EP0793004B1 - Commande électromagnétique de soupape - Google Patents

Commande électromagnétique de soupape Download PDF

Info

Publication number
EP0793004B1
EP0793004B1 EP97103181A EP97103181A EP0793004B1 EP 0793004 B1 EP0793004 B1 EP 0793004B1 EP 97103181 A EP97103181 A EP 97103181A EP 97103181 A EP97103181 A EP 97103181A EP 0793004 B1 EP0793004 B1 EP 0793004B1
Authority
EP
European Patent Office
Prior art keywords
armature
solenoid
magnetic core
force
gas exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97103181A
Other languages
German (de)
English (en)
Other versions
EP0793004A1 (fr
Inventor
Hans Gander
Jürgen Schüle
Peter Dr. Jänker
Frank Hermle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler Benz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz AG filed Critical Daimler Benz AG
Publication of EP0793004A1 publication Critical patent/EP0793004A1/fr
Application granted granted Critical
Publication of EP0793004B1 publication Critical patent/EP0793004B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/13Electromagnets; Actuators including electromagnets with armatures characterised by pulling-force characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means

Definitions

  • the invention relates to a device for electromagnetic Actuation of a gas exchange valve for internal combustion engines according to the preamble of claim 1.
  • a device in which one arranged on a valve stem of a gas exchange valve Anchor plate using a spring system between an open and a closed position can be moved back and forth. Furthermore, are on opposite sides of the anchor plate two switching magnets are provided, with the help of which the anchor plate are held in the open or closed position can.
  • the switching magnets are so-called holding magnets trained their magnetic force essentially in the near range unfold the magnetic core.
  • DE 38 26 975 A1 is also a generic one Device with a sleeve for guiding the anchor plate is known, the sleeve extending over the area between the pole faces of the two switching magnets extends.
  • the ferromagnetic Properties of this sleeve are different over its length, with only minor in the middle, in the however, stronger ferromagnetic properties in both edge areas owns. Through this sleeve, the long-distance effect of both Switching magnets affected equally.
  • the open position assigned switching magnet as a so-called characteristic magnet with increased remote effect compared to the second switching magnet trained, the catch energy, which is by the Switching magnets, especially when the combustion chamber counterpressures change is spent, reduced.
  • the amount of energy required in an early phase of the opening movement fed which leads to good dynamics, i.e. fast Switching operation, leads.
  • FIG. 1 and 2 is a device for electromagnetic Actuation of a gas exchange valve 2 - hereinafter electromagnetic Valve control called - one not closer Internal combustion engines shown overall designated 1.
  • the Gas exchange valve 2 consisting of a valve stem 4, one Valve guide 5 and a valve plate 6 is in one Gas guide channel 3 arranged.
  • the valve plate 6 cooperates a valve seat 7 provided in the gas duct 3 together and serves to close or release the Throttle duct 3.
  • the electromagnetic valve control 1 is used for actuation of the gas exchange valve 2, the gas exchange valve 2 between a closed position, as shown in Fig. 1, and one Open position, as shown in Fig. 2, movable back and forth is.
  • An electromagnetic valve control 1 has the advantage on that the tax times are freely chosen in a wide range can be.
  • the electromagnetic valve control 1 exists of two cylindrical switching magnets 8, 9, which are coaxial to Valve stem 4 and stationary with respect to valve guide 5 or arranged opposite the gas duct 3 are.
  • the first switching magnet 9 is for the open position and the second switching magnet 8 for the closed position of the gas exchange valve 2 provided.
  • Each switching magnet is made in a known manner 8, 9 from an outer cup-shaped magnetic core 10, 10 ' and an inner coil 11, 11 '.
  • the valve stem 4 is in the area between the two switching magnets 8, 9 a perpendicular to the longitudinal axis of the gas exchange valve 2 arranged anchor plate 12 is provided.
