EP0793004B1 - Electromagnetic valve control - Google Patents

Electromagnetic valve control Download PDF

Info

Publication number
EP0793004B1
EP0793004B1 EP97103181A EP97103181A EP0793004B1 EP 0793004 B1 EP0793004 B1 EP 0793004B1 EP 97103181 A EP97103181 A EP 97103181A EP 97103181 A EP97103181 A EP 97103181A EP 0793004 B1 EP0793004 B1 EP 0793004B1
Authority
EP
European Patent Office
Prior art keywords
armature
solenoid
magnetic core
force
gas exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97103181A
Other languages
German (de)
French (fr)
Other versions
EP0793004A1 (en
Inventor
Hans Gander
Jürgen Schüle
Peter Dr. Jänker
Frank Hermle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler Benz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz AG filed Critical Daimler Benz AG
Publication of EP0793004A1 publication Critical patent/EP0793004A1/en
Application granted granted Critical
Publication of EP0793004B1 publication Critical patent/EP0793004B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/13Electromagnets; Actuators including electromagnets with armatures characterised by pulling-force characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means

Definitions

  • the invention relates to a device for electromagnetic Actuation of a gas exchange valve for internal combustion engines according to the preamble of claim 1.
  • a device in which one arranged on a valve stem of a gas exchange valve Anchor plate using a spring system between an open and a closed position can be moved back and forth. Furthermore, are on opposite sides of the anchor plate two switching magnets are provided, with the help of which the anchor plate are held in the open or closed position can.
  • the switching magnets are so-called holding magnets trained their magnetic force essentially in the near range unfold the magnetic core.
  • DE 38 26 975 A1 is also a generic one Device with a sleeve for guiding the anchor plate is known, the sleeve extending over the area between the pole faces of the two switching magnets extends.
  • the ferromagnetic Properties of this sleeve are different over its length, with only minor in the middle, in the however, stronger ferromagnetic properties in both edge areas owns. Through this sleeve, the long-distance effect of both Switching magnets affected equally.
  • the open position assigned switching magnet as a so-called characteristic magnet with increased remote effect compared to the second switching magnet trained, the catch energy, which is by the Switching magnets, especially when the combustion chamber counterpressures change is spent, reduced.
  • the amount of energy required in an early phase of the opening movement fed which leads to good dynamics, i.e. fast Switching operation, leads.
  • FIG. 1 and 2 is a device for electromagnetic Actuation of a gas exchange valve 2 - hereinafter electromagnetic Valve control called - one not closer Internal combustion engines shown overall designated 1.
  • the Gas exchange valve 2 consisting of a valve stem 4, one Valve guide 5 and a valve plate 6 is in one Gas guide channel 3 arranged.
  • the valve plate 6 cooperates a valve seat 7 provided in the gas duct 3 together and serves to close or release the Throttle duct 3.
  • the electromagnetic valve control 1 is used for actuation of the gas exchange valve 2, the gas exchange valve 2 between a closed position, as shown in Fig. 1, and one Open position, as shown in Fig. 2, movable back and forth is.
  • An electromagnetic valve control 1 has the advantage on that the tax times are freely chosen in a wide range can be.
  • the electromagnetic valve control 1 exists of two cylindrical switching magnets 8, 9, which are coaxial to Valve stem 4 and stationary with respect to valve guide 5 or arranged opposite the gas duct 3 are.
  • the first switching magnet 9 is for the open position and the second switching magnet 8 for the closed position of the gas exchange valve 2 provided.
  • Each switching magnet is made in a known manner 8, 9 from an outer cup-shaped magnetic core 10, 10 ' and an inner coil 11, 11 '.
  • the valve stem 4 is in the area between the two switching magnets 8, 9 a perpendicular to the longitudinal axis of the gas exchange valve 2 arranged anchor plate 12 is provided.
  • Between Switching magnet 8, 9 and the armature plate 12 is one Valve spring 13, 14 provided.
  • the upper valve spring 13 supports itself on the pot bottom 15 of the second switching magnet 8 and on the Top 17 of the anchor plate 12, while the lower valve spring 14 on the underside 18 of the anchor plate 12 and lower pot base 16 supports.
  • the upper one Valve spring 13 a force in the opening direction and the lower one Valve spring 14 in the closing direction of the gas exchange valve 2.
  • the anchor plate 12 and the associated one moves Gas exchange valve 2 between the pole faces of the solenoids 8, 9 back and forth.
  • the inner coil 11 of the second switching magnet 8 excited by applying a voltage.
  • the inner coil 11 ' the first switching magnet 9 is not in this state Tension.
  • the Tension on the upper coil 11 released. This will make the Anchor plate 12 by the force of the preloaded spring 13 in Open position moves. Shortly before reaching the open position now the coil 11 'of the first switching magnet 9 by applying a voltage are excited so that the anchor plate 12 by the resulting magnetic force of the switching magnet 9 is captured and is held in this open position (see. Fig. 2).
  • the spring system 13, 14 is now designed so that the anchor plate 12 an oscillating movement between the pole faces of the two switching magnets 8, 9 executes. In the top and bottom The turning point is then the anchor plate 12 by excitation of the corresponding switching magnet 8, 9 captured and held.
  • gas exchange valves 2 with varying back pressures work, especially with exhaust valves of internal combustion engines, the problem arises that the anchor plate 12 higher back pressures by the force of the spring system 13, 14 even no longer in the vicinity of the first switching magnet 9 reached.
  • To anchor plate 12 in this situation anyway capturing and capturing must have very high capture energies be used. To get around this problem therefore proposed the first switching magnet 9 as a so-called Train characteristic magnets.
  • the magnetic core 10 ' is formed so that the magnetic force extends further towards the far field with the same current flow.
  • flux guide pieces 19 from one magnetically conductive material on the magnetic core 10 'or on the Bottom 18 anchor plate 12 can be arranged.
  • FIG. 1 is a hollow cylindrical flow guide 19th coaxial to the valve stem 4 on the associated with the armature plate 12 Pole surface 20 of the first switching magnet 9 is arranged.
  • the inner circumference of the flux guide piece 19 is larger than the outer circumference of the anchor plate 12 selected. This allows the Anchor plate 12 their oscillating movement into the Execute the interior of the hollow cylindrical flux guide 19.
  • the armature plate 12 can continue on the armature plate 12 facing pole surface 20 of the first switching magnet 9 come to rest.
  • FIG. 2 Another exemplary embodiment is shown in FIG. 2.
  • hollow cylindrical flux guide 19 also coaxial to Valve stem 4 on the first solenoid 9 facing Bottom 18 of the anchor plate 12 is arranged.
  • FIG. 3 shows a detail of a further exemplary embodiment an electromagnetic valve control according to the invention, the same parts compared to FIGS. 1 and 2 with are identified by the same reference numerals.
  • the exemplary embodiment described are the valve springs 13, 14 arranged outside the switching magnets 8, 9 and in their Function interchanged.
  • the Remote effect of the lower switching magnet 9 increased in that the Pole surface 20 of the lower switching magnet 9 and the underside 18 the anchor plate 12 have corresponding steps 21, 22.
  • the Underside 18 of the anchor plate 12 has a corresponding depression 22 such that the survey 21 in the open position of the Gas exchange valve protrudes into the recess 22.
  • the depth of the step corresponds to half the working distance of the gas exchange valve.
  • the switching magnet 8 is also a flat armature magnet with a distinctive hold function. The is accordingly Top 17 of the anchor plate 12 is executed flat.
  • the mode of operation of the devices according to the invention will be explained in more detail below with the aid of a schematic illustration of the force-displacement characteristic shown in FIG. 4.
  • the magnetic forces F EM8 , F EM9 of the two switching magnets 8, 9 and the resulting mechanical force F mech of the spring system 13, 14 are plotted as a function of the air gap between the pole faces and the armature plate 12.
  • the distance between the pole faces is and the middle rest position of the mechanical spring system 4 mm. Accordingly, no mechanical force F mech acts on the anchor plate 12 in this middle rest position.
  • the resulting mechanical force F mech increases linearly when deflected from this rest position up to a maximum force F max1 when one of the two switching positions is reached.
  • the force- displacement characteristic curve F EM8 of the switching magnet 8 shows a typical profile of a flat armature magnet with a pronounced holding function.
  • the force F EM8 decreases quadratically from a maximum value F max3 with an air gap of zero - that is to say in the closed position - and already strives towards zero in the middle rest position. Deviating from this, the force- displacement characteristic curve F EM9 of the switching magnet 9 shows a changed course through the measures for influencing the characteristic curve.
  • the magnetic force F EM9 of the switching magnet 9 is below the curve F EM8 for the switching magnet 8.
  • the maximum force F max2 is just above the resulting mechanical force F mech , but significantly below the maximum force F max3 of the switching magnet 8.
  • the force F EM9 has a local maximum, the magnetic force F EM9 being above the magnetic force F EM8 , but also above the resulting mechanical force F mech .
  • the anchor plate 12 swings from the one end position (with an air gap of approx. 8 mm) beyond the middle rest position with an air gap of 4 mm into the area of a small air gap. If the friction losses were neglected, the anchor plate 12 would reach the other end position with an air gap of 0 mm due to the mechanical vibration. Taking friction losses into account, the anchor plate 12 does not reach this end position, however, but must be captured by the corresponding switching magnet 8, 9. In order for this to be possible with a switching magnet according to the force- displacement characteristic curve F EM8, the armature plate 12 must at least reach such an end position in which the magnetic force F EM8 exceeds the mechanical restoring force F mech .
  • this corresponds to an air gap of less than 0.7 mm. If the anchor plate 12 does not come into this end position during an opening process due to an increased gas back pressure, then the entire characteristic curve would have to be stretched by an increased energy supply in a switching magnet with a force curve according to the force characteristic curve F EM8, so that the magnetic force F EM8 the restoring force F mech in the end position.
  • a solenoid with a force curve according to the force characteristic F EM9 shows a better solution. Even before the middle rest position is reached, the magnetic force F EM9 exceeds the mechanical force, so that the anchor plate 12 already experiences an accelerating force in the open position in this position. This has a positive effect on the opening time. In the further movement towards the open position (0 mm air gap), the force characteristic F EM9 of the switching magnet 9 drops again and falls below the mechanical spring characteristic F mech . As a result, the gas exchange valve is braked by the net effect of mechanical spring force and magnetic force, and thus kinetic energy is withdrawn. This leads to a softer impact and thus a reduction in noise.
  • the magnetic force F EM9 rises steeply again and then again exceeds the mechanical restoring force F mech .
  • the armature plate 12 can thereby be captured by the switching magnet 9 and can be held securely due to the high magnetic force F max2 .
  • the net energy that is supplied to the armature plate 12 by the switching magnet 9 can be adjusted to the respective operating case.
  • the comparison of the two force characteristics F EM8 , F EM9 shows, however, that with approximately the same energy supply, the functionality of the switching magnet 9 is improved with regard to changing back pressures.

