EP3521557B1 - Multi-function frame for tubular structures - Google Patents

Multi-function frame for tubular structures Download PDF

Info

Publication number
EP3521557B1
EP3521557B1 EP19154313.1A EP19154313A EP3521557B1 EP 3521557 B1 EP3521557 B1 EP 3521557B1 EP 19154313 A EP19154313 A EP 19154313A EP 3521557 B1 EP3521557 B1 EP 3521557B1
Authority
EP
European Patent Office
Prior art keywords
steel support
frame structure
shuttering
layer
arch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19154313.1A
Other languages
German (de)
French (fr)
Other versions
EP3521557A1 (en
Inventor
Peter Hofstetter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3521557A1 publication Critical patent/EP3521557A1/en
Application granted granted Critical
Publication of EP3521557B1 publication Critical patent/EP3521557B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/14Lining predominantly with metal
    • E21D11/15Plate linings; Laggings, i.e. linings designed for holding back formation material or for transmitting the load to main supporting members
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/14Lining predominantly with metal
    • E21D11/18Arch members ; Network made of arch members ; Ring elements; Polygon elements; Polygon elements inside arches
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F1/00Ventilation of mines or tunnels; Distribution of ventilating currents

Definitions

  • the present invention relates to a frame construction in the construction or renovation of tubular structures such as tunnels, underpasses or vaulted passages, in particular a multifunctional frame for the construction of the inner shell of a tubular structure, and a method for carrying out the construction of the inner shell of a tubular structure the renovation or even the construction of new tunnels, underpasses or vault passages.
  • Passable tunnels or underpasses especially those with track bed and two or more tracks, but also provided with road surface tunnels or underpasses must be rehabilitated after a certain period of operation, which affects not only the actual roadway or the tracks, but above all the wall. Here, it usually comes to wear due to corrosion and also outbreaks, which represents a danger to the people and machines passing through the tube.
  • the tunnel wall can be cleaned, drilled, solidified or plastered out broken sections of the tunnel wall with material and sealed sealing material in the rehabilitation of some tunnels only during the dorm or the low-traffic periods.
  • material and sealed sealing material in the rehabilitation of some tunnels only during the dorm or the low-traffic periods.
  • the required machinery and building materials are parked on site, brought out of the tunnel tube after completion or interruption of the work and stored in suitable places to be then brought back into the tunnel tube for the next working hours. This requires a high logistical effort and thus costs.
  • the outer and inner shell of a tunnel building or underpass are usually sealed against each other by means of a sealing foil, which protects the inner shell and the interior from aggressive (mountain) water. So that the sealing foil or the plastic sealing membrane (KDB) is not damaged, the reinforcement of the inner shell must not be fixed directly to the outer shell of the tube. This requires self-supporting reinforcing frames, consisting of support sheets with interposed reinforcing layers, which are often designed as a double layer.
  • Such reinforcement frames are for example in the EN 20 2017 105 802 U1 , of the AT 362 739 B , or the DE 39 27 446 C1 described.
  • a disadvantage of these constructions, however, is that for Betonauf- or-hinter filling of the reinforcement frame formwork carriages are used, which is very complex, costly and therefore only possible with complete route blocking.
  • the JP 2013 204298 A discloses another known frame construction.
  • a frame structure for removing the inner shell of a tubular structure such as tunnels, underpasses or vaults with a plurality of frame members constituting the one non-closed frame arch a steel beam arch having an inside and an outside, a reinforcing layer on the inside and / or outside of the steel girder arch, which is attached to the steel girder arch by means of retaining elements, a removable formwork at a predetermined distance from the inside of the girder arch, first spacers on the outside of the girder arch for support on the outside wall or the wall of the tubular structure and second spacers on the inside of the steel support arch for fixing the formwork layer, wherein the frame structure is adapted to be partially filled with concrete or backfilled and thereby the hy to record drostatic pressure of the concrete.
  • This construction allows a sectional expansion of a tubular structure with a self-supporting, not closed reinforced concrete inner shell, without occupying the inside or overlying track for too long with blocking periods for traffic, because for example by the shortened work sections and work packages no formwork with formwork carriage is necessary.
  • Sectionwise means both vertical and horizontal, with the already concreted sections additionally stabilizing the frame construction.
  • the non-closed construction bears with the reinforcement itself and is supported in the side walls of the tubular structure against the wall or the old shell and on the ground.
  • a hitherto often necessary complex use of expensive shotcrete is avoided, especially a water treatment due rebound residues of shotcrete.
  • a flexible positioning of the frame elements as well as the reinforcement is possible by the adjustment options, whereby the required safety distances can be easily met.
  • each steel support arch has at its two ends a base plate which is fixable on a foundation.
  • the frame construction is optimally anchored to the substrate of the tubular structure and provides a central load transfer.
  • the base plate is welded to the front side of the steel beam arch.
  • the foundation can be flexibly formed as a point foundation or alternatively as at least partially continuous foundation strips each at the edge of the tubular structure.
  • the frame construction has a plurality of tube elements arranged in series one behind the other in a row frame elements. This contributes to the modularity and thus, for example, to a sectional procedure in the rehabilitation of pipes or underpasses.
  • suitable selection of the length of the frame elements special conditions of the outbreak or an existing structure such as joints and the like can be considered.
  • a steel carrier sheet is designed as a double-T carrier with HEA or HEB profile.
  • HEA or HEB profile Such standardized profiled steels are required for most public tenders.
  • other profile steels are also conceivable, for example with U-profile or T-profile.
  • the steel carrier sheet is designed in several parts and in such a way that a plurality of steel carrier sheets can be connected to each other in their longitudinal direction.
  • the steel carrier sheets can be prepared outside the structure, placed on top of one another and screwed together, for example, by means of suitable connecting plates. This increases the flexibility of the design, and costs can be reduced.
  • the holding elements are designed such that the distance between the reinforcement layer and the steel carrier sheet is adjustable. This creates the opportunity, the necessary minimum concrete coverage of reinforced concrete components depending on the geometry to ensure on site by appropriate adjustment.
  • the holding element having an L-shaped profile sheet and a straight retaining plate with slot and threaded rod. This construction is simple, easy to handle and adjust and sufficiently stable and can be carried out with standard profiles. This distance adjustment can still be made after attaching the reinforcement layer (s), which provides additional flexibility.
  • the reinforcement layer has a plurality of reinforcing bars as longitudinal and transverse reinforcement.
  • the reinforcement layer which is precisely adjusted by means of the retaining elements consists essentially of commercially available reinforcing steel rods which satisfy the relevant standards.
  • the reinforcing steel bars are fastened by dislocation of the bars, that is by binding together by means of tie wire, so that a close-meshed network and thus support structure of reinforcing steel bars is formed. Also conceivable is the use of prefabricated reinforcing mats, which are fixed accordingly by means of the holding elements to the steel beam arch.
  • the first spacers on a load distribution plate which is particularly mounted on the wall side. Since the loads on the sealed wall can be significant and damage to the sealing film must be avoided at all costs, such load distribution plates are used, which may, for example, have a square (for example 25 cm x 25 cm) or a circular shape, around the quasi point-like Load the first spacer into the area.
  • the spacers may have threads, whereby the distance between the sealed wall and steel support arch is precisely adjustable. Alternative are also other distance mechanisms such. B. by means of transverse rods in peripheral holes possible.
  • the frame construction transversely to the tube direction at least one hollow channel element which extends from the inside of the frame construction into the outer shell of the tunnel building and connects the interior of the tunnel building with a cavity outside the frame construction.
  • the hollow channel element is advantageously connected with a sealing film on the outer shell of the tunnel building air-tight and watertight, that prevents ingress of water from the outside through the hollow channel element in the interior of the tunnel building becomes.
  • a sealing film on the outer shell of the tunnel building air-tight and watertight, that prevents ingress of water from the outside through the hollow channel element in the interior of the tunnel building becomes.
  • a method for carrying out the removal of the inner shell of a tubular structure with the following steps: a) fixing a plurality of steel support arch on foundations therefor, b) adjusting the distance between steel support sheet and sealing film by means of spacers, c) attaching a reinforcement layer on the inside and / or on the outside of the steel beam arch by means of holding elements at an adjustable distance, d) attaching a first formwork layer of a first formwork height on the inside of the steel support arch by means of spacers each beginning at the base of the steel support arch on both sides of the tubular structure, e) concreting a first layer of concrete according to the first formwork height of the first formwork layer, f) attaching a next higher formwork layer of a predetermined formwork height on the inside of the steel beam arch by means of spacers starting at the free end h) repeating steps f) and g) until the concrete layers abut one another on both sides, so that a closed inner shell results in the structure.
  • This method also allows a vertical section installation of a very stable, self-supporting inner shell in a tubular structure such as a tunnel, an underpass or vault bridge, so that the route operation in the tube and / or over it does not have to be interrupted for a long time.
  • a tubular structure such as a tunnel, an underpass or vault bridge
  • the route operation in the tube and / or over it does not have to be interrupted for a long time.
  • the expensive and time-consuming use of a formwork carriage is avoided, which requires a considerably larger breakout cross section of the tube.
  • the use of a formwork carriage during stripping by the tolerated in the standard "sagging" of the concrete shell leads to inaccuracies in the finished shell.
  • the method allows a very accurate, even later still changeable positioning of the reinforcement layers, so that the necessary minimum concrete cover can be met.
  • the self-supporting additional support in the ridge area is not required.
  • the distance of the reinforcement layer (s) is adjusted by means of the holding elements in step b). This gives a flexibility that can compensate for existing large tolerances, for example, to ensure the minimum concrete cover of the installed reinforced concrete components of about 5 cm. Even after attaching the inner or outer reinforcement layer adjustment of the distance is still possible.
  • the method further preferably comprises the step of removing the shuttering layers.
  • the formwork of an already concrete section can be quickly removed, cleaned, optionally lubricated after drying or fixation of the concrete and then used again for the next section. This saves additional building material, which also saves time in the case of short working hours, for example in the rehabilitation of railway tunnels without full closure.
  • steps e) and g) are carried out using in-situ concrete.
  • the costly use of shotcrete which is more expensive and less durable than in-situ concrete, can be avoided. Because when applying the shotcrete meets regularly a part of the concrete material by rebound on the ground or in the environment, which must therefore be subjected to a special, costly treatment.
  • Fig. 1 shows a cross section through a tunnel building in which a preferred embodiment of the frame construction 1 according to the invention is installed.
  • a tunnel building of a railway tunnel to be rehabilitated is shown in which the frame structure 1, which consists of a plurality of frame elements 2, which are arranged in the longitudinal direction of the tunnel building, forms the basis for a concrete inner shell, which on the inside of an already existing outer shell 3 of an old tunnel is attached.
  • the floor of the tunnel building comprises a track bed 5, on which two tracks 7 are arranged substantially in the middle, so that a single-rail train operation in this railway tunnel is possible.
  • the present invention may also relate to multi-track railway tunnels or tunnel buildings having lorry or passenger roadways.
  • the invention can also be used in railway, road or other underpasses and in enclosures, vault bridges or culverts which are bricked or concreted. These include tubular structures through which a waterway leads or waters flow.
  • the frame element 2 itself comprises as the base element a steel carrier sheet 9, which in the illustrated embodiment is formed as a double T-carrier from an HEB S355 steel profile.
  • the steel support arch 9 is provided at each of its ends with a welded base plate 11 which is mounted on a foundation 13.
  • the foundation 13 may be continuous in the longitudinal direction of the tubular structure, but it is also possible that the foundations 13 are provided only partially or in sections as a point foundations within the tubular structure, namely where the steel support arch 9 to the bottom of the tubular structure to meet. In any case, adequate anchoring in the ground by the foundation must be ensured.
  • the steel support sheets 9A have on their inner side and also on their outer side, but not directly on their flanges, in each case a reinforcement layer 15, 17, which are fixed by means of holding elements to the steel support sheet 9. Details of this are described in the present description with respect to the following figures.
  • the frame structure 1 Since the outer shell 3 of the tubular structure with a sealing film 4, ie a plastic sealing strip, for the purpose of sealing the inside of the tube from the ingress of (mountain) water is watertight, the frame structure 1 must not be connected to the outer shell 3 such that the Seal layer is interrupted or damaged. Therefore, the steel support sheets 9 are connected to the inner surface of the sealing film 4 via first spacers, the first spacers 19 being provided with load distribution plates 20 as described with reference to FIG Fig. 2 described in detail below.
  • the load distribution plates 20 are not fixed on the sealing film 4, but pressed after positioning the steel support sheet 9 against the sealing film 4.
  • the first spacers 19 are provided with corresponding threads for this purpose.
  • tolerances in the space between the outer shell 3 of the building and the steel support sheet 9 can be compensated in a simple manner.
  • the material of the first spacers 19 and the load distribution plates 20 and their dimensions are selected such that the supporting forces of the frame structure 1 on the sealing film 4 comply with the permissible loads for the film.
  • the material is preferably plastic, plastic-coated steel pins or stainless steel threaded rods are used to prevent possible corrosion close to the outer shell 3 of the tubular structure.
  • a shuttering layer 23 is attached via second spacers 21, which includes a plurality of shuttering elements 24.
  • the formwork layer 23 is divided into different formwork elements of different heights, so that a section concreting, d. H. a backfill of the corresponding formwork elements with concrete, is made possible. A detailed description of the method is given below in this description.
  • the steel support sheets 9 are usually dimensioned such that they do not cover the entire tubular or tunnel arc in their longitudinal extent, but are divided into two or three sub-segments. These subsegments may be interconnected via one or more fasteners 25 that are mounted on at least one side of the web, as in FIG Fig. 1 shown in the ridge area of the tubular structure.
  • the backfilling of the frame construction 1 with reinforced concrete is preferably carried out in sections in the illustrated embodiment in such a way that initially a first, lower formwork layer 23, d. H. is boarded to a height of a first formwork element 24 and then in-situ concrete is poured behind the formwork, so that the full length of the frame construction 1 is backfilled to the height of the first shuttering element 24 with in-situ concrete, wherein the concrete mass in all spaces around the steel support arch 9, the inner and outer reinforcing layers 15, 17 and around the first and second spacers 19, 21 and the holding elements 14 moves around and due to the compression substantially no air pockets or other voids between the outer shell 3 and the formwork layer 23 are present.
  • Fig. 2 shows a detail of the presentation Fig. 1
  • the transition region between the outer shell 3 of the tubular structure to the frame structure 1 is shown in detail.
  • a sealing film 4 in Fig. 2 dash-dotted lines is shown.
  • the sealing film 4 is consistently about 2 mm thick and robust, so that from the outside no (mountain) water can penetrate into the interior of the tubular structure.
  • geotextile or similar materials may be arranged to protect the sealing film 4 from damage and to ensure the most uniform force distribution.
  • the load distribution plates 20 mounted, which are formed in the preferred embodiment of plastic with a size of about 25 cm x 25 cm and glued to the sealing film 4 and in the middle have a threaded portion into which a first spacer 19 can engage, which also with a thread is provided.
  • the first spacer 19 and the load distribution plate 20 may be formed of plastic to minimize the risk of corrosion of the reinforced concrete elements.
  • the first spacer 19 is screwed to the outer flange of the steel support arch 9. This makes it possible, depending on the design of the gap tolerances in the distance between the outer shell 3 and the steel support arch 9 compensate.
  • Fig. 2 also visible is the outer reinforcing layer 17, which has bowing arranged in the rebar and perpendicular thereto arranged reinforcing bars.
  • the attachment of the outer reinforcement layer 17 is effected by Verrödelung by means of wire to the reinforcement sheet 16, which in Fig. 2 are shown immediately adjacent to the outer flange of the steel beam arch 9 and their attachment in detail with reference to the Fig. 3 is described.
  • Fig. 3 shows a detail of the frame structure 1 according to the invention in the preferred embodiment. Special attention is given in the description of the Fig. 3 placed on the inner layer of the frame structure 1. As the details towards the outside wall are already referring to Fig. 2 have been described, these statements are not repeated here.
  • the inner reinforcing layer 15 is formed in mirror image to the outer reinforcing layer 17, ie a reinforcing sheet 16 is also arranged parallel to the inner flange of the steel carrier sheet 9, this reinforcing sheet 16 being screwed to the web of the steel carrier sheet 9 via holding elements 14. Details of the retaining element will be described with reference to FIGS 6 and 7 described.
  • the inner reinforcement layer 15 is connected or crosslinked analogously to the outer reinforcing layer 17 with the corresponding reinforcement sheet 16 with tie wire. This step performs the reinforcement troop, wherein in the frame construction according to the invention preferably the outer reinforcement layer 17 is mounted first and then the inner reinforcement layer 15. It is also possible in principle, the corresponding steel support arch 9 with inner and outer reinforcement layer 15, 17 already outside the tube or prepare before mounting the steel girder arch on the foundation 13 accordingly.
  • a plurality of second spacers 21 is attached to the inner flange of the steel support arch 9, at the other end of the shuttering layer 23 is attached.
  • the second spacers 21 are formed in the embodiment shown here as steel screws, which are surrounded by a protective plastic sheath, so that the plastic sheath prevents a direct connection between reinforced concrete and spacers.
  • the design as a screw allows, similar to the first spacers 19, that the distance between the shuttering layer 23 and the inner flange of the steel support sheet 9 can be set exactly, and so tolerances can be compensated.
  • the formwork layer 23 includes commercial formwork boards, which may be formed of plastic, wood or metal. Preference is given to usual wood cladding.
  • Fig. 3 It can also be seen that after backfilling the frame construction and after corresponding compaction, the reinforced concrete 27 fills the entire gap between the outer shell 3 and the shuttering layer 23, without cavities or other inclusions remaining.
  • Fig. 4 is a detail from the Fig. 1 shown enlarged, which lies in the ridge area of the tube.
  • the frame structure 1 on the right and left each have a steel support arch 9, which abut one another in the ridge region substantially and there by means of a connecting element 25 are interconnected.
  • the connecting element 25 is arranged on at least one side of the web of the steel carrier sheet and screwed to the respective end.
  • the connecting element 25 is arranged on both sides of the web to provide an even more stable connection.
  • two, three, four or even more subsegments of steel girder arch 9 can form the complete arch of the frame structure 1, which can then be connected to one another in each case in their end regions by means of at least one connecting element 25.
  • Fig. 4 On a repetition of the already referring to the FIGS. 2 and 3 described elements Fig. 4 will be omitted here.
  • Fig. 5 shows the section Fig. 1 in which the steel carrier sheet 9 is connected to the foundation 13 provided for this purpose.
  • a foot plate 11 is welded on the front side of the double-T-carrier sheet 9.
  • This substantially square base plate 11 has in each of its corner regions a bore through which a threaded rod 31 is guided.
  • This threaded rod 31 is fixed on both sides of the base plate 11 with a fastening nut 29 and an adjusting nut 30 and is embedded in holes in the foundation 13 by means of a potting 12.
  • fastening shown here other possibilities conceivable to connect the base plate 11 with the foundation 13, so that there is a stable position.
  • Fig. 6 shows in plan view a cross-sectional view of a side of the frame structure 1 according to the invention near the bottom. It can be seen that the foot plate 11 fully rests on the foundation 13 and is attached to it.
  • the foundation 13 is designed as a point foundation as shown here, but it could also be formed throughout the entire length of the tubular structure with the width shown here.
  • the steel support arch 9 is firmly welded to the base plate 11.
  • the representation in Fig. 6 should serve to explain the flexible adjustable attachment of the inner and outer reinforcement layers 15, 17 on the steel support arch 9 by means of the holding elements 14 in more detail.
  • the holding element 14 comprises an L-shaped angle profile sheet 32 which is fixed in each case on one side of the web of the steel support sheet 9, for. B.
  • a holding plate 34 is arranged, whose extension is also parallel to the web surface of the steel carrier sheet 9.
  • the connection is made by means of a threaded rod or a conventional screw / nut connection, wherein the retaining plate 34 can be moved along a centrally disposed slot 35.
  • a free end of the retaining plate 34 of the reinforcing rod 16 is arranged, which runs quasi parallel to the inner or outer flange of the steel support arch 9 and serves as a basis for the fixation of the inner and outer reinforcing layers 15, 17.
  • connection between the retaining plate 34 and reinforcing bar 16 is usually a welded connection, but can also be done in other ways, such as. B. gluing and the like.
  • Fig. 6 It can be seen how the reinforcing bar 16 first of all fixes the reinforcing steels running perpendicularly thereto as a longitudinal reinforcement, on which in turn the transverse reinforcing bars of the inner or outer reinforcement layer 15, 17 are then further outward are attached. The attachment takes place by means of decay, ie by attaching wire loops of Rödeldraht at the intersections of the reinforcing bars.
  • Fig. 7 is in detail again the holding member 14 shown with its components, the angle profile sheet 32 and the support plate 34.
  • Such sheets may be formed of a suitable section steel, for example with a U-profile.
  • the distance of the inner and outer reinforcing layers 15, 17 can be adjusted to the flanges of the steel support arch 9 via a corresponding fixation of the holding elements 14. This allows tolerances to be taken into account.
  • Fig. 8 shows a cross-sectional view of a section of another embodiment of the frame construction according to the invention.
  • This embodiment addresses in particular the requirements of nature and landscape protection, because they niches in the walls of Alttunnelröhren in which z. B. bats have found their habitat, taken into account, so that such biotopes are available after the tunnel rehabilitation for the animals. Drilling or grouting work on the existing structures is thus avoided.
  • the frame structure 1 has a hollow chamber element 40, which is arranged transversely to the tunnel or underpass direction and in the present embodiment has a rectangular cross section.
  • a channel 42 is formed, so that the interior of the tunnel tube with the cavity in the tunnel wall, here formed as a bat, connected, so that the animals can fly in and out and the air supply is ensured.
  • the hollow-chamber element 40 is connected to the sealing film 4 in a watertight and airtight manner, preferably welded, so that no water can pass from the outside through the hollow-chamber element 40 into the interior of the tunnel structure.
  • the hollow chamber member 40 is formed of polyethylene having a length of about 80 cm, a width of about 25 cm and a height of about 10 cm with a wall thickness of about 5 mm. Depending on the thickness of the frame construction, the length can be up to 1.5 m or even less than 80 cm.
  • the width and height dimensions as well as the wall thickness are primarily determined by the material, because it must be ensured that the external forces acting on the hollow chamber element 40, of this without deformation or even damage can be recorded.
  • the overall construction must not be impaired in its (carrying) function.
  • the hollow chamber element 40 and the sealing film 4 are welded together.
  • Other connection mechanisms and methods may be used as long as the water and airtightness is ensured.
  • the hollow chamber member 40 may be supported or supported by the reinforcement components for positioning, with a permanent connection not necessarily required.
  • Fig. 9 can be seen in a plan view of the detail Fig. 8 in that the opening of the hollow chamber element 40 is arranged approximately at a height of 1.5 m to 2.0 m above the ground and the hollow chamber element 40 is arranged essentially at a right angle to the frame construction 1. Slight deviations from the right angle ( ⁇ 10 °) are possible as long as the stability of the construction is ensured.
  • the niche in the interior of the tunnel outer wall rebuilt by masonry 43 so that a defined cavity 45 is formed. This cavity 45 has a drainage opening 46 at the bottom, but the outlet does not extend into the interior of the tunneling tube.
  • the steel support arch 9 are introduced and fixed on the previously established for this foundation 13.
  • more than one steel carrier sheet 9 can form the entire sheet; a corresponding connection can be brought about for example via connecting elements 25.
  • the distance between steel carrier sheet 9 and sealing film 4 is adjusted via first spacers 19, which are preferably arranged on the sealing film 4 by means of load distribution plates 20.
  • the attachment of the load distribution plates 20 takes place by pressing, ie by the existing on the spacers 19 thread, which allow rotation and thus the adjustment of the distance and the contact pressure on the sealing film 4.
  • This first step is carried out by a trained construction team and removed accordingly after completion.
  • the assembly of the inner and / or the outer reinforcing layers 15, 17 take place.
  • the brackets 14 with angle profile sheet 32 and retaining plate 34 are already attached to the webs of the steel beam arch 9 or are now welded there.
  • the holding elements 14 are arranged for the inner reinforcing layer 15 on the same one web side and for the outer reinforcing layer 17 on the other, opposite side.
  • the reinforcing rods 16 are first attached parallel to the steel carrier sheet 9, preferably by means of welded connection. Other fastening techniques are possible such as soldering, gluing, screwing or the like.
  • the reinforcing steels of the inner and / or outer reinforcing layers running transversely to the reinforcing bars 16 are fastened, i. extending in the tube longitudinal direction.
  • a twisted-wire wire which, after being arranged at the desired location, is twisted by means of a tool and thus ensures a sufficiently strong connection of two intersecting reinforcing steels.
  • the more distant reinforcement layer can be fixed in the same manner. The result is a relatively close-meshed network of reinforcing steels, which expands at least to the extent that the first section to be cast is sufficiently covered with reinforcement.
  • the distance between the inner and outer reinforcement layers 15, 17 can still be adjusted even after attachment of the reinforcing bars. This may be necessary to compensate for tolerances or to respond to previously measured below minimum clearances.
  • the formwork layer is attached.
  • the second spacers 21, which are in the in Fig. 4 embodiment shown are provided with a plastic sheath, rotated in the designated threaded holes in the inner flange of the steel beam arch and thus fastened there taking into account the bridged distance. If all second spacers 21 are present for the section, the shuttering boards of the shuttering layer 23 are attached by screw connection.
  • another technique may be useful when fixing. In the example shown, a wooden shuttering is used, which can be removed after concreting, cleaned, processed and reused. The advantage of the present invention is at this point that only the area is to be provided with a formwork to be concreted directly after.
  • the present frame construction is self-supporting and self-reinforcing, as an already-concreted lower layer supports the overlying layer and thereby reinforces the overall construction.
  • the frame absorbs the hydrostatic pressure from the fresh concrete.
  • next higher concrete layers or sections can be concreted as soon as the underlying sections are dried, d. H. usually after about 12 to 20 hours.
  • the advantages of the present invention is that the concreting of the inner shell without the use of rebar and formwork carriage manages, which saves time and costs.
  • no elaborate drilling and anchoring of the frame structure in the rock or in the old wall are necessary.
  • the expensive use of shotcrete is avoided, and the seal is not penetrated.
  • the greatest possible space of light remains in the tube.
  • the present invention unfolds its advantages, for example, in (bricked) vault bridges or passages as well as underpasses, since the frame construction can be easily fitted and fixed bearing with a reliable seal.
  • a frame construction and a method for the expansion of the inner shell of a tubular structure which is inexpensive to implement both in a new construction and renovation, has a simple structure, a self-supporting concrete inner shell and in particular a section concreting without a formwork carriage, without the tube or building having to be closed for traffic or flow in the longer term.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Civil Engineering (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

