EP3513121B1 - Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser - Google Patents

Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser Download PDF

Info

Publication number
EP3513121B1
EP3513121B1 EP17787099.5A EP17787099A EP3513121B1 EP 3513121 B1 EP3513121 B1 EP 3513121B1 EP 17787099 A EP17787099 A EP 17787099A EP 3513121 B1 EP3513121 B1 EP 3513121B1
Authority
EP
European Patent Office
Prior art keywords
combustion
water
hydrogen
combustion chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17787099.5A
Other languages
English (en)
French (fr)
Other versions
EP3513121A1 (de
Inventor
Janet-Susan Schulze
Dieter Schulze
Renate Hamel von der Lieth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3513121A1 publication Critical patent/EP3513121A1/de
Application granted granted Critical
Publication of EP3513121B1 publication Critical patent/EP3513121B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • F23C13/08Apparatus in which combustion takes place in the presence of catalytic material characterised by the catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • F23C13/06Apparatus in which combustion takes place in the presence of catalytic material in which non-catalytic combustion takes place in addition to catalytic combustion, e.g. downstream of a catalytic element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/9901Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel

Definitions

  • the invention relates to a method for converting hydrogen and atmospheric oxygen to water or HHO gas to water in a combustion furnace, the combustion chamber being surrounded by a cooling jacket in which a heat transfer fluid is circulated.
  • the invention also relates to a combustion furnace for converting hydrogen and oxygen into water or HHO gas into water, having a combustion chamber with at least one gas supply line with an outlet nozzle through which the gas to be burned is fed, and a cooling jacket enclosing the combustion chamber with a heat transfer fluid circulating therein .
  • HHO gas is a mixture of hydrogen and oxygen in exactly the same atomic ratio of twice H to once O as is produced as a reaction product in the electrolysis of water.
  • Hydrogen (H 2 ) was and is used primarily in the chemical and petroleum industries for the reduction of chemical compounds, for the hydrogenation of unsaturated hydrocarbons, the production of high-quality petrol, etc.
  • reaction temperatures of approx Combustion of hydrogen (H 2 ) with oxygen (O 2 ) and the combustion of HHO gas present a different picture.
  • H 2 combustion furnaces from Xerion Advanced Heating GmbH, which contain graphite elements in the reactor space, which are used to electronically heat the combustion reaction. These furnaces are used for the production of special steels and ceramics as well as for research purposes, whereby the service life of the graphite electrodes is very limited due to combustion reactions.
  • thermolysis of the water (H 2 O) is achieved by injecting water (H 2 O) under pressure onto a hollow body that has been heated to approx. 2000 - 3000 °C by previous chemical reactions.
  • U.S. 5,190,453A discloses a staged incinerator having a casing, a first combustion stage contained within the casing for combusting a fuel-rich mixture of H 2 and an oxidant (O 2 ). Also contained in the housing are a plurality of sequentially arranged secondary combustion stages and disposed downstream of the first stage, each of the plurality of secondary combustion stages having means for receiving secondary streams of oxidant to the combustion exhaust gas discharged from of the first stage of combustion, with the gradual increase in oxidant/fuel ratios providing a resultant substantially stoichiometric combustion.
  • the combustion stages have catalyst bed chambers to promote combustion in a controlled manner, with a first of the catalyst bed chambers providing the first stage of combustion.
  • Means for cooling the combustion stages comprising coolant passages.
  • the housing includes vapor inlet means at a forward end thereof for introducing a flow of coolant vapor into the coolant passages, oxidant inlet means for introducing O 2 into the plurality of combustion chambers, fuel inlet means for introducing H 2 into the plurality of catalyst bed chambers, and an outlet at one aft end for venting a combined stream of combustion products and coolant vapor.
  • the object of the invention is to specify a method and a device for a specific implementation in relation to the conversion of hydrogen (H 2 ) and atmospheric oxygen (O 2 ) or HHO gas to water (H 2 O).
  • This object is achieved with a method for converting hydrogen and atmospheric oxygen or HHO gas to water according to claim 1 and an incinerator for it according to claim 6.
  • the earths containing metal oxides are preferably structured in powder form and/or coarse-grained (coarsely crystalline).
  • the effective surface area of the catalyst that comes into contact with the combustion gases is correspondingly large.
  • the influence of the catalyst on the combustion reaction can be controlled.
  • the combustion temperature can be controlled in a range of preferably 1800° C. to a maximum of 2600° C.
  • the position of the outlet nozzle (combustion nozzle in the combustion chamber) is controlled by a mechanism that reaches outwards, with which the efficiency of the reaction heat and the heat transfer to the cooling jacket can be optimized.
  • the object is achieved according to the device in a combustion furnace with a combustion chamber with at least one gas supply line with an outlet nozzle through which the gas to be burned is fed, metal oxide-containing earth being arranged as a catalyst in the combustion chamber.
  • An air supply line with an auxiliary nozzle is provided in the combustion chamber, which is arranged directly next to the outlet nozzle for the gases to be burned, hydrogen and oxygen or HHO gas, with which air can be mixed directly with the gases to be burned, in order to keep the combustion temperature in the desired range to keep.
  • this combustion reaction can be carried out in a combustion furnace made, for example, of stainless steel, suitable against hydrogen embrittlement, for example the
  • the enclosing cooling jacket that is usually provided in such combustion chambers is kept at a temperature well below the melting point of the steel material, for example 1400° C., by the heat transfer medium circulating in it.