Description

Die Erfindung betrifft eine Vorrichtung zur elektromagnetischen Betätigung eines Gaswechselventils für Brennkraftmaschinen gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a device for electromagnetic Actuation of a gas exchange valve for internal combustion engines according to the preamble of claim 1.

Aus der DE 43 36 287 C1 ist eine Vorrichtung bekannt, bei der eine an einem Ventilschaft eines Gaswechselventils angeordnete Ankerplatte mit Hilfe eines Federsystems zwischen einer Offen- und einer Schließstellung hin- und herbewegbar vorgesehen ist. Weiterhin sind auf gegenüberliegenden Seiten der Ankerplatte zwei Schaltmagnete vorgesehen, mit deren Hilfe die Ankerplatte in der Offen- beziehungsweise Schließstellung gehalten werden kann. Die Schaltmagnete sind als sogenannte Haftmagnete ausgebildet, die ihre Magnetkraft im wesentlichen im Nahbereich des Magnetkerns entfalten.From DE 43 36 287 C1 a device is known in which one arranged on a valve stem of a gas exchange valve Anchor plate using a spring system between an open and a closed position can be moved back and forth. Furthermore, are on opposite sides of the anchor plate two switching magnets are provided, with the help of which the anchor plate are held in the open or closed position can. The switching magnets are so-called holding magnets trained their magnetic force essentially in the near range unfold the magnetic core.