  • Between Switching magnet 8, 9 and the armature plate 12 is one Valve spring 13, 14 provided.
  • the upper valve spring 13 supports itself on the pot bottom 15 of the second switching magnet 8 and on the Top 17 of the anchor plate 12, while the lower valve spring 14 on the underside 18 of the anchor plate 12 and lower pot base 16 supports.
  • the upper one Valve spring 13 a force in the opening direction and the lower one Valve spring 14 in the closing direction of the gas exchange valve 2.
  • the anchor plate 12 and the associated one moves Gas exchange valve 2 between the pole faces of the solenoids 8, 9 back and forth.
  • the inner coil 11 of the second switching magnet 8 excited by applying a voltage.
  • the inner coil 11 ' the first switching magnet 9 is not in this state Tension.
  • the Tension on the upper coil 11 released. This will make the Anchor plate 12 by the force of the preloaded spring 13 in Open position moves. Shortly before reaching the open position now the coil 11 'of the first switching magnet 9 by applying a voltage are excited so that the anchor plate 12 by the resulting magnetic force of the switching magnet 9 is captured and is held in this open position (see. Fig. 2).
  • the spring system 13, 14 is now designed so that the anchor plate 12 an oscillating movement between the pole faces of the two switching magnets 8, 9 executes. In the top and bottom The turning point is then the anchor plate 12 by excitation of the corresponding switching magnet 8, 9 captured and held.
  • gas exchange valves 2 with varying back pressures work, especially with exhaust valves of internal combustion engines, the problem arises that the anchor plate 12 higher back pressures by the force of the spring system 13, 14 even no longer in the vicinity of the first switching magnet 9 reached.
  • To anchor plate 12 in this situation anyway capturing and capturing must have very high capture energies be used. To get around this problem therefore proposed the first switching magnet 9 as a so-called Train characteristic magnets.
  • the magnetic core 10 ' is formed so that the magnetic force extends further towards the far field with the same current flow.
  • flux guide pieces 19 from one magnetically conductive material on the magnetic core 10 'or on the Bottom 18 anchor plate 12 can be arranged.
  • FIG. 1 is a hollow cylindrical flow guide 19th coaxial to the valve stem 4 on the associated with the armature plate 12 Pole surface 20 of the first switching magnet 9 is arranged.
  • the inner circumference of the flux guide piece 19 is larger than the outer circumference of the anchor plate 12 selected. This allows the Anchor plate 12 their oscillating movement into the Execute the interior of the hollow cylindrical flux guide 19.
  • the armature plate 12 can continue on the armature plate 12 facing pole surface 20 of the first switching magnet 9 come to rest.
  • FIG. 2 Another exemplary embodiment is shown in FIG. 2.
  • hollow cylindrical flux guide 19 also coaxial to Valve stem 4 on the first solenoid 9 facing Bottom 18 of the anchor plate 12 is arranged.
  • FIG. 3 shows a detail of a further exemplary embodiment an electromagnetic valve control according to the invention, the same parts compared to FIGS. 1 and 2 with are identified by the same reference numerals.
  • the exemplary embodiment described are the valve springs 13, 14 arranged outside the switching magnets 8, 9 and in their Function interchanged.
  • the Remote effect of the lower switching magnet 9 increased in that the Pole surface 20 of the lower switching magnet 9 and the underside 18 the anchor plate 12 have corresponding steps 21, 22.
  • the Underside 18 of the anchor plate 12 has a corresponding depression 22 such that the survey 21 in the open position of the Gas exchange valve protrudes into the recess 22.
  • the depth of the step corresponds to half the working distance of the gas exchange valve.
  • the switching magnet 8 is also a flat armature magnet with a distinctive hold function. The is accordingly Top 17 of the anchor plate 12 is executed flat.
  • the mode of operation of the devices according to the invention will be explained in more detail below with the aid of a schematic illustration of the force-displacement characteristic shown in FIG. 4.
