted lower layer supports the overlying layer and thereby reinforces the overall construction.
  • the frame absorbs the hydrostatic pressure from the fresh concrete.
  • next higher concrete layers or sections can be concreted as soon as the underlying sections are dried, d. H. usually after about 12 to 20 hours.
  • the advantages of the present invention is that the concreting of the inner shell without the use of rebar and formwork carriage manages, which saves time and costs.
  • no elaborate drilling and anchoring of the frame structure in the rock are necessary.
  • the expensive use of shotcrete is avoided, and the tunnel seal is not penetrated. Also, the greatest possible clearance remains in the tunnel building.
  • a frame construction and a method for the construction of the inner shell of a tunnel building has been provided, which is inexpensive to implement, has a simple structure, allows a self-supporting concrete inner shell and in particular a section concreting without formwork carriages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Civil Engineering (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Rahmenkonstruktion (1) für den Ausbau der Innenschale eines Tunnelgebäudes mit einer Mehrzahl von Rahmenelementen (2), die aufweisen: einen Stahlträgerbogen (9) mit einer Innenseite und einer Außenseite, eine Bewehrungslage (15, 17) auf der Innenseite und/oder der Außenseite des Stahlträgerbogens (9), die an dem Stahlträgerbogen (9) mittels Halteelementen (14) angebracht ist, eine abnehmbare Schalungslage (23) in einem vorbestimmten Abstand zur Innenseite des Stahlträgerbogens (9), erste Abstandhalter (19) auf der Außenseite des Stahlträgerbogens (9) zur Abstützung an der Außenwandung (3) oder der Gebirgswand des Tunnelgebäudes und zweite Abstandhalter (21) auf der Innenseite des Stahlträgerbogens (9) zur Fixierung der Schalungslage (23), wobei die Rahmenkonstruktion (1) dazu eingerichtet ist, abschnittsweise mit Beton (27) aufgefüllt zu werden und dabei den hydrostatischen Druck des Betons aufzunehmen.The present invention relates to a frame construction (1) for the construction of the inner shell of a tunnel building comprising a plurality of frame elements (2) comprising: a steel girder arch (9) having an inner side and an outer side, a reinforcing layer (15, 17) on the inner side and / or the outside of the steel beam (9), which is attached to the steel beam (9) by means of retaining elements (14), a removable formwork layer (23) at a predetermined distance from the inside of the steel support sheet (9), first spacers (19) the outside of the steel girder arch (9) for supporting on the outer wall (3) or the rock wall of the tunnel building and second spacers (21) on the inside of the steel girder arch (9) for fixing the shuttering layer (23), wherein the frame construction (1) is adapted thereto is to be partially filled with concrete (27) and thereby absorb the hydrostatic pressure of the concrete.

Description

Die vorliegende Erfindung betrifft einen Rahmenaufbau beim Tunnelbau oder bei der Tunnelsanierung von Tunnelröhren, insbesondere einen Multifunktionsrahmen für den Ausbau der Innenschale einer Tunnelröhre, und ein Verfahren zur Durchführung des Ausbaus der Innenschale einer Tunnelröhre bei der Sanierung oder auch beim Neubau von Tunnelröhren.The present invention relates to a frame structure in tunneling or in the tunnel renovation of tunnel tubes, in particular a multi-functional frame for the expansion of the inner shell of a tunnel tube, and a method for performing the construction of the inner shell of a tunnel tube in the renovation or even in the construction of new tunnel tubes.

Befahrbare Tunnelröhren, insbesondere solche mit Gleisbett und zwei oder mehr Gleisen, aber auch mit Straßenbelag versehene Tunnelröhren müssen nach einer bestimmten Betriebszeit saniert werden, was nicht nur die eigentliche Fahrbahn bzw. die Gleise betrifft, sondern vor allen Dingen die Tunnelwand. Hier kommt es üblicherweise zu Verschleiß durch Korrosion und auch zu Ausbrüchen, was eine Gefahr für die die Tunnelröhre passierenden Menschen und Maschinen darstellt.Passable tunnels, especially those with a track bed and two or more tracks, but also provided with road surface tunnel tubes must be rehabilitated after a certain period of operation, which affects not only the actual roadway or the tracks, but especially the tunnel wall. Here, it usually comes to wear due to corrosion and also to eruptions, which represents a threat to the people and machines passing through the tunnel tube.

Aus verkehrstechnischen Gründen können bei der Sanierung von manchen Tunnelröhren lediglich während der Betriebsruhe oder der verkehrsarmen Zeitabschnitte die Tunnelwandung gesäubert, abgebohrt, verfestigt oder herausgebrochene Abschnitte der Tunnelwandung mit Material verputzt und Dichtungsmaterial abgedichtet werden. Es gibt ebenfalls Fälle, bei denen nach entsprechender Vorbereitung und Abdichtung der Tunnelwandung oder der Gebirgswand an dieser eine neue Innenschale anbetoniert wird. Dabei werden die benötigten Maschinen und Baumaterialien vor Ort geparkt, nach Abschluss oder bei Unterbrechung der Arbeiten aus der Tunnelröhre herausgebracht und an geeigneten Plätzen gelagert, um anschließend für den nächsten Arbeitszeitabschnitte wieder in die Tunnelröhre hineingebracht zu werden. Dies erfordert einen hohen logistischen Aufwand und damit Kosten.For traffic engineering reasons, the tunnel wall can be cleaned, drilled, solidified or plastered out broken sections of the tunnel wall with material and sealed sealing material in the renovation of some tunnels only during the dorm or the low-traffic periods. There are also cases in which after appropriate preparation and sealing of the tunnel wall or the mountain wall at this a new inner shell is concreted. The required machinery and building materials are parked on site, brought out of the tunnel tube after completion or interruption of the work and stored in suitable places to be then brought back into the tunnel tube for the next working hours. This requires a high logistical effort and thus costs.

Bei bekannten Verfahren des Tunnelneubaus wie z. B. der Neuen Österreichischen Tunnelbauweise (NÖT) wird unmittelbar nach Ausbruch zur Sicherung des Gebirges eine Außenschale aus Spritzbeton aufgebracht und gegebenenfalls zusätzlich gesichert. Diese Außenschalen bei Tunnelneubauten werden wie entsprechend verputzte alte Tunnelaußenwände abgedichtet, und anschließend wird eine Innenschale aus Ortbeton als dauerhafter Ausbau des Tunnels eingebracht. Die Dicke der Schale beträgt üblicherweise etwa 30 cm bis 70 cm, kann aber auch größer sein. Die Abschnitte der Innenschale werden meist in Längen von etwa 8 m bis etwa 25 m betoniert und sind in der Regel bewehrt.In known methods of tunneling such. B. the New Austrian Tunneling Method (NÖT) is applied immediately after eruption to secure the mountains an outer shell of shotcrete and possibly additionally secured. These outer shells in new tunnels are sealed as appropriately plastered old tunnel outer walls, and then an inner shell of in-situ concrete is introduced as a permanent extension of the tunnel. The thickness of the shell is usually about 30 cm up to 70 cm, but may be larger. The sections of the inner shell are usually concreted in lengths of about 8 m to about 25 m and are usually reinforced.

Außen- und Innenschale eines Tunnelgebäudes sind üblicherweise mittels einer Dichtungsfolie gegeneinander abgedichtet, die die Innenschale und auch den Innenraum vor aggressivem Bergwasser schützt. Damit die Dichtungsfolie bzw. die Kunststoffdichtbahn (KDB) nicht beschädigt wird, darf die Bewehrung der Innenschale nicht unmittelbar an der Außenschale des Tunnelgebäudes fixiert werden. Dies macht selbsttragende Bewehrungsrahmen erforderlich, bestehend aus Tragbögen mit dazwischen angeordneten Bewehrungslagen, die häufig als Doppellage ausgeführt sind.The outer and inner shell of a tunnel building are usually sealed against each other by means of a sealing foil, which protects the inner shell and the interior from aggressive mountain water. So that the sealing foil or the plastic sealing membrane (KDB) is not damaged, the reinforcement of the inner shell must not be fixed directly to the outer shell of the tunnel building. This requires self-supporting reinforcing frames, consisting of support sheets with interposed reinforcing layers, which are often designed as a double layer.

Derartige Bewehrungsrahmen sind beispielsweise in der DE 20 2017 105 802 U1 , der AT 362 739 B , oder der DE 39 27 446 C1 beschrieben. Nachteilig an diesen Konstruktionen ist jedoch, dass zur Betonauf- bzw. -hinterfüllung des Bewehrungsrahmens Schalwagen eingesetzt werden, was sehr aufwändig, kostenintensiv und daher nur mit vollständiger Streckensperrung möglich ist.Such reinforcement frames are for example in the DE 20 2017 105 802 U1 , the AT 362 739 B , or the DE 39 27 446 C1 described. A disadvantage of these constructions, however, is that for Betonauf- or-hinter filling of the reinforcement frame formwork carriages are used, which is very complex, costly and therefore only possible with complete route blocking.

Es ist daher die Aufgabe der vorliegenden Erfindung, eine Rahmenkonstruktion und ein Verfahren für den Ausbau der Innenschale eines Tunnelgebäudes bereit zu stellen, die bzw. das im Wesentlichen die oben genannten Nachteile des Standes der Technik überwindet, preisgünstig zu realisieren ist, einen unkomplizierten Aufbau aufweist, eine selbsttragende Betoninnenschale und insbesondere eine abschnittsweise Betonierung ohne Schalwagen ermöglicht.It is therefore the object of the present invention to provide a frame construction and a method for the expansion of the inner shell of a tunnel building, which substantially overcomes the above-mentioned disadvantages of the prior art, is inexpensive to implement, has an uncomplicated construction , a self-supporting concrete inner shell and in particular a section concreting without formwork carriage allows.

Diese Aufgabe wird durch den Gegenstand mit den Merkmalen des Anspruchs 1 bzw. des Anspruchs 10 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen beschrieben.This object is achieved by the subject matter with the features of claim 1 and of claim 10, respectively. Advantageous embodiments are described in the subclaims.