Aus der DE 38 26 975 A1 ist weiterhin eine gattungsgemäße Vorrichtung mit einer Hülse zur Führung der Ankerplatte bekannt, wobei sich die Hülse über den Bereich zwischen den Polflächen der beiden Schaltmagnete erstreckt. Die ferromagnetischen Eigenschaften dieser Hülse sind über ihre Länge gesehen unterschiedlich, wobei sie im Mittelbereich nur geringe, in den beiden Randbereichen jedoch stärkere ferromagnetische Eigenschaften besitzt. Durch diese Hülse wird die Fernwirkung beider Schaltmagnete gleichermaßen beeinflußt.DE 38 26 975 A1 is also a generic one Device with a sleeve for guiding the anchor plate is known, the sleeve extending over the area between the pole faces of the two switching magnets extends. The ferromagnetic Properties of this sleeve are different over its length, with only minor in the middle, in the however, stronger ferromagnetic properties in both edge areas owns. Through this sleeve, the long-distance effect of both Switching magnets affected equally.

Während der Betätigung der Gaswechselventile treten Energieverluste durch mechanische Reibung und insbesonderem bei Öffnen von Auslaßventilen in Form von Arbeit gegen den Brennraumgasdruck auf. Bei hohen Brennraumdrücken, also bei Vollastbetrieb, ist die vom Gaswechselventil beim Öffnen zu leistende Gasarbeit erheblich. Ohne Energiezufuhr würde das von der Feder angetriebene Gaswechselventil in einer Zwischenposition die Bewegung umkehren. Um eine exakte Ventilfunktion zu bewirken, müssen zwei Bedingungen erfüllt sein. Zum einen muß im Umkehrpunkt der Ventilbewegung die Kraft des Öffnetmagneten größer als die auf das Gaswechselventil wirkenden Kräfte sein. Zum anderen müssen die Energieverluste möglichst exakt ausgeglichen werden, um die Aufschlaggeschwindigkeit des Gaswechselventils gering zu halten und um die Öffnetposition sicher zu erreichen. Bei einem üblichen Flachankermagnet ist die erste Bedingung nur schwer zu erfüllen. Um eine ausreichende Kraft zu bewirken muß ein Flachankermagnet stark bestromt werden. Dann ist aber die dem Gaswechselventil zugeführte Energie zu hoch, was mit einer hohen Aufschlaggeschwindigkeit und damit großer Verschleiß- und Geräuschwirkung verbunden ist. Auch ist es wegen der Trägheit von Elektromagneten nicht möglich, während der Ventilbewegung den Strom im ausreichenden Maße abzusteuern, um dadurch die Energiezufuhr zu verringern.Energy losses occur during the actuation of the gas exchange valves due to mechanical friction and especially when opening of exhaust valves in the form of work against the combustion chamber gas pressure on. At high combustion chamber pressures, i.e. at full load, is the one to be performed by the gas exchange valve when opening Gas work considerably. Without energy, that would be the feather driven gas exchange valve in an intermediate position Reverse movement. To achieve an exact valve function, two conditions must be met. For one thing, in Reversal point of the valve movement the force of the opening magnet be greater than the forces acting on the gas exchange valve. Secondly, the energy losses must be as precise as possible be balanced to the speed of impact of the Keep gas exchange valve low and around the open position to reach safely. In the case of a conventional flat armature magnet first condition difficult to meet. To be sufficient A flat armature magnet must be energized to produce force will. But then the gas exchange valve is supplied Energy too high, what with a high impact speed and is associated with great wear and noise. Nor is it because of the inertia of electromagnets possible while the valve is moving enough current Control dimensions to reduce energy consumption.

Es ist die Aufgabe der Erfindung, eine Vorrichtung zur elektromagnetischen Betätigung eines Gaswechselventils für Brennkraftmaschinen derart zu verbessern, daß trotz wechselndem Gegendruck ein Betrieb mit verringertem Energiebedarf, geringem Verschleiß und niederer Geräuschentwicklung möglich ist.It is the object of the invention to provide an electromagnetic device Actuation of a gas exchange valve for internal combustion engines to improve in such a way that despite changing back pressure an operation with reduced energy consumption, low wear and low noise is possible.

Die Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.The object is achieved by the characterizing Features of claim 1 solved.

Durch die Verwendung zweier unterschiedlicher Schaltmagneten in einer elektromagnetischen Ventilsteuerung, wobei der der Offenstellung zugeordnete Schaltmagnet als sogenannter Kennlinienmagnet mit gegenüber dem zweiten Schaltmagnet erhöhter Fernwirkung ausgebildet ist, kann die Fangenergie, die von den Schaltmagneten insbesondere bei wechselnden Brennraumgegendrücken aufgewendet wird, reduziert werden. Außerdem wird die notwendige Energiemenge in einer Frühphase der Öffnetbewegung zugeführt, was zu einer guten Dynamik, also einem schnellen Schaltvorgang, führt. By using two different switching magnets in an electromagnetic valve control, the open position assigned switching magnet as a so-called characteristic magnet with increased remote effect compared to the second switching magnet trained, the catch energy, which is by the Switching magnets, especially when the combustion chamber counterpressures change is spent, reduced. In addition, the amount of energy required in an early phase of the opening movement fed, which leads to good dynamics, i.e. fast Switching operation, leads.

Die in den Unteransprüchen 5 bis 7 beschriebene Ausgestaltung der Flußleitstücke weist den Vorteil auf, daß kein zusätzlicher Bauraum benötigt wird.The configuration described in subclaims 5 to 7 the flow guide has the advantage that no additional Space is needed.

Weitere Vorteile und Ausgestaltungen gehen aus den Unteransprüchen und der Beschreibung hervor. Die Erfindung ist nachstehend anhand einer Zeichnung näher beschrieben, wobei

Fig. 1
ein erstes Ausführungsbeispiel einer Vorrichtung zur elektromagnetischen Betätigung eines Gaswechselventils für Brennkraftmaschinen in Schließstellung im Schnitt,
Fig. 2
ein zweites Ausführungsbeispiel einer Vorrichtung zur elektromagnetischen Betätigung eines Gaswechselventils für Brennkraftmaschinen in Offenstellung, ebenfalls im Schnitt,
Fig. 3
ein drittes Ausführungsbeispiel einer Vorrichtung zur elektromagnetischen Betätigung eines Gaswechselventils für Brennkraftmaschinen ebenfalls im Schnitt und
Fig. 4
ein Beispieldiagramm für eine Kraft-Weg-Kennlinie einer erfindungsgemäßen elektromagnetischen Ventilsteuerung zeigt.
Further advantages and configurations emerge from the subclaims and the description. The invention is described below with reference to a drawing, wherein
Fig. 1
1 shows a first exemplary embodiment of a device for the electromagnetic actuation of a gas exchange valve for internal combustion engines in the closed position,
Fig. 2
2 shows a second exemplary embodiment of a device for the electromagnetic actuation of a gas exchange valve for internal combustion engines in the open position, likewise in section,
Fig. 3
a third embodiment of a device for electromagnetic actuation of a gas exchange valve for internal combustion engines also in section and
Fig. 4
shows an example diagram for a force-displacement characteristic of an electromagnetic valve control according to the invention.