  • the magnetic forces F EM8 , F EM9 of the two switching magnets 8, 9 and the resulting mechanical force F mech of the spring system 13, 14 are plotted as a function of the air gap between the pole faces and the armature plate 12.
  • the distance between the pole faces is and the middle rest position of the mechanical spring system 4 mm. Accordingly, no mechanical force F mech acts on the anchor plate 12 in this middle rest position.
  • the resulting mechanical force F mech increases linearly when deflected from this rest position up to a maximum force F max1 when one of the two switching positions is reached.
  • the force- displacement characteristic curve F EM8 of the switching magnet 8 shows a typical profile of a flat armature magnet with a pronounced holding function.
  • the force F EM8 decreases quadratically from a maximum value F max3 with an air gap of zero - that is to say in the closed position - and already strives towards zero in the middle rest position. Deviating from this, the force- displacement characteristic curve F EM9 of the switching magnet 9 shows a changed course through the measures for influencing the characteristic curve.
  • the magnetic force F EM9 of the switching magnet 9 is below the curve F EM8 for the switching magnet 8.
  • the maximum force F max2 is just above the resulting mechanical force F mech , but significantly below the maximum force F max3 of the switching magnet 8.
  • the force F EM9 has a local maximum, the magnetic force F EM9 being above the magnetic force F EM8 , but also above the resulting mechanical force F mech .
  • the anchor plate 12 swings from the one end position (with an air gap of approx. 8 mm) beyond the middle rest position with an air gap of 4 mm into the area of a small air gap. If the friction losses were neglected, the anchor plate 12 would reach the other end position with an air gap of 0 mm due to the mechanical vibration. Taking friction losses into account, the anchor plate 12 does not reach this end position, however, but must be captured by the corresponding switching magnet 8, 9. In order for this to be possible with a switching magnet according to the force- displacement characteristic curve F EM8, the armature plate 12 must at least reach such an end position in which the magnetic force F EM8 exceeds the mechanical restoring force F mech .
  • this corresponds to an air gap of less than 0.7 mm. If the anchor plate 12 does not come into this end position during an opening process due to an increased gas back pressure, then the entire characteristic curve would have to be stretched by an increased energy supply in a switching magnet with a force curve according to the force characteristic curve F EM8, so that the magnetic force F EM8 the restoring force F mech in the end position.
  • a solenoid with a force curve according to the force characteristic F EM9 shows a better solution. Even before the middle rest position is reached, the magnetic force F EM9 exceeds the mechanical force, so that the anchor plate 12 already experiences an accelerating force in the open position in this position. This has a positive effect on the opening time. In the further movement towards the open position (0 mm air gap), the force characteristic F EM9 of the switching magnet 9 drops again and falls below the mechanical spring characteristic F mech . As a result, the gas exchange valve is braked by the net effect of mechanical spring force and magnetic force, and thus kinetic energy is withdrawn. This leads to a softer impact and thus a reduction in noise.
  • the magnetic force F EM9 rises steeply again and then again exceeds the mechanical restoring force F mech .
  • the armature plate 12 can thereby be captured by the switching magnet 9 and can be held securely due to the high magnetic force F max2 .
  • the net energy that is supplied to the armature plate 12 by the switching magnet 9 can be adjusted to the respective operating case.
  • the comparison of the two force characteristics F EM8 , F EM9 shows, however, that with approximately the same energy supply, the functionality of the switching magnet 9 is improved with regard to changing back pressures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Valve Device For Special Equipments (AREA)

