EP3510260A1 - Dispositif de réglage électromagnétique, en particulier pour le réglage d'arbres à cames d'un moteur à combustion interne - Google Patents
Dispositif de réglage électromagnétique, en particulier pour le réglage d'arbres à cames d'un moteur à combustion interneInfo
- Publication number
- EP3510260A1 EP3510260A1 EP17768005.5A EP17768005A EP3510260A1 EP 3510260 A1 EP3510260 A1 EP 3510260A1 EP 17768005 A EP17768005 A EP 17768005A EP 3510260 A1 EP3510260 A1 EP 3510260A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plunger
- armature
- adjusting device
- adapter
- camshaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 15
- 239000000463 material Substances 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 238000005452 bending Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000010705 motor oil Substances 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L13/0015—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
- F01L13/0036—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
- H01F7/1607—Armatures entering the winding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/02—Valve drive
- F01L1/04—Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
- F01L1/047—Camshafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L13/0015—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
- F01L13/0036—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
- F01L2013/0052—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction with cams provided on an axially slidable sleeve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2301/00—Using particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2820/00—Details on specific features characterising valve gear arrangements
- F01L2820/03—Auxiliary actuators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2820/00—Details on specific features characterising valve gear arrangements
- F01L2820/03—Auxiliary actuators
- F01L2820/031—Electromagnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/081—Magnetic constructions
- H01F2007/086—Structural details of the armature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/081—Magnetic constructions
Definitions
- Electromagnetic actuator in particular for adjusting camshafts of an internal combustion engine
- the present application relates to an electromagnetic actuator, in particular for adjusting camshafts of an internal combustion engine.
- Camshafts have a number of cams that
- cams can either be fixedly arranged on the camshaft or on camshaft sections which can be applied in a rotationally fixed but axially displaceable manner to a cylindrical shaft. With the cams adjacent axially displaceable components can be moved by turning the camshaft at regular intervals.
- a highlight application of the camshafts is the opening and
- Change engine characteristics for example, from a comfort to a sporty characteristic, which is implemented, inter alia, by changing the valve lift, which is determined by the shape of the cam.
- different engine speeds require variable valve lifts to optimize torque and fuel consumption.
- Other internal combustion engines have a cylinder deactivation in which some of the cylinders may be shut down to save fuel. In this case, the valves of the deactivated cylinders need not be opened at all. Also in this case, it is advantageous not only to switch off individual cylinders, but also to allow variable valve lifts for the reasons mentioned above.
- Such internal combustion engines require camshafts having cams of different size and shape. However, in order to open and close the valve with the different lift curves, the camshaft or the
- Camshaft section to be moved axially to allow each of the corresponding cam to interact with the valve.
- the camshafts have different grooves into which an actuator with a different number of tappets engages ,
- the plungers are movable between a retracted and an extended position, wherein the plunger in the extended
- Adjusting devices for adjusting camshafts or a camshaft section, the plunger are mounted only in designated as adapter housing sections, with which the adjusting device on a component, in particular on a
- Cylinder head cover can be attached.
- the bending moments acting on the plungers due to the high radial forces can bend the plungers until they jam in the adapters. As a result, they are no more between the retracted and the extended position movable, whereby the camshaft or the
- Camshaft section can not be moved axially.
- the plunger is mounted according to DE 10 2013 102 241 AI not only in the adapter, but also in the clearly spaced from the adapter arranged pole core.
- the plunger is not only in the adapter, but also stored in the anchor, which also clearly
- the plunger is rotatable in the
- Object of an embodiment of the present invention is to provide an electromagnetic actuator, in particular for adjusting camshafts or a camshaft portion of an internal combustion engine, with which the above-mentioned disadvantages can be eliminated or at least noticeably reduced.
- an adjusting device in particular for adjusting camshafts or a camshaft portion of an internal combustion engine, with which the above-mentioned disadvantages can be eliminated or at least noticeably reduced.
- Actuator movably mounted armature relative to a pole core between a retracted position and an extended is movable, one with the armature
- Camshaft cooperates with this, and an adapter with which the adjusting device on a component, in particular on a cylinder head cover, can be fastened, wherein the armature and the plunger are rotatably connected to each other and the Actuator having a first bearing portion within the adapter for rotatably supporting the plunger and a second bearing portion outside of the adapter for rotatably supporting the plunger and / or the armature.
- Rotary movement between the armature and the plunger instead, so that here no more wear points are present, which could lead to a change in particular the relative axial position of the plunger and the armature to each other.