In den Fig. 1 und 2 ist eine Vorrichtung zur elektromagnetischen Betätigung eines Gaswechselventils 2 - im folgenden elektromagnetische Ventilsteuerung genannt - einer nicht näher gezeigten Brennkraftmaschinen insgesamt mit 1 bezeichnet. Das Gaswechselventil 2, bestehend aus einem Ventilschaft 4, einer Ventilführung 5 und einem Ventilteller 6, ist in einem Gasführungskanal 3 angeordnet. Der Ventilteller 6 wirkt mit einem im Gasführungskanal 3 vorgesehenen Ventilsitz 7 zusammen und dient zum Verschließen beziehungsweise Freigeben des Gasführungskanals 3. 1 and 2 is a device for electromagnetic Actuation of a gas exchange valve 2 - hereinafter electromagnetic Valve control called - one not closer Internal combustion engines shown overall designated 1. The Gas exchange valve 2, consisting of a valve stem 4, one Valve guide 5 and a valve plate 6 is in one Gas guide channel 3 arranged. The valve plate 6 cooperates a valve seat 7 provided in the gas duct 3 together and serves to close or release the Throttle duct 3.

Die elektromagnetische Ventilsteuerung 1 dient zur Betätigung des Gaswechselventils 2, wobei das Gaswechselventil 2 zwischen einer Schließstellung, wie in Fig. 1 dargestellt, und einer Offenstellung, wie in Fig. 2 dargestellt, hin- und herbewegbar ist. Eine elektromagnetische Ventilsteuerung 1 weist den Vorteil auf, daß die Steuerzeiten in einem weiten Bereich frei gewählt werden können. Die elektromagnetische Ventilsteuerung 1 besteht aus zwei zylinderförmigen Schaltmagneten 8, 9, die koaxial zum Ventilschaft 4 und ortsfest gegenüber der Ventilführung 5 beziehungsweise gegenüber dem Gasführungskanal 3 angeordnet sind. Der erste Schaltmagnet 9 ist für die Offenstellung und der zweite Schaltmagnet 8 für die Schließstellung des Gaswechselventils 2 vorgesehen. In bekannter Weise besteht jeder Schaltmagnet 8, 9 aus einem äußeren topfförmigen Magnetkern 10, 10' und einer inneren Spule 11, 11'.The electromagnetic valve control 1 is used for actuation of the gas exchange valve 2, the gas exchange valve 2 between a closed position, as shown in Fig. 1, and one Open position, as shown in Fig. 2, movable back and forth is. An electromagnetic valve control 1 has the advantage on that the tax times are freely chosen in a wide range can be. The electromagnetic valve control 1 exists of two cylindrical switching magnets 8, 9, which are coaxial to Valve stem 4 and stationary with respect to valve guide 5 or arranged opposite the gas duct 3 are. The first switching magnet 9 is for the open position and the second switching magnet 8 for the closed position of the gas exchange valve 2 provided. Each switching magnet is made in a known manner 8, 9 from an outer cup-shaped magnetic core 10, 10 ' and an inner coil 11, 11 '.

Am Ventilschaft 4 ist im Bereich zwischen den beiden Schaltmagneten 8, 9 eine senkrecht zur Längsachse des Gaswechselventils 2 angeordnete Ankerplatte 12 vorgesehen. Zwischen den Schaltmagneten 8, 9 und der Ankerplatte 12 ist jeweils eine Ventilfeder 13, 14 vorgesehen. Die obere Ventilfeder 13 stützt sich am Topfboden 15 des zweiten Schaltmagneten 8 und an der Oberseite 17 der Ankerplatte 12 ab, während die untere Ventilfeder 14 sich an der Unterseite 18 der Ankerplatte 12 und des unteren Topfbodens 16 abstützt. Hierbei bewirkt die obere Ventilfeder 13 eine Kraft in Öffnungsrichtung und die untere Ventilfeder 14 in Schließrichtung des Gaswechselventils 2.The valve stem 4 is in the area between the two switching magnets 8, 9 a perpendicular to the longitudinal axis of the gas exchange valve 2 arranged anchor plate 12 is provided. Between Switching magnet 8, 9 and the armature plate 12 is one Valve spring 13, 14 provided. The upper valve spring 13 supports itself on the pot bottom 15 of the second switching magnet 8 and on the Top 17 of the anchor plate 12, while the lower valve spring 14 on the underside 18 of the anchor plate 12 and lower pot base 16 supports. Here, the upper one Valve spring 13 a force in the opening direction and the lower one Valve spring 14 in the closing direction of the gas exchange valve 2.

Im Betrieb bewegt sich die Ankerplatte 12 und das damit verbundene Gaswechselventil 2 zwischen den Polflächen der Schaltmagnete 8, 9 hin und her. Um das Gaswechselventil 2 gegen die Kraft der Ventilfeder 13 in der Schließstellung zu halten (siehe Fig. 1) wird die innere Spule 11 des zweiten Schaltmagnets 8 durch Anlegen einer Spannung erregt. An der inneren Spule 11' des ersten Schaltmagneten 9 liegt in diesem Zustand keine Spannung an. Zum Öffnen des Gaswechselventils 2 wird nun die Spannung an der oberen Spule 11 gelöst. Dadurch wird die Ankerplatte 12 durch die Kraft der vorgespannten Feder 13 in Offenstellung bewegt. Kurz vor Erreichen der Offenstellung kann nun die Spule 11' des ersten Schaltmagnetes 9 durch Anlegen einer Spannung erregt werden, so daß die Ankerplatte 12 durch die resultierende Magnetkraft des Schaltmagnetes 9 eingefangen und in dieser Offenstellung festgehalten wird (siehe. Fig. 2).In operation, the anchor plate 12 and the associated one moves Gas exchange valve 2 between the pole faces of the solenoids 8, 9 back and forth. To the gas exchange valve 2 against the Hold the force of the valve spring 13 in the closed position (see 1) the inner coil 11 of the second switching magnet 8 excited by applying a voltage. On the inner coil 11 ' the first switching magnet 9 is not in this state Tension. To open the gas exchange valve 2, the Tension on the upper coil 11 released. This will make the Anchor plate 12 by the force of the preloaded spring 13 in Open position moves. Shortly before reaching the open position now the coil 11 'of the first switching magnet 9 by applying a voltage are excited so that the anchor plate 12 by the resulting magnetic force of the switching magnet 9 is captured and is held in this open position (see. Fig. 2).