Claims (8)

  1. Dispositif de commande électromagnétique d'une soupape d'alternance de flux gazeux (2) pour moteurs à combustion interne, comprenant une armature (12) fixée à la soupape (2), deux éléments élastiques (13, 14) placés sur des côtés opposés de l'armature (12) et par la force élastique desquels l'armature (12) est déplaçable entre une position ouverte et une position fermée, ainsi que deux aimants de manoeuvre (8, 9), placés sur des côtés opposés de l'armature (12), qui maintiennent la soupape (2) à la position ouverte ou à la position fermée, caractérisé en ce que le premier aimant de manoeuvre (9), coordonné à la position ouverte, est réalisé comme un aimant à caractéristique adaptée, dont l'effet à distance est accru par rapport au second aimant de manoeuvre (8), coordonné à la position fermée.
  2. Dispositif selon la revendication 1, caractérisé en ce qu'une pièce de guidage de flux magnétique (19) est agencée sur l'extrémité dirigée vers l'armature (12) du noyau magnétique (10') du premier aimant de manoeuvre (9) et/ou sur le côté (18) dirigé vers ce premier aimant (9) de l'armature (12).
  3. Dispositif selon la revendication 2, caractérisé en ce que le noyau (10') du premier aimant (9) est réalisé sous la forme d'un cylindre creux et disposé coaxialement par rapport à la tige (4) de la soupape, que la pièce de guidage de flux (19) est réalisée sous la forme d'un cylindre creux et disposée sur l'extrémité dirigée vers l'armature (12) du noyau (10'), coaxialement par rapport à la tige (4) de la soupape, le diamètre intérieur de la pièce de guidage de flux (19) étant plus grand que le diamètre intérieur du noyau (10'), et que l'armature (12) est exécutée sous la forme d'une plaque circulaire, cette plaque-armature (12) s'appliquant, à la position ouverte, contre le noyau (10') à l'intérieur de l'ouverture cylindrique de la pièce de guidage de flux (19).
  4. Dispositif selon la revendication 2, caractérisé en ce que le noyau (10') du premier aimant de manoeuvre (9) est réalisé sous la forme d'un cylindre creux et disposé coaxialement par rapport à la tige (4) de la soupape, que l'armature est exécutée sous la forme d'une plaque circulaire (12), que la pièce de guidage de flux est réalisée sous la forme d'un cylindre creux et disposée sur le côté (18) dirigé vers le premier aimant (9) de la plaque-armature (12), coaxialement par rapport à la tige (4) de la soupape, le diamètre extérieur de la pièce de guidage de flux (19) étant plus petit que le diamètre intérieur du noyau (10') et la pièce de guidage de flux (19) faisant saillie, à la position ouverte, dans l'ouverture du cylindre formé par le noyau (10').
  5. Dispositif selon la revendication 1, caractérisé en ce que la face polaire (20) du premier aimant de manoeuvre (9) est d'exécution étagée et que le côté (18) dirigé vers le premier aimant (9) de la plaque-armature (12) présente un étagement (22) correspondant.
  6. Dispositif selon la revendication 5, caractérisé en ce que le noyau (10') du premier aimant de manoeuvre (9) est réalisé sous la forme d'un cylindre creux et disposé coaxialement par rapport à la tige (4) de la soupape, que l'armature est exécutée sous la forme d'une plaque circulaire (12) et que la face polaire (20) du premier aimant (9) présente une partie en relief (21) en forme d'anneau de cercle et le côté (18) dirigé vers le premier aimant (9) de la plaque-armature (12) présente un creux (22) correspondant.
  7. Dispositif selon la revendication 5, caractérisé en ce que la profondeur de l'étagement (21, 22) est essentiellement égale à la moitié de la course de travail de la soupape d'alternance de flux gazeux (2).
  8. Dispositif selon la revendication 1, caractérisé en ce que l'aimant à caractéristique adaptée (9) présente une caractéristique force-course telle que la force magnétique (FEM9) dépasse la force élastique mécanique (Fmech) dans la zone d'action proche et dans la zone d'action éloignée, et est inférieure à la force élastique mécanique (Fmech) à une distance moyenne des faces polaires (20) des aimants.
EP97103181A 1996-03-02 1997-02-27 Commande électromagnétique de soupape Expired - Lifetime EP0793004B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19608061 1996-03-02
DE19608061A DE19608061C2 (de) 1996-03-02 1996-03-02 Elektromagnetische Ventilbetätigung

Publications (2)

Publication Number Publication Date
EP0793004A1 EP0793004A1 (fr) 1997-09-03
EP0793004B1 true EP0793004B1 (fr) 1998-12-23

Family

ID=7787024

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97103181A Expired - Lifetime EP0793004B1 (fr) 1996-03-02 1997-02-27 Commande électromagnétique de soupape

Country Status (3)