Erfindungsgemäß bereitgestellt wird eine Rahmenkonstruktion für den Ausbau der Innenschale eines Tunnelgebäudes mit einer Mehrzahl von Rahmenelementen, die aufweisen: einen Stahlträgerbogen mit einer Innenseite und einer Außenseite, eine Bewehrungslage auf der Innenseite und/oder der Außenseite des Stahlträgerbogens, die an dem Stahlträgerbogen mittels Halteelementen angebracht ist, eine abnehmbare Schalungslage in einem vorbestimmten Abstand zur Innenseite des Stahlträgerbogens, erste Abstandhalter auf der Außenseite des Stahlträgerbogens zur Abstützung an der Außenwandung oder der Gebirgswand des Tunnelgebäudes und zweite Abstandhalter auf der Innenseite des Stahlträgerbogens zur Fixierung der Schalungslage, wobei die Rahmenkonstruktion dazu eingerichtet ist, abschnittsweise mit Beton aufgefüllt bzw. hinterfüllt zu werden und dabei den hydrostatischen Druck des Betons aufzunehmen. Diese Konstruktion ermöglicht einen abschnittsweisen Ausbau eines Tunnelgebäudes mit einer selbsttragenden Stahlbetoninnenschale, ohne die Tunnelstrecke allzu lange mit Sperrzeiten zu belegen, weil durch die verkürzten Arbeitsabschnitte und Arbeitspakete beispielsweise keine Schalung mit Schalwagen notwendig ist. Abschnittsweise bedeutet sowohl vertikal als auch horizontal, wobei die bereits betonierten Abschnitte die Rahmenkonstruktion zusätzlich stabilisieren. Dabei trägt sich die Konstruktion mit der Bewehrung selbst und stützt sich in den Seitenwänden des Tunnels gegen die Gebirgswandung bzw. die Alttunnelschale ab. Auch eine bisher oft nötige aufwändige Verwendung von teurem Spritzbeton wird vermieden. Darüber hinaus ist durch die Einstellmöglichkeiten eine flexible Positionierung der Rahmenelemente sowie auch der Bewehrung möglich, wodurch die geforderten Sicherheitsabstände problemlos eingehalten werden können.According to the invention, there is provided a frame structure for removing the inner shell of a tunnel building having a plurality of frame members comprising: a steel girder arch having an inner side and an outer side, a reinforcing layer on the inner side and / or the outer side of the steel girder arch attached to the steel girder arch by means of holding members is a removable formwork layer at a predetermined distance from the inside of the steel beam arch, first spacers on the Outside of the steel girder arch for support on the outer wall or the mountain wall of the tunnel building and second spacers on the inside of the steel girder arch for fixing the formwork, the frame structure is adapted to be partially filled with concrete or backfilled and thereby absorb the hydrostatic pressure of the concrete , This construction allows a section-wise expansion of a tunnel building with a self-supporting reinforced concrete inner shell, without occupying the tunnel route with blocking periods for too long because, for example, no formwork with formwork carriage is necessary due to the shortened working sections and work packages. Sectionwise means both vertical and horizontal, with the already concreted sections additionally stabilizing the frame construction. In this case, the construction bears with the reinforcement itself and is supported in the side walls of the tunnel against the mountain wall or the Alttunnelschale. Even a hitherto often necessary complex use of expensive shotcrete is avoided. In addition, a flexible positioning of the frame elements as well as the reinforcement is possible by the adjustment options, whereby the required safety distances can be easily met.

Vorzugsweise weist jeder Stahlträgerbogen an seinen beiden Enden eine Fußplatte auf, die auf einem Fundament fixierbar ist. Damit ist die Rahmenkonstruktion optimal mit dem Untergrund des Tunnelgebäudes verankerbar und bietet eine zentrale Lastabtragung. Bevorzugt ist die Fußplatte mit der Stirnseite des Stahlträgerbogens verschweißt. Das Fundament kann flexibel als Punktfundament ausgebildet sein oder alternativ als zumindest teilweise durchgehender Fundamentstreifen jeweils am Rande des Tunnelgebäudes.Preferably, each steel support arch has at its two ends a base plate which is fixable on a foundation. Thus, the frame construction is optimally anchored to the underground of the tunnel building and provides a central load transfer. Preferably, the base plate is welded to the front side of the steel beam arch. The foundation can be flexibly designed as a point foundation or alternatively as at least partially continuous foundation strips each at the edge of the tunnel building.

Mit besonderem Vorteil weist die Rahmenkonstruktion eine Mehrzahl von in Tunnelrichtung in Reihe hintereinander angeordneten Rahmenelementen auf. Dies trägt zur Modularität und damit beispielsweise zu einem abschnittsweisen Vorgehen bei der Tunnelsanierung bei. Durch die geeignete Auswahl der Länge der Rahmenelemente können besondere Bedingungen des Ausbruchs oder eines Alttunnels wie Fugen und dergleichen berücksichtigt werden.With special advantage, the frame construction has a plurality of frame elements arranged one behind the other in the tunnel direction in series. This contributes to the modularity and thus, for example, to a step-by-step approach to tunnel remediation. By suitable selection of the length of the frame elements special conditions of the outbreak or an old tunnel such as joints and the like can be considered.

Bevorzugt ist ein Stahlträgerbogen als Doppel-T-Träger mit HEA oder HEB Profil ausgebildet. Derartige normierte Profilstähle sind für die meisten öffentlichen Ausschreibungen gefordert. Alternativ zu einem Doppel-T-Profil sind auch andere Profilstähle denkbar, beispielsweise mit U-Profil oder T-Profil.Preferably, a steel carrier sheet is designed as a double-T carrier with HEA or HEB profile. Such standardized profiled steels are for most public tenders required. As an alternative to a double-T profile, other profile steels are also conceivable, for example with U-profile or T-profile.

Insbesondere vorteilhaft ist es, wenn der Stahlträgerbogen mehrteilig und derart ausgebildet ist, dass mehrere Stahlträgerbogen in ihrer Längsrichtung miteinander verbindbar sind. Bei großen Tunnelquerschnitten können die Stahlträgerbogen außerhalb des Tunnelgebäudes vorbereitet, aufeinander gesetzt und beispielsweise mittels geeigneter Verbindungsplatten miteinander verschraubt werden. Dadurch erhöht sich die Flexibilität der Konstruktion, und die Kosten können gesenkt werden.It is particularly advantageous if the steel carrier sheet is designed in several parts and in such a way that a plurality of steel carrier sheets can be connected to each other in their longitudinal direction. For large tunnel cross sections, the steel girder arch can be prepared outside the tunnel building, placed on top of one another and screwed together using suitable connecting plates, for example. This increases the flexibility of the design, and costs can be reduced.

Mit weiterem Vorteil sind die Halteelemente derart ausgebildet, dass der Abstand zwischen der Bewehrungslage und dem Stahlträgerbogen einstellbar ist. Damit wird die Möglichkeit geschaffen, die notwendige Mindestbetonabdeckung der Stahlbetonbauteile je nach Geometrie vor Ort durch entsprechende Einstellung zu gewährleisten. Besonders geeignet ist das Halteelement, das ein L-förmiges Profilblech und ein gerades Halteblech mit Langloch und Gewindestange aufweist. Diese Konstruktion ist einfach, gut handhab- sowie einstellbar und ausreichend stabil und kann mit Standardprofilen ausgeführt werden. Diese Abstandseinstellung kann auch nach Anbringen der Bewehrungslage(n) noch vorgenommen werden, was zusätzliche Flexibilität bringt.With further advantage, the holding elements are designed such that the distance between the reinforcement layer and the steel carrier sheet is adjustable. This creates the opportunity to ensure the necessary minimum concrete coverage of the reinforced concrete components depending on the geometry on site by appropriate adjustment. Particularly suitable is the holding element having an L-shaped profile sheet and a straight retaining plate with slot and threaded rod. This construction is simple, easy to handle and adjust and sufficiently stable and can be carried out with standard profiles. This distance adjustment can still be made after attaching the reinforcement layer (s), which provides additional flexibility.

Besonders bevorzugt weist die Bewehrungslage eine Mehrzahl von Bewehrungsstäben als Längs- und Querbewehrung auf. Die mittels der Halteelemente im Abstand genau einstellte Bewehrungslage besteht im Wesentlichen aus handelsüblichen Bewehrungsstahlstäben, die den einschlägigen Normen genügen. Die Befestigung der Bewehrungsstahlstäbe erfolgt durch Verrödelung der Stäbe, also durch Zusammenbinden mittels Rödeldraht, so dass ein engmaschiges Netz und damit Tragwerk aus Bewehrungsstahlstäben entsteht. Denkbar ist auch der Einsatz von vorgefertigten Bewehrungsmatten, die entsprechend mittels der Halteelemente an den Stahlträgerbogen fixiert werden.Particularly preferably, the reinforcement layer has a plurality of reinforcing bars as longitudinal and transverse reinforcement. The reinforcement layer which is precisely adjusted by means of the retaining elements consists essentially of commercially available reinforcing steel rods which satisfy the relevant standards. The reinforcing steel bars are fastened by dislocation of the bars, that is by binding together by means of tie wire, so that a close-meshed network and thus support structure of reinforcing steel bars is formed. Also conceivable is the use of prefabricated reinforcing mats, which are fixed accordingly by means of the holding elements to the steel beam arch.

Mit weiterem Vorteil weisen die ersten Abstandhalter eine Lastverteilungsplatte auf, die insbesondere wandseitig angebracht ist. Da die Lasten an der abgedichteten Tunnelwandung erheblich sein können und eine Beschädigung der Dichtungsfolie unbedingt vermieden werden muss, werden solche Lastverteilungsplatten verwendet, die beispielsweise ein quadratische (z. B. 25 cm x 25 cm) oder eine Kreisform aufweisen können, um die quasi punktförmige Last der ersten Abstandhalter in die Fläche zu verteilen. Die Abstandhalter können Gewinde aufweisen, womit der Abstand zwischen abgedichteter Tunnelwandung und Stahlträgerbogen exakt einstellbar ist. Alternative sind auch andere Abstandsmechanismen wie z. B. mittels Querstäben in Umfangslöchern möglich.With further advantage, the first spacers on a load distribution plate, which is particularly mounted on the wall side. Since the loads on the sealed tunnel wall can be significant and damage to the sealing film must be avoided at all costs, such load distribution plates are used, which may have, for example, a square (for example 25 cm x 25 cm) or a circular shape, to the quasi Point-like load of the first spacer to distribute in the area. The spacers may have threads, whereby the distance between the sealed tunnel wall and steel support arch is precisely adjustable. Alternative are also other distance mechanisms such. B. by means of transverse rods in peripheral holes possible.