Die vorliegende Erfindung betrifft einen Rahmenaufbau beim Bau oder bei der Sanierung von röhrenartigen Bauwerken wie Tunnel, Unterführungen oder Gewölbebrücken bzw. Gewölbedurchlässe, insbesondere einen Multifunktionsrahmen für den Ausbau der Innenschale eines röhrenartigen Bauwerks, und ein Verfahren zur Durchführung des Ausbaus der Innenschale eines röhrenartigen Bauwerks bei der Sanierung oder auch beim Neubau von Tunneln, Unterführungen oder Gewölbedurchlässen.The present invention relates to a frame construction in the construction or renovation of tubular structures such as tunnels, underpasses or vaulted passages, in particular a multifunctional frame for the construction of the inner shell of a tubular structure, and a method for carrying out the construction of the inner shell of a tubular structure the renovation or even the construction of new tunnels, underpasses or vault passages.

Befahrbare Tunnelröhren oder Unterführungen, insbesondere solche mit Gleisbett und zwei oder mehr Gleisen, aber auch mit Straßenbelag versehene Tunnelröhren oder Unterführungen müssen nach einer bestimmten Betriebszeit saniert werden, was nicht nur die eigentliche Fahrbahn bzw. die Gleise betrifft, sondern vor allen Dingen die Wand. Hier kommt es üblicherweise zu Verschleiß durch Korrosion und auch zu Ausbrüchen, was eine Gefahr für die die Röhre passierenden Menschen und Maschinen darstellt.Passable tunnels or underpasses, especially those with track bed and two or more tracks, but also provided with road surface tunnels or underpasses must be rehabilitated after a certain period of operation, which affects not only the actual roadway or the tracks, but above all the wall. Here, it usually comes to wear due to corrosion and also outbreaks, which represents a danger to the people and machines passing through the tube.