  • the incinerator can also contain ceramic components that have a higher temperature resistance.
  • the gas to be burned at least a mixture of hydrogen and oxygen, is injected into the combustion chamber of the combustion furnace and ignited via a gas supply line with an outlet nozzle.
  • the earths containing metal oxides are arranged on a solid base plate, which can withstand the combustion temperature, in the center of the combustion furnace.
  • the metal oxide-containing earths acting as a catalyst can be provided in the center of the combustion furnace without directly influencing the outer walls of the furnace and thus without any thermal overload occurring there.
  • the earth containing metal oxides is mixed with water in a mass ratio of up to 33% of the earth containing metal oxide in order to further improve the catalytic effect of the earth containing metal oxide.
  • water is injected into the incinerator during combustion. Distilled, deionized water or else sea water is preferably used. Alternatively, part of the resulting water of reaction during combustion in the returned to incinerator. It has been shown that with a throughput of combustion gas of 1000 to 5000 l/h, water injection of up to 1.5 l/h is particularly preferred.
  • the combustion gas hydrogen and atmospheric oxygen or the HHO gas can be mixed with air with gaseous nitrogen or gaseous carbon dioxide.
  • additional gaseous substances are preferably arranged in the combustion chamber via a separate auxiliary nozzle directly next to the outlet nozzle for the gases to be burned, namely hydrogen and oxygen or HHO gas.
  • the combustion chamber has a volume of 4 to 25 l, preferably 6 to 12 l and particularly preferably 8 l at a gas throughput of 1000 to 5000 l/h means that a combustion chamber with an ideal volume is provided for the preferred gas throughput.
  • the combustion chamber can be cubic or spherical.
  • a particularly preferred combustion chamber has internal dimensions of 200 ⁇ 200 ⁇ 200 mm 3 , ie 8 l in a cubic form.
  • the thermal energy yield is controlled to greatly exceed the energy of the water formation reaction from HHO gas, since thus the combustion process proceeds to increase the probability of nuclear fusion within the combustion reaction.
  • the deuterium content is kept essentially stable for a consistently high energy yield.
  • the deuterium content can even be slightly increased.
  • the combustion temperature can thus also be influenced via the water used for injection.
  • precious stones with a Mohs hardness of 8 to 10 can be produced as a by-product of the combustion reaction, which can be used for industrial purposes, for example.
  • the use of aluminum oxide Al 2 O 3 as a catalyst for the best possible conversion of the combustion gases hydrogen and oxygen to water at combustion temperatures of 1800° C. to a maximum of 2600° C. is preferred.
  • the catalyst is placed in the combustion chamber of the incinerator on the solid base plate, with the catalyst hardly being consumed in the continuous operation of the incinerator. With corresponding maintenance intervals of several weeks or months, the catalyst can then be supplemented or replaced and the gems that have been created can be removed.
  • the resulting thermal energy can be generated according to the prior art in different high levels and directly as such specifically for Heating and cooling processes can be used or converted into electricity using classic methods via turbines and generators.
  • the efficiency of combined heat and power generation would be around 90% without taking into account the losses from electrolysis that occur when water is broken down into hydrogen and oxygen.
  • an incinerator 1 is shown schematically.
  • the cubic wall 10 of the incinerator 1 contains a cooling jacket 2 containing a plurality of channels for the passage of a heat transfer fluid.
  • the heat transfer fluid is circulated in a circulation system by a pump, not shown here, with a corresponding heat sink to release the thermal energy and further use for heating purposes or to generate electricity is to be provided outside of the incinerator 1.
  • These plant parts are here in the 1 and 2 not shown.
  • a gas supply line 3 with an outlet nozzle 31 is arranged inside the combustion chamber 11 for supplying the gases to be burned, in this case hydrogen and oxygen.
  • Additional gas supply lines for example an air supply line 32 with a corresponding auxiliary nozzle 33 , are optionally arranged in the combustion chamber 11 .
  • Hydrogen and oxygen are supplied in mixed form from the outside via the gas supply line 3 and injected under pressure through the outlet nozzle 31 into the combustion chamber 11 .
  • air is injected into the combustion chamber via the air supply line 32 and auxiliary nozzle 33 .
  • gaseous CO 2 and/or gaseous nitrogen can also be supplied to the combustion chamber 11 .
  • a solid base plate 5 withstanding the combustion temperature is provided in the center.
  • the base plate 5 is made of ceramic, for example.
  • metal oxide containing soils 4 are placed as a catalyst.
  • an exhaust gas outlet 6 is provided at a suitable point in the combustion chamber 11, through which the "exhaust gases", essentially consisting of water vapor, can escape.
  • a water-aluminum oxide mixture was filled in such a combustion furnace 1 to saturation, so that no free water is present, as a catalyst 4 on the base plate 5 arranged in the center of the combustion chamber 11 .
  • HHO gas was electrically ignited in the combustion chamber 11 from a water electrolysis device with the gas supply line 3 open and the exhaust gas outlet 6 open.
  • the ignition system is in 1 not shown separately.
  • Air supply line 32 is now throttled to about 50% by means of auxiliary nozzle/valve 33 and exhaust outlet 6 with associated control valve 6, so that the temperature in the combustion chamber rises to about 1500°C.
  • Water vapor escaping via the exhaust gas outlet 6 is directed onto the aluminum oxide Al 2 O 3 acting as a catalyst 4 by being fed back into the combustion chamber via a corresponding supply line and auxiliary nozzle. Accordingly, the circulation is now the Heat transfer fluid in the cooling jacket 2 controls the temperature of the incinerator 1 so that overheating of the wall 10 of the incinerator 1 is avoided.