Weiterhin erfindungsgemäß ist ein Verfahren zur Durchführung des Ausbaus der Innenschale eines Tunnelgebäudes mit den folgenden Schritten: a) Fixieren einer Mehrzahl von Stahlträgerbogen auf dafür eingerichteten Fundamenten, b) Anbringen einer Bewehrungslage auf der Innenseite und/oder auf der Außenseite der Stahlträgerbogen mittels Halteelementen in einem einstellbaren Abstand, c) Anbringen einer ersten Schalungslage einer ersten Schalungshöhe auf der Innenseite der Stahlträgerbogen mittels Abstandhaltern jeweils beginnend am Fußpunkt der Stahlträgerbogen auf beiden Seiten des Tunnelgebäudes, d) Betonieren einer ersten Betonschicht entsprechend der ersten Schalungshöhe der ersten Schalungslage, e) Anbringen einer nächsthöheren Schalungslage einer vorbestimmten Schalungshöhe auf der Innenseite der Stahlträgerbogen mittels Abstandhaltern beginnend jeweils am freien Ende der unteren Schalungslagen, f) Betonieren einer nächsthöheren Betonschicht jeweils entsprechend der vorbestimmten Schalungshöhe der nächsthöheren Schalungslagen, g) Wiederholen der Schritte e) und f), bis die Betonschichten auf beiden Seiten aneinander stoßen, so dass sich eine geschlossene Innenschale im Tunnelgebäude ergibt. Dieses Verfahren ermöglicht eine auch vertikal abschnittsweise Installation einer sehr stabilen, selbsttragenden Innenschale in einem Tunnelgebäude, so dass der Streckenbetrieb nicht für eine längere Zeit unterbrochen werden muss. Dadurch wird unter anderem die teure und zeitaufwändige Verwendung eines Schalwagens vermieden. Weiterhin ermöglicht das Verfahren eine sehr exakte, auch nachträglich noch veränderbare Positionierung der Bewehrungslagen, so dass die notwendige Mindestbetondeckung eingehalten werden kann. Durch die Selbsttragung ist eine zusätzliche Unterstützung im Firstbereich nicht erforderlich.Furthermore, according to the invention, a method for carrying out the removal of the inner shell of a tunnel building with the following steps: a) fixing a plurality of steel support arch on foundations therefor, b) attaching a reinforcement layer on the inside and / or on the outside of the steel support arch by means of holding elements in one adjustable distance, c) attaching a first formwork layer of a first formwork height on the inside of the steel support arch by means of spacers each beginning at the base of the steel girder arch on both sides of the tunnel building, d) concreting a first concrete layer corresponding to the first formwork height of the first formwork layer, e) attaching a next higher Formwork layer of a predetermined formwork height on the inside of the steel beam arch by means of spacers starting at the free end of the lower formwork layers, f) concreting a next higher concrete layer respectively de r predetermined formwork height of the next higher formwork layers, g) repeating steps e) and f) until the concrete layers abut each other on both sides, so that there is a closed inner shell in the tunnel building. This method also allows vertical installation of a very stable, self-supporting inner shell in a tunnel building, so that the route operation does not have to be interrupted for a longer time. As a result, among other things, the expensive and time-consuming use of a formwork carriage is avoided. Furthermore, the method allows a very accurate, even later still changeable positioning of the reinforcement layers, so that the necessary minimum concrete cover can be met. The self-supporting additional support in the ridge area is not required.

Mit besonderem Vorteil wird in Schritt b) der Abstand der Bewehrungslage(n) mit Hilfe der Halteelemente eingestellt. Dadurch wird eine Flexibilität gegeben, die möglicherweise vorhandene große Toleranzen ausgleichen kann, um beispielsweise die Mindestbetondeckung der verbauten Stahlbetonbauteile von ca. 5 cm zu gewährleisten. Auch nach dem Anbringen der inneren oder äußeren Bewehrungslage ist eine Einstellung des Abstands noch möglich.With particular advantage, the distance of the reinforcement layer (s) is adjusted by means of the holding elements in step b). This gives a flexibility that can compensate for existing large tolerances, for example, to ensure the minimum concrete cover of the installed reinforced concrete components of about 5 cm. Even after attaching the inner or outer reinforcement layer adjustment of the distance is still possible.

Das Verfahren weist des Weiteren bevorzugt den Schritt des Entfernens der Schalungslagen auf. Die Schalung eines bereits betonierten Abschnitts, ob vertikal oder horizontal, kann nach Trocknung bzw. Fixierung des Betons zeitnah entfernt, gesäubert, gegebenenfalls geschmiert und danach wieder für den nächsten Abschnitt verwendet werden. Das spart zusätzliches Baumaterial, was bei kurzen Arbeitszeitabschnitten bei der Sanierung von Bahntunnels ohne Vollsperrung auch eine Zeitersparnis mit sich bringt.The method further preferably comprises the step of removing the shuttering layers. The formwork of an already concrete section, whether vertical or horizontal, can be quickly removed, cleaned, optionally lubricated after drying or fixation of the concrete and then used again for the next section. This saves additional building material, which also saves time in the rehabilitation of railway tunnels without full closure for short working hours.

Weiterhin vorteilhaft ist es, dass die Schritte d) und f) mit Ortbeton ausgeführt werden. Das aufwändige Verwenden von Spritzbeton, der teurer und weniger haltbar als Ortbeton ist, kann dadurch vermieden werden.It is furthermore advantageous that steps d) and f) are carried out using in-situ concrete. The costly use of shotcrete, which is more expensive and less durable than in-situ concrete, can be avoided.

Weitere Vorteile der Erfindungen ergeben sich aus den nachfolgenden Zeichnungen, die eine bevorzugte Ausführungsform der vorliegenden Erfindung darstellen. Es zeigen:

Fig. 1
einen Schnitt durch ein Tunnelgebäude, in dem eine bevorzugte Ausführungsform der erfindungsgemäßen Rahmenkonstruktion installiert ist;
Fig. 2
einen Ausschnitt aus Fig. 1, der den Aufbau der erfindungsgemäßen Rahmenkonstruktion zur Tunnelwand hin veranschaulicht;
Fig. 3
einen Ausschnitt aus Fig. 1, der ein Detail der erfindungsgemäßen Rahmenkonstruktion nach innen darstellt;
Fig. 4
ein Detail der Rahmenkonstruktion aus Fig. 1, das die Verbindung von zwei Stahlträgerbogen genauer darstellt;
Fig. 5
ein Detail aus Fig. 1, das die Verbindung der erfindungsgemäßen Rahmenkonstruktion zum Tunnelboden hin darstellt;
Fig. 6
eine Querschnittsansicht der erfindungsgemäßen Rahmenkonstruktion aus Fig. 1 im Detail eines Bogens darstellt; und
Fig. 7
einen Ausschnitt von Elementen aus Fig. 6, die die Befestigung der Bewehrungslagen am Stahlträgerbogen näher darstellen.
Further advantages of the invention will become apparent from the following drawings, which illustrate a preferred embodiment of the present invention. Show it:
Fig. 1
a section through a tunnel building in which a preferred embodiment of the frame construction according to the invention is installed;
Fig. 2
a section from Fig. 1 which illustrates the construction of the frame construction according to the invention towards the tunnel wall;
Fig. 3
a section from Fig. 1 showing a detail of the frame construction according to the invention inside;
Fig. 4
a detail of the frame construction Fig. 1 illustrating in more detail the connection of two steel beams;
Fig. 5
a detail from Fig. 1 representing the connection of the frame construction according to the invention to the tunnel floor;
Fig. 6
a cross-sectional view of the frame construction according to the invention Fig. 1 in detail of a bow represents; and
Fig. 7
a section of elements Fig. 6 which detail the attachment of the reinforcement layers to the steel girder arch.

Fig. 1 zeigt einen Querschnitt durch ein Tunnelgebäude, in dem eine bevorzugte Ausführungsform der erfindungsgemäßen Rahmenkonstruktion 1 installiert ist. In dem hier vorgestellten Fall ist ein Tunnelgebäude eines zu sanierenden Bahntunnels dargestellt, in dem die Rahmenkonstruktion 1, die aus mehreren Rahmenelementen 2 besteht, die in Längsrichtung des Tunnelgebäudes angeordnet sind, die Basis für eine Betoninnenschale bildet, die auf der Innenseite einer bereits existierenden Außenschale 3 eines Alttunnels angebracht ist. Der Boden des Tunnelgebäudes umfasst ein Gleisbett 5, auf dem im Wesentlichen in der Mitte zwei Gleise 7 angeordnet sind, sodass ein eingleisiger Zugbetrieb in diesem Bahntunnel möglich ist. Es ist anzumerken, dass die vorliegende Erfindung sich jedoch auch auf mehrgleisige Bahntunnel oder auch auf Tunnelgebäude beziehen kann, die Fahrbahnen für Lastkraftwagen oder Personenkraftwagen aufweisen. Fig. 1 shows a cross section through a tunnel building in which a preferred embodiment of the frame construction 1 according to the invention is installed. In the case presented here, a tunnel building of a railway tunnel to be rehabilitated is shown in which the frame structure 1, which consists of a plurality of frame elements 2, which are arranged in the longitudinal direction of the tunnel building, forms the basis for a concrete inner shell, which on the inside of an already existing outer shell 3 of an old tunnel is attached. The floor of the tunnel building comprises a track bed 5, on which two tracks 7 are arranged substantially in the middle, so that a single-rail train operation in this railway tunnel is possible. It should be noted, however, that the present invention may also relate to multi-track railway tunnels or tunnel buildings having lorry or passenger roadways.

Das Rahmenelement 2 selbst umfasst als Basiselement einen Stahlträgerbogen 9, der in der dargestellten Ausführungsform als Doppel-T-Träger aus einem HEB S355 Stahlprofil gebildet ist. Der Stahlträgerbogen 9 ist jeweils an seinen Enden mit einer angeschweißten Fußplatte 11 versehen, die auf einem Fundament 13 befestigt ist. Das Fundament 13 kann in Längsrichtung des Tunnelgebäudes durchgehend vorhanden sein, es ist jedoch auch möglich, dass die Fundamente 13 nur teil- oder abschnittsweise als Punktfundamente innerhalb des Tunnelgebäudes vorgesehen sind, nämlich dort, wo die Stahlträgerbogen 9 auf den Boden des Tunnelgebäudes treffen. In jedem Fall muss eine ausreichende Verankerung im Boden des Tunnelgebäudes durch das Fundament gewährleistet sein.The frame element 2 itself comprises as the base element a steel carrier sheet 9, which in the illustrated embodiment is formed as a double T-carrier from an HEB S355 steel profile. The steel support arch 9 is provided at each of its ends with a welded base plate 11 which is mounted on a foundation 13. The foundation 13 may be continuous in the longitudinal direction of the tunnel building, but it is also possible that the foundations 13 are provided only partially or in sections as a point foundations within the tunnel building, namely where the steel support arch 9 meet on the floor of the tunnel building. In any case, sufficient anchoring in the floor of the tunnel building through the foundation must be ensured.

Die Stahlträgerbogen 9A weisen an ihrer Innenseite und auch an ihrer Außenseite, jedoch nicht direkt an ihren Flanschen, jeweils eine Bewehrungslage 15, 17 auf, die mittels Halteelementen an den Stahlträgerbogen 9 fixiert sind. Details hierzu sind in der vorliegenden Beschreibung bezüglich der nachfolgenden Figuren beschrieben.The steel support sheets 9A have on their inner side and also on their outer side, but not directly on their flanges, in each case a reinforcement layer 15, 17, which are fixed by means of holding elements to the steel support sheet 9. Details of this are described in the present description with respect to the following figures.