Aus verkehrstechnischen Gründen können bei der Sanierung von manchen Tunnelröhren lediglich während der Betriebsruhe oder der verkehrsarmen Zeitabschnitte die Tunnelwandung gesäubert, abgebohrt, verfestigt oder herausgebrochene Abschnitte der Tunnelwandung mit Material verputzt und Dichtungsmaterial abgedichtet werden. Es gibt ebenfalls Fälle, bei denen nach entsprechender Vorbereitung und Abdichtung der Tunnelwandung oder der Gebirgswand an dieser eine neue Innenschale anbetoniert wird. Dabei werden die benötigten Maschinen und Baumaterialien vor Ort geparkt, nach Abschluss oder bei Unterbrechung der Arbeiten aus der Tunnelröhre herausgebracht und an geeigneten Plätzen gelagert, um anschließend für den nächsten Arbeitszeitabschnitte wieder in die Tunnelröhre hineingebracht zu werden. Dies erfordert einen hohen logistischen Aufwand und damit Kosten.For traffic engineering reasons, the tunnel wall can be cleaned, drilled, solidified or plastered out broken sections of the tunnel wall with material and sealed sealing material in the rehabilitation of some tunnels only during the dorm or the low-traffic periods. There are also cases in which after appropriate preparation and sealing of the tunnel wall or the mountain wall at this a new inner shell is concreted. The required machinery and building materials are parked on site, brought out of the tunnel tube after completion or interruption of the work and stored in suitable places to be then brought back into the tunnel tube for the next working hours. This requires a high logistical effort and thus costs.

Ebenso müssen bei Sanierungen von Unterführungen oder Gewölbebrücken bzw. Gewölbedurchlässen, über denen auch Fahrbahnen oder Gleise führen, diese Strecken üblicherweise während der Sanierungsarbeiten an den Röhren und Durchlässen auch gesperrt werden.Likewise, in renovations of underpasses or vault bridges or vaulted passages, over which also runways or tracks lead, these routes are usually blocked during the renovation work on the tubes and passages.

Ein weiterer zu berücksichtigender Aspekt bei Sanierungen von Tunnelröhren, Unterführungen, Gewölbebrücken und dergleichen ist der Natur- und Landschaftsschutz, denn oft werden derartige Bauwerke von Tieren als Nist- und Schutzraum verwendet, dienen also als Biotop. Beispielsweise sind in vielen älteren Tunnelröhren spezielle Nischen für Fledermäuse vorhanden. Die gesetzlichen Vorgaben hinsichtlich des Schutzes derartiger Lebensräume sind streng, d. h. für Tunnelröhren z. B., dass die Nist- und Schutzräume für Fledermäuse erhalten bleiben müssen. Herkömmliche Sanierungsverfahren und -systeme können diesen Anforderungen nicht oder nur partiell Rechnung tragen, und wenn, dann nur mit erheblich erhöhtem Aufwand.Another aspect to consider when renovating tunnels, underpasses, vault bridges and the like is the nature and landscape protection, because often such structures are used by animals as a nesting and shelter, so serve as a biotope. For example, many older tunnels have special niches for bats. The legal requirements regarding the protection of such habitats are strict, ie. H. for tunnel tubes z. B. that the nesting and shelters for bats must be preserved. Conventional remediation methods and systems can not or only partially meet these requirements, and if so, then only with significantly increased effort.

Bei bekannten Verfahren des Tunnelneubaus wie z. B. der Neuen Österreichischen Tunnelbauweise (NÖT) wird unmittelbar nach Ausbruch zur Sicherung des Gebirges eine Außenschale aus Spritzbeton aufgebracht und gegebenenfalls zusätzlich gesichert. Diese Außenschalen bei Tunnelneubauten werden wie entsprechend verputzte alte Tunnelaußenwände abgedichtet, und anschließend wird eine Innenschale aus Ortbeton als dauerhafter Ausbau des Tunnels eingebracht. Die Dicke der Schale beträgt üblicherweise etwa 30 cm bis 70 cm, kann aber auch größer sein. Die Abschnitte der Innenschale werden meist in Längen von etwa 8 m bis etwa 25 m betoniert und sind in der Regel bewehrt.In known methods of tunneling such. B. the New Austrian Tunneling Method (NÖT) is applied immediately after eruption to secure the mountains an outer shell of shotcrete and possibly additionally secured. These outer shells in new tunnels are sealed as appropriately plastered old tunnel outer walls, and then an inner shell of in-situ concrete is introduced as a permanent extension of the tunnel. The thickness of the shell is usually about 30 cm to 70 cm, but may be larger. The sections of the inner shell are usually concreted in lengths of about 8 m to about 25 m and are usually reinforced.

Außen- und Innenschale eines Tunnelgebäudes oder einer Unterführung sind üblicherweise mittels einer Dichtungsfolie gegeneinander abgedichtet, die die Innenschale und auch den Innenraum vor aggressivem (Berg-) Wasser schützt. Damit die Dichtungsfolie bzw. die Kunststoffdichtbahn (KDB) nicht beschädigt wird, darf die Bewehrung der Innenschale nicht unmittelbar an der Außenschale der Röhre fixiert werden. Dies macht selbsttragende Bewehrungsrahmen erforderlich, bestehend aus Tragbögen mit dazwischen angeordneten Bewehrungslagen, die häufig als Doppellage ausgeführt sind.The outer and inner shell of a tunnel building or underpass are usually sealed against each other by means of a sealing foil, which protects the inner shell and the interior from aggressive (mountain) water. So that the sealing foil or the plastic sealing membrane (KDB) is not damaged, the reinforcement of the inner shell must not be fixed directly to the outer shell of the tube. This requires self-supporting reinforcing frames, consisting of support sheets with interposed reinforcing layers, which are often designed as a double layer.

Derartige Bewehrungsrahmen sind beispielsweise in der DE 20 2017 105 802 U1 , der AT 362 739 B , oder der DE 39 27 446 C1 beschrieben. Nachteilig an diesen Konstruktionen ist jedoch, dass zur Betonauf- bzw. -hinterfüllung des Bewehrungsrahmens Schalwagen eingesetzt werden, was sehr aufwändig, kostenintensiv und daher nur mit vollständiger Streckensperrung möglich ist.Such reinforcement frames are for example in the EN 20 2017 105 802 U1 , of the AT 362 739 B , or the DE 39 27 446 C1 described. A disadvantage of these constructions, however, is that for Betonauf- or-hinter filling of the reinforcement frame formwork carriages are used, which is very complex, costly and therefore only possible with complete route blocking.

Die JP 2013 204298 A offenbart eine weitere bekannte Rahmenkonstruktion.The JP 2013 204298 A discloses another known frame construction.

Es ist daher die Aufgabe der vorliegenden Erfindung, eine Rahmenkonstruktion und ein Verfahren für den Ausbau der Innenschale eines röhrenartigen Bauwerks bereit zu stellen, die bzw. das im Wesentlichen die oben genannten Nachteile des Standes der Technik überwindet, preisgünstig zu realisieren ist, einen unkomplizierten Aufbau aufweist, die gesetzlichen Vorgaben hinsichtlich Natur- und Landschaftsschutz erfüllt, eine selbsttragende Betoninnenschale und insbesondere eine abschnittsweise Betonierung ohne Schalwagen ermöglicht.It is therefore the object of the present invention to provide a frame construction and a method for the expansion of the inner shell of a tubular structure, which substantially overcomes the above-mentioned disadvantages of the prior art, is inexpensive to implement, an uncomplicated structure which meets the legal requirements with regard to nature and landscape protection, allows a self-supporting concrete inner shell and in particular a section concreting without formwork carriages.

Diese Aufgabe wird durch den Gegenstand mit den Merkmalen des Anspruchs 1 bzw. des Anspruchs 10 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen beschrieben.This object is achieved by the subject matter with the features of claim 1 and of claim 10, respectively. Advantageous embodiments are described in the subclaims.

Erfindungsgemäß bereitgestellt wird eine Rahmenkonstruktion für den Ausbau der Innenschale eines röhrenartigen Bauwerks wie Tunnel, Unterführungen oder Gewölbebrücken bzw. -durchlässe mit einer Mehrzahl von Rahmenelementen, die die einen nicht geschlossenen Rahmenbogen bilden und aufweisen: einen Stahlträgerbogen mit einer Innenseite und einer Außenseite, eine Bewehrungslage auf der Innenseite und/oder der Außenseite des Stahlträgerbogens, die an dem Stahlträgerbogen mittels Halteelementen angebracht ist, eine abnehmbare Schalungslage in einem vorbestimmten Abstand zur Innenseite des Stahlträgerbogens, erste Abstandhalter auf der Außenseite des Stahlträgerbogens zur Abstützung an der Außenwandung oder der Wand des röhrenartigen Bauwerks und zweite Abstandhalter auf der Innenseite des Stahlträgerbogens zur Fixierung der Schalungslage, wobei die Rahmenkonstruktion dazu eingerichtet ist, abschnittsweise mit Beton aufgefüllt bzw. hinterfüllt zu werden und dabei den hydrostatischen Druck des Betons aufzunehmen. Diese Konstruktion ermöglicht einen abschnittsweisen Ausbau eines röhrenartigen Bauwerks mit einer selbsttragenden, nicht geschlossenen Stahlbetoninnenschale, ohne die im Inneren oder darüber liegende Strecke allzu lange mit Sperrzeiten für den Verkehr zu belegen, weil durch die verkürzten Arbeitsabschnitte und Arbeitspakete beispielsweise keine Schalung mit Schalwagen notwendig ist. Abschnittsweise bedeutet sowohl vertikal als auch horizontal, wobei die bereits betonierten Abschnitte die Rahmenkonstruktion zusätzlich stabilisieren. Dabei trägt sich die nicht geschlossene Konstruktion mit der Bewehrung selbst und stützt sich in den Seitenwänden des röhrenartigen Bauwerks gegen die Wandung bzw. die Altschale und auf dem Boden ab. Auch eine bisher oft nötige aufwändige Verwendung von teurem Spritzbeton wird vermieden, insbesondere eine Wasseraufbereitung aufgrund von Rückprallrückständen des Spritzbetons. Darüber hinaus ist durch die Einstellmöglichkeiten eine flexible Positionierung der Rahmenelemente sowie auch der Bewehrung möglich, wodurch die geforderten Sicherheitsabstände problemlos eingehalten werden können.According to the present invention, there is provided a frame structure for removing the inner shell of a tubular structure such as tunnels, underpasses or vaults with a plurality of frame members constituting the one non-closed frame arch: a steel beam arch having an inside and an outside, a reinforcing layer on the inside and / or outside of the steel girder arch, which is attached to the steel girder arch by means of retaining elements, a removable formwork at a predetermined distance from the inside of the girder arch, first spacers on the outside of the girder arch for support on the outside wall or the wall of the tubular structure and second spacers on the inside of the steel support arch for fixing the formwork layer, wherein the frame structure is adapted to be partially filled with concrete or backfilled and thereby the hy to record drostatic pressure of the concrete. This construction allows a sectional expansion of a tubular structure with a self-supporting, not closed reinforced concrete inner shell, without occupying the inside or overlying track for too long with blocking periods for traffic, because for example by the shortened work sections and work packages no formwork with formwork carriage is necessary. Sectionwise means both vertical and horizontal, with the already concreted sections additionally stabilizing the frame construction. In this case, the non-closed construction bears with the reinforcement itself and is supported in the side walls of the tubular structure against the wall or the old shell and on the ground. Also a hitherto often necessary complex use of expensive shotcrete is avoided, especially a water treatment due rebound residues of shotcrete. In addition, a flexible positioning of the frame elements as well as the reinforcement is possible by the adjustment options, whereby the required safety distances can be easily met.

Vorzugsweise weist jeder Stahlträgerbogen an seinen beiden Enden eine Fußplatte auf, die auf einem Fundament fixierbar ist. Damit ist die Rahmenkonstruktion optimal mit dem Untergrund des röhrenartigen Bauwerks verankerbar und bietet eine zentrale Lastabtragung. Bevorzugt ist die Fußplatte mit der Stirnseite des Stahlträgerbogens verschweißt. Das Fundament kann flexibel als Punktfundament ausgebildet sein oder alternativ als zumindest teilweise durchgehender Fundamentstreifen jeweils am Rande des röhrenartigen Bauwerks.Preferably, each steel support arch has at its two ends a base plate which is fixable on a foundation. Thus, the frame construction is optimally anchored to the substrate of the tubular structure and provides a central load transfer. Preferably, the base plate is welded to the front side of the steel beam arch. The foundation can be flexibly formed as a point foundation or alternatively as at least partially continuous foundation strips each at the edge of the tubular structure.

Mit besonderem Vorteil weist die Rahmenkonstruktion eine Mehrzahl von in Röhrenrichtung in Reihe hintereinander angeordneten Rahmenelementen auf. Dies trägt zur Modularität und damit beispielsweise zu einem abschnittsweisen Vorgehen bei der Sanierung von Röhren oder Unterführungen bei. Durch die geeignete Auswahl der Länge der Rahmenelemente können besondere Bedingungen des Ausbruchs oder eines bestehenden Bauwerks wie Fugen und dergleichen berücksichtigt werden.With particular advantage, the frame construction has a plurality of tube elements arranged in series one behind the other in a row frame elements. This contributes to the modularity and thus, for example, to a sectional procedure in the rehabilitation of pipes or underpasses. By suitable selection of the length of the frame elements special conditions of the outbreak or an existing structure such as joints and the like can be considered.

Bevorzugt ist ein Stahlträgerbogen als Doppel-T-Träger mit HEA oder HEB Profil ausgebildet. Derartige normierte Profilstähle sind für die meisten öffentlichen Ausschreibungen gefordert. Alternativ zu einem Doppel-T-Profil sind auch andere Profilstähle denkbar, beispielsweise mit U-Profil oder T-Profil.Preferably, a steel carrier sheet is designed as a double-T carrier with HEA or HEB profile. Such standardized profiled steels are required for most public tenders. As an alternative to a double-T profile, other profile steels are also conceivable, for example with U-profile or T-profile.

Insbesondere vorteilhaft ist es, wenn der Stahlträgerbogen mehrteilig und derart ausgebildet ist, dass mehrere Stahlträgerbogen in ihrer Längsrichtung miteinander verbindbar sind. Bei großen Röhrenquerschnitten können die Stahlträgerbogen außerhalb des Bauwerks vorbereitet, aufeinander gesetzt und beispielsweise mittels geeigneter Verbindungsplatten miteinander verschraubt werden. Dadurch erhöht sich die Flexibilität der Konstruktion, und die Kosten können gesenkt werden.It is particularly advantageous if the steel carrier sheet is designed in several parts and in such a way that a plurality of steel carrier sheets can be connected to each other in their longitudinal direction. In the case of large tube cross sections, the steel carrier sheets can be prepared outside the structure, placed on top of one another and screwed together, for example, by means of suitable connecting plates. This increases the flexibility of the design, and costs can be reduced.