  • the temperature in the center of the combustion chamber 11 is now increased to 1800° C. up to a maximum of 2600° C. Continuous operation takes place at this temperature. It should be noted that the temperature of 1800 °C to max. 2600 °C only occurs in the central area of the combustion chamber 11, namely directly in the area of the metal oxide-containing earth 4 acting as a catalyst, here aluminum oxide Al 2 O 3 , with this catalyst on a temperature-resistant base plate 5, for example made of ceramic, is kept ready.
  • the heat recovery efficiency based on the energy used for the water electrolysis to generate the HHO gas was measured. The efficiency was 98%.
  • the temperature of the exhaust gases directly at the exhaust gas outlet 6 was approx. 500°C. It can therefore be assumed that the rest of the wall 10 of the combustion chamber 11 will also reach temperatures of little more than 1000°C. In the tests carried out so far, no measured values could be achieved here.
  • the exhaust gases contained no nitrogen oxides and no hydrocarbon compounds.
  • the CO and CO 2 values were each 0.00 ppm. The method is thus characterized by very low Pollutant emissions compared to conventional energy generation processes based on fossil fuels.
  • the chemical combustion of hydrogen and oxygen in the incinerator is controlled so that the heat energy yield exceeds the energy of the water formation reaction from the gas to be burned. In this way, an additional source of energy from the suspected nuclear fusion that is partially taking place can be utilized in a process that is relatively simple in terms of equipment and can be carried out economically.
  • the desired incineration reaction must be maintained at temperatures of 1800° C. to a maximum of 2600° C., particularly taking into account possible (cold) nuclear fusion above 2000° C.
  • the flame geometry is narrow limited to the center of the combustion chamber 11 in which the aluminum oxide serving as a catalyst 4 rests on the ceramic base plate 5, for example.
  • the combustion flame is aimed directly at this catalytic converter and thus at most at the base plate 5 .
  • the walls 10 of the combustion chamber 11 are not directly touched by the flame. Accordingly, it is possible to be able to keep the wall 10 of the combustion chamber 11 at temperatures ⁇ 1250° C. even in continuous operation.
  • Suitable steels for such temperatures are known in the prior art. For example, stainless steel with material no. 1.4438 317 L can be used, which has a melting point of over 1400 °C and is also resistant to hydrogen embrittlement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Umsetzung von Wasserstoff und Luftsauerstoff zu Wasser oder HHO-Gas zu Wasser in einem Verbrennungsofen, wobei der Verbrennungsraum von einem Kühlmantel, in dem eine Wärmeträgerflüssigkeit zirkuliert wird, umgeben ist. Ferner betrifft die Erfindung einen Verbrennungsofen zur Umsetzung von Wasserstoff und Sauerstoff zu Wasser oder HHO-Gas zu Wasser mit einem Verbrennungsraum mit wenigstens einer Gaszufuhrleitung mit Austrittsdüse, durch die das zu verbrennende Gas zugeführt wird, und einem den Verbrennungsraum umschließenden Kühlmantel mit einer darin zirkulierenden Wärmeträgerflüssigkeit. Dabei bedeutet HHO-Gas eine Mischung von Wasserstoff und Sauerstoff genau in dem atomaren Verhältnis zweimal H zu einmal O, wie es als Reaktionsprodukt bei der Elektrolyse von Wasser entsteht.
  • Die Erzeugung und Verwendung von Wasserstoff (H2) hat eine lange Tradition. Wasserstoff (H2) wurde und wird vor allem in der chemischen und Erdöl-Industrie zur Reduktion von chemischen Verbindungen, zur Hydrierung von ungesättigten Kohlenwasserstoffen, Gewinnung von hochwertigem Benzin u.a. verwendet.
  • In neuerer Zeit gewinnt die Herstellung von Wasserstoff (H2) und dessen Verwendung zusätzlich an Bedeutung im Zusammenhang mit der Nutzung elektrischer Energie aus Windstrom- und Solarstromanlagen. Wasserstoff (H2) kann damit ökologisch aus Wasser (H2O) mittels elektrischer Energie durch Elektrolyse erzeugt werden. Der so gewonnene Wasserstoff (H2) kann
    • einerseits als chemischer Energiespeicher, dessen Energie im Bedarfsfall durch Umsetzung mit Luftsauerstoff (O2) zu Wasser (H2O) mit angeschlossener Stromgewinnung abgerufen und benutzt werden oder
    • andererseits in Gasleitungen den Verbrauchern zugeführt werden.
  • Dabei ist die Verbrennung des Wasserstoffs (H2) mit Luftsauerstoff (O2) sowie die Umsetzung von HHO-Gas aus der Wasser-Elektrolyse insofern mit Problemen behaftet, dass die Reaktionswärme der Wasser-Bildungs-Reaktion aus Wasserstoff (H2) sowie aus HHO-Gas sehr hoch ist, was zu Materialschäden in den Verbrennungsöfen bzw. bei Absenkung der Verbrennungstemperaturen zur Unterbrechung der Verbrennungsreaktion und zur Absenkung des energetischen Wirkungsgrades führen kann.
  • Während bei der Verbrennung von fossilen Brennstoffen Reaktionstemperaturen, die materialtechnisch sowohl das Ofenmaterial selbst als auch die in der Regel im Inneren der Öfen liegenden Wärmetauscher-Rohrbündel aus Stahl belasten, von ca. 900 bis 1300 °C erreicht und beherrscht werden, ergibt sich bei der Verbrennung von Wasserstoff (H2) mit Sauerstoff (O2) als auch bei der Verbrennung von HHO-Gas ein anderes Bild.
  • Bekannt sind auch die H2-Verbrennungsöfen der Fa. Xerion Advanced Heating GmbH, die im Reaktorraum Graphitelemente enthalten, die dazu dienen, die Verbrennungsreaktion elektronisch anheizen zu können. Diese Öfen dienen der Herstellung von speziellen Stählen und Keramiken sowie zu Forschungszwecken, wobei die Standzeiten der Graphit-Elektroden durch Abbrandreaktionen sehr begrenzt sind.
  • In DE 20 2013 005411 U1 ist die H2-Verbrennung im Wirbelschicht-Verfahren beschrieben, die der Aufwirbelung von metalloxidhaltigen Substanzen bedarf; hierbei wird der Wirkungsgrad der Wärmegewinnung mit > 80% beschrieben. Bekannt ist auch die Eigenschaft von Wasserstoff (H2), bei höheren Temperaturen und Drücken durch Stahl zu diffundieren, was die Handhabung von Wasserstoff (H2) unter solchen Bedingungen erschwert bzw. verhindert.
  • In DE 10 2006 047222 A1 wird die Verbrennung von Wasserstoff (H2), der durch Thermolyse von Wasser (H2O) gewonnen wird, genannt. Die dafür erforderliche Brennervorrichtung wurde nicht näher beschrieben. Ein energetischer Wirkungsgrad wird nicht angegeben. Die Thermolyse des Wassers (H2O) wird durch Einspritzen von Wasser (H2O) unter Druck auf einen Hohlkörper, der durch vorherige chemische Reaktionen auf ca. 2000 - 3000 °C erhitzt worden ist, erreicht.