Da die Außenschale 3 des Tunnelgebäudes mit einer Dichtungsfolie 4, d. h. einer Kunststoffdichtbahn, zum Zwecke der Abdichtung des Tunnelinneren vor dem Eindringen von Bergwasser wasserdicht abgeschlossen ist, darf die Rahmenkonstruktion 1 mit der Außenschale 3 nicht derart verbunden sein, dass die Dichtungsschicht unterbrochen oder beschädigt wird. Deshalb sind die Stahlträgerbogen 9 über erste Abstandhalter mit der Innenfläche der Dichtungsfolie 4 verbunden, wobei die ersten Abstandhalter 19 mit Lastverteilungsplatten 20 versehen sind, wie unter Bezugnahme auf Fig. 2 ausführlich weiter unten beschrieben ist. Die Lastverteilungsplatten 20 werden nicht auf der Dichtungsfolie 4 fixiert, sondern nach Positionierung der Stahlträgerbogen 9 gegen die Dichtungsfolie 4 gepresst. In der bevorzugten Ausführungsform sind die ersten Abstandhalter 19 dazu mit entsprechenden Gewinden versehen. Darüber hinaus können so Toleranzen im Zwischenraum zwischen der Außenschale 3 des Tunnelgebäudes und den Stahlträgerbogen 9 auf einfache Weise ausgeglichen werden können. Das Material der ersten Abstandhalter 19 und der Lastverteilungsplatten 20 sowie deren Abmessungen sind derart ausgewählt, dass die Abstützkräfte der Rahmenkonstruktion 1 auf die Dichtungsfolie 4 die für die Folie zulässigen Lasten einhalten. Darüber hinaus gilt für das Material, dass bevorzugt Kunststoff, kunststoffummantelte Stahlstifte oder auch Edelstahlgewindestangen verwendet werden, um eine mögliche Korrosion nahe an der Außenschale 3 des Tunnelgebäudes zu verhindern.Since the outer shell 3 of the tunnel building with a sealing film 4, ie a plastic sealing membrane, is watertight for the purpose of sealing the inside of the tunnel from the ingress of mountain water, the frame structure 1 must not be connected to the outer shell 3 so that the sealing layer is interrupted or damaged becomes. Therefore, the steel support sheets 9 are connected to the inner surface of the sealing film 4 via first spacers, the first spacers 19 being provided with load distribution plates 20 as described with reference to FIG Fig. 2 described in detail below. The load distribution plates 20 are not fixed on the sealing film 4, but pressed after positioning the steel support sheet 9 against the sealing film 4. In the preferred embodiment, the first spacers 19 are provided with corresponding threads for this purpose. In addition, tolerances in the space between the outer shell 3 of the tunnel building and the steel support sheet 9 can be compensated in a simple manner. The material of the first spacers 19 and the load distribution plates 20 and their dimensions are selected such that the supporting forces of the frame structure 1 on the sealing film 4 comply with the permissible loads for the film. In addition, it applies to the material that preferably plastic, plastic-coated steel pins or stainless steel threaded rods are used to prevent possible corrosion close to the outer shell 3 of the tunnel building.

Auf der Innenseite des Stahlträgerbogens 9 ist über zweite Abstandhalter 21 eine Schalungslage 23 angebracht, die mehrere Schalungselemente 24 umfasst. Um eine Selbsttragung der Rahmenkonstruktion 1 zu ermöglichen, wird die Schalungslage 23 in verschiedene Schalungselemente unterschiedlicher Höhe aufgeteilt, sodass eine abschnittsweise Betonierung, d. h. eine Hinterfüllung der entsprechenden Schalungselemente mit Beton, ermöglicht wird. Eine ausführliche Beschreibung des Verfahrens ist weiter unten in dieser Beschreibung angegeben.On the inside of the steel support arch 9, a shuttering layer 23 is attached via second spacers 21, which includes a plurality of shuttering elements 24. In order to enable a self-supporting the frame structure 1, the formwork layer 23 is divided into different formwork elements of different heights, so that a section concreting, d. H. a backfill of the corresponding formwork elements with concrete, is made possible. A detailed description of the method is given below in this description.

Die Stahlträgerbogen 9 sind üblicherweise derart dimensioniert, dass sie in ihrer Längserstreckung nicht den gesamten Tunnelbogen abdecken, sondern in zwei oder drei Teilsegmente aufgeteilt sind. Diese Teilsegmente können über ein oder mehrere Verbindungselement(e) 25 miteinander verbunden werden, das auf mindestens einer Seite des Stegs angebracht wird, wie in Fig. 1 im Firstbereich des Tunnelgebäudes dargestellt.The steel support sheets 9 are usually dimensioned so that they do not cover the entire tunnel arc in their longitudinal extent, but are divided into two or three sub-segments. These subsegments may be interconnected via one or more fasteners 25 that are mounted on at least one side of the web, as in FIG Fig. 1 shown in the ridge area of the tunnel building.

Die Hinterfüllung der Rahmenkonstruktion 1 mit Stahlbeton erfolgt in der dargestellten Ausführungsform bevorzugt abschnittsweise derart, dass zunächst eine erste, untere Schalungslage 23, d. h. bis zu einer Höhe eines ersten Schalungselements 24 verschalt wird und anschließend Ortbeton hinter die Schalung gegossen wird, sodass der vollständige Längenabschnitt der Rahmenkonstruktion 1 bis zur Höhe des ersten Schalungselements 24 mit Ortbeton hinterfüllt wird, wobei sich die Betonmasse in sämtliche Zwischenräume um die Stahlträgerbogen 9, die inneren und äußeren Bewehrungslagen 15, 17 sowie um die ersten und zweiten Abstandhalter 19, 21 sowie die Halteelemente 14 herum bewegt und aufgrund der Verdichtung im Wesentlichen keine Lufteinschlüsse oder andere Leerräume zwischen der Außenschale 3 und der Schalungslage 23 vorhanden sind.The backfilling of the frame construction 1 with reinforced concrete preferably takes place in sections in such a way that initially a first, lower formwork layer 23, ie up to a height of a first formwork element 24 is boarded and subsequently cast concrete is poured behind the formwork, so that the complete longitudinal section of Frame construction 1 up to the height of the first shuttering element 24th backfilled with in situ concrete, wherein the concrete mass moves in all spaces around the steel support arch 9, the inner and outer reinforcement layers 15, 17 and the first and second spacers 19, 21 and the support members 14 around and due to the compression substantially no air pockets or other voids between the outer shell 3 and the formwork layer 23 are present.

Fig. 2 zeigt ein Detail der Darstellung aus Fig. 1, wobei insbesondere der Übergangsbereich zwischen der Außenschale 3 des Tunnelgebäudes zur Rahmenkonstruktion 1 ausführlich gezeigt ist. Man erkennt auf der Innenseite der Außenschale 3 eine Dichtungsfolie 4, die in Fig. 2 strichpunktiert dargestellt ist. Die Dichtungsfolie 4 ist durchgängig etwa 2 mm dick und robust, sodass von außen kein Bergwasser in das Innere des Tunnels eindringen kann. Zwischen der Dichtungsfolie 4 und der Außenschale 3 können Gewebematten, Geotextil oder ähnliche Materialien angeordnet sein, um die Dichtungsfolie 4 vor Beschädigungen zu schützen und um für eine möglichst gleichmäßige Kraftverteilung zu sorgen. Auf der Dichtungsfolie 4 sind nach innen die Lastverteilungsplatten 20 angebracht, die in der bevorzugten Ausführungsform aus Kunststoff mit einer Größe von etwa 25 cm x 25 cm ausgebildet und mit der Dichtungsfolie 4 verklebt sind und in der Mitte einen Gewindeabschnitt aufweisen, in den ein erster Abstandhalter 19 eingreifen kann, der ebenfalls mit einem Gewinde versehen ist. Der erste Abstandshalter 19 sowie die Lastverteilungsplatte 20 können aus Kunststoff ausgebildet sein, um das Korrosionsrisiko der Stahlbetonelemente zu minimieren. Auf der Innenseite ist der erste Abstandhalter 19 mit dem äußeren Flansch des Stahlträgerbogens 9 verschraubt. Dadurch ist die Möglichkeit gegeben, je nach Ausbildung des Zwischenraums Toleranzen im Abstand zwischen der Außenschale 3 und den Stahlträgerbogen 9 auszugleichen. Fig. 2 shows a detail of the presentation Fig. 1 In particular, the transition region between the outer shell 3 of the tunnel building to the frame structure 1 is shown in detail. It can be seen on the inside of the outer shell 3, a sealing film 4, in Fig. 2 dash-dotted lines is shown. The sealing film 4 is consistently about 2 mm thick and robust, so that from the outside no mountain water can penetrate into the interior of the tunnel. Between the sealing film 4 and the outer shell 3 fabric mats, geotextile or similar materials may be arranged to protect the sealing film 4 from damage and to ensure the most uniform force distribution. On the sealing film 4, the load distribution plates 20 are mounted inwardly, which are formed in the preferred embodiment of plastic with a size of about 25 cm x 25 cm and glued to the sealing film 4 and in the middle have a threaded portion in which a first spacer 19 can engage, which is also provided with a thread. The first spacer 19 and the load distribution plate 20 may be formed of plastic to minimize the risk of corrosion of the reinforced concrete elements. On the inside, the first spacer 19 is screwed to the outer flange of the steel support arch 9. This makes it possible, depending on the design of the gap tolerances in the distance between the outer shell 3 and the steel support arch 9 compensate.

In Fig. 2 ebenfalls sichtbar ist die äußere Bewehrungslage 17, die in Bogenrichtung angeordnete Bewehrungsstäbe sowie senkrecht dazu angeordnete Bewehrungsstäbe aufweist. Die Befestigung der äußeren Bewehrungslage 17 erfolgt durch Verrödelung mittels Draht an den Bewehrungsbogen 16, die in Fig. 2 unmittelbar angrenzend an den äußeren Flansch des Stahlträgerbogens 9 dargestellt sind und deren Befestigung ausführlich unter Bezugnahme auf die Fig. 3 beschrieben wird.In Fig. 2 also visible is the outer reinforcing layer 17, which has bowing arranged in the rebar and perpendicular thereto arranged reinforcing bars. The attachment of the outer reinforcement layer 17 is effected by Verrödelung by means of wire to the reinforcement sheet 16, which in Fig. 2 are shown immediately adjacent to the outer flange of the steel beam arch 9 and their attachment in detail with reference to the Fig. 3 is described.