Mit weiterem Vorteil sind die Halteelemente derart ausgebildet, dass der Abstand zwischen der Bewehrungslage und dem Stahlträgerbogen einstellbar ist. Damit wird die Möglichkeit geschaffen, die notwendige Mindestbetonabdeckung der Stahlbetonbauteile je nach Geometrie vor Ort durch entsprechende Einstellung zu gewährleisten. Besonders geeignet ist das Halteelement, das ein L-förmiges Profilblech und ein gerades Halteblech mit Langloch und Gewindestange aufweist. Diese Konstruktion ist einfach, gut handhab- sowie einstellbar und ausreichend stabil und kann mit Standardprofilen ausgeführt werden. Diese Abstandseinstellung kann auch nach Anbringen der Bewehrungslage(n) noch vorgenommen werden, was zusätzliche Flexibilität bringt.With further advantage, the holding elements are designed such that the distance between the reinforcement layer and the steel carrier sheet is adjustable. This creates the opportunity, the necessary minimum concrete coverage of reinforced concrete components depending on the geometry to ensure on site by appropriate adjustment. Particularly suitable is the holding element having an L-shaped profile sheet and a straight retaining plate with slot and threaded rod. This construction is simple, easy to handle and adjust and sufficiently stable and can be carried out with standard profiles. This distance adjustment can still be made after attaching the reinforcement layer (s), which provides additional flexibility.

Besonders bevorzugt weist die Bewehrungslage eine Mehrzahl von Bewehrungsstäben als Längs- und Querbewehrung auf. Die mittels der Halteelemente im Abstand genau einstellte Bewehrungslage besteht im Wesentlichen aus handelsüblichen Bewehrungsstahlstäben, die den einschlägigen Normen genügen. Die Befestigung der Bewehrungsstahlstäbe erfolgt durch Verrödelung der Stäbe, also durch Zusammenbinden mittels Rödeldraht, so dass ein engmaschiges Netz und damit Tragwerk aus Bewehrungsstahlstäben entsteht. Denkbar ist auch der Einsatz von vorgefertigten Bewehrungsmatten, die entsprechend mittels der Halteelemente an den Stahlträgerbogen fixiert werden.Particularly preferably, the reinforcement layer has a plurality of reinforcing bars as longitudinal and transverse reinforcement. The reinforcement layer which is precisely adjusted by means of the retaining elements consists essentially of commercially available reinforcing steel rods which satisfy the relevant standards. The reinforcing steel bars are fastened by dislocation of the bars, that is by binding together by means of tie wire, so that a close-meshed network and thus support structure of reinforcing steel bars is formed. Also conceivable is the use of prefabricated reinforcing mats, which are fixed accordingly by means of the holding elements to the steel beam arch.

Mit weiterem Vorteil weisen die ersten Abstandhalter eine Lastverteilungsplatte auf, die insbesondere wandseitig angebracht ist. Da die Lasten an der abgedichteten Wandung erheblich sein können und eine Beschädigung der Dichtungsfolie unbedingt vermieden werden muss, werden solche Lastverteilungsplatten verwendet, die beispielsweise ein quadratische (z. B. 25 cm x 25 cm) oder eine Kreisform aufweisen können, um die quasi punktförmige Last der ersten Abstandhalter in die Fläche zu verteilen. Die Abstandhalter können Gewinde aufweisen, womit der Abstand zwischen abgedichteter Wandung und Stahlträgerbogen exakt einstellbar ist. Alternative sind auch andere Abstandsmechanismen wie z. B. mittels Querstäben in Umfangslöchern möglich.With further advantage, the first spacers on a load distribution plate, which is particularly mounted on the wall side. Since the loads on the sealed wall can be significant and damage to the sealing film must be avoided at all costs, such load distribution plates are used, which may, for example, have a square (for example 25 cm x 25 cm) or a circular shape, around the quasi point-like Load the first spacer into the area. The spacers may have threads, whereby the distance between the sealed wall and steel support arch is precisely adjustable. Alternative are also other distance mechanisms such. B. by means of transverse rods in peripheral holes possible.

Bevorzugt weist die Rahmenkonstruktion quer zur Röhrenrichtung mindestens ein Hohlkanalelement auf, das sich von der Innenseite der Rahmenkonstruktion bis in die Außenschale des Tunnelgebäudes erstreckt und den Innenraum des Tunnelgebäudes mit einem Hohlraum außerhalb der Rahmenkonstruktion verbindet.Preferably, the frame construction transversely to the tube direction at least one hollow channel element which extends from the inside of the frame construction into the outer shell of the tunnel building and connects the interior of the tunnel building with a cavity outside the frame construction.

Dabei ist das Hohlkanalelement mit Vorteil mit einer Dichtungsfolie auf der Außenschale des Tunnelgebäudes derart luft- und wasserdicht verbunden, dass ein Eintreten von Wasser von außen durch das Hohlkanalelement in den Innenraum des Tunnelgebäudes verhindert wird. Damit können Öffnungen in der Wand der Rahmenkonstruktion und dadurch des Tunnelgebäudes zu Räumen geschaffen werden, die für bisher darin lebende Tiere zugänglich bleiben. Den Anforderungen an den Natur- und Landschaftsschutz wird dadurch Rechnung getragen. Weder wird durch das Hohlkanalelement die Stabilität der Gesamtkonstruktion negativ beeinflusst noch das Herstellungsverfahren verzögert. Auch die extrem wichtige Dichtigkeit der Gesamtkonstruktion ist dadurch nicht negativ beeinflusst.In this case, the hollow channel element is advantageously connected with a sealing film on the outer shell of the tunnel building air-tight and watertight, that prevents ingress of water from the outside through the hollow channel element in the interior of the tunnel building becomes. Thus, openings in the wall of the frame structure and thereby of the tunnel building can be made into spaces that remain accessible to previously living animals therein. The requirements for nature and landscape protection are thereby taken into account. The stability of the overall construction is neither adversely affected by the hollow channel element nor delays the production process. The extremely important tightness of the overall construction is not negatively affected.

Erfindungsgemäß ist ein Verfahren zur Durchführung des Ausbaus der Innenschale eines röhrenartigen Bauwerks mit den folgenden Schritten: a) Fixieren einer Mehrzahl von Stahlträgerbogen auf dafür eingerichteten Fundamenten, b) Einstellen des Abstands zwischen Stahlträgerbogen und Dichtungsfolie mittels Abstandhalter, c) Anbringen einer Bewehrungslage auf der Innenseite und/oder auf der Außenseite der Stahlträgerbogen mittels Halteelementen in einem einstellbaren Abstand, d) Anbringen einer ersten Schalungslage einer ersten Schalungshöhe auf der Innenseite der Stahlträgerbogen mittels Abstandhaltern jeweils beginnend am Fußpunkt der Stahlträgerbogen auf beiden Seiten des röhrenartigen Bauwerks, e) Betonieren einer ersten Betonschicht entsprechend der ersten Schalungshöhe der ersten Schalungslage, f) Anbringen einer nächsthöheren Schalungslage einer vorbestimmten Schalungshöhe auf der Innenseite der Stahlträgerbogen mittels Abstandhaltern beginnend jeweils am freien Ende der unteren Schalungslagen, g) Betonieren einer nächsthöheren Betonschicht jeweils entsprechend der vorbestimmten Schalungshöhe der nächsthöheren Schalungslagen, h) Wiederholen der Schritte f) und g), bis die Betonschichten auf beiden Seiten aneinander stoßen, so dass sich eine geschlossene Innenschale im Bauwerk ergibt. Dieses Verfahren ermöglicht eine auch vertikal abschnittsweise Installation einer sehr stabilen, selbsttragenden Innenschale in einem röhrenartigen Bauwerk wie einem Tunnel, einer Unterführung oder einer Gewölbebrücke, so dass der Streckenbetrieb in der Röhre und bzw. oder auch darüber nicht für eine längere Zeit unterbrochen werden muss. Dadurch wird unter anderem die teure und zeitaufwändige Verwendung eines Schalwagens vermieden, der einen erheblich größeren Ausbruchquerschnitt der Röhre erfordert. Darüber hinaus führt die Verwendung eines Schalwagens beim Ausschalen durch das in der Norm tolerierte "Nachsacken" der betonierten Schale zu Ungenauigkeiten in der fertigen Schale. Weiterhin ermöglicht das Verfahren eine sehr exakte, auch nachträglich noch veränderbare Positionierung der Bewehrungslagen, so dass die notwendige Mindestbetondeckung eingehalten werden kann. Durch die Selbsttragung ist eine zusätzliche Unterstützung im Firstbereich nicht erforderlich.According to the invention, a method for carrying out the removal of the inner shell of a tubular structure with the following steps: a) fixing a plurality of steel support arch on foundations therefor, b) adjusting the distance between steel support sheet and sealing film by means of spacers, c) attaching a reinforcement layer on the inside and / or on the outside of the steel beam arch by means of holding elements at an adjustable distance, d) attaching a first formwork layer of a first formwork height on the inside of the steel support arch by means of spacers each beginning at the base of the steel support arch on both sides of the tubular structure, e) concreting a first layer of concrete according to the first formwork height of the first formwork layer, f) attaching a next higher formwork layer of a predetermined formwork height on the inside of the steel beam arch by means of spacers starting at the free end h) repeating steps f) and g) until the concrete layers abut one another on both sides, so that a closed inner shell results in the structure. This method also allows a vertical section installation of a very stable, self-supporting inner shell in a tubular structure such as a tunnel, an underpass or vault bridge, so that the route operation in the tube and / or over it does not have to be interrupted for a long time. As a result, among other things, the expensive and time-consuming use of a formwork carriage is avoided, which requires a considerably larger breakout cross section of the tube. In addition, the use of a formwork carriage during stripping by the tolerated in the standard "sagging" of the concrete shell leads to inaccuracies in the finished shell. Furthermore, the method allows a very accurate, even later still changeable positioning of the reinforcement layers, so that the necessary minimum concrete cover can be met. The self-supporting additional support in the ridge area is not required.

Mit besonderem Vorteil wird in Schritt b) der Abstand der Bewehrungslage(n) mit Hilfe der Halteelemente eingestellt. Dadurch wird eine Flexibilität gegeben, die möglicherweise vorhandene große Toleranzen ausgleichen kann, um beispielsweise die Mindestbetondeckung der verbauten Stahlbetonbauteile von ca. 5 cm zu gewährleisten. Auch nach dem Anbringen der inneren oder äußeren Bewehrungslage ist eine Einstellung des Abstands noch möglich.With particular advantage, the distance of the reinforcement layer (s) is adjusted by means of the holding elements in step b). This gives a flexibility that can compensate for existing large tolerances, for example, to ensure the minimum concrete cover of the installed reinforced concrete components of about 5 cm. Even after attaching the inner or outer reinforcement layer adjustment of the distance is still possible.

Das Verfahren weist des Weiteren bevorzugt den Schritt des Entfernens der Schalungslagen auf. Die Schalung eines bereits betonierten Abschnitts, ob vertikal oder horizontal, kann nach Trocknung bzw. Fixierung des Betons zeitnah entfernt, gesäubert, gegebenenfalls geschmiert und danach wieder für den nächsten Abschnitt verwendet werden. Das spart zusätzliches Baumaterial, was bei kurzen Arbeitszeitabschnitten beispielsweise bei der Sanierung von Bahntunnels ohne Vollsperrung auch eine Zeitersparnis mit sich bringt.The method further preferably comprises the step of removing the shuttering layers. The formwork of an already concrete section, whether vertical or horizontal, can be quickly removed, cleaned, optionally lubricated after drying or fixation of the concrete and then used again for the next section. This saves additional building material, which also saves time in the case of short working hours, for example in the rehabilitation of railway tunnels without full closure.

Weiterhin vorteilhaft ist es, dass die Schritte e) und g) mit Ortbeton ausgeführt werden. Das aufwändige Verwenden von Spritzbeton, der teurer und weniger haltbar als Ortbeton ist, kann dadurch vermieden werden. Denn beim Aufbringen des Spritzbetons trifft regelmäßig ein Teil des Betonmaterials durch Rückprall auf den Boden oder in die Umgebung, die deshalb einer besonderen, kostenintensiven Aufbereitung unterzogen werden müssen.It is furthermore advantageous that steps e) and g) are carried out using in-situ concrete. The costly use of shotcrete, which is more expensive and less durable than in-situ concrete, can be avoided. Because when applying the shotcrete meets regularly a part of the concrete material by rebound on the ground or in the environment, which must therefore be subjected to a special, costly treatment.

Weitere Vorteile der Erfindungen ergeben sich aus den nachfolgenden Zeichnungen, die eine bevorzugte Ausführungsform der vorliegenden Erfindung darstellen. Es zeigen:

Fig. 1
einen Schnitt durch ein röhrenartiges Bauwerk, in dem eine bevorzugte Ausführungsform der erfindungsgemäßen Rahmenkonstruktion installiert ist;
Fig. 2
einen Ausschnitt aus Fig. 1, der den Aufbau der erfindungsgemäßen Rahmenkonstruktion zur Bauwerkswand hin veranschaulicht;
Fig. 3
einen Ausschnitt aus Fig. 1, der ein Detail der erfindungsgemäßen Rahmenkonstruktion nach innen darstellt;
Fig. 4
ein Detail der Rahmenkonstruktion aus Fig. 1, das die Verbindung von zwei Stahlträgerbogen genauer darstellt;
Fig. 5
ein Detail aus Fig. 1, das die Verbindung der erfindungsgemäßen Rahmenkonstruktion zum Boden hin darstellt;
Fig. 6
eine Querschnittsansicht der erfindungsgemäßen Rahmenkonstruktion aus Fig. 1 im Detail eines Bogens darstellt;
Fig. 7
einen Ausschnitt von Elementen aus Fig. 6, die die Befestigung der Bewehrungslagen am Stahlträgerbogen näher darstellen;
Fig. 8
ein Detail einer Querschnittsansicht der erfindungsgemäßen Rahmenkonstruktion gemäß einer weiteren Ausführungsform zeigt; und
Fig. 9
eine Ansicht auf das Detail aus Fig. 8 von der Außenseite des Tunnelgebäudes zeigt.
Further advantages of the invention will become apparent from the following drawings, which illustrate a preferred embodiment of the present invention. Show it:
Fig. 1
a section through a tubular structure in which a preferred embodiment of the frame construction according to the invention is installed;
Fig. 2
a section from Fig. 1 which illustrates the construction of the frame construction according to the invention towards the building wall;
Fig. 3
a section from Fig. 1 showing a detail of the frame construction according to the invention inside;
Fig. 4
a detail of the frame construction Fig. 1 illustrating in more detail the connection of two steel beams;
Fig. 5
a detail from Fig. 1 showing the connection of the frame construction according to the invention to the ground;
Fig. 6
a cross-sectional view of the frame construction according to the invention Fig. 1 in detail of a bow represents;
Fig. 7
a section of elements Fig. 6 detailing the attachment of the reinforcement layers to the steel girder arch;
Fig. 8
shows a detail of a cross-sectional view of the frame construction according to the invention according to another embodiment; and
Fig. 9
a view on the detail Fig. 8 from the outside of the tunnel building.