  • Aus der US 2004/013988 A1 ist ein Verfahren zur Umsetzung von Wasserstoff und Luftsauerstoff zu Wasser oder HHO-Gas zu Wasser in einem Verbrennungsofen bekannt, bei der ein Verbrennungsofen mit einer Wärmeträgerflüssigkeit gekühlt wird und Wasserstoff und Luftsauerstoff oder HHO-Gas bei Temperaturen von 1300 °C oder höher im Bereich von hülsenförmig angeordneten Keramikelementen zu entstehendem Reaktionswasser umgesetzt werden.
  • Ferner ist in der KR 10 2000 0040478 A ein Brenner für das Verbrennen von HHO-Gas beschrieben, bei dem neben dem in der Düse zugeführten HHO-Gas zusätzlich komprimierte Luft der Verbrennung zugeführt wird.
  • Aus der US 5 190 453 A ist eine gestufter Verbrennungsofen bekannt, der ein Gehäuse, eine erste Verbrennungsstufe, die in dem Gehäuse enthalten ist, um eine brennstoffreiche Mischung aus H2 und einem Oxidationsmittel (O2) zu verbrennen. Ferner sind in dem Gehäuse eine Vielzahl von nacheinander angeordneten sekundären Verbrennungsstufen enthalten und stromabwärts der ersten Stufe angeordnet, wobei jede der mehreren sekundären Verbrennungsstufen Mittel zur Aufnahme von Sekundärströmen des Oxidationsmittels zum Verbrennungsabgas, das von der ersten Verbrennungsstufe erzeugt wird, aufweisen, wobei die allmähliche Erhöhung der Oxidationsmittel/Brennstoff-Verhältnisse eine resultierende, im Wesentlichen stöchiometrische Verbrennung bereitstellt. Die Verbrennungsstufen weisen Katalysatorbettkammern auf, um die Verbrennung in kontrollierter Weise zu fördern, wobei eine erste der Katalysatorbettkammern die erste Verbrennungsstufe bereitstellt. Ferner sind Mittel zum Kühlen der Verbrennungsstufen vorgesehen, die Kühlmittelkanäle umfassen. Das Gehäuse umfasst Dampfeinlassmittel an einem vorderen Ende davon zum Einführen eines Stroms von Kühlmitteldampf in die Kühlmittelkanäle, eine Oxidationsmittel-Einlasseinrichtung zum Einleiten von O2 in die mehreren Brennkammer, eine Brennstoffeinlasseinrichtung zum Einführen von H2 in die Mehrzahl der Katalysatorbettkammern und einen Auslass an einem hinteren Ende zum Ablassen eines kombinierten Stroms von Verbrennungsprodukten und Kühlmitteldampf.
  • Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung für eine spezifische Implementierung in Bezug auf die Umsetzung von Wasserstoff (H2) und Luftsauerstoff (O2) bzw. HHO-Gas zu Wasser (H2O) anzugeben.
  • Gelöst wird diese Aufgabe mit einem Verfahren zur Umsetzung von Wasserstoff und Luftsauerstoff bzw. HHO-Gas zu Wasser gemäß Anspruch 1 und einem Verbrennungsofen dafür gemäß Anspruch 6.
  • Wenn Wasserstoff und Luftsauerstoff oder HHO-Gas in den Verbrennungsofen eingedüst und gezündet wird und in Gegenwart von pulverförmigen und/oder grobkörnig strukturierten, metalloxidhaltigen Erden als Katalysator bei Temperaturen bis 2600 °C zu entstehendem Reaktionswasser umgesetzt werden, wobei der Wasserstoff und Luftsauerstoff oder das HHO-Gas mit Luft vermischt wird, die Verbrennungsflamme direkt auf die metalloxidhaltigen Erden gerichtet wird und der Abstand des Eindüsungspunktes der Gaszufuhr zu den metalloxidhaltigen Erden zur Steuerung des Verbrennungsprozesses verändert wird, kann eine effiziente und dauerhafte Verbrennung der Mischung aus Wasserstoff und Sauerstoff (oder HHO-Gas entstanden aus Elektrolyse von Wasser) mit einer hohen Wärmeenergieausbeute erreicht werden. Die Temperaturen bis 2600 °C treten unmittelbar im Reaktionsbereich an den metalloxidhaltigen Erden auf. Ferner wird der intensive Kontakt der Verbrennungsgase mit dem als Katalysator wirkenden metalloxidhaltigen Erden erreicht. Dabei sind die metalloxidhaltigen Erden bevorzugt pulverförmig und/oder grobkörnig strukturiert (grob kristallin). Entsprechend groß ist die wirksame Oberfläche des Katalysators, der mit den Verbrennungsgasen in Kontakt tritt. Weiter kann der Einfluss des Katalysators auf die Verbrennungsreaktion gesteuert werden. Unter anderem kann mit dieser Verstellbarkeit der Austrittsdüse zur Gaszufuhr relativ zu den im Verbrennungsraum abgelegten metalloxidhaltigen Erden die Verbrennungstemperatur in einem Bereich von vorzugsweise 1800 °C bis max. 2600 °C gesteuert werden. Dabei erfolgt die Steuerung der Position der Austrittsdüse (Verbrennungsdüse im Verbrennungsraum) durch eine nach außen reichende Mechanik, mit der der Wirkungsgrad der Reaktionswärme und der Wärmeübertragung an den Kühlmantel optimiert werden kann.
  • Entsprechend wird die Aufgabe vorrichtungsgemäß gelöst in einem Verbrennungsofen mit einem Verbrennungsraum mit wenigstens einer Gaszufuhrleitung mit Austrittsdüse, durch die das zu verbrennende Gas zugeführt wird, wobei im Verbrennungsraum metalloxidhaltige Erden als Katalysator angeordnet sind. Eine Luftzufuhrleitung mit einer Hilfsdüse ist im Verbrennungsraum vorgesehen, die unmittelbar neben der Austrittsdüse für die zu verbrennenden Gase Wasserstoff und Sauerstoff bzw. HHO-Gas im Verbrennungsraum angeordnet ist, womit den zu verbrennenden Gasen direkt Luft zugemischt werden kann, um die Verbrennungstemperatur im gewünschten Bereich zu halten. Da, wie bereits vorangehend erläutert, die max. Reaktionstemperatur von bis zu 2600 °C nur im Bereich des Katalysators (metalloxidhaltige Erden) auftritt, kann diese Verbrennungsreaktion in einem Verbrennungsofen durchgeführt werden, der beispielsweise aus Edelstahl, geeignet gegen Wasserstoff-Versprödung, beispielsweise der
  • Werkstoff Nr. 1.4438 317 L oder anderen geeigneten Stählen durchgeführt werden. Der bei solchen Verbrennungsräumen üblicherweise vorgesehene umschließende Kühlmantel wird dabei durch das darin zirkulierende Wärmeträgermedium auf einer Temperatur deutlich unterhalb der Schmelztemperatur des Stahlwerkstoffs von beispielsweise 1400 °C gehalten. Daneben können in dem Verbrennungsofen auch keramische Bestandteile enthalten sein, die eine höhere Temperaturbeständigkeit aufweisen. Das zu verbrennende Gas, zumindest Wasserstoff und Sauerstoff im Gemisch, werden über eine Gaszufuhrleitung mit Austrittsdüse in den Verbrennungsraum des Verbrennungsofens eingedüst und entzündet. Dabei sind die metalloxidhaltigen Erden auf einer massiven, die Verbrennungstemperatur widerstehenden Grundplatte im Zentrum des Verbrennungsofens angeordnet. Somit können die als Katalysator wirkenden metalloxidhaltigen Erden im Zentrum des Verbrennungsofens bereitgestellt werden, ohne dass eine unmittelbare Beeinflussung der Brennofenaußenwände und damit eine dort evtl. entstehende thermische Überlastung entstehen könnte.
  • Um eine ausreichende Reaktionsmasse einerseits und andererseits eine nicht zu große, nicht mehr beherrschbare Reaktion hervorzurufen, werden bei der Verbrennung 1000 bis 5000 l/h Wasserstoff und Luftsauerstoff oder HHO-Gas und 200 bis 5000 l/h Luft zugeführt.