Fig. 3 zeigt ein Detail der erfindungsgemäßen Rahmenkonstruktion 1 in der bevorzugten Ausführungsform. Besonderes Augenmerk wird bei der Beschreibung der Fig. 3 auf die innere Lage der Rahmenkonstruktion 1 gelegt. Da die Details hin zur Außenwand bereits unter Bezugnahme auf Fig. 2 beschrieben wurden, werden diese Ausführungen hier nicht wiederholt. Man erkennt in Fig. 3, dass die innere Bewehrungslage 15 spiegelbildlich zur äußeren Bewehrungslage 17 ausgebildet ist, d. h. auch hier ist ein Bewehrungsbogen 16 parallel zum inneren Flansch des Stahlträgerbogens 9 angeordnet, wobei dieser Bewehrungsbogen 16 über Halteelemente 14 mit dem Steg des Stahlträgerbogens 9 verschraubt ist. Einzelheiten zu dem Halteelement werden unter Bezugnahme auf die Fig. 6 und 7 beschrieben. Die innere Bewehrungslage 15 wird analog zur äußeren Bewehrungslage 17 mit den entsprechenden Bewehrungsbogen 16 mit Rödeldraht fest miteinander verbunden bzw. vernetzt. Diesen Schritt führt der Bewehrungstrupp aus, wobei bei der erfindungsgemäßen Rahmenkonstruktion vorzugsweise die äußere Bewehrungslage 17 zuerst montiert wird und anschließend die innere Bewehrungslage 15. Es ist ebenfalls grundsätzlich möglich, den entsprechenden Stahlträgerbogen 9 mit innerer und äußerer Bewehrungslage 15, 17 schon außerhalb des Tunnelgebäudes oder vor Befestigung des Stahlträgerbogens am Fundament 13 entsprechend vorzubereiten. Fig. 3 shows a detail of the frame structure 1 according to the invention in the preferred embodiment. Special attention is given in the description of the Fig. 3 on the inside Location of the frame construction 1 laid. As the details towards the outside wall are already referring to Fig. 2 have been described, these statements are not repeated here. One recognizes in Fig. 3 in that the inner reinforcing layer 15 is formed in mirror image to the outer reinforcing layer 17, ie a reinforcing sheet 16 is also arranged parallel to the inner flange of the steel carrier sheet 9, this reinforcing sheet 16 being screwed to the web of the steel carrier sheet 9 via holding elements 14. Details of the retaining element will be described with reference to FIGS 6 and 7 described. The inner reinforcement layer 15 is connected or crosslinked analogously to the outer reinforcing layer 17 with the corresponding reinforcement sheet 16 with tie wire. This step performs the reinforcement troop, wherein in the frame construction according to the invention preferably the outer reinforcement layer 17 is mounted first and then the inner reinforcement layer 15. It is also possible in principle, the corresponding steel support arch 9 with inner and outer reinforcement layer 15, 17 already outside the tunnel building or prepare before mounting the steel girder arch on the foundation 13 accordingly.

Nach innen ist am inneren Flansch des Stahlträgerbogens 9 eine Mehrzahl von zweiten Abstandhaltern 21 befestigt, an deren anderem Ende die Schalungslage 23 angebracht wird. Die zweiten Abstandhalter 21 sind in der hier dargestellten Ausführungsform als Stahlschrauben ausgebildet, die mit einer schützenden Kunststoffhülle umrandet sind, sodass der Kunststoffmantel eine direkte Verbindung zwischen Stahlbeton und Abstandhalter verhindert. Die Ausbildung als Schraube ermöglicht es ähnlich wie bei den ersten Abstandhaltern 19, dass der Abstand zwischen der Schalungslage 23 und dem inneren Flansch des Stahlträgerbogens 9 exakt eingestellt werden kann, und so Toleranzen ausgeglichen werden können.Inwardly, a plurality of second spacers 21 is attached to the inner flange of the steel support arch 9, at the other end of the shuttering layer 23 is attached. The second spacers 21 are formed in the embodiment shown here as steel screws, which are surrounded by a protective plastic sheath, so that the plastic sheath prevents a direct connection between reinforced concrete and spacers. The design as a screw allows, similar to the first spacers 19, that the distance between the shuttering layer 23 and the inner flange of the steel support sheet 9 can be set exactly, and so tolerances can be compensated.

Die Schalungslage 23 umfasst handelsübliche Schalbretter, die aus Kunststoff, Holz oder auch aus Metall ausgebildet sein können. Bevorzugt sind übliche Holzverschalungen. In Fig. 3 ebenfalls erkennbar ist, dass nach Hinterfüllung der Rahmenkonstruktion sowie nach entsprechender Verdichtung der Stahlbeton 27 den gesamten Zwischenraum zwischen Außenschale 3 und Schalungslage 23 ausfüllt, ohne dass Hohlräume oder sonstigen Einschlüsse verbleiben.The formwork layer 23 includes commercial formwork boards, which may be formed of plastic, wood or metal. Preference is given to usual wood cladding. In Fig. 3 It can also be seen that after backfilling the frame construction and after corresponding compaction, the reinforced concrete 27 fills the entire gap between the outer shell 3 and the shuttering layer 23, without cavities or other inclusions remaining.

In Fig. 4 ist ein Detail aus der Fig. 1 vergrößert dargestellt, das im Firstbereich des Tunnelgebäudes liegt. In der dargestellten Ausführungsform weist die Rahmenkonstruktion 1 rechts und links je einen Stahlträgerbogen 9 auf, die im Firstbereich im Wesentlichen aneinanderstoßen und dort mittels eines Verbindungselements 25 miteinander verbunden sind. Das Verbindungselement 25 ist auf mindestens einer Seite des Stegs des Stahlträgerbogens angeordnet und mit dem jeweiligen Ende verschraubt. Bevorzugt ist das Verbindungselement 25 auf beiden Seiten des Stegs angeordnet, um für eine noch stabilere Verbindung zu sorgen. Je nach Dimension der Stahlträgerbogen 9 können zwei, drei, vier oder auch noch mehr Teilsegmente von Stahlträgerbogen 9 den kompletten Bogen der Rahmenkonstruktion 1 bilden, die dann jeweils in ihren Stirnbereichen mittels mindestens je eines Verbindungselements 25 miteinander verbunden werden können. Auf eine Wiederholung der bereits unter Bezugnahme auf die Fig. 2 und 3 beschriebenen Elemente aus Fig. 4 wird an dieser Stelle verzichtet. Alternativ bieten sich auch andere Möglichkeiten der Verbindung der Enden zweier Stahlträgerbogen 9 an, z. B. die Verschraubung von zwei Fußplatten, die wie bereits beschrieben auf die Stirnseiten der Stahlträgerbogen angeschweißt sind.In Fig. 4 is a detail from the Fig. 1 shown enlarged, which lies in the ridge area of the tunnel building. In the illustrated embodiment, the frame structure 1 on the right and left each have a steel support arch 9, which abut one another in the ridge region substantially and there by means of a connecting element 25 are interconnected. The connecting element 25 is arranged on at least one side of the web of the steel carrier sheet and screwed to the respective end. Preferably, the connecting element 25 is arranged on both sides of the web to provide an even more stable connection. Depending on the dimension of the steel girder arch 9, two, three, four or even more subsegments of steel girder arch 9 can form the complete arch of the frame structure 1, which can then be connected to one another in each case in their end regions by means of at least one connecting element 25. On a repetition of the already referring to the FIGS. 2 and 3 described elements Fig. 4 will be omitted here. Alternatively, other ways of connecting the ends of two steel beam arch 9, for. B. the screwing of two foot plates, which are welded as already described on the end faces of the steel beam.

Fig. 5 zeigt den Ausschnitt aus Fig. 1, in dem der Stahlträgerbogen 9 mit dem eigens dafür vorgesehenen Fundament 13 verbunden ist. Eine Fußplatte 11 ist auf der Stirnseite des Doppel-T-Trägerbogens 9 angeschweißt. Diese im Wesentlichen quadratische Fußplatte 11 weist in jedem ihrer Eckbereiche eine Bohrung auf, durch die eine Gewindestange 31 geführt ist. Diese Gewindestange 31 ist auf beiden Seiten der Fußplatte 11 mit einer Befestigungsmutter 29 bzw. einer Justiermutter 30 fixiert und ist in Bohrungen im Fundament 13 mittels eines Vergusses 12 eingelassen. Es sind neben der hier dargestellten Befestigungsart auch andere Möglichkeiten denkbar, die Fußplatte 11 mit dem Fundament 13 zu verbinden, sodass sich eine stabile Position ergibt. Fig. 5 shows the section Fig. 1 in which the steel carrier sheet 9 is connected to the foundation 13 provided for this purpose. A foot plate 11 is welded on the front side of the double-T-carrier sheet 9. This substantially square base plate 11 has in each of its corner regions a bore through which a threaded rod 31 is guided. This threaded rod 31 is fixed on both sides of the base plate 11 with a fastening nut 29 and an adjusting nut 30 and is embedded in holes in the foundation 13 by means of a potting 12. There are in addition to the fastening shown here, other possibilities conceivable to connect the base plate 11 with the foundation 13, so that there is a stable position.