Fig. 1 zeigt einen Querschnitt durch ein Tunnelgebäude, in dem eine bevorzugte Ausführungsform der erfindungsgemäßen Rahmenkonstruktion 1 installiert ist. In dem hier vorgestellten Fall ist ein Tunnelgebäude eines zu sanierenden Bahntunnels dargestellt, in dem die Rahmenkonstruktion 1, die aus mehreren Rahmenelementen 2 besteht, die in Längsrichtung des Tunnelgebäudes angeordnet sind, die Basis für eine Betoninnenschale bildet, die auf der Innenseite einer bereits existierenden Außenschale 3 eines Alttunnels angebracht ist. Der Boden des Tunnelgebäudes umfasst ein Gleisbett 5, auf dem im Wesentlichen in der Mitte zwei Gleise 7 angeordnet sind, sodass ein eingleisiger Zugbetrieb in diesem Bahntunnel möglich ist. Es ist anzumerken, dass die vorliegende Erfindung sich jedoch auch auf mehrgleisige Bahntunnel oder auch auf Tunnelgebäude beziehen kann, die Fahrbahnen für Lastkraftwagen oder Personenkraftwagen aufweisen. In gleicher Weise kann die Erfindung auch in Bahn-, Straßen- oder anderen Unterführungen sowie in Einhausungen, Gewölbebrücken oder -durchlässen, die gemauert oder betoniert sind, verwendet werden. Darunter fallen auch röhrenartige Bauwerke, durch die eine Wasserstraße führt oder ein Gewässer fließt. Fig. 1 shows a cross section through a tunnel building in which a preferred embodiment of the frame construction 1 according to the invention is installed. In the case presented here, a tunnel building of a railway tunnel to be rehabilitated is shown in which the frame structure 1, which consists of a plurality of frame elements 2, which are arranged in the longitudinal direction of the tunnel building, forms the basis for a concrete inner shell, which on the inside of an already existing outer shell 3 of an old tunnel is attached. The floor of the tunnel building comprises a track bed 5, on which two tracks 7 are arranged substantially in the middle, so that a single-rail train operation in this railway tunnel is possible. It should be noted, however, that the present invention may also relate to multi-track railway tunnels or tunnel buildings having lorry or passenger roadways. In the same way, the invention can also be used in railway, road or other underpasses and in enclosures, vault bridges or culverts which are bricked or concreted. These include tubular structures through which a waterway leads or waters flow.

Das Rahmenelement 2 selbst umfasst als Basiselement einen Stahlträgerbogen 9, der in der dargestellten Ausführungsform als Doppel-T-Träger aus einem HEB S355 Stahlprofil gebildet ist. Der Stahlträgerbogen 9 ist jeweils an seinen Enden mit einer angeschweißten Fußplatte 11 versehen, die auf einem Fundament 13 befestigt ist. Das Fundament 13 kann in Längsrichtung des röhrenartigen Bauwerks durchgehend vorhanden sein, es ist jedoch auch möglich, dass die Fundamente 13 nur teil- oder abschnittsweise als Punktfundamente innerhalb des röhrenartigen Bauwerks vorgesehen sind, nämlich dort, wo die Stahlträgerbogen 9 auf den Boden des röhrenartigen Bauwerks treffen. In jedem Fall muss eine ausreichende Verankerung im Boden durch das Fundament gewährleistet sein.The frame element 2 itself comprises as the base element a steel carrier sheet 9, which in the illustrated embodiment is formed as a double T-carrier from an HEB S355 steel profile. The steel support arch 9 is provided at each of its ends with a welded base plate 11 which is mounted on a foundation 13. The foundation 13 may be continuous in the longitudinal direction of the tubular structure, but it is also possible that the foundations 13 are provided only partially or in sections as a point foundations within the tubular structure, namely where the steel support arch 9 to the bottom of the tubular structure to meet. In any case, adequate anchoring in the ground by the foundation must be ensured.

Die Stahlträgerbogen 9A weisen an ihrer Innenseite und auch an ihrer Außenseite, jedoch nicht direkt an ihren Flanschen, jeweils eine Bewehrungslage 15, 17 auf, die mittels Halteelementen an den Stahlträgerbogen 9 fixiert sind. Details hierzu sind in der vorliegenden Beschreibung bezüglich der nachfolgenden Figuren beschrieben.The steel support sheets 9A have on their inner side and also on their outer side, but not directly on their flanges, in each case a reinforcement layer 15, 17, which are fixed by means of holding elements to the steel support sheet 9. Details of this are described in the present description with respect to the following figures.

Da die Außenschale 3 des röhrenartigen Bauwerks mit einer Dichtungsfolie 4, d. h. einer Kunststoffdichtbahn, zum Zwecke der Abdichtung des Röhreninneren vor dem Eindringen von (Berg-) Wasser wasserdicht abgeschlossen ist, darf die Rahmenkonstruktion 1 mit der Außenschale 3 nicht derart verbunden sein, dass die Dichtungsschicht unterbrochen oder beschädigt wird. Deshalb sind die Stahlträgerbogen 9 über erste Abstandhalter mit der Innenfläche der Dichtungsfolie 4 verbunden, wobei die ersten Abstandhalter 19 mit Lastverteilungsplatten 20 versehen sind, wie unter Bezugnahme auf Fig. 2 ausführlich weiter unten beschrieben ist. Die Lastverteilungsplatten 20 werden nicht auf der Dichtungsfolie 4 fixiert, sondern nach Positionierung der Stahlträgerbogen 9 gegen die Dichtungsfolie 4 gepresst. In der bevorzugten Ausführungsform sind die ersten Abstandhalter 19 dazu mit entsprechenden Gewinden versehen. Darüber hinaus können so Toleranzen im Zwischenraum zwischen der Außenschale 3 des Bauwerks und den Stahlträgerbogen 9 auf einfache Weise ausgeglichen werden können. Das Material der ersten Abstandhalter 19 und der Lastverteilungsplatten 20 sowie deren Abmessungen sind derart ausgewählt, dass die Abstützkräfte der Rahmenkonstruktion 1 auf die Dichtungsfolie 4 die für die Folie zulässigen Lasten einhalten. Darüber hinaus gilt für das Material, dass bevorzugt Kunststoff, kunststoffummantelte Stahlstifte oder auch Edelstahlgewindestangen verwendet werden, um eine mögliche Korrosion nahe an der Außenschale 3 des röhrenartigen Bauwerks zu verhindern.Since the outer shell 3 of the tubular structure with a sealing film 4, ie a plastic sealing strip, for the purpose of sealing the inside of the tube from the ingress of (mountain) water is watertight, the frame structure 1 must not be connected to the outer shell 3 such that the Seal layer is interrupted or damaged. Therefore, the steel support sheets 9 are connected to the inner surface of the sealing film 4 via first spacers, the first spacers 19 being provided with load distribution plates 20 as described with reference to FIG Fig. 2 described in detail below. The load distribution plates 20 are not fixed on the sealing film 4, but pressed after positioning the steel support sheet 9 against the sealing film 4. In the preferred embodiment, the first spacers 19 are provided with corresponding threads for this purpose. In addition, tolerances in the space between the outer shell 3 of the building and the steel support sheet 9 can be compensated in a simple manner. The material of the first spacers 19 and the load distribution plates 20 and their dimensions are selected such that the supporting forces of the frame structure 1 on the sealing film 4 comply with the permissible loads for the film. In addition, the material is preferably plastic, plastic-coated steel pins or stainless steel threaded rods are used to prevent possible corrosion close to the outer shell 3 of the tubular structure.

Auf der Innenseite des Stahlträgerbogens 9 ist über zweite Abstandhalter 21 eine Schalungslage 23 angebracht, die mehrere Schalungselemente 24 umfasst. Um eine Selbsttragung der Rahmenkonstruktion 1 zu ermöglichen, wird die Schalungslage 23 in verschiedene Schalungselemente unterschiedlicher Höhe aufgeteilt, sodass eine abschnittsweise Betonierung, d. h. eine Hinterfüllung der entsprechenden Schalungselemente mit Beton, ermöglicht wird. Eine ausführliche Beschreibung des Verfahrens ist weiter unten in dieser Beschreibung angegeben.On the inside of the steel support arch 9, a shuttering layer 23 is attached via second spacers 21, which includes a plurality of shuttering elements 24. In order to enable a self-supporting the frame structure 1, the formwork layer 23 is divided into different formwork elements of different heights, so that a section concreting, d. H. a backfill of the corresponding formwork elements with concrete, is made possible. A detailed description of the method is given below in this description.

Die Stahlträgerbogen 9 sind üblicherweise derart dimensioniert, dass sie in ihrer Längserstreckung nicht den gesamten Röhren- oder Tunnelbogen abdecken, sondern in zwei oder drei Teilsegmente aufgeteilt sind. Diese Teilsegmente können über ein oder mehrere Verbindungselement(e) 25 miteinander verbunden werden, das auf mindestens einer Seite des Stegs angebracht wird, wie in Fig. 1 im Firstbereich des röhrenartigen Bauwerks dargestellt.The steel support sheets 9 are usually dimensioned such that they do not cover the entire tubular or tunnel arc in their longitudinal extent, but are divided into two or three sub-segments. These subsegments may be interconnected via one or more fasteners 25 that are mounted on at least one side of the web, as in FIG Fig. 1 shown in the ridge area of the tubular structure.

Die Hinterfüllung der Rahmenkonstruktion 1 mit Stahlbeton erfolgt in der dargestellten Ausführungsform bevorzugt abschnittsweise derart, dass zunächst eine erste, untere Schalungslage 23, d. h. bis zu einer Höhe eines ersten Schalungselements 24 verschalt wird und anschließend Ortbeton hinter die Schalung gegossen wird, sodass der vollständige Längenabschnitt der Rahmenkonstruktion 1 bis zur Höhe des ersten Schalungselements 24 mit Ortbeton hinterfüllt wird, wobei sich die Betonmasse in sämtliche Zwischenräume um die Stahlträgerbogen 9, die inneren und äußeren Bewehrungslagen 15, 17 sowie um die ersten und zweiten Abstandhalter 19, 21 sowie die Halteelemente 14 herum bewegt und aufgrund der Verdichtung im Wesentlichen keine Lufteinschlüsse oder andere Leerräume zwischen der Außenschale 3 und der Schalungslage 23 vorhanden sind.The backfilling of the frame construction 1 with reinforced concrete is preferably carried out in sections in the illustrated embodiment in such a way that initially a first, lower formwork layer 23, d. H. is boarded to a height of a first formwork element 24 and then in-situ concrete is poured behind the formwork, so that the full length of the frame construction 1 is backfilled to the height of the first shuttering element 24 with in-situ concrete, wherein the concrete mass in all spaces around the steel support arch 9, the inner and outer reinforcing layers 15, 17 and around the first and second spacers 19, 21 and the holding elements 14 moves around and due to the compression substantially no air pockets or other voids between the outer shell 3 and the formwork layer 23 are present.

Fig. 2 zeigt ein Detail der Darstellung aus Fig. 1, wobei insbesondere der Übergangsbereich zwischen der Außenschale 3 des röhrenartigen Bauwerks zur Rahmenkonstruktion 1 ausführlich gezeigt ist. Man erkennt auf der Innenseite der Außenschale 3 eine Dichtungsfolie 4, die in Fig. 2 strichpunktiert dargestellt ist. Die Dichtungsfolie 4 ist durchgängig etwa 2 mm dick und robust, sodass von außen kein (Berg-) Wasser in das Innere des röhrenartigen Bauwerks eindringen kann. Zwischen der Dichtungsfolie 4 und der Außenschale 3 können Gewebematten, Geotextil oder ähnliche Materialien angeordnet sein, um die Dichtungsfolie 4 vor Beschädigungen zu schützen und um für eine möglichst gleichmäßige Kraftverteilung zu sorgen. Auf der Dichtungsfolie 4 sind nach innen die Lastverteilungsplatten 20 angebracht, die in der bevorzugten Ausführungsform aus Kunststoff mit einer Größe von etwa 25 cm x 25 cm ausgebildet und mit der Dichtungsfolie 4 verklebt sind und in der Mitte einen Gewindeabschnitt aufweisen, in den ein erster Abstandhalter 19 eingreifen kann, der ebenfalls mit einem Gewinde versehen ist. Der erste Abstandshalter 19 sowie die Lastverteilungsplatte 20 können aus Kunststoff ausgebildet sein, um das Korrosionsrisiko der Stahlbetonelemente zu minimieren. Auf der Innenseite ist der erste Abstandhalter 19 mit dem äußeren Flansch des Stahlträgerbogens 9 verschraubt. Dadurch ist die Möglichkeit gegeben, je nach Ausbildung des Zwischenraums Toleranzen im Abstand zwischen der Außenschale 3 und den Stahlträgerbogen 9 auszugleichen. Fig. 2 shows a detail of the presentation Fig. 1 In particular, the transition region between the outer shell 3 of the tubular structure to the frame structure 1 is shown in detail. It can be seen on the inside of the outer shell 3, a sealing film 4, in Fig. 2 dash-dotted lines is shown. The sealing film 4 is consistently about 2 mm thick and robust, so that from the outside no (mountain) water can penetrate into the interior of the tubular structure. Between the sealing film 4 and the outer shell 3 fabric mats, geotextile or similar materials may be arranged to protect the sealing film 4 from damage and to ensure the most uniform force distribution. On the sealing film 4 are inside the load distribution plates 20 mounted, which are formed in the preferred embodiment of plastic with a size of about 25 cm x 25 cm and glued to the sealing film 4 and in the middle have a threaded portion into which a first spacer 19 can engage, which also with a thread is provided. The first spacer 19 and the load distribution plate 20 may be formed of plastic to minimize the risk of corrosion of the reinforced concrete elements. On the inside, the first spacer 19 is screwed to the outer flange of the steel support arch 9. This makes it possible, depending on the design of the gap tolerances in the distance between the outer shell 3 and the steel support arch 9 compensate.