Das Federsystem 13, 14 ist nun so ausgelegt, daß die Ankerplatte 12 eine oszillierende Bewegung zwischen den Polflächen der beiden Schaltmagneten 8, 9 ausführt. Im oberen und unteren Umkehrpunkt wird dann die Ankerplatte 12 durch Erregung des entsprechenden Schaltmagneten 8, 9 eingefangen und festgehalten. Bei Gaswechselventilen 2, die bei variierenden Gegendrücken arbeiten, insbesondere bei Auslaßventilen von Brennkraftmaschinen, stellt sich das Problem, daß die Ankerplatte 12 bei höheren Gegendrücken durch die Kraft des Federsystems 13, 14 gar nicht mehr in den Nahbereich des ersten Schaltmagneten 9 gelangt. Um die Ankerplatte 12 in dieser Situation dennoch einfangen und festhalten zu können, müssen sehr hohe Fangenergien aufgewendet werden. Um dieses Problem zu umgehen wird deshalb vorgeschlagen, den ersten Schaltmagneten 9 als sogenannten Kennlinienmagneten auszubilden. Bei Kennlinienmagneten wird der Magnetkern 10' so ausgebildet, daß sich die Magnetkraft bei gleichem Stromfluß weiter in Richtung Fernfeld erstreckt. Hierzu können beispielsweise Flußleitstücke 19 aus einem magnetisch leitenden Material am Magnetkern 10' oder an der Unterseite 18 Ankerplatte 12 angeordnet werden.The spring system 13, 14 is now designed so that the anchor plate 12 an oscillating movement between the pole faces of the two switching magnets 8, 9 executes. In the top and bottom The turning point is then the anchor plate 12 by excitation of the corresponding switching magnet 8, 9 captured and held. With gas exchange valves 2, with varying back pressures work, especially with exhaust valves of internal combustion engines, the problem arises that the anchor plate 12 higher back pressures by the force of the spring system 13, 14 even no longer in the vicinity of the first switching magnet 9 reached. To anchor plate 12 in this situation anyway capturing and capturing must have very high capture energies be used. To get around this problem therefore proposed the first switching magnet 9 as a so-called Train characteristic magnets. For characteristic magnets the magnetic core 10 'is formed so that the magnetic force extends further towards the far field with the same current flow. For this purpose, for example, flux guide pieces 19 from one magnetically conductive material on the magnetic core 10 'or on the Bottom 18 anchor plate 12 can be arranged.

Gemäß Fig. 1 ist ein hohlzylinderförmiges Flußleitstück 19 koaxial zum Ventilschaft 4 an der der Ankerplatte 12 zugeordneten Polfläche 20 des ersten Schaltmagneten 9 angeordnet. Der Innenumfang des Flußleitstückes 19 wird hierbei größer als der Außenumfang der Ankerplatte 12 gewählt. Dadurch kann die Ankerplatte 12 ihre oszillierende Bewegung bis in den Innenbereich des hohlzylindrischen Flußleitstückes 19 ausführen. Bei Erregung des ersten Schaltmagneten 9 kann die Ankerplatte 12 weiterhin an der der Ankerplatte 12 zugewandten Polfläche 20 des ersten Schaltmagneten 9 zur Anlage kommen. 1 is a hollow cylindrical flow guide 19th coaxial to the valve stem 4 on the associated with the armature plate 12 Pole surface 20 of the first switching magnet 9 is arranged. The inner circumference of the flux guide piece 19 is larger than the outer circumference of the anchor plate 12 selected. This allows the Anchor plate 12 their oscillating movement into the Execute the interior of the hollow cylindrical flux guide 19. When the first switching magnet 9 is excited, the armature plate 12 can continue on the armature plate 12 facing pole surface 20 of the first switching magnet 9 come to rest.

Ein weiteres Ausführungsbeispiel zeigt Fig. 2. Hier ist das hohlzylindrische Flußleitstück 19 ebenfalls koaxial zum Ventilschaft 4 an der dem ersten Schaltmagneten 9 zugewandten Unterseite 18 der Ankerplatte 12 angeordnet. Hierbei sind die Abmessungen des Flußleitstückes 19, des topfförmigen Magnetkerns 10' des ersten Schaltmagneten 9 und der Ventilfeder 14 so gewählt, daß das Flußleitstück 19 in der Schließstellung in einen Zwischenraum zwischen dem topfförmigen Magnetkern 10' und der Ventilfeder 14 hineinragt.Another exemplary embodiment is shown in FIG. 2. Here it is hollow cylindrical flux guide 19 also coaxial to Valve stem 4 on the first solenoid 9 facing Bottom 18 of the anchor plate 12 is arranged. Here are the Dimensions of the flux guide 19, the cup-shaped magnetic core 10 'of the first switching magnet 9 and the valve spring 14 so chosen that the Flußleitstück 19 in the closed position in a space between the cup-shaped magnetic core 10 'and the valve spring 14 protrudes.

Durch beide Anordnungen oder deren Kombination wird gewährleistet, daß die kreisförmige Ankerplatte 12 auch bei größeren Gegendrücken durch den ersten Schaltmagneten 9 ohne eine übermäßige Erhöhung der notwendigen Fangenergie in die Offenstellung überführt und dort gehalten werden kann. Neben den gezeigten Ausführungsbeispielen sind selbstverständlich auch andere Ausführungsformen für die Flußleitstücke denkbar. Entscheidend ist lediglich, daß die Fernwirkung des betroffenen Schaltmagnetes erhöht wird.Both arrangements or their combination ensures that the circular anchor plate 12 even with larger ones Push through the first switching magnet 9 without one excessive increase in the necessary catch energy in the open position transferred and kept there. In addition to the The exemplary embodiments shown are of course also other embodiments for the Flußleitteile conceivable. The only decisive factor is that the distant effect of the person concerned Switching magnet is increased.