  • Ferner werden die metalloxidhaltigen Erden mit Wasser in einem Massenverhältnis bis zu 33 % der metalloxidhaltigen Erden-Masse gemischt, um die katalytische Wirkung der metalloxidhaltigen Erden weiter zu verbessern.
  • Als weiteres Mittel zur Steuerung der Verbrennungstemperatur auf 1800 °C bis max. 2600 °C zur Erzielung einer optimalen Wärmegewinnung im Kühlmantel des Verbrennungsofens wird Wasser während der Verbrennung in den Verbrennungsofen eingespritzt. Bevorzugt wird destilliertes, entionisiertes Wasser oder auch Meerwasser verwendet. Alternativ wird ein Teil des entstandenen Reaktionswassers während der Verbrennung in den Verbrennungsofen zurückgeführt. Dabei hat sich gezeigt, dass bei einem Durchsatz von Verbrennungsgas von 1000 bis 5000 l/h eine Wassereinspritzung bis zu 1,5 l/h besonders bevorzugt ist.
  • Weiter kann zur Steuerung der Verbrennung und damit auch der Verbrennungstemperatur das Verbrennungsgas Wasserstoff und Luftsauerstoff oder das HHO-Gas neben Luft mit gasförmigem Stickstoff oder gasförmigen Kohlendioxid vermischt werden. Diese zusätzlichen gasförmigen Stoffe werden bevorzugt über eine gesonderte Hilfsdüse unmittelbar neben der Austrittsdüse für die zu verbrennenden Gase Wasserstoff und Sauerstoff bzw. HHO-Gas im Verbrennungsraum angeordnet.
  • Dass der Verbrennungsraum bei einem Gasdurchsatz von 1000 bis 5000 l/h ein Volumen von 4 bis 25 I, bevorzugt 6 bis 12 I und besonders bevorzugt 8 I aufweist, wird für den bevorzugten Gasdurchsatz ein vom Volumen her idealer Verbrennungsraum bereitgestellt. Beispielsweise kann der Verbrennungsraum kubisch oder kugelförmig ausgebildet sein. Ein besonders bevorzugter Verbrennungsraum weist Innenmaße von 200 × 200 × 200 mm3, also 8 l in kubischer Ausprägung auf.
  • Dadurch, dass das Verfahren so gesteuert wird, dass der im Reaktionswasser natürlich vorkommende Deuterium-Gehalt im Verlaufe des Verfahrens bei Reaktionstemperaturen über 2000 °C abnimmt, wird vermutlich erreicht, dass bei der Verbrennung neben der chemischen Reaktion eine partielle Kernreaktion abläuft, da möglicherweise eine Kernfusion von Deuterium unter erheblicher Energieabgabe innerhalb der Verbrennungsreaktion auftritt.
  • Entsprechend wird der Wärmeenergieertrag so gesteuert, dass er die Energie der Wasserbildungsreaktion aus HHO-Gas deutlich übersteigt, da somit das Verbrennungsverfahren so abläuft, dass die Wahrscheinlichkeit von Kernfusionen innerhalb der Verbrennungsreaktion zunimmt.
  • Um ein zu starkes Absinken des Deuterium-Gehalts zu vermeiden, ist es bevorzugt frisches Wasser statt Reaktionswasser in den Verbrennungsprozess einzuspritzen. Damit wird erreicht, dass der Deuterium-Gehalt für eine gleichbleibend hohe Energieausbeute im Wesentlichen stabil gehalten wird. Beim Einspritzen von Meerwasser kann der Deuterium-Gehalt sogar leicht gesteigert werden. Somit kann über das zur Einspritzung verwendete Wasser auch die Verbrennungstemperatur beeinflusst werden.
  • Wenn bei der Verbrennungsreaktion die metalloxidhaltigen Erden, insbesondere bei Verwendung von Al2O3, Edelsteine mit einer Mohshärte von 8 bis 10 entstehen, können als Nebenprodukt der Verbrennungsreaktion Edelsteine hergestellt werden, die beispielsweise für industrielle Zwecke verwertet werden können. Insgesamt ist die Verwendung von Aluminiumoxid Al2O3 als Katalysator für eine möglichst optimale Umsetzung der Verbrennungsgase Wasserstoff und Sauerstoff zu Wasser bei den Verbrennungstemperaturen von 1800 °C bis max. 2600 °C bevorzugt. Der Katalysator wird dabei in den Verbrennungsraum des Verbrennungsofens auf der massiven Grundplatte aufgelegt, wobei sich der Katalysator im kontinuierlichen Betrieb des Verbrennungsofens kaum verbraucht. Bei entsprechenden Wartungsinterwallen von mehreren Wochen oder Monaten kann dann der Katalysator ergänzt oder ausgetauscht sowie die entstandenen Edelsteine entnommen werden.
  • Mit dem Anmeldungsgegenstand ist es somit möglich, einen sehr hohen Wirkungsgrad der Wärmegewinnung im Wärmeträgerflüssigkeitskreislauf von > 95 % bezogen auf die Energie zur Erzeugung von Wasserstoff bei der Wasser-Elektrolyse zu erreichen. Dies scheint insbesondere durch die Kombination von Wärmeleitung und Wärmestrahlung möglich zu sein. Dabei wird der hohe Wirkungsgrad der Wärmegewinnung durch ein Verbrennungsverfahren ohne Wirbelschicht erreicht.
  • Die anfallende thermische Energie kann entsprechend dem Stand der Technik in verschieden hohen Niveaus erzeugt werden und direkt als solche spezifisch für Heiz- und Kühlprozesse genutzt oder nach klassischem Verfahren über Turbine und Generator in Strom umgewandelt werden. Somit läge der Wirkungsgrad bei Kraftwärmekopplung bei ca. 90 % ohne Berücksichtigung von Elektrolyseverlusten, die bei der Zerlegung von Wasser zu Wasserstoff und Sauerstoff auftreten.
  • Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der beiliegenden Zeichnungen detailliert beschrieben.
  • Darin zeigt:
  • Fig. 1
    schematisch den Aufbau eines Verbrennungsofens und
    Fig. 2
    ein Verfahrensschema der Verbrennungsreaktion.
  • In Fig. 1 ist ein Verbrennungsofen 1 schematisch dargestellt. Der Verbrennungsofen 1 weist im dargestellten Ausführungsbeispiel einen Verbrennungsraum 11 mit einem kubischen Volumen von beispielsweise 200 × 200 × 200 mm3 = 8 I auf. Die kubische Wandung 10 des Verbrennungsofens 1 enthält einen Kühlmantel 2, der eine Vielzahl von Kanälen zum Durchfluss einer Wärmeträgerflüssigkeit enthält. Die Wärmeträgerflüssigkeit wird in einem Zirkulationssystem von einer hier nicht dargestellten Pumpe zirkuliert, wobei außerhalb des Verbrennungsofens 1 eine entsprechende Wärmesenke zur Abgabe der thermischen Energie und Weiternutzung für Heizzwecke oder zur Stromerzeugung vorzusehen ist. Diese Anlagenteile sind hier in den Fig. 1 und 2 nicht dargestellt.
  • Zum Zuführen der zu verbrennenden Gase, hier Wasserstoff und Sauerstoff, ist eine Gaszufuhrleitung 3 mit einer Austrittsdüse 31 innerhalb des Verbrennungsraumes 11 angeordnet. Optional sind noch weitere Gaszufuhrleitungen, beispielsweise eine Luftzufuhrleitung 32 mit einer entsprechenden Hilfsdüse 33 im Verbrennungsraum 11 angeordnet.
  • Über die Gaszufuhrleitung 3 wird von außen Wasserstoff und Sauerstoff in vermischter Form zugeführt und unter Druck durch die Austrittsdüse 31 in den Verbrennungsraum 11 eingedüst. Optional wird, so wie schematisch in Fig. 2 dargestellt, Luft über die Luftzufuhrleitung 32 und Hilfsdüse 33 in den Verbrennungsraum eingedüst. Neben der Zuführung von Luft kann auch gasförmiges CO2 und/oder gasförmiges Stickstoff in den Verbrennungsraum 11 zugeführt werden.