In Fig. 2 ebenfalls sichtbar ist die äußere Bewehrungslage 17, die in Bogenrichtung angeordnete Bewehrungsstäbe sowie senkrecht dazu angeordnete Bewehrungsstäbe aufweist. Die Befestigung der äußeren Bewehrungslage 17 erfolgt durch Verrödelung mittels Draht an den Bewehrungsbogen 16, die in Fig. 2 unmittelbar angrenzend an den äußeren Flansch des Stahlträgerbogens 9 dargestellt sind und deren Befestigung ausführlich unter Bezugnahme auf die Fig. 3 beschrieben wird.In Fig. 2 also visible is the outer reinforcing layer 17, which has bowing arranged in the rebar and perpendicular thereto arranged reinforcing bars. The attachment of the outer reinforcement layer 17 is effected by Verrödelung by means of wire to the reinforcement sheet 16, which in Fig. 2 are shown immediately adjacent to the outer flange of the steel beam arch 9 and their attachment in detail with reference to the Fig. 3 is described.

Fig. 3 zeigt ein Detail der erfindungsgemäßen Rahmenkonstruktion 1 in der bevorzugten Ausführungsform. Besonderes Augenmerk wird bei der Beschreibung der Fig. 3 auf die innere Lage der Rahmenkonstruktion 1 gelegt. Da die Details hin zur Außenwand bereits unter Bezugnahme auf Fig. 2 beschrieben wurden, werden diese Ausführungen hier nicht wiederholt. Man erkennt in Fig. 3, dass die innere Bewehrungslage 15 spiegelbildlich zur äußeren Bewehrungslage 17 ausgebildet ist, d. h. auch hier ist ein Bewehrungsbogen 16 parallel zum inneren Flansch des Stahlträgerbogens 9 angeordnet, wobei dieser Bewehrungsbogen 16 über Halteelemente 14 mit dem Steg des Stahlträgerbogens 9 verschraubt ist. Einzelheiten zu dem Halteelement werden unter Bezugnahme auf die Fig. 6 und 7 beschrieben. Die innere Bewehrungslage 15 wird analog zur äußeren Bewehrungslage 17 mit den entsprechenden Bewehrungsbogen 16 mit Rödeldraht fest miteinander verbunden bzw. vernetzt. Diesen Schritt führt der Bewehrungstrupp aus, wobei bei der erfindungsgemäßen Rahmenkonstruktion vorzugsweise die äußere Bewehrungslage 17 zuerst montiert wird und anschließend die innere Bewehrungslage 15. Es ist ebenfalls grundsätzlich möglich, den entsprechenden Stahlträgerbogen 9 mit innerer und äußerer Bewehrungslage 15, 17 schon außerhalb der Röhre oder vor Befestigung des Stahlträgerbogens am Fundament 13 entsprechend vorzubereiten. Fig. 3 shows a detail of the frame structure 1 according to the invention in the preferred embodiment. Special attention is given in the description of the Fig. 3 placed on the inner layer of the frame structure 1. As the details towards the outside wall are already referring to Fig. 2 have been described, these statements are not repeated here. One recognizes in Fig. 3 in that the inner reinforcing layer 15 is formed in mirror image to the outer reinforcing layer 17, ie a reinforcing sheet 16 is also arranged parallel to the inner flange of the steel carrier sheet 9, this reinforcing sheet 16 being screwed to the web of the steel carrier sheet 9 via holding elements 14. Details of the retaining element will be described with reference to FIGS 6 and 7 described. The inner reinforcement layer 15 is connected or crosslinked analogously to the outer reinforcing layer 17 with the corresponding reinforcement sheet 16 with tie wire. This step performs the reinforcement troop, wherein in the frame construction according to the invention preferably the outer reinforcement layer 17 is mounted first and then the inner reinforcement layer 15. It is also possible in principle, the corresponding steel support arch 9 with inner and outer reinforcement layer 15, 17 already outside the tube or prepare before mounting the steel girder arch on the foundation 13 accordingly.

Nach innen ist am inneren Flansch des Stahlträgerbogens 9 eine Mehrzahl von zweiten Abstandhaltern 21 befestigt, an deren anderem Ende die Schalungslage 23 angebracht wird. Die zweiten Abstandhalter 21 sind in der hier dargestellten Ausführungsform als Stahlschrauben ausgebildet, die mit einer schützenden Kunststoffhülle umrandet sind, sodass der Kunststoffmantel eine direkte Verbindung zwischen Stahlbeton und Abstandhalter verhindert. Die Ausbildung als Schraube ermöglicht es ähnlich wie bei den ersten Abstandhaltern 19, dass der Abstand zwischen der Schalungslage 23 und dem inneren Flansch des Stahlträgerbogens 9 exakt eingestellt werden kann, und so Toleranzen ausgeglichen werden können.Inwardly, a plurality of second spacers 21 is attached to the inner flange of the steel support arch 9, at the other end of the shuttering layer 23 is attached. The second spacers 21 are formed in the embodiment shown here as steel screws, which are surrounded by a protective plastic sheath, so that the plastic sheath prevents a direct connection between reinforced concrete and spacers. The design as a screw allows, similar to the first spacers 19, that the distance between the shuttering layer 23 and the inner flange of the steel support sheet 9 can be set exactly, and so tolerances can be compensated.

Die Schalungslage 23 umfasst handelsübliche Schalbretter, die aus Kunststoff, Holz oder auch aus Metall ausgebildet sein können. Bevorzugt sind übliche Holzverschalungen. In Fig. 3 ebenfalls erkennbar ist, dass nach Hinterfüllung der Rahmenkonstruktion sowie nach entsprechender Verdichtung der Stahlbeton 27 den gesamten Zwischenraum zwischen Außenschale 3 und Schalungslage 23 ausfüllt, ohne dass Hohlräume oder sonstigen Einschlüsse verbleiben.The formwork layer 23 includes commercial formwork boards, which may be formed of plastic, wood or metal. Preference is given to usual wood cladding. In Fig. 3 It can also be seen that after backfilling the frame construction and after corresponding compaction, the reinforced concrete 27 fills the entire gap between the outer shell 3 and the shuttering layer 23, without cavities or other inclusions remaining.

In Fig. 4 ist ein Detail aus der Fig. 1 vergrößert dargestellt, das im Firstbereich der Röhre liegt. In der dargestellten Ausführungsform weist die Rahmenkonstruktion 1 rechts und links je einen Stahlträgerbogen 9 auf, die im Firstbereich im Wesentlichen aneinanderstoßen und dort mittels eines Verbindungselements 25 miteinander verbunden sind. Das Verbindungselement 25 ist auf mindestens einer Seite des Stegs des Stahlträgerbogens angeordnet und mit dem jeweiligen Ende verschraubt. Bevorzugt ist das Verbindungselement 25 auf beiden Seiten des Stegs angeordnet, um für eine noch stabilere Verbindung zu sorgen. Je nach Dimension der Stahlträgerbogen 9 können zwei, drei, vier oder auch noch mehr Teilsegmente von Stahlträgerbogen 9 den kompletten Bogen der Rahmenkonstruktion 1 bilden, die dann jeweils in ihren Stirnbereichen mittels mindestens je eines Verbindungselements 25 miteinander verbunden werden können. Auf eine Wiederholung der bereits unter Bezugnahme auf die Fig. 2 und 3 beschriebenen Elemente aus Fig. 4 wird an dieser Stelle verzichtet. Alternativ bieten sich auch andere Möglichkeiten der Verbindung der Enden zweier Stahlträgerbogen 9 an, z. B. die Verschraubung von zwei Fußplatten, die wie bereits beschrieben auf die Stirnseiten der Stahlträgerbogen angeschweißt sind.In Fig. 4 is a detail from the Fig. 1 shown enlarged, which lies in the ridge area of the tube. In the illustrated embodiment, the frame structure 1 on the right and left each have a steel support arch 9, which abut one another in the ridge region substantially and there by means of a connecting element 25 are interconnected. The connecting element 25 is arranged on at least one side of the web of the steel carrier sheet and screwed to the respective end. Preferably, the connecting element 25 is arranged on both sides of the web to provide an even more stable connection. Depending on the dimension of the steel girder arch 9, two, three, four or even more subsegments of steel girder arch 9 can form the complete arch of the frame structure 1, which can then be connected to one another in each case in their end regions by means of at least one connecting element 25. On a repetition of the already referring to the FIGS. 2 and 3 described elements Fig. 4 will be omitted here. Alternatively, other ways of connecting the ends of two steel beam arch 9, for. B. the screwing of two foot plates, which are welded as already described on the end faces of the steel beam.

Fig. 5 zeigt den Ausschnitt aus Fig. 1, in dem der Stahlträgerbogen 9 mit dem eigens dafür vorgesehenen Fundament 13 verbunden ist. Eine Fußplatte 11 ist auf der Stirnseite des Doppel-T-Trägerbogens 9 angeschweißt. Diese im Wesentlichen quadratische Fußplatte 11 weist in jedem ihrer Eckbereiche eine Bohrung auf, durch die eine Gewindestange 31 geführt ist. Diese Gewindestange 31 ist auf beiden Seiten der Fußplatte 11 mit einer Befestigungsmutter 29 bzw. einer Justiermutter 30 fixiert und ist in Bohrungen im Fundament 13 mittels eines Vergusses 12 eingelassen. Es sind neben der hier dargestellten Befestigungsart auch andere Möglichkeiten denkbar, die Fußplatte 11 mit dem Fundament 13 zu verbinden, sodass sich eine stabile Position ergibt. Fig. 5 shows the section Fig. 1 in which the steel carrier sheet 9 is connected to the foundation 13 provided for this purpose. A foot plate 11 is welded on the front side of the double-T-carrier sheet 9. This substantially square base plate 11 has in each of its corner regions a bore through which a threaded rod 31 is guided. This threaded rod 31 is fixed on both sides of the base plate 11 with a fastening nut 29 and an adjusting nut 30 and is embedded in holes in the foundation 13 by means of a potting 12. There are in addition to the fastening shown here, other possibilities conceivable to connect the base plate 11 with the foundation 13, so that there is a stable position.

Fig. 6 zeigt in Draufsicht eine Querschnittsansicht einer Seite der erfindungsgemäßen Rahmenkonstruktion 1 in Bodennähe. Man erkennt, dass die Fußplatte 11 vollflächig auf dem Fundament 13 aufliegt und an ihm befestigt ist. Das Fundament 13 ist wie hier dargestellt als Punktfundament ausgeführt, es könnte jedoch auch durchgängig über die gesamte Länge des röhrenartigen Bauwerks mit der hier dargestellten Breite ausgebildet sein. Wie bereits ausführlich erläutert, ist der Stahlträgerbogen 9 mit der Fußplatte 11 fest verschweißt. Die Darstellung in Fig. 6 soll dazu dienen, die flexibel einstellbare Befestigung der inneren und äußeren Bewehrungslagen 15, 17 am Stahlträgerbogen 9 mittels der Halteelemente 14 näher zu erläutern. Das Halteelement 14 umfasst ein L-förmiges Winkelprofilblech 32, das jeweils auf einer Seite des Stegs des Stahlträgerbogens 9 befestigt ist, z. B. mittels einer Schweißverbindung. An dem Abschnitt des Winkelprofilblechs 32, der parallel zum Steg des Stahlträgerbogens 9 ist, ist ein Halteblech 34 angeordnet, dessen Ausdehnung ebenfalls parallel zur Stegfläche des Stahlträgerbogens 9 ist. Die Verbindung erfolgt mittels einer Gewindestange oder einer üblichen Schraube/Mutter-Verbindung, wobei das Halteblech 34 entlang eines mittig angeordneten Langlochs 35 verschoben werden kann. An einem freien Ende des Halteblechs 34 ist der Bewehrungsstab 16 angeordnet, der quasi parallel zum inneren bzw. äußeren Flansch des Stahlträgerbogens 9 verläuft und als Basis für die Fixierung der inneren bzw. äußeren Bewehrungslagen 15, 17 dient. Die Verbindung zwischen Halteblech 34 und Bewehrungsstab 16 ist üblicherweise eine Schweißverbindung, kann aber auch auf andere Weise erfolgen wie z. B. Kleben und dergleichen. In Fig. 6 ist erkennbar, wie an dem Bewehrungsstab 16 zunächst die senkrecht dazu verlaufenden Bewehrungsstähle als Längsbewehrung befestigt werden, an denen wiederum dann noch weiter außen die Querbewehrungsstäbe der inneren bzw. äußeren Bewehrungslage 15, 17 befestigt sind. Die Befestigung erfolgt mittels Verrödelung, d. h. durch Anbringen von Drahtschleifen aus Rödeldraht an den Kreuzungen der Bewehrungsstäbe. Fig. 6 shows in plan view a cross-sectional view of a side of the frame structure 1 according to the invention near the bottom. It can be seen that the foot plate 11 fully rests on the foundation 13 and is attached to it. The foundation 13 is designed as a point foundation as shown here, but it could also be formed throughout the entire length of the tubular structure with the width shown here. As already explained in detail, the steel support arch 9 is firmly welded to the base plate 11. The representation in Fig. 6 should serve to explain the flexible adjustable attachment of the inner and outer reinforcement layers 15, 17 on the steel support arch 9 by means of the holding elements 14 in more detail. The holding element 14 comprises an L-shaped angle profile sheet 32 which is fixed in each case on one side of the web of the steel support sheet 9, for. B. by means of a welded connection. At the portion of the angle profile sheet 32, which is parallel to the web of the steel carrier sheet 9, a holding plate 34 is arranged, whose extension is also parallel to the web surface of the steel carrier sheet 9. The connection is made by means of a threaded rod or a conventional screw / nut connection, wherein the retaining plate 34 can be moved along a centrally disposed slot 35. At a free end of the retaining plate 34 of the reinforcing rod 16 is arranged, which runs quasi parallel to the inner or outer flange of the steel support arch 9 and serves as a basis for the fixation of the inner and outer reinforcing layers 15, 17. The connection between the retaining plate 34 and reinforcing bar 16 is usually a welded connection, but can also be done in other ways, such as. B. gluing and the like. In Fig. 6 It can be seen how the reinforcing bar 16 first of all fixes the reinforcing steels running perpendicularly thereto as a longitudinal reinforcement, on which in turn the transverse reinforcing bars of the inner or outer reinforcement layer 15, 17 are then further outward are attached. The attachment takes place by means of decay, ie by attaching wire loops of Rödeldraht at the intersections of the reinforcing bars.