Fig. 6 zeigt in Draufsicht eine Querschnittsansicht einer Seite der erfindungsgemäßen Rahmenkonstruktion 1 in Bodennähe. Man erkennt, dass die Fußplatte 11 vollflächig auf dem Fundament 13 aufliegt und an ihm befestigt ist. Das Fundament 13 ist wie hier dargestellt als Punktfundament ausgeführt, es könnte jedoch auch durchgängig über die gesamte Länge des Tunnelgebäudes mit der hier dargestellten Breite ausgebildet sein. Wie bereits ausführlich erläutert, ist der Stahlträgerbogen 9 mit der Fußplatte 11 fest verschweißt. Die Darstellung in Fig. 6 soll dazu dienen, die flexibel einstellbare Befestigung der inneren und äußeren Bewehrungslagen 15, 17 am Stahlträgerbogen 9 mittels der Halteelemente 14 näher zu erläutern. Das Halteelement 14 umfasst ein L-förmiges Winkelprofilblech 32, das jeweils auf einer Seite des Stegs des Stahlträgerbogens 9 befestigt ist, z. B. mittels einer Schweißverbindung. An dem Abschnitt des Winkelprofilblechs 32, der parallel zum Steg des Stahlträgerbogens 9 ist, ist ein Halteblech 34 angeordnet, dessen Ausdehnung ebenfalls parallel zur Stegfläche des Stahlträgerbogens 9 ist. Die Verbindung erfolgt mittels einer Gewindestange oder einer üblichen Schraube/Mutter-Verbindung, wobei das Halteblech 34 entlang eines mittig angeordneten Langlochs 35 verschoben werden kann. An einem freien Ende des Halteblechs 34 ist der Bewehrungsstab 16 angeordnet, der quasi parallel zum inneren bzw. äußeren Flansch des Stahlträgerbogens 9 verläuft und als Basis für die Fixierung der inneren bzw. äußeren Bewehrungslagen 15, 17 dient. Die Verbindung zwischen Halteblech 34 und Bewehrungsstab 16 ist üblicherweise eine Schweißverbindung, kann aber auch auf andere Weise erfolgen wie z. B. Kleben und dergleichen. In Fig. 6 ist erkennbar, wie an dem Bewehrungsstab 16 zunächst die senkrecht dazu verlaufenden Bewehrungsstähle als Längsbewehrung befestigt werden, an denen wiederum dann noch weiter außen die Querbewehrungsstäbe der inneren bzw. äußeren Bewehrungslage 15, 17 befestigt sind. Die Befestigung erfolgt mittels Verrödelung, d. h. durch Anbringen von Drahtschleifen aus Rödeldraht an den Kreuzungen der Bewehrungsstäbe. Fig. 6 shows in plan view a cross-sectional view of a side of the frame structure 1 according to the invention near the bottom. It can be seen that the foot plate 11 fully rests on the foundation 13 and is attached to it. The foundation 13 is executed as shown here as a point foundation, but it could also be formed throughout the entire length of the tunnel building with the width shown here. As already explained in detail, the steel support arch 9 is firmly welded to the base plate 11. The representation in Fig. 6 should serve the flexible adjustable attachment of the inner and outer reinforcing layers 15, 17 on the steel support arch 9 by means of the holding elements 14 to explain in more detail. The holding element 14 comprises an L-shaped angle profile sheet 32 which is fixed in each case on one side of the web of the steel support sheet 9, for. B. by means of a welded connection. At the portion of the angle profile sheet 32, which is parallel to the web of the steel carrier sheet 9, a holding plate 34 is arranged, whose extension is also parallel to the web surface of the steel carrier sheet 9. The connection is made by means of a threaded rod or a conventional screw / nut connection, wherein the retaining plate 34 can be moved along a centrally disposed slot 35. At a free end of the retaining plate 34 of the reinforcing rod 16 is arranged, which runs quasi parallel to the inner or outer flange of the steel support arch 9 and serves as a basis for the fixation of the inner and outer reinforcing layers 15, 17. The connection between the retaining plate 34 and reinforcing bar 16 is usually a welded connection, but can also be done in other ways, such as. B. gluing and the like. In Fig. 6 It can be seen how to the reinforcing bar 16, first the perpendicularly extending reinforcing bars are attached as a longitudinal reinforcement, which in turn then further out the transverse reinforcing rods of the inner or outer reinforcing layer 15, 17 are attached. The attachment takes place by means of decay, ie by attaching wire loops of Rödeldraht at the intersections of the reinforcing bars.

In Fig. 7 ist im Detail noch einmal das Halteelement 14 dargestellt mit seinen Bestandteilen, dem Winkelprofilblech 32 sowie dem Halteblech 34. Derartige Bleche können aus einem geeigneten Profilstahl ausgebildet sein, beispielsweise mit einem U-Profil. In Zusammenschau der Fig. 6 und 7 wird deutlich, dass der Abstand der inneren und äußeren Bewehrungslagen 15, 17 zu den Flanschen der Stahlträgerbogen 9 über eine entsprechende Fixierung der Halteelemente 14 eingestellt werden kann. Damit können Toleranzen berücksichtigt werden.In Fig. 7 is in detail again the holding member 14 shown with its components, the angle profile sheet 32 and the support plate 34. Such sheets may be formed of a suitable section steel, for example with a U-profile. In synopsis of 6 and 7 It is clear that the distance of the inner and outer reinforcing layers 15, 17 can be adjusted to the flanges of the steel support arch 9 via a corresponding fixation of the holding elements 14. This allows tolerances to be taken into account.

Das erfindungsgemäße Verfahren wird nachfolgend ausführlich beschrieben. In das Tunnelgebäude, dessen Außenwand mittels einer Dichtfolie 4 im Wesentlichen wasserdicht gegen Bergwasser abgedichtet ist, werden die Stahlträgerbogen 9 eingebracht und auf den vorher dafür eingerichteten Fundamenten 13 fixiert. Wie in Fig. 4 dargestellt können mehr als ein Stahlträgerbogen 9 den gesamten Tunnelbogen bilden; eine entsprechende Verbindung kann beispielsweise über Verbindungselemente 25 herbeigeführt werden. Der Abstand zwischen Stahlträgerbogen 9 und Dichtungsfolie 4 wird über erste Abstandhalter 19 eingestellt, die bevorzugt mittels Lastverteilungsplatten 20 an der Dichtungsfolie 4 angeordnet sind. Die Befestigung der Lastverteilungsplatten 20 erfolgt durch Pressen, d.h. durch die an den Abstandhaltern 19 vorhandenen Gewinde, die ein Drehen und damit die Einstellung des Abstands und des Anpressdrucks auf die Dichtungsfolie 4 ermöglichen. Dieser erste Schritt wird von einem dafür ausgebildeten Bautrupp vorgenommen und nach Fertigstellung entsprechend abgenommen.The process according to the invention will be described in detail below. In the tunnel building, the outer wall is sealed by a sealing film 4 substantially waterproof against mountain water, the steel support arch 9 are introduced and fixed on the previously established for this foundation 13. As in Fig. 4 more than one steel beam arch 9 can form the entire tunnel arc; a corresponding connection can be brought about for example via connecting elements 25. The distance between the steel carrier sheet 9 and sealing film 4 is about first spacer 19 set, which are preferably arranged by means of load distribution plates 20 on the sealing film 4. The attachment of the load distribution plates 20 takes place by pressing, ie by the existing on the spacers 19 thread, which allow rotation and thus the adjustment of the distance and the contact pressure on the sealing film 4. This first step is carried out by a trained construction team and removed accordingly after completion.

Nun kann die Montage der inneren und/oder der äußeren Bewehrungslagen 15, 17 erfolgen. Üblich sind meist zwei Bewehrungslagen. Die Halterungen 14 mit Winkelprofilblech 32 und Halteblech 34 sind schon an den Stegen der Stahlträgerbogen 9 angebracht oder werden nun dort angeschweißt. Es ist vorteilhaft, dass die Halteelemente 14 für die innere Bewehrungslage 15 auf derselben einen Stegseite angeordnet sind und für die äußere Bewehrungslage 17 auf der anderen, gegenüber liegenden Seite. An den Halteblechen 34 werden zunächst parallel zu den Stahlträgerbogen 9 die Bewehrungsstäbe 16 befestigt, bevorzugt mittels Schweißverbindung. Auch andere Befestigungstechniken sind möglich wie Löten, Kleben, Verschrauben oder dergleichen. Anschließend werden die quer zu den Bewehrungsstäben 16 verlaufenden Bewehrungsstähle der inneren bzw. äußeren Bewehrungslagen befestigt, d.h. die in Tunnellängsrichtung verlaufenden. Dazu wird Rödeldraht verwendet, der nach seinem Anordnen am gewünschten Ort per Werkzeug verdrillt wird und damit für eine ausreichend feste Verbindung von zwei sich kreuzenden Bewehrungsstählen sorgt. Nun kann jeweils vom Stahlträgerbogen 9 gesehen die weiter entfernt gelegene Bewehrungslage auf die gleiche Art und Weise befestigt werden. Ergebnis ist ein relativ engmaschiges Netz aus Bewehrungsstählen, das sich zumindest soweit ausdehnt, dass der erste zu gießende Abschnitt ausreichend mit Bewehrung bedeckt ist.Now, the assembly of the inner and / or the outer reinforcing layers 15, 17 take place. Usually are usually two rebar layers. The brackets 14 with angle profile sheet 32 and retaining plate 34 are already attached to the webs of the steel beam arch 9 or are now welded there. It is advantageous that the holding elements 14 are arranged for the inner reinforcing layer 15 on the same one web side and for the outer reinforcing layer 17 on the other, opposite side. At the holding plates 34, the reinforcing rods 16 are first attached parallel to the steel carrier sheet 9, preferably by means of welded connection. Other fastening techniques are possible such as soldering, gluing, screwing or the like. Subsequently, the reinforcing steels of the inner and / or outer reinforcing layers running transversely to the reinforcing bars 16 are fastened, i. running in the tunnel longitudinal direction. For this purpose, use is made of a twisted-wire wire which, after being arranged at the desired location, is twisted by means of a tool and thus ensures a sufficiently strong connection of two intersecting reinforcing steels. Now seen from the steel support arch 9, the more distant reinforcement layer can be fixed in the same manner. The result is a relatively close-meshed network of reinforcing steels, which expands at least to the extent that the first section to be cast is sufficiently covered with reinforcement.

Hier ist anzumerken, dass der Abstand der inneren und äußeren Bewehrungslagen 15, 17 auch nach Anbringung der Bewehrungsstäbe noch angepasst werden kann. Dies kann erforderlich sein, um Toleranzen auszugleichen oder auf bereits gemessene unterschrittene Mindestabstände zu reagieren.It should be noted that the distance between the inner and outer reinforcement layers 15, 17 can still be adjusted even after attachment of the reinforcing bars. This may be necessary to compensate for tolerances or to respond to previously measured below minimum clearances.

Als nächstes wird die Schalungslage angebracht. Dazu werden die zweiten Abstandhalter 21, die in der in Fig. 4 dargestellten Ausführungsform mit einer Kunststoffumhüllung versehen sind, in die dafür vorgesehenen Gewindebohrungen im inneren Flansch des Stahlträgerbogens gedreht und damit dort unter Berücksichtigung des überbrückten Abstands befestigt. Sind alle zweiten Abstandhalter 21 für den Abschnitt vorhanden, werden die Schalungsbretter der Schalungslage 23 per Schraubenverbindung angebracht. Je nach Material der Schalung kann eine andere Technik bei der Befestigung sinnvoll sein. Im dargestellten Beispiel wird eine Holzverschalung eingesetzt, die nach Betonierung abgenommen, gereinigt, aufbereitet und wieder verwendet werden kann. Der Vorteil der vorliegenden Erfindung ist an dieser Stelle, dass nur der Bereich mit einer Schalung zu versehen ist, der direkt im Anschluss betoniert werden soll. Dadurch ergibt sich eine flexible Verwendung der Arbeitsmittel und Einteilung der Arbeitstrupps, die entsprechend koordiniert zu den erlaubten Zeiten im Tunnel arbeiten können. Des Weiteren ist die vorliegende Rahmenkonstruktion selbst tragend und selbstverstärkend, da eine bereits betonierte untere Schicht die darüber liegende Schicht stützt und dadurch die Gesamtkonstruktion verstärkt. Mit anderen Worten nimmt der Rahmen den hydrostatischen Druck aus dem Frischbeton auf.Next, the formwork layer is attached. For this purpose, the second spacers 21, which are in the in Fig. 4 embodiment shown are provided with a plastic sheath, rotated in the designated threaded holes in the inner flange of the steel beam arch and thus fastened there taking into account the bridged distance. If all second spacers 21 are present for the section, the shuttering boards of the shuttering layer 23 are attached by screw connection. Depending on the material of the formwork, another technique may be useful when fixing. In the example shown, a wooden shuttering is used, which can be removed after concreting, cleaned, processed and reused. The advantage of the present invention is at this point that only the area is to be provided with a formwork to be concreted directly after. This results in a flexible use of work equipment and division of the work crews, which can work coordinated in accordance with the times allowed in the tunnel. Furthermore, the present frame construction is self-supporting and self-reinforcing, as an already-concreted lower layer supports the overlying layer and thereby reinforces the overall construction. In other words, the frame absorbs the hydrostatic pressure from the fresh concrete.