- a limited relative axial mobility between the armature and the plunger can be provided, since this does not lead to or significantly reduced compared to the rotational movement wear. From a production point of view, it makes sense to press the armature with the plunger, so that the armature and the plunger move both translationally and rotationally synchronously.
- Tappet is not only stored in the first bearing section, but also in the second bearing section.
- the first bearing portion is disposed within the adapter while the second bearing portion is disposed outside the adapter and thus spaced from the first bearing portion. It lends itself here to arrange the second bearing portion seen from the free end of the plunger from behind the first bearing portion. It is sufficient already a small distance to prevent bending and resulting jamming of the plunger. It can either the plunger or the anchor or both be stored together in the second storage section.
- a bearing of the armature in the second bearing portion an indirect mounting of the plunger in the second bearing portion. This is even more true when the anchor is crimped with the plunger.
- the second bearing portion consists of a non-magnetic or not
- Coil unit generates a magnetic field which acts on the armature and moves it relative to the pole core. If the second bearing section consists of a non-magnetic, non-magnetized or non-magnetizable material, the magnetic field lines are not disturbed or deflected. The second bearing therefore needs in the interpretation of
- the second bearing portion may comprise a sliding bearing or be formed by the sliding bearing.
- Plain bearings represent widely used and proven machine elements, so that the second
- Bearing portion can be designed inexpensively and reliably.
- standardized and standardized plain bearings can be used, which reduces costs again
- Plain bearing is via the engine oil of the internal combustion engine.
- the sliding bearing made of plastic or a non-magnetic or
- the sliding bearing can be arranged in a tubular body.
- the tubular body can be shrunk onto the slide bearing, for example, so that a secure connection without additional
- Connecting elements can be created, causing the
- tubular body can be designed so that it only needs to be used in a few steps in the adjusting device and at the same time determines the position of the sliding bearing, whereby also the assembly is simplified.
- the tubular body may use the second bearing portion without using a
- Form slide bearing for example, by an appropriate design of the surface that comes into contact with the anchor and / or with the plunger. Especially if that
- Plain bearing is constructed of a non-magnetic material, no magnetic forces between the armature and the plain bearing, which affects the friction between the armature and the
- a further developed embodiment is characterized in that the device comprises a spring element having a first end and a second end, which is supported at the first end by means of a spring plate on the plunger or armature and at the second end on the second bearing portion. It is quite possible, the anchor and consequently the plunger
- the plunger can already be moved in the corresponding direction when the impressed by the magnetic field on the armature and the biasing force of the spring element
- the plunger can be moved faster.
- the spring plate can be attached by means of a clearance fit on the plunger or the armature and axially by means of a
- Paragraph be set in the effective direction of the biasing force.
- the rotational movement of the plunger is therefore not transmitted to the spring element, so that there is no twisting or wear of the spring element.
- the spring element is supported on the second bearing portion and in particular on the plain bearing, so that no further structural measures must be taken to determine the axial position of the spring element. The production cost is thereby kept low.
- the spring plate may be movably disposed within the rohrformigen body, so that the spring plate is guided by rohrformigen body. A tilting or tilting or snagging of the
- the adapter has a stop against which the spring plate in the
- the wear of the plunger when engaging in the groove should be reduced by being rotatably mounted. As a result, the plunger can roll on the side surfaces of the groove, whereby a wear-promoting sliding is avoided or at least reduced. The wear of the plunger can be further reduced by the plunger in the
- the device comprises a permanent magnet, with which the armature is held in the retracted position in the de-energized state of the coil unit.
- the anchor could be replaced by a corresponding permanent
- Figure 1 is a schematic sectional view through a
- Embodiment of a proposed electromagnetic actuator Embodiment of a proposed electromagnetic actuator.
- FIG. 1 shows an exemplary embodiment of an electromagnetic actuating device 10 according to the invention with reference to FIG. 1
- the adjusting device 10 has a housing 12, which is designed substantially tubular in the illustrated embodiment. With regard to the selected in Figure 1
- the housing 12 is closed at the upper end with a cover 14 and at the lower end with a flange 16.
- the adjusting device 10 has an adapter 18 which on
- Adjusting device 10 for example, be attached to a cylinder head cover of an internal combustion engine (not shown).
- the adapter 18 have recesses 20, in which seals, not shown, can be used to the Seal actuator 10 against the cylinder head cover.