So zeigt Fig. 3 ausschnittsweise ein weiteres Ausführungsbeispiel einer erfindungsgemäßen elektromagnetischen Ventilsteuerung, wobei gleiche Teile gegenüber den Fig. 1 und 2 mit gleichen Bezugszeichen gekennzeichnet sind. Abweichend vom oben beschriebenen Ausführungsbeispiel sind die Ventilfedern 13, 14 außerhalb der Schaltmagnete 8, 9 angeordnet und in ihrer Funktion vertauscht. Bei diesem Ausführungsbeispiel wird die Fernwirkung des unteren Schaltmagneten 9 dadurch erhöht, daß die Polfläche 20 des unteren Schaltmagneten 9 und die Unterseite 18 der Ankerplatte 12 korrespondierende Stufungen 21, 22 aufweisen. Auf der Polfläche 20 des unteren Schaltmagneten ist hierfür eine kreisringförmige Erhebung 21 vorgesehen. Entsprechend weist die Unterseite 18 der Ankerplatte 12 eine korrespondierende Vertiefung 22 derart auf, daß die Erhebung 21 in Offenstellung des Gaswechselventils in die Vertiefung 22 ragt. Vorzugsweise entspricht die Stufentiefe dem halben Arbeitsweg des Gaswechselventils. Der Schaltmagnet 8 ist weiterhin als Flachankermagnet mit ausgeprägter Haltefunktion ausgeführt. Entsprechend ist die Oberseite 17 der Ankerplatte 12 eben ausgeführt.3 shows a detail of a further exemplary embodiment an electromagnetic valve control according to the invention, the same parts compared to FIGS. 1 and 2 with are identified by the same reference numerals. Different from the above The exemplary embodiment described are the valve springs 13, 14 arranged outside the switching magnets 8, 9 and in their Function interchanged. In this embodiment, the Remote effect of the lower switching magnet 9 increased in that the Pole surface 20 of the lower switching magnet 9 and the underside 18 the anchor plate 12 have corresponding steps 21, 22. For this, there is one on the pole face 20 of the lower switching magnet annular elevation 21 is provided. Accordingly, the Underside 18 of the anchor plate 12 has a corresponding depression 22 such that the survey 21 in the open position of the Gas exchange valve protrudes into the recess 22. Preferably the depth of the step corresponds to half the working distance of the gas exchange valve. The switching magnet 8 is also a flat armature magnet with a distinctive hold function. The is accordingly Top 17 of the anchor plate 12 is executed flat.

Die Wirkungsweise der erfindungsgemäßen Vorrichtungen soll im folgenden anhand einer in Fig. 4 gezeigten schematischen Darstellung der Kraft-Weg-Kennlinie näher erläutert werden. Aufgetragen sind die magnetischen Kräfte FEM8, FEM9 der beiden Schaltmagnete 8, 9, sowie die resultierende mechanische Kraft Fmech des Federsystems 13, 14 als Funktion des Luftspaltes zwischen den Polflächen und der Ankerplatte 12. Gemäß Ausführungsbeispiel beträgt die Entfernung zwischen den Polflächen und der mittleren Ruhelage des mechanischen Federsystems 4 mm. Demnach wirkt in dieser mittleren Ruhelage keine mechanische Kraft Fmech auf die Ankerplatte 12. Dagegen nimmt die resultierende mechanische Kraft Fmech bei der Auslenkung aus dieser Ruhelage linear bis zu einer Maximalkraft Fmax1 bei Erreichen einer der beiden Schaltstellungen zu.The mode of operation of the devices according to the invention will be explained in more detail below with the aid of a schematic illustration of the force-displacement characteristic shown in FIG. 4. The magnetic forces F EM8 , F EM9 of the two switching magnets 8, 9 and the resulting mechanical force F mech of the spring system 13, 14 are plotted as a function of the air gap between the pole faces and the armature plate 12. According to the exemplary embodiment, the distance between the pole faces is and the middle rest position of the mechanical spring system 4 mm. Accordingly, no mechanical force F mech acts on the anchor plate 12 in this middle rest position. In contrast, the resulting mechanical force F mech increases linearly when deflected from this rest position up to a maximum force F max1 when one of the two switching positions is reached.

Die Kraft-Weg-Kennlinie FEM8 des Schaltmagneten 8 zeigt einen typischen Verlauf eines Flachankermagneten mit ausgeprägter Haltefunktion. Die Kraft FEM8 nimmt von einem Maximalwert Fmax3 bei Luftspalt Null - das heißt in Schließstellung - quadratisch ab und strebt in der mittleren Ruhelage bereits gegen Null. Abweichend hiervon zeigt die Kraft-Weg-Kennlinie FEM9 des Schaltmagneten 9 durch die Maßnahmen zur Kennlinienbeeinflussung einen veränderten Verlauf auf. Bei kleinem Luftspalt liegt die magnetische Kraft FEM9 des Schaltmagneten 9 unter dem Verlauf FEM8 für den Schaltmagneten 8. Die Maximalkraft Fmax2 liegt knapp über der resultierenden mechanischen Kraft Fmech, aber deutlich unter der Maximalkraft Fmax3 des Schaltmagneten 8. Bei größerem Luftspalt weist die Kraft FEM9 jedoch ein lokales Maximum auf, wobei hier die magnetische Kraft FEM9 über der magnetischen Kraft FEM8, aber auch über der resultierenden mechanischen Kraft Fmech liegt.The force- displacement characteristic curve F EM8 of the switching magnet 8 shows a typical profile of a flat armature magnet with a pronounced holding function. The force F EM8 decreases quadratically from a maximum value F max3 with an air gap of zero - that is to say in the closed position - and already strives towards zero in the middle rest position. Deviating from this, the force- displacement characteristic curve F EM9 of the switching magnet 9 shows a changed course through the measures for influencing the characteristic curve. With a small air gap, the magnetic force F EM9 of the switching magnet 9 is below the curve F EM8 for the switching magnet 8. The maximum force F max2 is just above the resulting mechanical force F mech , but significantly below the maximum force F max3 of the switching magnet 8. With a larger air gap However, the force F EM9 has a local maximum, the magnetic force F EM9 being above the magnetic force F EM8 , but also above the resulting mechanical force F mech .