Die nächsthöheren Betonlagen bzw. -abschnitte können betoniert werden, sobald die darunter liegenden Abschnitte abgetrocknet sind, d. h. in aller Regel nach etwa 12 bis 20 Stunden.The next higher concrete layers or sections can be concreted as soon as the underlying sections are dried, d. H. usually after about 12 to 20 hours.

Zusammengefasst sind die Vorteile der vorliegenden Erfindung, dass das Betonieren der Innenschale ohne den Einsatz von Bewehrungswagen und Schalwagen auskommt, was Zeitaufwand und Kosten einspart. Zudem sind keine aufwändigen Bohrungen und Verankerungen der Rahmenkonstruktion im Fels notwendig. Der teure Einsatz von Spritzbeton wird vermieden, und die Tunnelabdichtung wird nicht durchdrungen. Auch bleibt ein größtmöglicher Lichtraum im Tunnelgebäude erhalten.In summary, the advantages of the present invention is that the concreting of the inner shell without the use of rebar and formwork carriage manages, which saves time and costs. In addition, no elaborate drilling and anchoring of the frame structure in the rock are necessary. The expensive use of shotcrete is avoided, and the tunnel seal is not penetrated. Also, the greatest possible clearance remains in the tunnel building.

Mit dem Gegenstand der vorliegenden Erfindung wurde eine Rahmenkonstruktion und ein Verfahren für den Ausbau der Innenschale eines Tunnelgebäudes bereitgestellt, die preisgünstig zu realisieren ist, einen unkomplizierten Aufbau aufweist, eine selbsttragende Betoninnenschale und insbesondere eine abschnittsweise Betonierung ohne Schalwagen ermöglicht.With the subject of the present invention, a frame construction and a method for the construction of the inner shell of a tunnel building has been provided, which is inexpensive to implement, has a simple structure, allows a self-supporting concrete inner shell and in particular a section concreting without formwork carriages.

Claims (13)

Rahmenkonstruktion (1) für den Ausbau der Innenschale eines Tunnelgebäudes mit einer Mehrzahl von Rahmenelementen (2), die aufweisen: einen Stahlträgerbogen (9) mit einer Innenseite und einer Außenseite, eine Bewehrungslage (15, 17) auf der Innenseite und/oder der Außenseite des Stahlträgerbogens (9), die an dem Stahlträgerbogen (9) mittels Halteelementen (14) angebracht ist, eine abnehmbare Schalungslage (23) in einem vorbestimmten Abstand zur Innenseite des Stahlträgerbogens (9), erste Abstandhalter (19) auf der Außenseite des Stahlträgerbogens (9) zur Abstützung an der Außenwandung (3) oder der Gebirgswand des Tunnelgebäudes und zweite Abstandhalter (21) auf der Innenseite des Stahlträgerbogens (9) zur Fixierung der Schalungslage (23), wobei die Rahmenkonstruktion (1) dazu eingerichtet ist, abschnittsweise mit Beton (27) aufgefüllt zu werden und dabei den hydrostatischen Druck des Betons aufzunehmen. Frame construction (1) for the construction of the inner shell of a tunnel building with a plurality of frame elements (2) comprising: a steel carrier sheet (9) having an inside and an outside, a reinforcing layer (15, 17) on the inside and / or the outside of the steel carrier sheet (9) which is attached to the steel carrier sheet (9) by means of holding elements (14), a removable formwork layer (23) at a predetermined distance from the inside of the steel carrier sheet (9), first spacers (19) on the outside of the steel support arch (9) for support on the outer wall (3) or the rock wall of the tunnel building and second spacers (21) on the inside of the steel carrier sheet (9) for fixing the formwork layer (23), wherein the frame structure (1) is adapted to be partially filled with concrete (27) and thereby absorb the hydrostatic pressure of the concrete. Rahmenkonstruktion (1) nach Anspruch 1, dadurch gekennzeichnet, dass jeder Stahlträgerbogen (9) an seinen beiden Enden eine Fußplatte (11) aufweist, die auf einem Fundament (13) fixierbar ist.Frame construction (1) according to claim 1, characterized in that each steel support arch (9) has at its two ends a foot plate (11) which is fixable on a foundation (13). Rahmenkonstruktion (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie eine Mehrzahl von in Tunnelrichtung in Reihe hintereinander angeordneten Rahmenelementen (2) aufweist.Frame construction (1) according to one of the preceding claims, characterized in that it comprises a plurality of in the tunnel direction in series successively arranged frame elements (2). Rahmenkonstruktion (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Stahlträgerbogen (9) als Doppel-T-Träger mit HEA oder HEB Profil ausgebildet ist.Frame construction (1) according to one of the preceding claims, characterized in that the steel support arch (9) is designed as a double-T-beam with HEA or HEB profile. Rahmenkonstruktion (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Stahlträgerbogen (9) mehrteilig und derart ausgebildet ist, dass mehrere Stahlträgerbogen (9) in Längsrichtung miteinander verbindbar sind.Frame construction (1) according to one of the preceding claims, characterized in that the steel carrier sheet (9) is of a multi-part design and in such a way that a plurality of steel carrier sheets (9) can be connected to one another in the longitudinal direction. Rahmenkonstruktion (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Halteelemente (14) derart ausgebildet sind, dass der Abstand zwischen der Bewehrungslage (15, 17) und dem Stahlträgerbogen (9) einstellbar ist.Frame construction (1) according to one of the preceding claims, characterized in that the holding elements (14) are formed such that the distance between the reinforcement layer (15, 17) and the steel support sheet (9) is adjustable. Rahmenkonstruktion (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Halteelement (14) ein L-förmiges Profilblech (32) und ein gerades Halteblech (34) mit Langloch (35) und Gewindestange aufweist.Frame construction (1) according to one of the preceding claims, characterized in that a holding element (14) has an L-shaped profiled sheet (32) and a straight retaining plate (34) with slot (35) and threaded rod. Rahmenkonstruktion (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bewehrungslage (15, 17) eine Mehrzahl von Bewehrungsstäben als Längs- und Querbewehrung aufweist.Frame construction (1) according to one of the preceding claims, characterized in that the reinforcement layer (15, 17) has a plurality of reinforcing bars as longitudinal and transverse reinforcement. Rahmenkonstruktion (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ersten Abstandhalter (19) eine Lastverteilungsplatte (20) aufweisen, die insbesondere wandseitig angebracht ist.Frame construction (1) according to one of the preceding claims, characterized in that the first spacers (19) have a load distribution plate (20), which is in particular mounted on the wall side. Verfahren zur Durchführung des Ausbaus der Innenschale eines Tunnelgebäudes mit den folgenden Schritten: a) Fixieren einer Mehrzahl von Stahlträgerbogen (9) auf dafür eingerichteten Fundamenten (13), b) Anbringen einer Bewehrungslage (15, 17) auf der Innenseite und/oder auf der Außenseite der Stahlträgerbogen (9) mittels Halteelementen (14) in einem einstellbaren Abstand, c) Anbringen einer ersten Schalungslage (23) einer ersten Schalungshöhe auf der Innenseite der Stahlträgerbogen (9) mittels Abstandhaltern jeweils beginnend am Fußpunkt der Stahlträgerbogen (9) auf beiden Seiten des Tunnelgebäudes, d) Betonieren einer ersten Betonschicht entsprechend der ersten Schalungshöhe der ersten Schalungslage (23), e) Anbringen einer nächsthöheren Schalungslage (23) einer vorbestimmten Schalungshöhe auf der Innenseite der Stahlträgerbogen (9) mittels Abstandhaltern beginnend jeweils am freien Ende der unteren Schalungslagen, f) Betonieren einer nächsthöheren Betonschicht jeweils entsprechend der vorbestimmten Schalungshöhe der nächsthöheren Schalungslagen, g) Wiederholen der Schritte e) und f), bis die Betonschichten auf beiden Seiten aneinander stoßen, so dass sich eine geschlossene Innenschale im Tunnelgebäude ergibt. Method for carrying out the construction of the inner shell of a tunnel building with the following steps: a) fixing a plurality of steel carrier sheets (9) on foundations (13) therefor, b) applying a reinforcement layer (15, 17) on the inside and / or on the outside of the steel carrier sheet (9) by means of holding elements (14) at an adjustable distance, c) attaching a first formwork layer (23) of a first formwork height on the inside of the steel support arch (9) by means of spacers each beginning at the base of the steel support arch (9) on both sides of the tunnel building, d) concreting a first concrete layer corresponding to the first formwork height of the first formwork layer (23), e) attaching a next higher formwork layer (23) of a predetermined formwork height on the inside of the steel support sheet (9) by means of spacers starting at the free end of the lower formwork layers, f) concreting a next higher concrete layer in each case according to the predetermined formwork height of the next higher formwork layers, g) Repeat steps e) and f) until the concrete layers abut each other on both sides, resulting in a closed inner shell in the tunnel building. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass in Schritt b) der Abstand der Bewehrungslage (15, 17)(n) mit Hilfe der Halteelemente (14) eingestellt wird.A method according to claim 10, characterized in that in step b), the distance of the reinforcing layer (15, 17) (s) by means of the holding elements (14) is adjusted. Verfahren nach Anspruch 10 oder 11, das des Weiteren den Schritt des Entfernens der Schalungslagen (23) aufweist.The method of claim 10 or 11, further comprising the step of removing the form layers (23). Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass die Schritte d) und f) mit Ortbeton ausgeführt werden.Method according to one of claims 10 to 12, characterized in that the steps d) and f) are carried out with in-situ concrete.
EP18154521.1A 2018-01-31 2018-01-31 Multi-function frame used in tunnel construction Withdrawn EP3521556A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18154521.1A EP3521556A1 (en) 2018-01-31 2018-01-31 Multi-function frame used in tunnel construction
EP19154313.1A EP3521557B1 (en) 2018-01-31 2019-01-29 Multi-function frame for tubular structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18154521.1A EP3521556A1 (en) 2018-01-31 2018-01-31 Multi-function frame used in tunnel construction