- the adapter 18 forms a first bearing portion 22 for a along a longitudinal axis L of the adjusting device 10th
- the first bearing portion 22 may be provided, for example, characterized in that the outer surface of the plunger 24 with a corresponding
- the adapter 18 is made of a hardened stainless steel.
- the plunger 24 is pressed in the illustrated embodiment with an anchor 26 and thus rotatably connected to him.
- the rotationally fixed connection can also be realized in other ways, for example by welding. To a good one
- the armature 26 has a recess into which the plunger 24 engages over a longer portion.
- the plunger 24 has a free end 28 which projects beyond the adapter 18.
- the adjusting device 10 has a second bearing portion 30, which is arranged in the illustrated embodiment, starting from the free end 28 behind the first bearing portion 22 and designed as a sliding bearing 32.
- the sliding bearing 32 for example, made of a plastic or a non-magnetic stainless steel is disposed in a tubular body 34 and connected, for example by shrinking with the tubular body 34.
- the sliding bearing 32 is arranged in the example shown so that only the armature 26 is mounted with the sliding bearing 32. consequently
- Both the first bearing portion 22 and the second bearing portion 30 are designed so that the plunger 24 and the armature 26 are rotatably supported both about the longitudinal axis L and along the longitudinal axis L.
- the sliding bearing 32 is radially inwardly slightly above the
- tubular body 34 in front, leaving a narrow gap
- tubular body 34 is formed between the tubular body 34 and the armature 26.
- the tubular body 34 and the armature 26 therefore do not abut each other.
- the spring plate 36 is axially fixed by means of the armature 26.
- the spring plate 36 thus performs the same axial movements along the longitudinal axis L as the armature 26 and the plunger 24. As shown in FIG.
- the spring plate 36 is enclosed by the tubular body 34 radially.
- a spring element 40 is provided which has a first end 42 and a second end 44.
- Spring element 40 may be a substantially along the
- Longitudinal L provide acting biasing force.
- the spring element 40 With the first end 42, the spring element 40 is supported on the spring plate 36 and with its second end 44 on the sliding bearing 32 from.
- Diameter enlargement 38 is pressed, exceeds a certain value.
- the adjusting device 10 comprises a coil unit 46 which annularly surrounds the armature 26 to form a gap.
- a pole core 48 is provided, which is based on the selected in Figure 1
- the adjusting device 10 has a permanent magnet 50, which is fastened to the cover 14 and is arranged above the pole core 48.
- the adjusting device 10 is operated in the following manner:
- the permanent magnet 50 exerts an attractive force acting along the longitudinal axis L on the armature 26, so that the armature 26 is attracted in the retracted state by the permanent magnet 50 and abuts the pole core 48.
- the spring element 40 is compressed, so that the spring element 40 provides a biasing force, but which is smaller than the attraction of the Permanent magnet 50.
- the armature 26 and the plunger 24 thus assume the retracted position.
- Spring element 40 provided biasing force and thus acts against the attraction force of the permanent magnet 50.
- the sum of the magnetic force and the biasing force is greater than the attractive force of the permanent magnet 50, so that the armature 26 and consequently the plunger 24 are moved away from the permanent magnet 50 along the longitudinal axis L until that
- the plunger 24 engages with its free end 28 in a groove of a camshaft, not shown, or a camshaft section, not shown.
- the groove has a relation to the axis of rotation of the camshaft
- Camshaft about its own axis of rotation causes a longitudinal adjustment along the axis of rotation of the camshaft.
- the plunger 24 abuts against one of the side walls of the groove and rolls on this, so that the plunger 24 is rotated upon engagement with the groove at a very high rotational speed. Due to the compression of the armature 26 with the plunger 24 is the
- Rotary movement of the plunger 24 also transmitted to the armature 26.
- the stop 52 of the adapter 18 and the depth of the groove are chosen so that the plunger 24 in the extended position with its free end 28 does not touch the bottom surface of the groove.