Mit dieser Anordnung ergibt sich bei einem Schaltvorgang folgende Situation. Die Ankerplatte 12 schwingt aus der einen Endstellung (bei ca. 8 mm Luftspalt) kommend über die mittlere Ruhelage bei 4 mm Luftspalt hinaus in den Bereich eines kleinen Luftspaltes. Bei Vernachlässigung der Reibungsverluste würde die Ankerplatte 12 aufgrund der mechanischen Schwingung die andere Endstellung bei Luftspalt 0 mm erreichen. Unter Berücksichtigung von Reibungsverlusten erreicht die Ankerplatte 12 diese Endstellung jedoch nicht, sondern sie muß durch den entsprechenden Schaltmagneten 8,9 eingefangen werden. Damit dies bei einem Schaltmagneten gemäß Kraft-Weg-Kennlinie FEM8 möglich ist, muß die Ankerplatte 12 zumindest eine solche Endposition erreichen, in der die magnetische Kraft FEM8 die mechanische Rückstellkraft Fmech übersteigt. Im Ausführungsbeispiel entspricht dies einem Luftspalt kleiner 0.7 mm. Kommt nun die Ankerplatte 12 bei einem Öffnenvorgang aufgrund eines erhöhten Gasgegendruckes nicht in diese Endposition, so müßte bei einem Schaltmagneten mit einem Kraftverlauf gemäß Kraftkennlinie FEM8 die gesamte Kennlinie durch eine erhöhte Energiezufuhr soweit gestreckt werden, daß die magnetische Kraft FEM8 die Rückstellkraft Fmech in der Endposition übersteigt.With this arrangement, the following situation arises during a switching operation. The anchor plate 12 swings from the one end position (with an air gap of approx. 8 mm) beyond the middle rest position with an air gap of 4 mm into the area of a small air gap. If the friction losses were neglected, the anchor plate 12 would reach the other end position with an air gap of 0 mm due to the mechanical vibration. Taking friction losses into account, the anchor plate 12 does not reach this end position, however, but must be captured by the corresponding switching magnet 8, 9. In order for this to be possible with a switching magnet according to the force- displacement characteristic curve F EM8, the armature plate 12 must at least reach such an end position in which the magnetic force F EM8 exceeds the mechanical restoring force F mech . In the exemplary embodiment, this corresponds to an air gap of less than 0.7 mm. If the anchor plate 12 does not come into this end position during an opening process due to an increased gas back pressure, then the entire characteristic curve would have to be stretched by an increased energy supply in a switching magnet with a force curve according to the force characteristic curve F EM8, so that the magnetic force F EM8 the restoring force F mech in the end position.

Eine bessere Lösung zeigt ein Schaltmagnet mit einem Kraftverlauf gemäß der Kraftkennlinie FEM9. Bereits vor Erreichen der mittleren Ruhelage übersteigt die magnetische Kraft FEM9 die mechanische Kraft, so daß die Ankerplatte 12 bereits in dieser Position eine beschleunigende Kraft in Richtung Öffnetstellung erfährt. Die Öffnungsdauer wird dadurch positiv beeinflußt. Im weiteren Bewegungsvorgang zur Offenstellung (0 mm Luftspalt) hin, fällt die Kraftkennlinie FEM9 des Schaltmagneten 9 wieder ab und unterschreitet die mechanische Federkennlinie Fmech. Dadurch wird das Gaswechselventil durch die Nettowirkung von mechanischer Federkraft und magnetischer Kraft abgebremst und somit kinetische Energie entzogen. Dies führt zu einem weicheren Aufschlag und damit zu einer Reduzierung der Geräuschentwicklung. Kurz vor der Offenstellung steigt die Magnetkraft FEM9 wieder steil an und übersteigt dann wiederum die mechanische Rückstellkraft Fmech. Die Ankerplatte 12 kann dadurch vom Schaltmagneten 9 eingefangen und aufgrund der hohen magnetischen Kraft Fmax2 sicher gehalten werden. A solenoid with a force curve according to the force characteristic F EM9 shows a better solution. Even before the middle rest position is reached, the magnetic force F EM9 exceeds the mechanical force, so that the anchor plate 12 already experiences an accelerating force in the open position in this position. This has a positive effect on the opening time. In the further movement towards the open position (0 mm air gap), the force characteristic F EM9 of the switching magnet 9 drops again and falls below the mechanical spring characteristic F mech . As a result, the gas exchange valve is braked by the net effect of mechanical spring force and magnetic force, and thus kinetic energy is withdrawn. This leads to a softer impact and thus a reduction in noise. Shortly before the open position , the magnetic force F EM9 rises steeply again and then again exceeds the mechanical restoring force F mech . The armature plate 12 can thereby be captured by the switching magnet 9 and can be held securely due to the high magnetic force F max2 .

Durch unterschiedliche Bestromung kann die Nettoenergie, die der Ankerplatte 12 vom Schaltmagneten 9 zugeführt wird, auf den jeweiligen Betriebsfall hin eingestellt werden. Der Vergleich der beiden Kraftkennlinien FEM8, FEM9 zeigt jedoch, daß bei ungefähr gleichem Energiezufuhr die Funktionalität des Schaltmagneten 9 hinsichtlich wechselnder Gegendrücke verbessert wird.By means of different energization, the net energy that is supplied to the armature plate 12 by the switching magnet 9 can be adjusted to the respective operating case. The comparison of the two force characteristics F EM8 , F EM9 shows, however, that with approximately the same energy supply, the functionality of the switching magnet 9 is improved with regard to changing back pressures.

Claims (8)