Publications (1)

Publication Number Publication Date
EP3521556A1 true EP3521556A1 (en) 2019-08-07

Family

ID=61132220

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18154521.1A Withdrawn EP3521556A1 (en) 2018-01-31 2018-01-31 Multi-function frame used in tunnel construction
EP19154313.1A Active EP3521557B1 (en) 2018-01-31 2019-01-29 Multi-function frame for tubular structures

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19154313.1A Active EP3521557B1 (en) 2018-01-31 2019-01-29 Multi-function frame for tubular structures

Country Status (1)

Country Link
EP (2) EP3521556A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111042839A (en) * 2019-12-18 2020-04-21 江苏采元科技有限公司 Anti-seismic support and construction method thereof
CN111287795A (en) * 2020-02-12 2020-06-16 中铁二十三局集团有限公司 Inverted arch dismantling method
CN111577336A (en) * 2020-05-28 2020-08-25 成都理工大学 Section steel and sprayed concrete combined stiff structure tunnel supporting system and construction method
CN111594182A (en) * 2020-05-14 2020-08-28 北京交通大学 Large deformation control method for large buried depth soft rock tunnel
CN112814715A (en) * 2021-01-07 2021-05-18 中铁十六局集团第三工程有限公司 Novel locking anchor pipe construction fixing device and construction method thereof
CN112962694A (en) * 2021-02-04 2021-06-15 中国地质大学(武汉) Underpinning construction method for bridge pile foundation in mine tunnel
CN112983541A (en) * 2021-04-01 2021-06-18 中国人民解放军军事科学院国防工程研究院工程防护研究所 Repair and treatment method suitable for deep tunnel inverted arch damage
CN113982629A (en) * 2021-10-29 2022-01-28 成都未来智隧科技有限公司 Tunnel supporting structure
CN114320377A (en) * 2021-12-06 2022-04-12 中铁十七局集团第三工程有限公司 Steel frame anchoring type soft rock temporary support system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111101971A (en) * 2020-02-27 2020-05-05 张延年 Symmetrical horseshoe-shaped assembled concrete tunnel
CN112324475A (en) * 2020-10-30 2021-02-05 同济大学 Method for reinforcing shield tunnel lining structure
CN112780306B (en) * 2020-12-31 2022-09-09 山东高速工程建设集团有限公司 Two-lining trolley for preventing vault from being empty and vault empty prevention construction method
CN113338951B (en) * 2021-06-30 2023-11-03 中交路桥建设有限公司 Three-step roof-picking construction method for rapid tunnel intersection
CN114294016B (en) * 2021-12-29 2024-03-15 国网北京市电力公司 Reinforcing device for cable tunnel, manufacturing method and cable tunnel assembly

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB511080A (en) * 1938-03-28 1939-08-14 John Murray Improvements relating to the construction of tunnels
US3374595A (en) * 1964-12-18 1968-03-26 Salzgitter Ind Ges M B H Reinforced concrete reinforcement for highly stressed structural components
GB1183558A (en) * 1967-06-10 1970-03-11 Holzmann Philipp Ag Improvements in or relating to Tunnel Linings
US3673806A (en) * 1969-06-25 1972-07-04 Ilseder Hutte Fa Liner for tunnel wall
DE2516723A1 (en) * 1974-05-14 1975-11-27 Jean Bernold Tunnel rock consolidation system - support mats with flanges bolted to rock round excavation and concreted in
CH615728A5 (en) * 1977-02-14 1980-02-15 Amberg Rudolf Supporting and securing arrangement in cavities, hard headings or on rock sections
AT362739B (en) 1978-12-27 1981-06-10 Evg Entwicklung Verwert Ges REMOVAL FRAME FOR TUBES, TUNNEL OR THE LIKE.
CH656429A5 (en) * 1982-01-20 1986-06-30 Jean Bernold Arched installation element of steel and its use
DE3927446C1 (en) 1989-08-19 1991-03-14 Bochumer Eisenhuette Heintzmann Gmbh & Co Kg, 4630 Bochum, De Yieldable tunnel wall support - has segmental frames with sprayed concrete and infill
JP2013204298A (en) * 2012-03-28 2013-10-07 Kumagai Gumi Co Ltd Method for reinforcing inner lining of tunnel
DE202017105802U1 (en) 2017-09-25 2017-11-07 Bag Bauartikel Gmbh Reinforcement system for the concrete lining of the inner shell of a tunnel building

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW490386B (en) * 2000-05-01 2002-06-11 Ashimori Ind Co Ltd Duct repairing material, repairing structure, and repairing method
WO2016056133A1 (en) * 2014-10-10 2016-04-14 芦森工業株式会社 Method for packing filler material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB511080A (en) * 1938-03-28 1939-08-14 John Murray Improvements relating to the construction of tunnels
US3374595A (en) * 1964-12-18 1968-03-26 Salzgitter Ind Ges M B H Reinforced concrete reinforcement for highly stressed structural components
GB1183558A (en) * 1967-06-10 1970-03-11 Holzmann Philipp Ag Improvements in or relating to Tunnel Linings
US3673806A (en) * 1969-06-25 1972-07-04 Ilseder Hutte Fa Liner for tunnel wall
DE2516723A1 (en) * 1974-05-14 1975-11-27 Jean Bernold Tunnel rock consolidation system - support mats with flanges bolted to rock round excavation and concreted in
CH615728A5 (en) * 1977-02-14 1980-02-15 Amberg Rudolf Supporting and securing arrangement in cavities, hard headings or on rock sections
AT362739B (en) 1978-12-27 1981-06-10 Evg Entwicklung Verwert Ges REMOVAL FRAME FOR TUBES, TUNNEL OR THE LIKE.
CH656429A5 (en) * 1982-01-20 1986-06-30 Jean Bernold Arched installation element of steel and its use
DE3927446C1 (en) 1989-08-19 1991-03-14 Bochumer Eisenhuette Heintzmann Gmbh & Co Kg, 4630 Bochum, De Yieldable tunnel wall support - has segmental frames with sprayed concrete and infill
JP2013204298A (en) * 2012-03-28 2013-10-07 Kumagai Gumi Co Ltd Method for reinforcing inner lining of tunnel
DE202017105802U1 (en) 2017-09-25 2017-11-07 Bag Bauartikel Gmbh Reinforcement system for the concrete lining of the inner shell of a tunnel building

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111042839B (en) * 2019-12-18 2021-03-16 江苏采元科技有限公司 Anti-seismic support and construction method thereof
CN111042839A (en) * 2019-12-18 2020-04-21 江苏采元科技有限公司 Anti-seismic support and construction method thereof
CN111287795B (en) * 2020-02-12 2021-07-20 中铁二十三局集团有限公司 Inverted arch dismantling method
CN111287795A (en) * 2020-02-12 2020-06-16 中铁二十三局集团有限公司 Inverted arch dismantling method
CN111594182A (en) * 2020-05-14 2020-08-28 北京交通大学 Large deformation control method for large buried depth soft rock tunnel
CN111577336A (en) * 2020-05-28 2020-08-25 成都理工大学 Section steel and sprayed concrete combined stiff structure tunnel supporting system and construction method
CN112814715A (en) * 2021-01-07 2021-05-18 中铁十六局集团第三工程有限公司 Novel locking anchor pipe construction fixing device and construction method thereof
CN112962694A (en) * 2021-02-04 2021-06-15 中国地质大学(武汉) Underpinning construction method for bridge pile foundation in mine tunnel
CN112983541A (en) * 2021-04-01 2021-06-18 中国人民解放军军事科学院国防工程研究院工程防护研究所 Repair and treatment method suitable for deep tunnel inverted arch damage
CN112983541B (en) * 2021-04-01 2022-08-09 中国人民解放军军事科学院国防工程研究院工程防护研究所 Repair and treatment method suitable for deep tunnel inverted arch damage
CN113982629A (en) * 2021-10-29 2022-01-28 成都未来智隧科技有限公司 Tunnel supporting structure
CN113982629B (en) * 2021-10-29 2024-04-05 成都未来智隧科技有限公司 Tunnel supporting structure
CN114320377A (en) * 2021-12-06 2022-04-12 中铁十七局集团第三工程有限公司 Steel frame anchoring type soft rock temporary support system

Also Published As

Publication number Publication date
EP3521557B1 (en) 2019-11-20
EP3521557A1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
EP3521557B1 (en) Multi-function frame for tubular structures
EP0865540B1 (en) Construction kit for the construction of a modular station platform
EP2088244B1 (en) Reinforced concrete or composite bridge and method for their production
DE2905688A1 (en) METHOD AND DEVICE FOR THE PRODUCTION OF BUILDINGS IN THE GROUND WITH VERTICAL WALLS EXITING FROM AN UNDERGROUND CANAL
AT517231B1 (en) Method for producing a roadway slab for a bridge
DE2634796A1 (en) EXPANSION JOINT CONSTRUCTION
EP1267035B1 (en) Method for constructing underground waterproof tunnels with a concrete inner shell
EP1026320B1 (en) Method for building a ballastless track
EP0751262B1 (en) Wall element for rising structures and method of manufacturing the same
EP1669505A1 (en) Steel-concrete composite joist with fire-resistant support for ceiling elements
DE202017105802U1 (en) Reinforcement system for the concrete lining of the inner shell of a tunnel building
EP3580429B1 (en) Reinforcement system for the concrete lining of the inner shell of a tunnel construction
DE202009005016U1 (en) Modular built platform
DE10120368B4 (en) Building or building part as well as methods for its production and dismantling
DE19808020C2 (en) Procedure for the renovation of retaining walls
DE202009018562U1 (en) rail support
DE4019280C2 (en) Mesh mat and method for producing a reinforcement for at least one-shell shotcrete expansion using the mesh mat
DE10132649C1 (en) Open-air extension to road or railway tunnel through mountain for protection against avalanche is constructed using lost shuttering and metal frames erected on floor plate
DE3203980C2 (en) Underpass structure and process for its construction
EP2740860A1 (en) Method for installing a raised floor, raised floor and raised floor panel
CH656429A5 (en) Arched installation element of steel and its use
EP1964978B1 (en) Method for erecting a wharfage and wharfage
DE2059976A1 (en) Plastic damp courses - without use concrete isolating trough
DE2217459A1 (en) PROCEDURES AND EQUIPMENT FOR UNDER CONSTRUCTION OF STRUCTURES AND TRAFFIC ROUTES
DE102021124483A1 (en) Method for producing a concrete ceiling, ceiling system from concrete ceiling and existing ceiling, concrete ceiling, building

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200208