  • Innerhalb des Verbrennungsraumes 11 ist im Zentrum eine massive, die Verbrennungstemperatur widerstehende Grundplatte 5 vorgesehen. Die Grundplatte 5 besteht beispielsweise aus Keramik. Auf der Oberseite der Grundplatte 5 sind als Katalysator metalloxidhaltige Erden 4 aufgelegt. Ferner ist an geeigneter Stelle im Verbrennungsraum 11 ein Abgasausgang 6 vorgesehen, durch den die "Abgase", im Wesentlichen bestehend aus Wasserdampf, entweichen können.
  • In einem Versuchsaufbau wurde in einem derartigen Verbrennungsofen 1 ein Wasser-Aluminiumoxid-Gemisch bis zur Sättigung, sodass kein freies Wasser vorhanden ist, als Katalysator 4 auf die im Verbrennungsraum 11 im Zentrum angeordnete Grundplatte 5 gefüllt. Anschließend wurde HHO-Gas aus einer Wasser-Elektrolysevorrichtung bei geöffneter Gaszufuhrleitung 3 und geöffnetem Abgasausgang 6 im Verbrennungsraum 11 elektrisch gezündet. Die Zündanlage ist in Fig. 1 nicht gesondert dargestellt.
  • Durch die Wasserbildungsreaktion steigt die Temperatur im flammennahen Bereich auf ca. 1000 bis 1300 °C. Nun werden Luftzufuhrleitung 32 mittels Hilfsdüse/-ventil 33 und Abgasabgang 6 mit zugeordnetem Regelventil 6 auf ca. 50 % gedrosselt, sodass die Temperatur im Verbrennungsraum auf ca. 1500 °C steigt. Über den Abgasausgang 6 abgehender Wasserdampf wird auf das als Katalysator 4 wirkende Aluminiumoxid Al2O3 gerichtet, indem es über eine entsprechende Zufuhrleitung und Hilfsdüse in den Verbrennungsraum rückgeführt wird. Entsprechend wird nun durch Zirkulation der Wärmeträgerflüssigkeit im Kühlmantel 2 die Temperatur des Verbrennungsofens 1 so gesteuert, dass eine Überhitzung der Wandung 10 des Verbrennungsofens 1 vermieden wird.
  • Durch Erhöhung der Luftzufuhr über Luftzufuhrleitung 32 und Hilfsdüse/-ventil 33 wird die Temperatur im Zentrum des Verbrennungsraums 11 nunmehr auf 1800 °C bis max. 2600 °C erhöht. Bei dieser Temperatur erfolgt der Dauerbetrieb. Dabei ist zu berücksichtigen, dass die Temperatur von 1800 °C bis max. 2600 °C nur im zentralen Bereich des Verbrennungsraumes 11 auftritt, nämlich unmittelbar im Bereich der als Katalysator wirkenden metalloxidhaltigen Erden 4, hier Aluminiumoxid Al2O3, wobei dieser Katalysator auf einer temperaturbeständigen Grundplatte 5, beispielsweise aus Keramik, bereitgehalten wird.
  • Nach einem längeren Dauerbetrieb, beispielsweise von 4 Wochen, haben sich am als Katalysator wirkenden Aluminiumoxid-Pulver edelsteinartige Kristallstrukturen mit einer mohsschen Härte von ca. 9,5 gebildet. Diese Edelsteine können beispielsweise für industrielle Anwendungen verwendet werden.
  • Während des Dauerbetriebes wurde der Wärme-Gewinnungs-Wirkungsgrad bezogen auf die für die Wasser-Elektrolyse eingesetzte Energie zur Erzeugung des HHO-Gases gemessen. Der Wirkungsgrad betrug 98 %. Die Temperatur der Abgase direkt am Abgasausgang 6 betrugen ca. 500 °C. Es ist daher davon auszugehen, dass auch die sonstige Wandung 10 des Verbrennungsraumes 11 Temperaturen von wenig mehr als 1000 °C erreichen. Hier konnten bei dem bisher durchgeführten Versuchen noch keine Messwerte erzielt werden.
  • Darüber hinaus waren in den Abgasen keine Stickoxide und keine Kohlenwasserstoffverbindungen enthalten. Die CO- und CO2-Werte lagen bei jeweils 0,00 ppm. Das Verfahren zeichnet sich somit durch sehr geringe Schadstoffimmissionen gegenüber herkömmlichen Energiegewinnungs-Verfahren auf Basis fossiler Brennstoffe aus.
  • Besonderes Augenmerk ist auf die Abnahme des Deuterium-Gehalts im Reaktionswasser der Versuchsanlage zu richten. Die natürliche Häufigkeit des Isotops Deuterium in Wasserstoff beträgt 0,015 %. Am Anfang einer Messserie konnte dieser Anteil verifiziert werden. Im Laufe des Betriebes, bei dem die Verbrennungstemperatur am Katalysator stets über 2000 °C und unterhalb von 2600 °C gehalten wurde, konnte eine Abnahme des Deuterium-Gehalts nachgewiesen werden. Bei diesem Versuch konnte festgestellt werden, dass der Wärmeenergieertrag die Energie der Wasserbildungsreaktion aus HHO-Gas deutlich übersteigt. Unter Zugrundelegung der herkömmlichen Berechnung des Wirkungsgrades nämlich der Wärmegewinnung im Kühlkreislauf bezogen auf die Energie zur Erzeugung von Wasserstoff und Sauerstoff mittels Wasser-Elektrolyse konnte somit ein Wirkungsgrad von deutlich über 100 %, nämlich ca. 120 % ermittelt werden. Dieser eigentlich physikalisch nicht mögliche Wirkungsgrad lässt sich nur durch eine in der Verbrennungsreaktion stattfindende, spontane Kernfusion erklären. Als Indiz für das tatsächliche Auftreten von vereinzelten Kernfusionsreaktionen kann dabei der sinkende Deuterium-Gehalt im Reaktionswasser dienen.
  • Es ist daher bevorzugt, dass die chemische Verbrennung von Wasserstoff und Sauerstoff im Verbrennungsofen so gesteuert wird, dass der Wärmeenergieertrag die Energie der Wasserbildungsreaktion aus dem zu verbrennenden Gas übersteigt. Damit kann eine zusätzliche Energiequelle aus der vermuteten, partiell ablaufenden Kernfusion in einem apparativ relativ einfachen und ökonomisch durchführbaren Verfahren ausgenutzt werden.
  • Hinsichtlich der Langlebigkeit des Verbrennungsofens 1 sei darauf hingewiesen, dass die gewünschte Verbrennungsreaktion bei Temperaturen von 1800 °C bis max. 2600 °C, insbesondere unter Berücksichtigung einer möglichen (kalten) Kernfusion über 2000 °C zu halten ist. Dabei ist die Flammengeometrie eng begrenzt auf das Zentrum des Verbrennungsraumes 11, in dem das als Katalysator 4 dienende Aluminiumoxid auf der beispielsweise keramischen Grundplatte 5 aufliegt. Die Verbrennungsflamme wird dabei direkt auf diesen Katalysator und somit allenfalls auf die Grundplatte 5 gerichtet. Die Wandungen 10 des Verbrennungsraumes 11 werden jedoch nicht direkt von der Flamme berührt. Entsprechend ist es möglich, die Wandung 10 des Verbrennungsraumes 11 auf Temperaturen < 1250 °C auch im Dauerbetrieb halten zu können. Für solche Temperaturen sind geeignete Stähle im Stand der Technik bekannt. Beispielsweise kann Edelstahl mit dem Werkstoff Nr. 1.4438 317 L verwendet werden, das einen Schmelzpunkt von über 1400 °C hat und zudem resistent gegen Wasserstoff-Versprödung ist.
  • Bezugszeichenliste
  • 1
    Verbrennungsofen
    10
    Wandung
    11
    Verbrennungsraum
    2
    Kühlmantel
    3
    Gaszufuhrleitung
    31
    Austrittsdüse
    32
    Luftzufuhrleitung
    33
    Hilfsdüse/-ventil
    4
    metalloxidhaltige Erden; Katalysator
    5
    Grundplatte
    6
    Abgasausgang
    61
    Regelventil