Country Link
EP (1) EP0793004B1 (fr)
DE (2) DE19608061C2 (fr)
ES (1) ES2127649T3 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125803A (en) * 1997-09-22 2000-10-03 Toyota Jidosha Kabushiki Kaisha Electromagnetically driven valve for an internal combustion engine
EP0977213A1 (fr) * 1998-07-29 2000-02-02 DaimlerChrysler AG Actionneur pour commande électromagnétique de soupape
DE19958175C1 (de) * 1999-12-02 2001-02-08 Daimler Chrysler Ag Vorrichtung zur elektromagnetischen Betätigung eines Gaswechselventils einer Brennkraftmaschine
JP4475198B2 (ja) 2005-07-27 2010-06-09 トヨタ自動車株式会社 電磁駆動弁
JP2007309259A (ja) * 2006-05-19 2007-11-29 Toyota Motor Corp 電磁駆動弁
JP2008180140A (ja) * 2007-01-24 2008-08-07 Toyota Motor Corp 電磁駆動弁
DE102007052252A1 (de) * 2007-11-02 2009-05-07 Daimler Ag Betätigungsvorrichtung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3826975A1 (de) * 1988-08-09 1990-02-15 Meyer Hans Wilhelm Stelleinrichtung fuer ein gaswechselventil
DE3920976A1 (de) * 1989-06-27 1991-01-03 Fev Motorentech Gmbh & Co Kg Elektromagnetisch arbeitende stelleinrichtung
DE4336287C1 (de) * 1993-10-25 1995-03-02 Daimler Benz Ag Vorrichtung zur elektromagnetischen Betätigung eines Gaswechselventils
JPH07293215A (ja) * 1994-04-25 1995-11-07 Toyota Motor Corp 内燃機関の弁駆動装置

Also Published As

Publication number Publication date
EP0793004A1 (fr) 1997-09-03
ES2127649T3 (es) 1999-04-16
DE19608061A1 (de) 1997-09-04
DE59700054D1 (de) 1999-02-04
DE19608061C2 (de) 2000-03-23

Similar Documents

Publication Publication Date Title
EP1004066B2 (fr) Soupape hydraulique electromagnetique
DE102008011573B4 (de) Elektromagnetischer Aktuator und Ventil
DE29703585U1 (de) Elektromagnetischer Aktuator mit magnetischer Auftreffdämpfung
EP2486575B1 (fr) Actionneur pour moteur à combustion interne
DE19651846B4 (de) Verfahren zur elektromagnetischen Betätigung eines Gaswechselventils ohne Polflächenberührung
DE102008020893A1 (de) Elektromagnetische Stellvorrichtung
DE19751609B4 (de) Schmalbauender elektromagnetischer Aktuator
DE69624240T2 (de) Brennstoffpumpe
DE10004961A1 (de) Brennstoffeinspritzventil und Verfahren zu dessen Betrieb
EP0793004B1 (fr) Commande électromagnétique de soupape
EP0748416B1 (fr) Commande électromagnétique d'une soupape dans un moteur a combustion interne
DE102008034759A1 (de) Elektropneumatisches Sitzventil, umfassend einen elektromagnetischen Antrieb zum Betätigen eines Ventils
EP0935054A2 (fr) Vérin électromagnétique
EP3698383B1 (fr) Dispositif actionneur électromagnétique et son utilisation
DE19607019A1 (de) Vorrichtung zur elektromagnetischen Betätigung eines Gaswechselventiles für Verbrennungsmotoren
DE19712062A1 (de) Elektromagnetische Stelleinrichtung
DE19529152B4 (de) Aus der Ruhelage selbstanziehender elektromagnetischer Aktuator
DE19908102C1 (de) Ventil mit variablem Ventilquerschnitt
DE19738633A1 (de) Elektromagnetisches Schaltventil
EP3346121B1 (fr) Électrovanne pour un système d'injection de carburant et pompe haute pression à carburant
DE19852287C2 (de) Elektromagnetischer Aktuator und Verwendung des Aktuators
EP3070721B1 (fr) Dispositif d'actionnement
DE19714410A1 (de) Elektromagnetischer Antrieb
DE19643430A1 (de) Steuerventil
EP2288834B1 (fr) Actionneur magnétique azimutal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980526

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 59700054

Country of ref document: DE

Date of ref document: 19990204

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990203

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DAIMLERCHRYSLER AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2127649

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000215

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000222

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020916

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040203

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050901