  1. A device for electromagnetically operating a gas exchange valve (2) for internal combustion engines having an armature (12) secured to the gas exchange valve (2), with two spring elements (13, 14) on oppositely lying faces of the armature (12), the armature (12) being able to move between an open and a closed position due to the resilient force thereof, and having two solenoids (8, 9) arranged on oppositely lying faces of the armature (12) which hold the gas exchange valve (2) in the open and closed position,
    characterised in that
    the first solenoid (9) assigned to the open position is provided as a characteristic curve magnet with a higher far-field intensity than the second solenoid (8) assigned to the closed position.
  2. A device as claimed in claim 1,
    characterised in that
    a flux conductor element (19) is arranged on the end of the magnetic core (10') of the first solenoid (9) facing the armature (12) and/or on the face (18) of the armature (12) facing the first solenoid (9).
  3. A device as claimed in claim 2,
    characterised in that
    the magnetic core (10') of the first solenoid (9) is of a hollow, cylindrical design and is arranged coaxially with the valve stem (4), the flux conductor element (19) is of a hollow, cylindrical design and is arranged on the end of the magnetic core (10') facing the armature (12) coaxially with the valve stem (4), the internal diameter of the flux conductor element (19) being greater than the internal diameter of the magnetic core (10'), and the armature (12) is provided as a circular armature plate, the armature plate (12) lying against the magnetic core (10') within the cylindrical opening of the flux conductor element (19) in the open position.
  4. A device as claimed in claim 2,
    characterised in that
    the magnetic core (10') of the first solenoid (9) is of a hollow, cylindrical design arranged coaxially with the valve stem (4), the armature is provided as a circular armature plate (12), the flux conductor element is of a hollow, cylindrical design and is arranged against the face (18) of the armature plate (12) facing the first solenoid (9) coaxially with the valve stem (4), the external diameter of the flux conductor element (19) being smaller than the internal diameter of the magnetic core (10'), so that the flux conductor element (19) projects into the cylindrical orifice of the magnetic core (10') in the open position.
  5. A device as claimed in claim 1,
    characterised in that
    the pole face (20) of the first solenoid is of a stepped design and the face (18) of the armature plate (12) facing the first solenoid (9) has a matching step (22).
  6. A device as claimed in claim 5,
    characterised in that
    the magnetic core (10') of the first solenoid (9) is of a hollow, cylindrical design and is arranged coaxially with the valve stem (4), the armature is provided as a circular armature plate (12) and the pole face (20) of the first solenoid (9) has an annular raised portion (21) and the face (18) of the armature plate (12) facing the first solenoid (9) has a matching recess (22).
  7. A device as claimed in claim 5,
    characterised in that
    the depth of the step (21, 22) is essentially equal to half the working path of the gas exchange valve (2).
  8. A device as claimed in claim 1,
    characterised in that
    the characteristic curve magnet (9) has a force-displacement characteristic curve such that the magnetic force (FEM9) exceeds the mechanical spring force (Fmech) in the close-up range and in the far-field and falls below the mechanical spring force (Fmech) at a middle distance from the pole faces (20).
EP97103181A 1996-03-02 1997-02-27 Electromagnetic valve control Expired - Lifetime EP0793004B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19608061 1996-03-02
DE19608061A DE19608061C2 (en) 1996-03-02 1996-03-02 Electromagnetic valve actuation

Publications (2)

Publication Number Publication Date
EP0793004A1 EP0793004A1 (en) 1997-09-03
EP0793004B1 true EP0793004B1 (en) 1998-12-23

Family

ID=7787024

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97103181A Expired - Lifetime EP0793004B1 (en) 1996-03-02 1997-02-27 Electromagnetic valve control

Country Status (3)

Country Link
EP (1) EP0793004B1 (en)
DE (2) DE19608061C2 (en)
ES (1) ES2127649T3 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125803A (en) * 1997-09-22 2000-10-03 Toyota Jidosha Kabushiki Kaisha Electromagnetically driven valve for an internal combustion engine
EP0977213A1 (en) * 1998-07-29 2000-02-02 DaimlerChrysler AG Actuator for electromagnetic valve drive
DE19958175C1 (en) * 1999-12-02 2001-02-08 Daimler Chrysler Ag Electromagnetic operating device for IC engine gas changing valve has carrier for actuator provided with ferromagnetic component acting as stop for opening magnet
JP4475198B2 (en) 2005-07-27 2010-06-09 トヨタ自動車株式会社 Solenoid valve
JP2007309259A (en) 2006-05-19 2007-11-29 Toyota Motor Corp Solenoid-driven valve
JP2008180140A (en) * 2007-01-24 2008-08-07 Toyota Motor Corp Solenoid-driven valve
DE102007052252A1 (en) * 2007-11-02 2009-05-07 Daimler Ag actuator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3826975A1 (en) * 1988-08-09 1990-02-15 Meyer Hans Wilhelm CONTROL DEVICE FOR A GAS EXCHANGE VALVE
DE3920976A1 (en) * 1989-06-27 1991-01-03 Fev Motorentech Gmbh & Co Kg ELECTROMAGNETIC OPERATING DEVICE
DE4336287C1 (en) * 1993-10-25 1995-03-02 Daimler Benz Ag Device for the solenoid actuation of an inlet and exhaust valve
JPH07293215A (en) * 1994-04-25 1995-11-07 Toyota Motor Corp Valve driving device of internal combustion engine

Also Published As

Publication number Publication date
DE59700054D1 (en) 1999-02-04
DE19608061C2 (en) 2000-03-23
EP0793004A1 (en) 1997-09-03
ES2127649T3 (en) 1999-04-16
DE19608061A1 (en) 1997-09-04

Similar Documents

Publication Publication Date Title
EP1004066B2 (en) Electromagnetic hydraulic valve
DE102008011573B4 (en) Electromagnetic actuator and valve
EP2486575B1 (en) Actuator for an internal combustion engine
DE19651846B4 (en) Method for the electromagnetic actuation of a gas exchange valve without pole surface contact
AT500185B1 (en) MECHANISM OF AN ELECTROMAGNETIC VALVE
DE102008020893A1 (en) Electromagnetic adjusting device for controlling stroke-variable valve impulse of internal-combustion engine of motor vehicle, has diagnostic current circuit closed in one of positions by contact of armature with contact element
DE19751609B4 (en) Narrow-building electromagnetic actuator
DE10004961A1 (en) Fuel injector and method for operating it
EP0793004B1 (en) Electromagnetic valve control
EP0748416B1 (en) Electromagnetically actuated valve in an internal combustion engine
DE3834445A1 (en) ELECTROMAGNETIC INJECTION VALVE WITH TIP ANCHOR
EP0935054A2 (en) Electromagnetic actuator
EP3698383B1 (en) Electromagnetic actuator device and use of such a device
DE102008034759A1 (en) Electro-pneumatic seat valve comprises electromagnetic drive for operating valve with electric coil with winding situated in drive housing, which encloses magnetic core
DE102014220877B3 (en) Fuel injection valve
DE19607019A1 (en) Electromagnetic operating device for IC engine gas changing valve
DE19712062A1 (en) Electromagnetic control device
DE19529152B4 (en) From the rest position self-attracting electromagnetic actuator
DE19908102C1 (en) Valve, especially control valve for fuel return in injection conductor of combustion engine, having adjustable plot for limiting valve pestle, which engages with positioning drive and with spring package
DE19738633A1 (en) Electromagnetic switching valve
DE19852287C2 (en) Electromagnetic actuator and use of the actuator
EP3070721B1 (en) Actuation device
DE19714410A1 (en) Electromagnetic control device
DE19643430A1 (en) Control valve e.g. for large diesel engine
EP2288834B1 (en) Azimuthal magnetic actuator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980526

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 59700054

Country of ref document: DE

Date of ref document: 19990204

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990203

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DAIMLERCHRYSLER AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2127649

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000215

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000222

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020916

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040203

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050901