Claims (8)

  1. Verfahren zur Umsetzung von Wasserstoff und Luftsauerstoff zu Wasser oder HHO-Gas zu Wasser in einem Verbrennungsofen (1), wobei
    - der Verbrennungsofen (1) mit einer Wärmeträgerflüssigkeit gekühlt wird, bei der ein Verbrennungsraum (10) von einem Kühlmantel (2), in dem die Wärmeträgerflüssigkeit zirkuliert wird, umgeben ist,
    - Wasserstoff und Luftsauerstoff oder HHO-Gas in den Verbrennungsofen (1) eingedüst und gezündet wird und in Gegenwart von metalloxidhaltigen Erden (4) bei Temperaturen bis 2600 °C zu entstehendem Reaktionswasser umgesetzt werden, und
    - der Wasserstoff und Luftsauerstoff oder das HHO-Gas mit Luft vermischt wird, dadurch gekennzeichnet, dass die metalloxidhaltigen Erden pulverförmig und/oder grobkörnig strukturiert als Katalysator vorliegen dass die Verbrennungsflamme direkt auf die metalloxidhaltigen Erden (4) gerichtet wird und dass der Abstand des Eindüsungspunktes der Gaszufuhr zu den metalloxidhaltigen Erden (4) zur Steuerung des Verbrennungsprozesses verändert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei der Verbrennung 1000 bis 5000 l/h Wasserstoff und Luftsauerstoff oder HHO-Gas und 200 bis 5000 l/h Luft zugeführt werden.
  3. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass Wasser, bevorzugt bis zu 1,5 l/h, während der Verbrennung in den Verbrennungsofen (1) eingespritzt wird.
  4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Wasserstoff und Luftsauerstoff oder das HHO-Gas mit gasförmigem Stickstoff oder gasförmigen Kohlendioxid vermischt wird.
  5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die metalloxidhaltigen Erden (4) mit Wasser in einem Massenverhältnis bis zu 33 % der Masse der metalloxidhaltigen Erden (4) gemischt werden.
  6. Verbrennungsofen (1) zur Umsetzung von Wasserstoff und Sauerstoff zu Wasser oder HHO-Gas zu Wasser mit einem Verbrennungsraum (11) mit wenigstens einer Gaszufuhrleitung (3) mit Austrittsdüse (31), durch die das zu verbrennende Gas zugeführt wird, und einem den Verbrennungsraum (11) umschließenden Kühlmantel (2) mit einer darin zirkulierenden Wärmeträgerflüssigkeit, wobei eine Luftzufuhrleitung (32) mit einer Hilfsdüse (33) im Verbrennungsraum (11) vorgesehen ist, die unmittelbar neben der Austrittsdüse (31) für die zu verbrennenden Gase Wasserstoff und Sauerstoff bzw. HHO-Gas im Verbrennungsraum (11) angeordnet ist, dadurch gekennzeichnet, dass im Verbrennungsraum (11) metalloxidhaltige Erden als Katalysator (4) pulverförmig und/oder grob-kristallin angeordnet sindund dass die metalloxidhaltigen Erden (4) auf einer massiven, die Verbrennungstemperatur widerstehenden Grundplatte (5) im Zentrum des Verbrennungsofens (1) angeordnet sind.
  7. Verbrennungsofen (1) nach Anspruch 6, dadurch gekennzeichnet, dass der Verbrennungsraum (11) bei einem Gasdurchsatz von 1000 bis 5000 l/h ein Volumen von 4 bis 25 I, bevorzugt 6 bis 12 I und besonders bevorzugt 8 I aufweist.
  8. Verbrennungsofen (1) nach Anspruch 7, dadurch gekennzeichnet, dass der Verbrennungsraum (11) kubisch oder kugelförmig ausgebildet ist.
EP17787099.5A 2016-09-16 2017-09-14 Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser Active EP3513121B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16189245.0A EP3296629A1 (de) 2016-09-16 2016-09-16 Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser
PCT/DE2017/100779 WO2018050166A1 (de) 2016-09-16 2017-09-14 Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser

Publications (2)

Publication Number Publication Date
EP3513121A1 EP3513121A1 (de) 2019-07-24
EP3513121B1 true EP3513121B1 (de) 2022-01-12

Family

ID=56979380

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16189245.0A Withdrawn EP3296629A1 (de) 2016-09-16 2016-09-16 Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser
EP17787099.5A Active EP3513121B1 (de) 2016-09-16 2017-09-14 Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16189245.0A Withdrawn EP3296629A1 (de) 2016-09-16 2016-09-16 Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser

Country Status (3)

Country Link
EP (2) EP3296629A1 (de)
EA (1) EA036734B1 (de)
WO (1) WO2018050166A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115228285A (zh) * 2022-06-21 2022-10-25 鼎佳能源股份有限公司 低温氢气氧化系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5190453A (en) * 1991-03-01 1993-03-02 Rockwell International Corporation Staged combustor
WO1995023942A1 (en) * 1994-03-03 1995-09-08 Pendolo Corporation N.V. A method of and device for producing energy
DE19729607A1 (de) * 1997-07-10 1999-01-14 Andreas P Rosteuscher Wärmekraftmaschine
KR100322315B1 (ko) * 1998-12-18 2002-06-27 김상남 브라운가스연소용에어제트버너
KR100379768B1 (ko) * 1999-09-04 2003-04-10 김상남 브라운가스의 순환연소에 의한 에너지 창출장치
US20040013988A1 (en) * 2000-09-28 2004-01-22 Sang-Nam Kim Brown gas combustion apparatus and heating system using the same
FR2830923A1 (fr) * 2001-10-12 2003-04-18 Alix Dispositif de production d'energie a partir de la decomposition thermique de l'eau et son procede de fonctionnement
ITMI20031741A1 (it) * 2003-09-11 2005-03-12 Giacomini Spa Procedimento e combustore per la combustione di idrogeno
JP4645972B2 (ja) * 2005-12-14 2011-03-09 修 廣田 噴射炎バーナー及び炉並びに火炎発生方法
DE102006047222A1 (de) 2006-10-03 2008-06-12 Rainer Ebeling Vorrichtung zur gewerblichen Nutzung der Thermolyse von Wasser
DE202013005411U1 (de) 2013-06-17 2013-09-20 Werner Hamel System von Wasser-Elektrolyse-Vorrichtung und Wasserstoff-Verbrennungsofen zur kohlendioxidfreien Energieerzeugung
DE102016001334A1 (de) * 2015-03-18 2016-09-22 Renate Hamel von der Lieth Verfahren und Ofen zur Umsetzung von Wasserstoff mit Luftsauerstoff sowie von HHO-Gas zu Wasser mit Wirkungsgraden der Wärmegewinnung >95%

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3296629A1 (de) 2018-03-21
EA201990733A1 (ru) 2019-08-30
EP3513121A1 (de) 2019-07-24
WO2018050166A1 (de) 2018-03-22
EA036734B1 (ru) 2020-12-14

Similar Documents

Publication Publication Date Title
EP3028990B1 (de) Verfahren zur Herstellung von Wasserstoff als Brennstoff durch Ammoniakspaltung
DE112012006249B4 (de) Verfahren zur Gestaltung eines Arbeitsflusses eines Kolbengasmotors mit Kerzenzündung
DE10211141A1 (de) Verfahren zum Zünden der Brennkammer einer Gasturbinenanlage sowie Zündvorrichtung zur Durchführung des Verfahrens
DE102012100468A1 (de) Brennkammer für die emissionsarme Verbrennung von mehreren vorgemischten reformierten Brennstoffen und verwandtes Verfahren
DE102014203039A1 (de) Verfahren und Vorrichtung zur Trennung von Abgas bei der Verbrennung bestimmter Metalle
EP2690158B1 (de) Mehrstufiges verfahren zur herstellung eines wasserstoffhaltigen gasförmigen brennstoffs und wärmegasgeneratoranlage
DE102021100871A1 (de) Wasserstoff- und sauerstoff-zusatzfeuerung für kombianlage
EP3212566B1 (de) Verfahren und anlage zur herstellung von synthesegas
EP3513121B1 (de) Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser
DE102016001334A1 (de) Verfahren und Ofen zur Umsetzung von Wasserstoff mit Luftsauerstoff sowie von HHO-Gas zu Wasser mit Wirkungsgraden der Wärmegewinnung &gt;95%
DE1667573B2 (de) Verfahren und vorrichtung zur erzeugung eines wasserstoffreichen gases durch spaltung eines gemisches aus gasfoermigen und/oder fluessigen kohlenwasserstoffen und wasserdampf
DE3941307A1 (de) Verbrennungsverfahren zum einschraenken einer bildung von stickstoffoxiden bei verbrennung und anordnung zum ausfuehren des verfahrens
DE2404492A1 (de) Verfahren zur verbrennung von ammoniak und einrichtung zur durchfuehrung des verfahrens
WO2015176944A1 (de) Verfahren zum verbrennen einer legierung eines elektropositiven metalls
DE102016202259B4 (de) Hochtemperatur-Elektrolysevorrichtung sowie Verfahren zum Durchführen einer Hochtemperatur-Elektrolyse
EP3123078A1 (de) Verbrennung von lithium bei unterschiedlichen temperaturen, drücken und gasüberschüssen mit porösen rohren als brenner
EP2703716B1 (de) Erwärmung eines Prozessabgases
DE894742C (de) Feuerungseinrichtung fuer feste Brennstoffe
EP3087324B1 (de) Anordnung und verfahren zur durchführung einer intensivierten verbrennung
EP0256451A1 (de) Verfahren und Vorrichtung zur Erzeugung eines brennbaren Gasgemisches aus flüssigem Brennstoff, Wasserdampf und Verbrennungsluft
JP6574183B2 (ja) 固体、液体、または気体炭化水素(hc)原材料の熱機関での燃焼のプロセス、炭化水素(hc)材料からエネルギーを作り出す熱機関およびシステム
DE2509861A1 (de) Brenner
DE3630345C2 (de)
DE102016012419A1 (de) Verfahren zur Wärmerückgewinnung aus einem von einem Brenner erzeugten Rauchgas und entsprechendes Wärmerückgewinnungssystem
WO2008000010A2 (de) Thermolyse-katalysator für verbrennungsmaschinen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190410

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201013

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210723

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017012451

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1462626

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220512

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220412

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017012451

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

26N No opposition filed

Effective date: 20221013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220914

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230906

Year of fee payment: 7

Ref country code: NL

Payment date: 20230920

Year of fee payment: 7

Ref country code: GB

Payment date: 20230921

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1462626

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 7

Ref country code: DE

Payment date: 20230919

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112