- the depth of the groove decreases but towards the end, so that from a certain angle of rotation of the camshaft, a contact of the free end 28 of the plunger 24 takes place with the bottom surface of the groove, whereby the plunger 24 is moved back in the direction of the permanent magnet 50.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Valve Device For Special Equipments (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Electromagnets (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016116776.2A DE102016116776A1 (de) | 2016-09-07 | 2016-09-07 | Elektromagnetische Stellvorrichtung insbesondere zum Verstellen von Nockenwellen eines Verbrennungsmotors |
PCT/EP2017/071412 WO2018046314A1 (fr) | 2016-09-07 | 2017-08-25 | Dispositif de réglage électromagnétique, en particulier pour le réglage d'arbres à cames d'un moteur à combustion interne |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3510260A1 true EP3510260A1 (fr) | 2019-07-17 |
EP3510260B1 EP3510260B1 (fr) | 2021-09-29 |
Family
ID=59887192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17768005.5A Not-in-force EP3510260B1 (fr) | 2016-09-07 | 2017-08-25 | Dispositif d'actionnement electromagnétique, en particulier pour le calage d'un arbre à cames de moteur à combustion interne |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210003047A1 (fr) |
EP (1) | EP3510260B1 (fr) |
JP (1) | JP6731542B2 (fr) |
CN (1) | CN109690035B (fr) |
DE (1) | DE102016116776A1 (fr) |
WO (1) | WO2018046314A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017121949A1 (de) * | 2017-09-21 | 2019-03-21 | Kendrion (Villingen) Gmbh | Stellvorrichtung, sowie Kraftfahrzeug mit einer Stellvorrichtung |
CN108869056B (zh) * | 2018-07-31 | 2023-12-22 | 辽宁工业大学 | 一种可变气缸发动机停缸装置及其控制方法 |
AT16974U1 (fr) * | 2019-01-28 | 2021-01-15 | Msg Mechatronic Systems Gmbh | |
JP2023550914A (ja) * | 2020-12-11 | 2023-12-06 | サン-ゴバン パフォーマンス プラスティックス コーポレイション | ソレノイド低摩擦軸受ライナー |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4568021A (en) * | 1984-04-02 | 1986-02-04 | General Motors Corporation | Electromagnetic unit fuel injector |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61258976A (ja) * | 1985-05-13 | 1986-11-17 | Nitsukisou Eiko Kk | 電磁駆動形往復動ポンプ |
DE20114466U1 (de) * | 2001-09-01 | 2002-01-03 | Eto Magnetic Kg | Elektromagnetische Stellvorrichtung |
JP2006097727A (ja) * | 2004-09-28 | 2006-04-13 | Keihin Corp | リニアソレノイドバルブ |
DE102006027349A1 (de) * | 2006-06-13 | 2007-12-20 | Schaeffler Kg | Nockenwellenversteller mit einem elektromagnetischen Aktuator |
DE202006011904U1 (de) | 2006-08-03 | 2007-12-06 | Eto Magnetic Kg | Elektromagnetische Stellvorrichtung |
ATE531054T1 (de) | 2006-08-03 | 2011-11-15 | Eto Magnetic Kg | Elektromagnetische stellvorrichtung |
DE102006051809A1 (de) * | 2006-11-03 | 2008-05-08 | Schaeffler Kg | Stellvorrichtung |
DE102007028600B4 (de) | 2007-06-19 | 2011-06-22 | ETO MAGNETIC GmbH, 78333 | Elektromagnetische Stellvorrichtung |
JP5442980B2 (ja) * | 2008-11-06 | 2014-03-19 | カヤバ工業株式会社 | ソレノイド |
DE102010045601B4 (de) * | 2010-09-16 | 2013-04-18 | Hydac Electronic Gmbh | Elektromagnetische Stellvorrichtung |
DE102011003760B4 (de) * | 2010-11-29 | 2022-03-24 | Schaeffler Technologies AG & Co. KG | Elektromagnetische Stellvorrichtung |
DE102012213660A1 (de) * | 2012-08-02 | 2014-02-06 | Schaeffler Technologies AG & Co. KG | Magnetaktor eines Schiebenockensystems |
JP6035965B2 (ja) * | 2012-08-02 | 2016-11-30 | 株式会社デンソー | 電磁アクチュエータ |
DE102013102241A1 (de) | 2013-03-06 | 2014-09-11 | Kendrion (Villingen) Gmbh | Elektromagnetische Stellvorrichtung, insbesondere zur Nockenwellenverstellung einer Brennkraftmaschine |
JP2015169183A (ja) * | 2014-03-11 | 2015-09-28 | スズキ株式会社 | 内燃機関の可変動弁装置 |
DE102014109124B4 (de) | 2014-06-30 | 2016-05-19 | Kendrion (Villingen) Gmbh | Elektromagnetische Nockenwellenverstelleinrichtung |
JP6248871B2 (ja) * | 2014-09-05 | 2017-12-20 | 株式会社デンソー | 電磁アクチュエータ |
JP2016149416A (ja) * | 2015-02-10 | 2016-08-18 | 株式会社デンソー | リニアソレノイド |
-
2016
- 2016-09-07 DE DE102016116776.2A patent/DE102016116776A1/de not_active Withdrawn
-
2017
- 2017-08-25 US US16/330,711 patent/US20210003047A1/en not_active Abandoned
- 2017-08-25 JP JP2019511539A patent/JP6731542B2/ja not_active Expired - Fee Related
- 2017-08-25 EP EP17768005.5A patent/EP3510260B1/fr not_active Not-in-force