In Fig. 7 ist im Detail noch einmal das Halteelement 14 dargestellt mit seinen Bestandteilen, dem Winkelprofilblech 32 sowie dem Halteblech 34. Derartige Bleche können aus einem geeigneten Profilstahl ausgebildet sein, beispielsweise mit einem U-Profil. In Zusammenschau der Fig. 6 und 7 wird deutlich, dass der Abstand der inneren und äußeren Bewehrungslagen 15, 17 zu den Flanschen der Stahlträgerbogen 9 über eine entsprechende Fixierung der Halteelemente 14 eingestellt werden kann. Damit können Toleranzen berücksichtigt werden.In Fig. 7 is in detail again the holding member 14 shown with its components, the angle profile sheet 32 and the support plate 34. Such sheets may be formed of a suitable section steel, for example with a U-profile. In synopsis of 6 and 7 It is clear that the distance of the inner and outer reinforcing layers 15, 17 can be adjusted to the flanges of the steel support arch 9 via a corresponding fixation of the holding elements 14. This allows tolerances to be taken into account.

Fig. 8 zeigt eine Querschnittsansicht eines Ausschnitts einer weiteren Ausführungsform der erfindungsgemäßen Rahmenkonstruktion. Diese Ausführungsform adressiert insbesondere die Anforderungen an den Natur- und Landschaftsschutz, weil sie Nischen in den Wänden von Alttunnelröhren, in denen z. B. Fledermäuse ihren Lebensraum gefunden haben, berücksichtigt, so dass derartige Biotope auch nach der Tunnelsanierung für die Tiere zur Verfügung stehen. Bohrungen oder Verpressarbeiten an den bestehenden Bauwerken werden damit vermieden. Dazu weist die Rahmenkonstruktion 1 ein Hohlkammerelement 40 auf, das quer zur Tunnel- bzw. Unterführungsrichtung angeordnet ist und in der vorliegenden Ausführungsform einen rechteckigen Querschnitt aufweist. In diesem Hohlkammerelement 40 ist ein Kanal 42 ausgebildet, so dass der Innenraum der Tunnelröhre mit dem Hohlraum in der Tunnelwand, hier als Fledermaushabitat ausgebildet, verbunden ist, so dass die Tiere ein- und ausfliegen können und die Luftzufuhr sichergestellt ist. Fig. 8 shows a cross-sectional view of a section of another embodiment of the frame construction according to the invention. This embodiment addresses in particular the requirements of nature and landscape protection, because they niches in the walls of Alttunnelröhren in which z. B. bats have found their habitat, taken into account, so that such biotopes are available after the tunnel rehabilitation for the animals. Drilling or grouting work on the existing structures is thus avoided. For this purpose, the frame structure 1 has a hollow chamber element 40, which is arranged transversely to the tunnel or underpass direction and in the present embodiment has a rectangular cross section. In this hollow chamber element 40, a channel 42 is formed, so that the interior of the tunnel tube with the cavity in the tunnel wall, here formed as a bat, connected, so that the animals can fly in and out and the air supply is ensured.

Dabei ist das Hohlkammerelement 40 mit der Dichtfolie 4 wasser- und luftdicht verbunden, vorzugsweise verschweißt, so dass kein Wasser von außen durch das Hohlkammerelement 40 in den Innenraum des Tunnelbauwerks gelangen kann. In der bevorzugten Ausführungsform ist das Hohlkammerelement 40 aus Polyethylen gebildet mit einer Länge von etwa 80 cm, einer Breite von etwa 25 cm und einer Höhe von etwa 10 cm bei einer Wandstärke von ca. 5 mm. Die Länge kann je nach Dicke der Rahmenkonstruktion bis zu 1,5 m betragen oder auch weniger als 80 cm. Die Breiten- und Höhenabmessungen sowie die Wandstärke bestimmen sich in erster Linie durch das Material, denn es muss sichergestellt sein, dass die äußeren Kräfte, die auf das Hohlkammerelement 40 wirken, von diesem ohne Verformung oder gar Beschädigung aufgenommen werden können. Die Gesamtkonstruktion darf in ihrer (Trag-) Funktion nicht beeinträchtigt sein.In this case, the hollow-chamber element 40 is connected to the sealing film 4 in a watertight and airtight manner, preferably welded, so that no water can pass from the outside through the hollow-chamber element 40 into the interior of the tunnel structure. In the preferred embodiment, the hollow chamber member 40 is formed of polyethylene having a length of about 80 cm, a width of about 25 cm and a height of about 10 cm with a wall thickness of about 5 mm. Depending on the thickness of the frame construction, the length can be up to 1.5 m or even less than 80 cm. The width and height dimensions as well as the wall thickness are primarily determined by the material, because it must be ensured that the external forces acting on the hollow chamber element 40, of this without deformation or even damage can be recorded. The overall construction must not be impaired in its (carrying) function.

In der dargestellten Ausführungsform sind das Hohlkammerelement 40 und die Dichtfolie 4 miteinander verschweißt. Es können auch andere Verbindungsmechanismen und - verfahren zur Anwendung kommen, solange die Wasser- und Luftdichtigkeit sichergestellt ist. Optional kann das Hohlkammerelement 40 von den Bewehrungsbestandteilen zur Positionierung gestützt oder getragen sein, wobei eine dauerhafte Verbindung nicht notwendigerweise erforderlich ist.In the illustrated embodiment, the hollow chamber element 40 and the sealing film 4 are welded together. Other connection mechanisms and methods may be used as long as the water and airtightness is ensured. Optionally, the hollow chamber member 40 may be supported or supported by the reinforcement components for positioning, with a permanent connection not necessarily required.

In Fig. 9 erkennt man in einer Draufsicht auf das Detail aus Fig. 8, dass die Öffnung des Hohlkammerelements 40 etwa in 1,5 m bis 2,0 m Höhe über dem Boden angeordnet ist und das Hohlkammerelement 40 im Wesentlichen in einem rechten Winkel zur Rahmenkonstruktion 1 angeordnet ist. Leichte Abweichungen vom rechten Winkel (< 10°) sind möglich, solange die Stabilität der Konstruktion sichergestellt ist. In den Fig. 8 und 9 ist die Nische im Inneren der Tunnelaußenwand durch Mauerwerk 43 umbaut, so dass sich ein definierter Hohlraum 45 bildet. Dieser Hohlraum 45 weißt im unteren Bereich eine Drainageöffnung 46 auf, deren Auslass sich jedoch nicht in das Innere der Tunnelröhre erstreckt.In Fig. 9 can be seen in a plan view of the detail Fig. 8 in that the opening of the hollow chamber element 40 is arranged approximately at a height of 1.5 m to 2.0 m above the ground and the hollow chamber element 40 is arranged essentially at a right angle to the frame construction 1. Slight deviations from the right angle (<10 °) are possible as long as the stability of the construction is ensured. In the 8 and 9 is the niche in the interior of the tunnel outer wall rebuilt by masonry 43, so that a defined cavity 45 is formed. This cavity 45 has a drainage opening 46 at the bottom, but the outlet does not extend into the interior of the tunneling tube.

Das erfindungsgemäße Verfahren wird nachfolgend ausführlich beschrieben. In das Bauwerk, dessen Außenwand mittels einer Dichtfolie 4 im Wesentlichen wasserdicht gegen (Berg-) Wasser abgedichtet ist, werden die Stahlträgerbogen 9 eingebracht und auf den vorher dafür eingerichteten Fundamenten 13 fixiert. Wie in Fig. 4 dargestellt können mehr als ein Stahlträgerbogen 9 den gesamten Bogen bilden; eine entsprechende Verbindung kann beispielsweise über Verbindungselemente 25 herbeigeführt werden. Der Abstand zwischen Stahlträgerbogen 9 und Dichtungsfolie 4 wird über erste Abstandhalter 19 eingestellt, die bevorzugt mittels Lastverteilungsplatten 20 an der Dichtungsfolie 4 angeordnet sind. Die Befestigung der Lastverteilungsplatten 20 erfolgt durch Pressen, d.h. durch die an den Abstandhaltern 19 vorhandenen Gewinde, die ein Drehen und damit die Einstellung des Abstands und des Anpressdrucks auf die Dichtungsfolie 4 ermöglichen. Dieser erste Schritt wird von einem dafür ausgebildeten Bautrupp vorgenommen und nach Fertigstellung entsprechend abgenommen.The process according to the invention will be described in detail below. In the structure whose outer wall is sealed by a sealing film 4 substantially waterproof against (mountain) water, the steel support arch 9 are introduced and fixed on the previously established for this foundation 13. As in Fig. 4 more than one steel carrier sheet 9 can form the entire sheet; a corresponding connection can be brought about for example via connecting elements 25. The distance between steel carrier sheet 9 and sealing film 4 is adjusted via first spacers 19, which are preferably arranged on the sealing film 4 by means of load distribution plates 20. The attachment of the load distribution plates 20 takes place by pressing, ie by the existing on the spacers 19 thread, which allow rotation and thus the adjustment of the distance and the contact pressure on the sealing film 4. This first step is carried out by a trained construction team and removed accordingly after completion.

Nun kann die Montage der inneren und/oder der äußeren Bewehrungslagen 15, 17 erfolgen. Üblich sind meist zwei Bewehrungslagen. Die Halterungen 14 mit Winkelprofilblech 32 und Halteblech 34 sind schon an den Stegen der Stahlträgerbogen 9 angebracht oder werden nun dort angeschweißt. Es ist vorteilhaft, dass die Halteelemente 14 für die innere Bewehrungslage 15 auf derselben einen Stegseite angeordnet sind und für die äußere Bewehrungslage 17 auf der anderen, gegenüber liegenden Seite. An den Halteblechen 34 werden zunächst parallel zu den Stahlträgerbogen 9 die Bewehrungsstäbe 16 befestigt, bevorzugt mittels Schweißverbindung. Auch andere Befestigungstechniken sind möglich wie Löten, Kleben, Verschrauben oder dergleichen. Anschließend werden die quer zu den Bewehrungsstäben 16 verlaufenden Bewehrungsstähle der inneren bzw. äußeren Bewehrungslagen befestigt, d.h. die in Röhrenlängsrichtung verlaufenden. Dazu wird Rödeldraht verwendet, der nach seinem Anordnen am gewünschten Ort per Werkzeug verdrillt wird und damit für eine ausreichend feste Verbindung von zwei sich kreuzenden Bewehrungsstählen sorgt. Nun kann jeweils vom Stahlträgerbogen 9 gesehen die weiter entfernt gelegene Bewehrungslage auf die gleiche Art und Weise befestigt werden. Ergebnis ist ein relativ engmaschiges Netz aus Bewehrungsstählen, das sich zumindest soweit ausdehnt, dass der erste zu gießende Abschnitt ausreichend mit Bewehrung bedeckt ist.Now, the assembly of the inner and / or the outer reinforcing layers 15, 17 take place. Usually are usually two rebar layers. The brackets 14 with angle profile sheet 32 and retaining plate 34 are already attached to the webs of the steel beam arch 9 or are now welded there. It is advantageous that the holding elements 14 are arranged for the inner reinforcing layer 15 on the same one web side and for the outer reinforcing layer 17 on the other, opposite side. At the holding plates 34, the reinforcing rods 16 are first attached parallel to the steel carrier sheet 9, preferably by means of welded connection. Other fastening techniques are possible such as soldering, gluing, screwing or the like. Subsequently, the reinforcing steels of the inner and / or outer reinforcing layers running transversely to the reinforcing bars 16 are fastened, i. extending in the tube longitudinal direction. For this purpose, use is made of a twisted-wire wire which, after being arranged at the desired location, is twisted by means of a tool and thus ensures a sufficiently strong connection of two intersecting reinforcing steels. Now seen from the steel support arch 9, the more distant reinforcement layer can be fixed in the same manner. The result is a relatively close-meshed network of reinforcing steels, which expands at least to the extent that the first section to be cast is sufficiently covered with reinforcement.

Hier ist anzumerken, dass der Abstand der inneren und äußeren Bewehrungslagen 15, 17 auch nach Anbringung der Bewehrungsstäbe noch angepasst werden kann. Dies kann erforderlich sein, um Toleranzen auszugleichen oder auf bereits gemessene unterschrittene Mindestabstände zu reagieren.It should be noted that the distance between the inner and outer reinforcement layers 15, 17 can still be adjusted even after attachment of the reinforcing bars. This may be necessary to compensate for tolerances or to respond to previously measured below minimum clearances.

Als nächstes wird die Schalungslage angebracht. Dazu werden die zweiten Abstandhalter 21, die in der in Fig. 4 dargestellten Ausführungsform mit einer Kunststoffumhüllung versehen sind, in die dafür vorgesehenen Gewindebohrungen im inneren Flansch des Stahlträgerbogens gedreht und damit dort unter Berücksichtigung des überbrückten Abstands befestigt. Sind alle zweiten Abstandhalter 21 für den Abschnitt vorhanden, werden die Schalungsbretter der Schalungslage 23 per Schraubenverbindung angebracht. Je nach Material der Schalung kann eine andere Technik bei der Befestigung sinnvoll sein. Im dargestellten Beispiel wird eine Holzverschalung eingesetzt, die nach Betonierung abgenommen, gereinigt, aufbereitet und wieder verwendet werden kann. Der Vorteil der vorliegenden Erfindung ist an dieser Stelle, dass nur der Bereich mit einer Schalung zu versehen ist, der direkt im Anschluss betoniert werden soll. Dadurch ergibt sich eine flexible Verwendung der Arbeitsmittel und Einteilung der Arbeitstrupps, die entsprechend koordiniert zu den erlaubten Zeiten im Tunnel arbeiten können. Des Weiteren ist die vorliegende Rahmenkonstruktion selbsttragend und selbstverstärkend, da eine bereits betonierte untere Schicht die darüber liegende Schicht stützt und dadurch die Gesamtkonstruktion verstärkt. Mit anderen Worten nimmt der Rahmen den hydrostatischen Druck aus dem Frischbeton auf.Next, the formwork layer is attached. For this purpose, the second spacers 21, which are in the in Fig. 4 embodiment shown are provided with a plastic sheath, rotated in the designated threaded holes in the inner flange of the steel beam arch and thus fastened there taking into account the bridged distance. If all second spacers 21 are present for the section, the shuttering boards of the shuttering layer 23 are attached by screw connection. Depending on the material of the formwork, another technique may be useful when fixing. In the example shown, a wooden shuttering is used, which can be removed after concreting, cleaned, processed and reused. The advantage of the present invention is at this point that only the area is to be provided with a formwork to be concreted directly after. This results in a flexible use of the work equipment and classification of the work crews, who can work in coordination with the allowed times in the tunnel. Furthermore, the present frame construction is self-supporting and self-reinforcing, as an already-concreted lower layer supports the overlying layer and thereby reinforces the overall construction. In other words, the frame absorbs the hydrostatic pressure from the fresh concrete.

Die nächsthöheren Betonlagen bzw. -abschnitte können betoniert werden, sobald die darunter liegenden Abschnitte abgetrocknet sind, d. h. in aller Regel nach etwa 12 bis 20 Stunden.The next higher concrete layers or sections can be concreted as soon as the underlying sections are dried, d. H. usually after about 12 to 20 hours.

Zusammengefasst sind die Vorteile der vorliegenden Erfindung, dass das Betonieren der Innenschale ohne den Einsatz von Bewehrungswagen und Schalwagen auskommt, was Zeitaufwand und Kosten einspart. Zudem sind keine aufwändigen Bohrungen und Verankerungen der Rahmenkonstruktion im Fels bzw. in der Altwand notwendig. Der teure Einsatz von Spritzbeton wird vermieden, und die Abdichtung wird nicht durchdrungen. Auch bleibt ein größtmöglicher Lichtraum in der Röhre erhalten. Die vorliegende Erfindung entfaltet ihre Vorteile beispielsweise auch bei (gemauerten) Gewölbebrücken oder -durchlässen sowie bei Unterführungen, da sich die Rahmenkonstruktion auf einfache Weise einpassen und mit einer zuverlässigen Abdichtung tragend fixieren lässt.In summary, the advantages of the present invention is that the concreting of the inner shell without the use of rebar and formwork carriage manages, which saves time and costs. In addition, no elaborate drilling and anchoring of the frame structure in the rock or in the old wall are necessary. The expensive use of shotcrete is avoided, and the seal is not penetrated. Also, the greatest possible space of light remains in the tube. The present invention unfolds its advantages, for example, in (bricked) vault bridges or passages as well as underpasses, since the frame construction can be easily fitted and fixed bearing with a reliable seal.

Mit dem Gegenstand der vorliegenden Erfindung wurde eine Rahmenkonstruktion und ein Verfahren für den Ausbau der Innenschale eines röhrenartigen Bauwerks bereitgestellt, die sowohl bei einem Neubau als auch bei einer Sanierung preisgünstig zu realisieren ist, einen unkomplizierten Aufbau aufweist, eine selbsttragende Betoninnenschale und insbesondere eine abschnittsweise Betonierung ohne Schalwagen ermöglicht, ohne dass die Röhre bzw. das Bauwerk längerfristig für den Verkehr bzw. den Durchfluss gesperrt werden muss.With the object of the present invention, a frame construction and a method for the expansion of the inner shell of a tubular structure has been provided, which is inexpensive to implement both in a new construction and renovation, has a simple structure, a self-supporting concrete inner shell and in particular a section concreting without a formwork carriage, without the tube or building having to be closed for traffic or flow in the longer term.

Claims (15)

  1. Frame structure (1) for upgrading the internal shell of a tubular structure such as tunnels, underpasses or bridge arches or vaulted structures with a plurality of frame elements (2) which form a non-closed frame arch which is set up to be supported at its open ends on the base of the tubular structure, wherein the frame elements (2) comprise:
    a steel support arch (9) with an inner side and an outer side,
    a reinforcement layer (15, 17) on the inner side and/or the outer side of the steel support arch (9) which (layer) is attached to the steel support arch (9) by means of retaining elements (14),
    a removable shuttering layer (23) at a predetermined distance from the inner side of the steel support arch (9),
    first spacers (19) on the outer side of the steel support arch (9) for support on the outside wall (3) or the wall of the tubular structure, and
    second spacers (21) on the inner side of the steel support arch (9) for fixing the shuttering layer (23),
    wherein the frame structure (1) is set up to be filled with concrete (27) in sections from the base of the tubular structure until the concrete layers of the two sides abut against one another so that a closed interior shell is produced in the tubular structure, and to then absorb the hydrostatic pressure of the concrete.
  2. Frame structure (1) according to claim 1 characterised in that each steel support arch (9) has at its two ends a foot plate (11) which can be fixed on a foundation base (13).
  3. Frame structure (1) according to one of the preceding claims characterised in that it comprises a plurality of frame elements (2) arranged in series in the tubular direction.
  4. Frame structure (1) according to one of the preceding claims, characterised in that the steel support arch (9) is configured as a double T support with HEA or HEB profile.
  5. Frame structure (1) according to one of the preceding claims characterised in that the steel support arch (9) is of a multi-part configuration wherein several steel supports aches (9) can be connected to one another in the longitudinal direction.
  6. Frame structure (1) according to one of the preceding claims characterised in that the retaining elements (14) are configured so that the distance between the reinforcement layer (15, 17) and the steel support arch (9) is adjustable.
  7. Frame structure (1) according to one of the preceding claims characterised that a retaining element (14) has an L-shaped profiled sheet metal plate (32) and a straight retaining plate (34) with an elongated hole (35) and threaded rod.
  8. Frame structure (1) according to one of the preceding claims characterised in that the reinforcement layer (15, 17) comprises a number of reinforcement bars as the longitudinal and transverse reinforcement.
  9. Frame structure (1) according to one of the preceding claims characterised in that the first spacers (19) comprise a load distribution plate (20) which is attached in particular on the wall side.
  10. Frame structure (1) according to one of the preceding claims characterised in that it comprises at least one hollowchannel element (40) transversely to the tubular direction wherein the hollow channel element extends from the inside of the frame structure (1) up to the outer shell (3) of the tunnel building and connects the interior of the tunnel building to a hollow space (45) outside of the frame structure (1).
  11. Frame structure (1) according to claim 10 characterised in that the hollow channel element (40) is connected in airtight and watertight manner to a sealing film (4) on the outside shell (3) of the tunnel building so that water is prevented from entering from outside through the hollow channel element (40) into the interior space of the tunnel building.
  12. Method for carrying out the upgrading of the inner shell of a tubular structure such as tunnels, underpasses or bridge arches or passages with the following steps:
    a) fixing a plurality of steel support arches (9) on foundation bases (13) set up for this purpose;
    b) adjusting the distance between the steel support arches (9) and the sealing film (4) by mean of spacers (19),
    c) attaching a reinforcement layer (15. 17) at an adjustable distance on the inside and/or on the outside of the steel support arches (9) by means of retaining elements (14);
    d) attaching a first shuttering layer (23) of a first shuttering height on the inside of the steel support arches (9) by means of spacers (21) starting in each case at a foot of the steel support arches (9) on each side of the tubular structure
    e) concreting in a first concrete layer corresponding to the first shuttering height of the first shuttering layer (23);
    f) attaching the next level shuttering layer (23) of a predetermined shuttering level on the inside of the steel support arches (9) by means of spacers (21) starting in each case at the free end of the lower shuttering layers;
    g) concreting in the next level concrete layer corresponding each time to the predetermined shuttering height of the next level shuttering layers
    h) repeating the steps f) and g) until the concrete layers of both sides abut against one another so that a closed inner shell is produced in the tubular structure.
  13. Method according to claim 12 characterised in that in step c) the distance of the reinforcement layer(s) is adjusted by mean of the retaining elements (14).
  14. Method according to claim 12 or 13 which comprises in addition the step of removing the shuttering layers (23).
  15. Method according to one of claims 12 to 14 characterised in that the steps e) and g) are carried out with on-site mixed concrete.
EP19154313.1A 2018-01-31 2019-01-29 Multi-function frame for tubular structures Active EP3521557B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18154521.1A EP3521556A1 (en) 2018-01-31 2018-01-31 Multi-function frame used in tunnel construction

Publications (2)

Publication Number Publication Date
EP3521557A1 EP3521557A1 (en) 2019-08-07
EP3521557B1 true EP3521557B1 (en) 2019-11-20

Family

ID=61132220

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18154521.1A Withdrawn EP3521556A1 (en) 2018-01-31 2018-01-31 Multi-function frame used in tunnel construction
EP19154313.1A Active EP3521557B1 (en) 2018-01-31 2019-01-29 Multi-function frame for tubular structures

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP18154521.1A Withdrawn EP3521556A1 (en) 2018-01-31 2018-01-31 Multi-function frame used in tunnel construction

Country Status (1)

Country Link
EP (2) EP3521556A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111042839B (en) * 2019-12-18 2021-03-16 江苏采元科技有限公司 Anti-seismic support and construction method thereof
CN111287795B (en) * 2020-02-12 2021-07-20 中铁二十三局集团有限公司 Inverted arch dismantling method
CN111101971B (en) * 2020-02-27 2024-06-18 张延年 Symmetrical horseshoe-shaped assembled concrete tunnel
CN111236314A (en) * 2020-03-26 2020-06-05 张延年 Assembled rectangle concrete slab for utility tunnel
CN111594182A (en) * 2020-05-14 2020-08-28 北京交通大学 Large deformation control method for large buried depth soft rock tunnel
CN111577336A (en) * 2020-05-28 2020-08-25 成都理工大学 Section steel and sprayed concrete combined stiff structure tunnel supporting system and construction method
CN112324475A (en) * 2020-10-30 2021-02-05 同济大学 Method for reinforcing shield tunnel lining structure
CN112780306B (en) * 2020-12-31 2022-09-09 山东高速工程建设集团有限公司 Two-lining trolley for preventing vault from being empty and vault empty prevention construction method
CN112814715B (en) * 2021-01-07 2022-09-16 中铁十六局集团第三工程有限公司 Locking anchor pipe construction fixing device and construction method thereof
CN112962694A (en) * 2021-02-04 2021-06-15 中国地质大学(武汉) Underpinning construction method for bridge pile foundation in mine tunnel
CN112983541B (en) * 2021-04-01 2022-08-09 中国人民解放军军事科学院国防工程研究院工程防护研究所 Repair and treatment method suitable for deep tunnel inverted arch damage
CN113338951B (en) * 2021-06-30 2023-11-03 中交路桥建设有限公司 Three-step roof-picking construction method for rapid tunnel intersection
CN113982629B (en) * 2021-10-29 2024-04-05 成都未来智隧科技有限公司 Tunnel supporting structure
CN114320377B (en) * 2021-12-06 2024-07-09 中铁十七局集团第三工程有限公司 Steel frame anchoring type temporary support system for soft rock
CN114294016B (en) * 2021-12-29 2024-03-15 国网北京市电力公司 Reinforcing device for cable tunnel, manufacturing method and cable tunnel assembly

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB511080A (en) * 1938-03-28 1939-08-14 John Murray Improvements relating to the construction of tunnels
DE1484979A1 (en) * 1964-12-18 1969-05-14 Salzgitter Ind Reinforced concrete reinforcement for highly stressed structures
AT289186B (en) * 1967-06-10 1971-04-13 Holzmann Philipp Ag Tunnel ring
DE1932107A1 (en) * 1969-06-25 1971-01-07 Ilseder Huette Tunnel ring with steel support structure
CH581259A5 (en) * 1974-05-14 1976-10-29 Bernold Jean
CH615728A5 (en) * 1977-02-14 1980-02-15 Amberg Rudolf Supporting and securing arrangement in cavities, hard headings or on rock sections
AT362739B (en) 1978-12-27 1981-06-10 Evg Entwicklung Verwert Ges REMOVAL FRAME FOR TUBES, TUNNEL OR THE LIKE.
CH656429A5 (en) * 1982-01-20 1986-06-30 Jean Bernold Arched installation element of steel and its use
DE3927446C1 (en) 1989-08-19 1991-03-14 Bochumer Eisenhuette Heintzmann Gmbh & Co Kg, 4630 Bochum, De Yieldable tunnel wall support - has segmental frames with sprayed concrete and infill
TW490386B (en) * 2000-05-01 2002-06-11 Ashimori Ind Co Ltd Duct repairing material, repairing structure, and repairing method
JP5946089B2 (en) * 2012-03-28 2016-07-05 株式会社熊谷組 Tunnel inner winding reinforcement method
WO2016056133A1 (en) * 2014-10-10 2016-04-14 芦森工業株式会社 Method for packing filler material
DE202017105802U1 (en) 2017-09-25 2017-11-07 Bag Bauartikel Gmbh Reinforcement system for the concrete lining of the inner shell of a tunnel building

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3521556A1 (en) 2019-08-07
EP3521557A1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
EP3521557B1 (en) Multi-function frame for tubular structures
EP2088244B1 (en) Reinforced concrete or composite bridge and method for their production
WO1998015691A1 (en) Modular station platform construction kit
DE2905688A1 (en) METHOD AND DEVICE FOR THE PRODUCTION OF BUILDINGS IN THE GROUND WITH VERTICAL WALLS EXITING FROM AN UNDERGROUND CANAL
DE69108246T2 (en) METHOD FOR ESTABLISHING A FOUNDATION STRUCTURE FOR A BUILDING SUB-CONSTRUCTION.
EP1267035B1 (en) Method for constructing underground waterproof tunnels with a concrete inner shell
EP0751262B1 (en) Wall element for rising structures and method of manufacturing the same
AT391731B (en) CEILING PLATE AND METHOD FOR THEIR PRODUCTION AND ARRANGEMENT FOR IMPLEMENTING THE METHOD
DE10256421B4 (en) Method and apparatus for making a tunnel or trough
DE202009005016U1 (en) Modular built platform
DE19525082A1 (en) Prefabricated reinforced wall elements for high bulldings
EP1980675B1 (en) Frame for a balcony or terrace and method for its manufacture
DE102018119213B4 (en) Method of making a building
DE19941603C2 (en) Reinforced concrete part for the production of foundations for buildings
DE4345415C2 (en) Assembly and repair kit with steel cassette
DE102016205907A1 (en) Method and apparatus for producing a bridge construction using precast elements
DE20219324U1 (en) building basement
DE3002739C2 (en) Waterproof building structure
DE2059976A1 (en) Plastic damp courses - without use concrete isolating trough
DE2422586A1 (en) Underground or sunken wall prefabricated concrete component - comprises integral panel and ribs at equal intervals
DE20309107U1 (en) Sealing element for the production of waterproof external walls in concrete double wall elements
DE2431606A1 (en) Transportable prefabricated reinforced-concrete garage or cell unit - incorporating wall comprising separately fabricated, distinctive externally faced slab subsequently
DE4019280A1 (en) Construction of underground roadways - uses mat reinforcement with arch supports and distribution bars pneumatically concreted in
DE2217459A1 (en) PROCEDURES AND EQUIPMENT FOR UNDER CONSTRUCTION OF STRUCTURES AND TRAFFIC ROUTES
DE102021124483A1 (en) Method for producing a concrete ceiling, ceiling system from concrete ceiling and existing ceiling, concrete ceiling, building

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20190724

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20190918

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019000001

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1204414

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191120

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200220

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200221

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200412

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019000001

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210131

Year of fee payment: 3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502019000001

Country of ref document: DE

Representative=s name: KROHER STROBEL RECHTS- UND PATENTANWAELTE PART, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240124

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 6

Ref country code: CH

Payment date: 20240202

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240126

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120