- 2017-08-25 CN CN201780054466.1A patent/CN109690035B/zh not_active Expired - Fee Related
- 2017-08-25 WO PCT/EP2017/071412 patent/WO2018046314A1/fr unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4568021A (en) * | 1984-04-02 | 1986-02-04 | General Motors Corporation | Electromagnetic unit fuel injector |
Also Published As
Publication number | Publication date |
---|---|
JP6731542B2 (ja) | 2020-07-29 |
CN109690035B (zh) | 2021-06-29 |
DE102016116776A1 (de) | 2018-03-08 |
US20210003047A1 (en) | 2021-01-07 |
EP3510260B1 (fr) | 2021-09-29 |
CN109690035A (zh) | 2019-04-26 |
JP2019528399A (ja) | 2019-10-10 |
WO2018046314A1 (fr) | 2018-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3510260B1 (fr) | Dispositif d'actionnement electromagnétique, en particulier pour le calage d'un arbre à cames de moteur à combustion interne | |
DE69413288T2 (de) | Druckausgeglichenes Dreiwegemagnetventil | |
DE102008020892A1 (de) | Stellvorrichtung | |
DE102008037076A1 (de) | Elektromagnetische Stelleinheit eines hydraulischen Wegeventils | |
DE102008020893A1 (de) | Elektromagnetische Stellvorrichtung | |
WO2009062864A1 (fr) | Unité de commande électromagnétique pour une électrovanne et procédé de fabrication de ladite unité de commande | |
EP3067524B1 (fr) | Element de reglage destine a un deplacement axial d'un ensemble de cames coulissant le long d'un axe d'arbre a came | |
DE102007024600A1 (de) | Stellvorrichtung | |
DE3406198A1 (de) | Elektromagnet-ventil fuer fluidregelung | |
DE102014212305A1 (de) | Ventilhubsteuerungsvorrichtung | |
DE102007024598A1 (de) | Stellvorrichtung | |
DE102009030375A1 (de) | Elektromagnetische Stellvorrichtung | |
DE102014105710A1 (de) | Zwei-Stufen-Variabler-Ventilhub-Vorrichtung, welche durch zwei Wälzlager unter Verwendung eines elektromagnetischen Systems betätigt wird | |
DE102004002487A1 (de) | Rollenstößel | |
WO2011079989A1 (fr) | Vanne de régulation de débit à commande électromagnétique, en particulier destinée à réguler le débit de refoulement d'une pompe de carburant haute pression | |
DE102011012020B4 (de) | Nockenwelle mit Nockenwellenversteller | |
EP0793004B1 (fr) | Commande électromagnétique de soupape | |
EP3350816B1 (fr) | Dispositif d'actionneur électromagnétique et système l'incluant | |
EP2543050B1 (fr) | Soupape électromagnétique | |
DE102016116777A1 (de) | Elektromagnetische Stellvorrichtung insbesondere zum Verstellen von Nockenwellen eines Verbrennungsmotors | |
WO2014019736A1 (fr) | Actionneur magnétique d'un système de cames coulissantes | |
DE102013209859A1 (de) | Zentralventil mit einem Elektromagneten zur Ansteuerung des Zentralventils | |
DE102017121723B4 (de) | Elektromagnetische Stellvorrichtung insbesondere zum Verstellen von Nockenwellen eines Verbrennungsmotors | |
EP3173593A1 (fr) | Commande de soupape variable comprenant un culbuteur | |
WO2018184975A1 (fr) | Dispositif de réglage électromagnétique, en particulier pour faire varier le calage d'arbres à cames d'un moteur à combustion interne |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190104 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200923 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210428 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1434372 Country of ref document: AT Kind code of ref document: T Effective date: 20211015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017011618 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220129 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220131 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017011618 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220922 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220825 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220831 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220831 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220825 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220831 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1434372 Country of ref document: AT Kind code of ref document: T Effective date: 20220825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220825 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220825 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502017011618 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |