EP3491158B1 - Stahlband zur herstellung eines nichtkornorientierten elektroblechs und verfahren zur herstellung eines solchen stahlbandes - Google Patents

Stahlband zur herstellung eines nichtkornorientierten elektroblechs und verfahren zur herstellung eines solchen stahlbandes Download PDF

Info

Publication number
EP3491158B1
EP3491158B1 EP17745283.6A EP17745283A EP3491158B1 EP 3491158 B1 EP3491158 B1 EP 3491158B1 EP 17745283 A EP17745283 A EP 17745283A EP 3491158 B1 EP3491158 B1 EP 3491158B1
Authority
EP
European Patent Office
Prior art keywords
strip
steel
rolling
hot
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17745283.6A
Other languages
English (en)
French (fr)
Other versions
EP3491158A1 (de
Inventor
Zacharias Georgeou
Frank Klose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salzgitter Flachstahl GmbH
Original Assignee
Salzgitter Flachstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salzgitter Flachstahl GmbH filed Critical Salzgitter Flachstahl GmbH
Publication of EP3491158A1 publication Critical patent/EP3491158A1/de
Application granted granted Critical
Publication of EP3491158B1 publication Critical patent/EP3491158B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the invention relates to a steel strip for producing a non-grain-oriented electrical steel sheet and a method for producing such a steel strip.
  • Materials for electrical steel are z. B. from the DE 101 53 234 A1 or DE 601 08 980 T2 known. They usually consist of an iron-silicon or iron-silicon-aluminum alloy, a distinction being made between grain-oriented (KO) and non-grain-oriented (NO) electrical sheets and these are used for different applications. Aluminum and silicon are added in particular in order to obtain an increase in strength and a reduction in density, and in particular an increase in electrical resistance, with the magnetic saturation polarization as unchanged as possible.
  • non-grain-oriented electrical steel For applications in electrical engineering, in which the magnetic flux is not fixed in any particular direction and therefore equally good magnetic properties are required in all directions, electrical steel is usually produced with properties that are as isotropic as possible, which is referred to as non-grain-oriented (NO) electrical steel.
  • NO non-grain-oriented
  • the ideal structure (structure) for a non-grain-oriented (NO-) electrical steel is a polycrystalline structure with grain sizes between 20 ⁇ m and 200 ⁇ m, whereby the crystallites are randomly aligned in the plane of the sheet with the surface (100).
  • the magnetic properties of real, non-grain-oriented electrical steel in the plane of the sheet are dependent to a small extent on the direction of magnetization. The differences in loss between the longitudinal and transverse directions are max. 10%.
  • the development of a sufficient isotropy of the magnetic properties in non-grain-oriented electrical steel is significantly influenced by the design of the hot forming, cold forming and final annealing process.
  • the magnetic properties of electrical steel are essentially due to a high degree of purity, the content of silicon and aluminum (up to approx. 4 mass fractions in%) and the targeted addition of others Alloying elements such as B. manganese, sulfur and nitrogen, as well as determined by hot rolling, cold rolling and annealing processes.
  • Alloying elements such as B. manganese, sulfur and nitrogen, as well as determined by hot rolling, cold rolling and annealing processes.
  • the usual sheet thicknesses are in the range well below 1 mm, e.g. B. at 0.18 or 0.35 mm.
  • the one from the Offenlegungsschrift DE 101 53 234 A1 known material for a non-grain oriented electrical steel sheet has an alloy composition in wt .-% with C ⁇ 0.02%, Mn ⁇ 1.2%, Si 0.1-4.4% and Al 0.1-4.4% .
  • the Patent DE 603 06 365 T2 discloses a material for a non-grain-oriented electrical steel sheet in% by weight, consisting of up to about 6.5% silicon, 5% chromium, 0.05% carbon, 3% aluminum, 3% manganese, the remainder iron and residues.
  • the steel strip is produced by a vertical thin strip casting process in which the liquid steel is poured into the casting gap of two counter-rotating, internally cooled casting rolls. The cast strip can then be hot-rolled and cold-rolled, with strip thicknesses of less than 1 mm being achieved.
  • a hot strip for producing a non-grain-oriented or grain-oriented electrical steel sheet, the hot strip consisting of the following alloy composition in% by weight: C: 0.001 to 0.08, Al: 4.8 to 20, Si: 0.05 to 10, B : up to 0.1, Zr: up to 0.1, Cr: 0.1 to 4, remainder iron and impurities from the melting process.
  • the hot strip is manufactured in such a way that the melt is first poured into a pre-strip in the range between 6 and 30 mm in a horizontal strip caster in a flow-calmed and bending-free manner and then rolled into hot strip with a degree of deformation of at least 50%. The hot strip can then be cold rolled to a thickness of up to 0.150 mm.
  • the known alloys for non-grain oriented electrical steel have the disadvantage that the magnetic properties, in particular the hysteresis losses, are heavily dependent on the frequency and the amplitude of the magnetizing current. In particular, increase at high frequencies and higher amplitudes clearly show the hysteresis losses, which has a disadvantageous effect especially with high-speed motors.
  • the electrical steel sheet is made of steel with the following chemical composition: C: 0.01% or less; Si: 2.0 to 7.0%; Al: 0.3 to 10.0%; Mn: 0.2 to 2.0%; P: 0.1% or less; S: 0.005% or less and of Ni: 0.1 to 5% and / or Cu: 0.1 to 3%.
  • JP 2008 223045 A discloses a non-oriented electromagnetic steel sheet whose strength can be increased with an aging heat treatment.
  • the steel sheet has a steel composition containing, in mass%, 0.02 or less C; 0 to 1 Si; 1 or less; Mn: 0.2 or less; P: 0.03 or less; S: 2 to 4; Al: 0.1 to 2 Ni; comprises more than 1 to 3 Cu and the remainder Fe with impurities.
  • the disclosure document WO 00/75389 A1 describes a steel component of a solid oxide fuel cell.
  • the steel component should have good heat resistance and be particularly suitable for use in an environment with an oxidizing atmosphere.
  • the following chemical composition is specified in% by weight for the steel component: Al: 5.0-10.0; Si: 0.1-3.8; Mn: ⁇ 0.5; Cu: ⁇ 0.23; Ni: ⁇ 0.61; C: ⁇ 0.02; P: ⁇ 0.04; S: ⁇ 0.04; Cr: ⁇ 5.0 balance iron and unavoidable impurities.
  • the object of the invention is to specify a steel strip for producing a non-grain-oriented electrical steel sheet which, compared to known electrical steel sheets, has significantly improved frequency-independent magnetic properties, in particular significantly reduced hysteresis losses. Another object is to provide a manufacturing method for such a steel strip.
  • the specific volume resistance of the material can also be advantageously influenced.
  • this essentially means that at least 50% of the insulation layer consists of Al 2 O 3 or SiO 2 or the sum of the two aforementioned components.
  • the thickness of the insulation layer is preferably in the range from 20 ⁇ m to 100 ⁇ m and particularly preferably in the range from 20 ⁇ m to 50 ⁇ m.
  • Al-containing precipitates in the steel significantly increase the strength.
  • the minimum aluminum content is set at 1% by weight.
  • Al contents higher than 12% by weight can lead to difficulties in cold rolling due to the formation of ordered phases. It is therefore advantageous to adhere to Al contents of up to 10% by weight.
  • the hot strip according to claim 16 is hot-rolled at temperatures above 1000 ° C or higher, there is a very high level of protection against scaling. Due to the extraordinarily high Al contents of up to 12% by weight or Si of up to 3.5% by weight, a dense, intrinsically formed insulation layer essentially consisting of Al 2 O 3 is formed on the surface of the heated sheet and / or SiO 2 , which effectively reduces or even completely inhibits scaling of the iron in the steel.
  • the thickness of the layer can also advantageously be influenced by the temperature and the time span of the annealing, in particular the final annealing of the steel strip, which is usually understood to mean a cold strip. The thickness of the layer increases with increasing temperature and time of annealing.
  • this layer of scale should not exceed a thickness of 100 ⁇ m, better 50 ⁇ m, so that the layer, because of the increasing brittleness with increasing thickness, the rollability is not adversely affected by flaking scale.
  • An addition of Si causes an increase in the electrical resistance.
  • a minimum content of 0.3% by weight is required to achieve an effect.
  • contents of more than 3.5% by weight Si the cold-rollability is reduced, since the material becomes increasingly brittle and there are more edge cracks on the steel strip.
  • Contents of 1.0 to 3.0% by weight and preferably from 1.5 to 2.5% by weight are therefore advantageously set.
  • the addition of Si and Al represents an optimal combination of increasing the electrical resistance and reducing the magnetic saturation polarization in the selected alloy element contents.
  • the carbon content should be kept as low as possible in order to prevent magnetic aging, which is caused by carbide precipitations, in the finished steel strip. Low carbon contents lead to an improvement in the magnetic properties, since fewer defects occur in the material, which are caused, for example, by the carbon atoms and carbides. Carbon contents of a maximum of 0.03% by weight have been found to be favorable.
  • Manganese is contained in the steels according to the invention in an amount of more than 0.25 up to 10% by weight. Manganese increases the volume resistivity. In order to produce a corresponding effect, the steel should contain more than 0.25% by weight of manganese. In order to ensure problem-free further processing by hot and cold rolling, the manganese content should not exceed 10% by weight because of the formation of brittle phases.
  • a negative effect of Mn for the rollability depends on the sum of the elements Al, Si and Mn. A total Mn + Al + Si content of less than or equal to 20% by weight should advantageously be maintained as the upper limit for the rollability.
  • the addition of copper also increases the volume resistivity.
  • the Cu content should be more than 0.05% by weight. No more than 3% by weight Cu should be added to the steel, since otherwise the rollability is impaired due to precipitates that form on the grain boundaries and solder cracks may occur during hot rolling.
  • the addition of nickel has a positive effect in terms of reducing the magnetic reversal losses.
  • the minimum content should be above 0.01% by weight, but since nickel is a very expensive element, a maximum value of 5.0% by weight should not be exceeded for economic reasons.
  • the nickel content is preferably between 0.01 and 3.0% by weight.
  • these alloy compositions can be used to produce steel strips with similar electromagnetic properties with a specific density of 6.40 to 7.30 g / cm 3 in order to meet the requirements for the lowest possible specific weight of the steel strip.
  • the mechanical properties can also be varied over a wide range through the different alloy concepts.
  • Steel strips according to the invention have a strength Rm of 450 to 690 MPa, a yield point Rp0.2 of 310 to 550 MPa and an elongation A80 of 5 to 30%.
  • the advantage of the proposed method is also to be seen in the fact that when a horizontal strip caster is used, macro segregation and voids can largely be avoided due to the very homogeneous cooling conditions in the horizontal strip caster.
  • the strip casting process In terms of process technology, it is proposed for the strip casting process to achieve flow calming by using an electromagnetic brake that generates a synchronous or optimal relative speed to the strip, which ensures that, in the ideal case, the speed of the melt inflow is equal to the speed of the circulating one Conveyor belt is.
  • the bending during solidification which is regarded as disadvantageous, is avoided in that the underside of the casting belt receiving the melt is supported on a plurality of rollers lying next to one another.
  • the support is reinforced in such a way that a negative pressure is generated in the area of the casting belt, so that the casting belt is pressed firmly onto the rollers.
  • the Al-rich or Si-rich melt solidifies in an almost oxygen-free casting atmosphere.
  • the length of the conveyor belt is chosen so that at the end of the conveyor belt the pre-belt has largely solidified before it is deflected.
  • the rolling of the pre-strip into hot strip can be done either in-line or separately off-line. Before the off-line rolling, the pre-strip can either be directly hot reeled or cut into sheets after production before cooling. The strip or sheet material is then reheated after any cooling and unwound for off-line rolling or reheated and rolled as sheet.
  • the rolling of the hot strip to its final thickness can be carried out by means of classic cold rolling at room temperature or, according to the invention, particularly advantageously at an elevated temperature well above room temperature.
  • finish rolling is used below when a hot strip is finish-rolled at an elevated temperature to the required final thickness.
  • finish rolling at elevated temperatures is that it can significantly reduce a possible tendency to edge cracks during rolling.
  • the hot strip is heated to a temperature range from 350 to 570 ° C., preferably from 350 to 520 ° C., and is finish-rolled to the intended final thickness at this temperature.
  • the hot strip is finish-rolled to the required final thickness at room temperature.
  • two-stage cold rolling according to Route 2 can be used by first rolling to the desired final thickness at room temperature with a degree of thickness reduction of up to 60%, then in a temperature range of 550 aged up to 650 ° C for 40 to 60 min, and then the remaining 40% of the desired final thickness is in turn achieved by cold rolling.
  • a material, in particular with an increased Al content greater than 6% by weight or Al + Si in total greater than 6% by weight, which has edge cracks after the first cold rolling, can be produced according to route 3 by finish rolling at an elevated temperature. After heating in a temperature range from 350 to 600 ° C, preferably 350 to 520 ° C, rolling is carried out, and then iteratively reheated in the aforementioned temperature range for 2-5 min between the rolling steps and finish-rolled until the desired final thickness is reached.
  • Table 2 shows the mechanical properties of the alloys and the determined specific density of the materials. In addition to different mechanical properties, materials with different specific densities can also be produced, so that a wide range of requirements can be met for the materials according to the invention.
  • Table 2 Mechanical properties; 0.7mm thickness alloy Rp 0.2 Rm A80 density [N / mm 2 ] [%] [kg / dm 3 ] 13 679 688 2 6.8 17th 570 635 6th 6.9 22nd 560 600 1.6 7.1 Ref1 500 600 15.0 7.6
  • Table 3 shows the results for measuring the frequency dependence of the magnetic flux density B max on steel sheets with a thickness of 0.7 mm of the alloys examined. The measurements were carried out at frequencies f of 50, 200, 400, 750 and 1000 Hz. The results impressively demonstrate the extensive frequency independence of the magnetic flux density and thus the hysteresis losses in a periodic alternating field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

  • Die Erfindung betrifft ein Stahlband zur Herstellung eines nichtkornorientierten Elektroblechs und ein Verfahren zur Herstellung eines solchen Stahlbandes.
  • Werkstoffe für Elektrobleche sind z. B. aus der DE 101 53 234 A1 oder DE 601 08 980 T2 bekannt. Sie bestehen meist aus einer Eisen-Silizium- oder Eisen-Silizium-Aluminium-Legierung, wobei nach kornorientierten (KO) und nichtkornorientierten (NO) Elektroblechen unterschieden wird und diese für unterschiedliche Anwendungen eingesetzt werden. Aluminium und Silizium werden insbesondere hinzugegeben, um einen Festigkeitsanstieg und eine Dichtereduktion und insbesondere einen Anstieg des elektrischen Widerstandes bei möglichst unveränderter magnetischer Sättigungspolarisation zu erhalten.
  • Für Anwendungen im Elektromaschinenbau, bei denen der magnetische Fluss auf keine bestimmte Richtung festgelegt ist und deshalb gleich gute magnetische Eigenschaften in allen Richtungen verlangt werden, erzeugt man üblicherweise Elektroband mit möglichst isotropen Eigenschaften, welches als nichtkornorientiertes (NO-) Elektroband bezeichnet wird. Dieses wird schwerpunktmäßig in Generatoren, Elektromotoren, Schützen, Relais und Kleintransformatoren eingesetzt.
  • Die ideale Struktur (Gefügeaufbau) für ein nichtkornorientiertes (NO-) Elektroband ist ein polykristallines Gefüge mit Korngrößen zwischen 20 µm und 200 µm, wobei die Kristallite regellos in der Blechebene mit der Fläche (100) ausgerichtet sind. In der Praxis sind jedoch die magnetischen Eigenschaften von realem nichtkornorientierten Elektroband in der Blechebene in geringem Umfang von der Magnetisierungsrichtung abhängig. So betragen die Verlustunterschiede zwischen Längs- und Querrichtung max. 10 %. Die Ausprägung einer hinreichenden Isotropie der magnetischen Eigenschaften bei nichtkornorientiertem Elektroband wird wesentlich durch die Gestaltung des Fertigungsweges Warmumformung, Kaltumformung und Schlussglühung beeinflusst.
    Nach dem bekannten Stand der Technik werden die magnetischen Eigenschaften beim Elektroband wesentlich durch einen hohen Reinheitsgrad, den Gehalt an Silizium und Aluminium (bis ca. 4 Massenanteile in %) und gezielter Zugabe anderer Legierungselemente, wie z. B. Mangan, Schwefel und Stickstoff, sowie durch Warmwalz-, Kaltwalz- und Glühprozesse bestimmt. Die gängigen Blechdicken liegen im Bereich deutlich unter 1 mm, z. B. bei 0,18 oder 0,35 mm.
  • Der aus der Offenlegungsschrift DE 101 53 234 A1 bekannte Werkstoff für ein nichtkornorientiertes Elektroblech, weist eine Legierungszusammensetzung in Gew.-% mit C <0,02%, Mn ≤1,2%, Si 0,1 - 4,4% und Al 0,1 -4,4% auf. Es werden verschiedene Herstellungsverfahren, wie z. B. Dünnbrammen- oder Dünnbandgießen beschrieben, mit denen ein Warmband mit höchstens 1,8mm Dicke erzeugt werden kann. Durch anschließendes Kaltwalzen lässt sich ein Band mit einer Dicke von bis zu 0,2 mm erreichen.
  • Die Patentschrift DE 603 06 365 T2 offenbart einen Werkstoff für ein nichtkornorientiertes Elektroblech in Gew.-%, bestehend aus bis zu etwa 6,5% Silizium, 5% Chrom, 0,05% Kohlenstoff, 3% Aluminium, 3% Mangan, Rest Eisen und Rückstände. Das Stahlband wird durch ein vertikales Dünnbandgießverfahren erzeugt, bei dem der flüssige Stahl in den Gießspalt zweier gegenläufig rotierender, innengekühlter Gießwalzen gegeben wird. Das gegossene Band kann dann warm- und kaltgewalzt werden, wobei Banddicken von unter 1 mm erreicht werden.
  • Aus der Offenlegungsschrift WO 2013/117184 A1 ist ein Warmband zur Herstellung eines nichtkornorientierten oder kornorientierten Elektroblechs bekannt, wobei das Warmband aus folgender Legierungszusammensetzung in Gew.-% besteht: C: 0,001 bis 0,08, Al: 4,8 bis 20, Si: 0,05 bis 10, B: bis zu 0,1, Zr: bis zu 0,1, Cr: 0,1 bis 4, Rest Eisen und erschmelzungsbedingte Verunreinigungen. Hergestellt wird das Warmband in der Weise, dass die Schmelze zunächst in einer horizontalen Bandgießanlage strömungsberuhigt und biegefrei zu einem Vorband im Bereich zwischen 6 und 30 mm vergossen und anschließend zu Warmband mit einem Umformgrad von mindestens 50 % gewalzt wird. Das Warmband kann anschließend auf eine Dicke von bis zu 0,150 mm kaltgewalzt werden.
  • Die bekannten Legierungen für ein nichtkornorientiertes Elektroblech weisen den Nachteil auf, dass die magnetischen Eigenschaften, insbesondere die Hystereseverluste, stark von der Frequenz und der Amplitude des Magnetisierungsstroms abhängig sind. Insbesondere steigen bei hohen Frequenzen und höheren Amplituden die Hystereseverluste deutlich an, was sich nachteilig gerade bei schnelllaufenden Motoren auswirkt.
  • Aus der Offenlegungsschrift JP 2015 224649 A D1 ist ein Verfahren zur Herstellung eines warmgewalzten und nicht-orientierten Elektroblechs mit minimierten Sprödbrucheigenschaften während des Kaltwalzens bekannt. Das Elektroblech besteht aus einem Stahl mit folgender chemischer Zusammensetzung: C: 0,01% oder weniger; Si: 2,0 bis 7,0%; Al: 0,3 bis 10,0%; Mn: 0,2 bis 2,0%; P: 0,1% oder weniger; S: 0,005% oder weniger und von Ni: 0,1 bis 5% und/oder Cu: 0,1 bis 3%. Im Zuge der Herstellung des Elektroblechs erfolgt ein Fertigglühen mit einer Haltezeit von 10 Sekunden in einem Temperaturbereich von über 600 ° C und 700 ° C oder weniger und einem anschließenden Abkühlprozess mit einer Abkühlgeschwindigkeit von 60 ° C/s oder mehr auf mindestens 250° C. Ein Glühen des Warmbandes kann muss aber nicht vorgesehen werden. Bestimmte Gieß- und Warmwalzbedingungen sind nicht erforderlich.
  • In der weiteren japanischen Offenlegungsschrift JP 2008 223045 A ist ein nichtorientiertes elektromagnetisches Stahlblech beschrieben, dessen Festigkeit mit einer Alterungswärmebehandlung erhöht werden kann. Das Stahlblech weist eine Stahlzusammensetzung auf, die in Massen-% 0,02 oder weniger C; 0 bis 1 Si; 1 oder weniger; Mn: 0,2 oder weniger; P: 0,03 oder weniger; S: 2 bis 4; Al: 0,1 bis 2 Ni; mehr als 1 bis 3 Cu und der Rest Fe mit Verunreinigungen umfasst.
  • Die Offenlegungsschrift WO 00/75389 A1 beschreibt ein Stahlbauteil einer Festoxidbrennstoffzelle. Das Stahlbauteil soll eine gute Wärmebeständigkeit aufweisen und besonders für einen Einsatz in einer Umgebung mit oxidierender Atmosphäre geeignet sein. Für das Stahlbauteil wird folgende chemische Zusammensetzung in Gew.-% angegeben: Al: 5,0 - 10,0; Si: 0,1 - 3,8; Mn: ≤ 0,5; Cu: ≤ 0,23; Ni: ≤ 0,61; C: ≤ 0,02; P: ≤ 0,04; S: ≤ 0,04; Cr: ≤ 5,0 Rest Eisen und unvermeidbare Verunreinigungen.
  • Es besteht deshalb ein Bedarf nach einem Stahlband aus einem nichtkornorientierten Werkstoff mit einem Legierungskonzept, welches die Verluste minimiert und diese auch bei hohen Frequenzen konstant niedrig hält.
  • Aufgabe der Erfindung ist es ein Stahlband zur Herstellung eines nichtkornorientierten Elektroblechs anzugeben, welches im Vergleich zu bekannten Elektroblechen deutlich verbesserte frequenzunabhängige magnetische Eigenschaften, insbesondere deutlich verringerte Hystereseverluste aufweist. Eine weitere Aufgabe besteht darin, ein Herstellungsverfahren für ein solches Stahlband anzugeben.
  • Das erfindungsgemäße Stahlband zur Herstellung eines nichtkornorientierten Elektroblechs weist folgende Legierungszusammensetzung in Gew.-% auf:
    • C: < 0,03
    • Al: 1 bis 12
    • Si: 0,3 bis 3,5
    • Mn: >0,25 bis 10
    • Cu: >0,05 bis 3,0
    • Ni: > 0,01 bis 5,0
    • Summe aus N, S und P: höchstens 0,07
    • Rest Eisen und erschmelzungsbedingte Verunreinigungen, mit optionaler Zugabe eines oder mehrere Elemente aus Cr, Mo, Zn und Sn, wobei ein Summengehalt von Cr und Mo optional 0,01 bis 0,5 Gew.-% und ein Summengehalt von Zn und Sn optional 0,01 bis 0,05 Gew.-% beträgt, wobei das Stahlband eine Isolationsschicht im Wesentlichen bestehend aus Al2O3 und/oder SiO2 mit einer Dicke im Bereich von 10µm bis 100µm aufweist.
  • Mit den optionalen Zugaben von Chrom und Molybdän bzw. von Zink und Zinn kann weiterhin vorteilhaft der spezifische Volumenwiderstand des Werkstoffs beeinflusst werden.
  • Im Zusammenhang mit der Zusammensetzung der Isolationsschicht bedeutet im Wesentlichen, dass mindestens 50% der Isolationsschicht aus Al2O3 oder SiO2 oder der Summe der beiden vorgenannten Bestandteile bestehen.
  • Vorzugsweise ist die Dicke der Isolationsschicht im Bereich von 20µm bis 100µm und besonders vorzugsweise im Bereich von 20µm bis 50µm.
  • Das Stahlband mit der erfindungsgemäßen Legierungszusammensetzung zeichnet sich durch deutlich reduzierte Hystereseverluste sowie eine weitgehende
  • Unabhängigkeit der magnetischen Eigenschaften von der Frequenz des Magnetisierungsstroms. Dadurch kann der Einsatzbereich dieses Werkstoffs unter energetischen und wirtschaftlichen Aspekten deutlich vergrößert werden, insbesondere für schnelllaufende Elektromotoren und bei hohen Frequenzen des Magnetisierungsstroms.
  • Insbesondere der mit max. 12% hohe Al-Gehalt bewirkt eine deutliche Erhöhung des elektrischen Widerstands und eine entsprechende Verringerung der Ummagnetisierungsverluste.
  • Durch die Zugabe von Aluminium von bis zu 12 Gew.-% wird zudem die spezifische Dichte des Stahls verringert, was sich positiv auf das Gewicht von sich drehenden Motorenteilen und die entstehenden Fliehkräfte gerade bei hohen Drehfrequenzen auswirkt.
  • Zudem wird durch Al-haltige Ausscheidungen im Stahl die Festigkeit deutlich gesteigert. Um entsprechende Effekte zu erzielen, wird der Mindestgehalt an Aluminium auf 1 Gew.-% festgelegt. Höhere Al-Gehalte als 12 Gew.-% können jedoch durch Bildung geordneter Phasen zu Schwierigkeiten beim Kaltwalzen führen. Vorteilhaft sind daher Al-Gehalte von bis zu 10 Gew.-% einzuhalten.
  • Obwohl das Warmband gemäß Patentanspruch 16 bei Temperaturen oberhalb von 1000°C oder höher warmgewalzt wird, ist ein sehr hoher Verzunderungsschutz vorhanden. Durch die außergewöhnlich hohen Gehalte an Al von bis zu 12 Gew.-% bzw. Si von bis zu 3,5 Gew.-% bildet sich auf der Oberfläche des erwärmten Bleches eine dichte, intrinsisch ausgebildete Isolationsschicht im Wesentlichen bestehend aus Al2O3 und/oder SiO2 aus, die eine Verzunderung des Eisens im Stahl wirksam verringert bzw. sogar vollständig hemmt. Die Dicke der Schicht kann zudem vorteilhaft durch die Temperatur und die Zeitspanne der Glühung, insbesondere der abschließenden Glühung des Stahlbandes, worunter meist ein Kaltband zu verstehen ist, beeinflusst werden. Dabei nimmt mit zunehmender Temperatur und Zeitspanne der Glühung die Dicke der Schicht zu. In vorteilhafter Weise wird eine Schichtdicke von mindestens 10µm, bevorzugt von mindestens 20µm, erzielt. Allerdings sollte diese Zunderschicht eine Dicke von 100 µm, besser 50µm, nicht überschreiten, damit die Schicht wegen der mit zunehmender Dicke ebenfalls zunehmenden Sprödigkeit, die Walzbarkeit durch abplatzenden Zunder nicht negativ beeinflusst.
  • Dadurch, dass diese Schicht in der weiteren Prozessierung des Bandes erhalten bleibt und elektrisch isolierend wirkt, kann eine zusätzliche Isolationsschicht zwischen den Blechlamellen des Lamellenpakets ggfs. eingespart oder deutlich verringert werden. Hierdurch kann ansonsten notwendiges Isolationsmaterial eingespart werden, was Kosten und das Bauteilgewicht reduziert.
  • Eine Zugabe von Si bewirkt eine Steigerung des elektrischen Widerstandes. Um einen Effekt zu erzielen, ist erfindungsgemäß ein Mindestgehalt von 0,3 Gew.-% erforderlich. Bei Gehalten von mehr als 3,5 Gew.-% Si verringert sich die Kaltwalzbarkeit, da der Werkstoff zunehmend spröder wird und sich vermehrt Kantenrisse am Stahlband zeigen. Vorteilhaft werden daher Gehalte von 1,0 bis 3,0 Gew.-% und bevorzugt von 1,5 bis 2,5 Gew.-% eingestellt. Die Zugabe von Si und Al stellt dabei in den ausgewählten Legierungselementgehalten eine optimale Kombination aus Erhöhung des elektrischen Widerstandes und Verringerung der magnetischen Sättigungspolarisation dar.
  • Der Gehalt an Kohlenstoff sollte so gering wie möglich gehalten werden, um ein magnetisches Altern, welches durch Carbid-Ausscheidungen verursacht wird, im fertigen Stahlband zu verhindern. Niedrige Kohlenstoffgehalte führen zu einer Verbesserung der magnetischen Eigenschaften, da weniger Fehlstellen im Material auftreten, die beispielsweise durch die Kohlenstoffatome und Karbide verursacht werden. Als günstig haben sich Kohlenstoffgehalte von maximal 0,03 Gew.-% ergeben.
  • In den erfindungsgemäßen Stählen ist Mangan in einer Menge von mehr als 0,25 bis zu 10 Gew.-% enthalten. Mangan erhöht den spezifischen Volumenwiderstand. Um einen entsprechenden Effekt zu erzeugen, sollten mehr als 0,25 Gew.-% Mangan im Stahl enthalten sein. Um eine problemlose Weiterverarbeitung durch Warm- und Kaltwalzen sicherzustellen, sollte der Mangangehalt wegen der Bildung spröder Phasen nicht über 10 Gew.-% liegen. Dabei hängt eine negative Wirkung von Mn für die Walzbarkeit komplex von der Summe der Elemente Al, Si und Mn ab. Vorteilhaft sollte ein Summengehalt aus Mn+Al+Si von kleiner gleich 20 Gew.-% als Obergrenze für die Walzbarkeit eingehalten werden.
  • Eine Zugabe von Kupfer erhöht ebenfalls den spezifischen Volumenwiderstand. Um einen entsprechenden Effekt zu erzielen, sollte der Cu-Gehalt mehr als 0,05 Gew.-% betragen. Es sollte nicht mehr als 3 Gew.-% Cu dem Stahl zulegiert werden, da ansonsten durch sich bildende Ausscheidungen auf den Korngrenzen die Walzbarkeit verschlechtert wird und möglicherweise Lotrissigkeit beim Warmwalzen auftreten kann.
  • Die Zugabe von Nickel wirkt sich positiv im Hinblick auf eine Reduzierung der Ummagnetisierungsverluste aus. Um einen entsprechenden Effekt zu erreichen, sollte der Mindestgehalt bei oberhalb von 0,01 Gew.-% liegen, aber da Nickel ein sehr teures Element ist, sollte aus wirtschaftlichen Gründen ein maximaler Wert von 5,0 Gew.-% nicht überschritten werden. Vorzugsweise liegt der Gehalt an Nickel zwischen 0,01 und 3,0 Gew.-%.
  • Unter Berücksichtigung einer guten Warm- und Kaltwalzbarkeit haben sich die folgenden Legierungsvarianten als besonders günstig herausgestellt (Gew.-%):
    • Al: 1 bis 6
    • Si: 0,5 bis 1
    • Mn: >1,0 bis 7
    • Cu: >0,1 bis 2,0
    • Ni: > 0,1 bis 3,0
    oder
    • Al: >6 bis 10
    • Si: 0,5 bis 0,8
    • Mn: >0,5 bis 3
    • Cu: >0,1 bis 2,5
    • Ni: > 0,1 bis 2,5
    oder
    • Al: >6 bis 10
    • Si: 0,3 bis 0,5
    • Mn: >0,5 bis 2
    • Cu: >0,1 bis 0,5
    • Ni: > 0,1 bis 2,5
  • Erfindungsgemäß lassen sich mit diesen Legierungszusammensetzungen Stahlbänder mit ähnlichen elektromagnetischen Eigenschaften mit einer spezifischen Dichte von 6,40 bis 7,30 g/cm3 erzeugen, um die Anforderungen an ein möglichst geringes spezifisches Gewicht des Stahlbandes zu erfüllen.
  • Die mechanischen Eigenschaften lassen sich erfindungsgemäß durch die unterschiedlichen Legierungskonzepte ebenfalls in einem weiten Spektrum variieren. Erfindungsgemäße Stahlbänder weisen eine Festigkeit Rm von 450 bis 690 MPa, eine Streckgrenze Rp0,2 von 310 bis 550 MPa und eine Dehnung A80 von 5 bis 30 % auf.
  • Ein erfindungsgemäßes Verfahren zur Herstellung eines erfindungsgemäßen Stahlbandes umfasst die Schritte:
    • Erschmelzen einer Stahlschmelze mit einer vorbeschriebenen erfindungsgemäßen Legierungszusammensetzung,
    • Vergießen der Stahlschmelze zu einem Vorband mittels eines endabmessungsnahen horizontalen oder vertikalen Bandgießverfahrens oder Vergießen der Stahlschmelze zu einer Bramme oder Dünnbramme mittels eines horizontalen oder vertikalen Brammen- oder Dünnbrammengießverfahrens,
    • Wiedererwärmen der Bramme oder Dünnbramme auf 1050 °C bis 1250 °C und anschließendes Warmwalzen der Bramme oder Dünnbramme zu einem Warmband oder Wiedererwärmen des endabmessungsnah erzeugten Vorbandes auf 1000 °C bis 1100 °C und anschließendes Warmwalzen des Vorbandes zu einem Warmband oder Warmwalzen des Vorbandes ohne Wiedererwärmen aus der Gießhitze zu einem Warmband mit optionalem Zwischenerwärmen zwischen den einzelnen Walzstichen des Warmwalzens,
    • Aufhaspeln des Warmbandes bei einer Haspeltemperatur zwischen 850 °C und Raumtemperatur,
    • Optionales Glühen des Warmbandes mit folgenden Parametern:
      Glühtemperatur: 550 bis 800°C Glühdauer: 20 bis 80 min, anschließende Abkühlung an Luft
    • Ein- oder mehrstufiges Fertigwalzen des Warmbandes oder des endabmessungsnah erzeugten Vorbandes mit einer Dicke von kleiner 3 mm zu Stahlband mit einer Enddicke von minimal 0,10mm.
    • anschließendes Glühen des Stahlbandes mit folgenden Parametern:
      Glühtemperatur: 900 bis 1080 °C, Glühdauer: 10 bis 60 Sekunden mit anschließender Abkühlung an Luft zum Einstellen einer Isolationsschicht im Wesentlichen bestehend aus Al2O3 und/oder SiO2 auf dem Stahlband mit einer Dicke im Bereich von 10µm bis 100µm, vorzugsweise im Bereich von 20µm bis 100µm, besonders vorzugsweise von im Bereich 20µm bis 50µm, hierdurch.
  • Wenngleich im Grundsatz alle herkömmlichen Stahlherstellungsverfahren (zum Beispiel Stranggießen, Dünnbrammengießen oder Dünnbandgießen) für die Herstellung eines Stahlbandes aus der erfindungsgemäßen Legierungszusammensetzung geeignet sind, hat sich bei der Stahlherstellung schwieriger herzustellender Legierungsvarianten, insbesondere bei erhöhten Gehalten an Mangan, Aluminium und Silizium, die Erzeugung des Stahlbandes in einer horizontalen Bandgießanlage bewährt, bei der die Schmelze strömungsberuhigt und biegefrei zu einem Vorband im Bereich zwischen 6 und 30 mm Dicke vergossen und anschließend zu Warmband mit einem Umformungsgrad von mindestens 50% in Dicken von etwa 0,9 bis 6,0 mm gewalzt wird.
  • Für den einzuhaltenden Mindestdickenreduktionsgrad beim Warmwalzen hat sich gezeigt, dass dieser mit steigendem Al-Gehalt ebenfalls erhöht werden sollte. So sind abhängig von der zu erreichenden Endbanddicke und vom Al-Gehalt Reduktionsgrade von mehr als 50, 70 oder sogar mehr als 90% einzuhalten, um eine gemischte Struktur aus geordneten und ungeordneten Phasen zu erreichen. Der hohe Reduktionsgrad ist auch notwendig, um die Gefügestruktur besonders bei Hoch-AI-Legierungen zu zerstören und damit die Körner zu verkleinern (Kornfeinung). Höhere Al-Gehalte erfordern deshalb entsprechend höhere Reduktionsgrade.
  • Der Vorteil des vorgeschlagenen Verfahrens ist ebenfalls darin zu sehen, dass bei Verwendung einer horizontalen Bandgießanlage Makroseigerungen und Lunker aufgrund sehr homogener Abkühlbedingungen in der horizontalen Bandgießanlage weitgehend vermieden werden können.
  • Verfahrenstechnisch wird für den Bandgießprozess vorgeschlagen, die Strömungsberuhigung dadurch zu erreichen, dass eine ein synchron oder mit optimaler Relativ-geschwindigkeit zum Band mitlaufendes Feld erzeugende mitlaufende elektromagnetische Bremse eingesetzt wird, die dafür sorgt, dass im Idealfall die Geschwindigkeit des Schmelzenzulaufs gleich der Geschwindigkeit des umlaufenden Förderbandes ist. Die als nachteilig angesehene Biegung während der Erstarrung wird dadurch vermieden, dass die Unterseite des die Schmelze aufnehmenden Gießbandes sich auf einer Vielzahl von nebeneinander liegenden Rollen abstützt. Verstärkt wird die Abstützung in der Weise, dass im Bereich des Gießbandes ein Unterdruck erzeugt wird, so dass das Gießband fest auf die Rollen gedrückt wird. Zusätzlich erstarrt die Al-reiche bzw. Si-reiche Schmelze in einer fast sauerstofffreien Gießatmosphäre.
  • Um diese Bedingungen während der kritischen Phase der Erstarrung aufrecht zu erhalten, wird die Länge des Förderbandes so gewählt, dass am Ende des Förderbandes vor dessen Umlenkung das Vorband weitestgehend durcherstarrt ist.
  • Am Ende des Förderbandes schließt sich eine Homogenisierungszone an, die für einen Temperaturausgleich und möglichen Spannungsabbau genutzt wird.
  • Das Walzen des Vorbandes zu Warmband kann entweder in-line oder separat off-line erfolgen. Vor dem off-line-Walzen kann das Vorband nach der Herstellung vor dem Abkühlen entweder direkt warm gehaspelt oder zu Tafeln geschnitten werden. Das Band- oder Tafelmaterial wird dann nach einer eventuellen Abkühlung wiedererwärmt und für das Off-line-Walzen abgewickelt bzw. als Tafel wiedererwärmt und gewalzt.
  • Das Walzen des Warmbandes auf Enddicke kann mittels klassischen Kaltwalzens bei Raumtemperatur oder erfindungsgemäß besonders vorteilhaft bei erhöhter Temperatur deutlich oberhalb der der Raumtemperatur durchgeführt werden.
  • Da dieses Walzverfahren nicht dem klassischen Kaltwalzen bei Raumtemperatur entspricht, wird nachfolgend der Begriff "Fertigwalzen" verwendet, wenn ein Warmband bei erhöhter Temperatur mit der geforderten Enddicke fertiggewalzt wird. Ein Vorteil des Fertigwalzens bei erhöhter Temperatur liegt darin, dass hierdurch eine mögliche Neigung zu Kantenrissen beim Walzen deutlich verringert werden kann. Des Weiteren ist es dadurch möglich, die elektromagnetischen Eigenschaften in einem weiten Feld zu beeinflussen, zum Beispiel über die Korngröße, Domänengrößenverteilung und Blochwandstabilisierung.
  • Als günstig hat sich erwiesen, wenn das Warmband auf einen Temperaturbereich von 350 bis 570 °C, bevorzugt 350 bis 520 °C, aufgewärmt und bei dieser Temperatur auf die vorgesehene Enddicke fertiggewalzt wird.
  • Bei einem mehrstufigen Fertigwalzen hat sich eine Wiedererwärmung zwischen den Walzschritten auf eine Temperatur von 600 bis 800 °C bei einer Haltezeit von 20 min bis 80 min bewährt, wobei anschließend eine Abkühlung auf Fertigwalztemperatur erfolgt.
  • Abhängig von der konkreten Legierungszusammensetzung haben sich mehrere vorteilhafte Erzeugungswege herausgestellt, um ein erfindungsgemäßes Stahlband zu erzeugen, siehe Figur 1. In dieser Figur werden drei vorteilhafte Erzeugungswege dargestellt.
  • Hierin bedeuten:
    • THR: Warmwalzen bei Temperaturen zwischen 1000 bis 1150 °C,
    • CR: Kaltwalzen,
    • T1, T2C, T3C: Schlussglühung für alle Route (900 bis 1080 °C, 10-60 s, Luftabkühlen),
    • T2A, T2B, T3A, T3B: Zwischenglühen für Route 2 und 3 (550 bis 800 °C, 20 bis 80 min),
    • TR: Fertigwalzen für Route 3 bei erhöhten Temperaturen von 350 bis 570 °C
  • Gemäß Route 1 wird das Warmband bei Raumtemperatur auf die geforderte Enddicke fertiggewalzt.
  • Sollte die Legierung zu fest für ein klassisches Kaltwalzen bei Raumtemperatur sein, kann ein zwei-stufiges Kaltwalzen gemäß Route 2 genutzt werden, indem zunächst mit einem Dickenreduktionsgrad von bis zu 60 % bei Raumtemperatur auf die gewünschte Enddicke gewalzt wird, danach in einem Temperaturbereich von 550 bis 650 °C für 40 bis 60 min ausgelagert, und danach die restlichen 40 % der gewünschten Enddicke wiederum durch Kaltwalzen erreicht wird.
  • Ein Werkstoff insbesondere mit erhöhtem Al-Gehalt größer 6 Gew.-% oder Al+Si in Summe größer als 6 Gew.-%, der Kantenrisse nach dem ersten Kaltwalzen aufweist, kann gemäß Route 3 durch Fertigwalzen bei erhöhter Temperatur erzeugt werden. Nach Erwärmen in einem Temperaturbereich von 350 bis 600 °C, bevorzugt 350 bis 520 °C, wird gewalzt, und dann iterativ wiedererwärmt im vorgenannten Temperaturbereich für je 2-5 min zwischen den Walzschritten und fertiggewalzt bis die gewünschte Enddicke erreicht ist.
  • Nachfolgend werden einige Ergebnisse an erfindungsgemäßen Legierungen beschrieben.
  • Untersucht wurden Legierungen entsprechend Tabelle 1, wobei nur die wesentlichen Elemente bestimmt wurden. Die Legierungen 13, 17 und 22 sind erfindungsgemäß und wurden im Vergleich zum nicht erfindungsgemäßen Referenzmaterial Ref1 untersucht. Tabelle 1
    Legierung Al Si Mn Cu Ni P S C
    Gew.- %
    13 9,90 0,45 0,97 0,98 0,02 0,003 0,003 0,012
    17 7,90 0,53 1,91 0,20 0,02 0,003 0,003 0,024
    22 6,10 0,49 2,04 2,10 0,02 0,055 0,003 0,005
    Refl 1,90 1,93 - - - 0,004 0,003 0,001
  • Tabelle 2 zeigt die mechanischen Eigenschaften der Legierungen und die ermittelte spezifische Dichte der Werkstoffe. Neben unterschiedlichen mechanischen Eigenschaften lassen sich auch Werkstoffe mit unterschiedlichen spezifischen Dichten erzeugen, sodass vielfältige Anforderungen an die erfindungsgemäßen Werkstoffe realisiert werden können. Tabelle 2
    Mechanische Eigenschaften; 0,7 mm Dicke
    Legierung Rp0,2 Rm A80 Dichte
    [N/mm2] [%] [kg/dm3]
    13 679 688 2 6,8
    17 570 635 6 6,9
    22 560 600 1,6 7,1
    Ref1 500 600 15,0 7,6
  • Tabelle 3 zeigt die Ergebnisse zur Messung der Frequenzabhängigkeit der magnetischen Flussdichte Bmax an Stahlblechen mit einer Dicke von 0,7 mm der untersuchten Legierungen. Die Messungen wurden bei Frequenzen f von 50, 200, 400, 750 und 1000 Hz durchgeführt. Die Ergebnisse belegen eindrucksvoll die weitgehende Frequenzunabhängigkeit der magnetischen Flussdichte und damit die Hystereseverluste in einem periodischen Wechselfeld. Tabelle 3
    Frequenzabhängigkeit (f = 50-1000 Hz); 0,7mm Dicke
    f [Hz] 50 200 400 750 1000
    Legierung Bmax [T]
    13 1,38 1,39 1,39 1,39 1,39
    17 1,44 1,44 1,44 1,44 1,44
    22 1,44 1,44 1,45 1,45 1,45

Claims (11)

  1. Stahlband zur Herstellung eines nichtkornorientierten Elektroblechs, insbesondere hergestellt nach einem Verfahren der Ansprüche 8 bis 11, bestehend aus folgender Legierungszusammensetzung in Gew.-%:
    C: ≤ 0,03
    Al: 1 bis 12, vorzugsweise von max. 10
    Si: 0,3 bis 3,5, vorzugsweise von 1,0 bis 3,0, besonders vorzugsweise von 1,5 bis 2,5
    Mn: >0,25 bis 10
    Cu: >0,05 bis 3,0
    Ni: > 0,01 bis 5,0, vorzugsweise von max. 3,0
    Summe aus N, S und P: höchstens 0,07
    Rest Eisen und erschmelzungsbedingte Verunreinigungen, mit optionaler Zugabe eines oder mehrerer Elemente aus Cr, Mo, Zn und Sn, wobei ein Summengehalt von Cr und Mo optional 0,01 bis 0,5 Gew.-% und ein Summengehalt von Zn und Sn optional 0,01 bis 0,05 Gew.-% beträgt, wobei das Stahlband eine Isolationsschicht im Wesentlichen bestehend aus Al2O3 und/oder SiO2 mit einer Dicke im Bereich von 10µm bis 100µm aufweist.
  2. Stahlband nach Anspruch 1, gekennzeichnet durch die Dicke der Isolationsschicht im Bereich von 20µm bis 100µm, vorzugsweise von 20µm bis 50µm.
  3. Stahlband nach Anspruch 1 oder 2, gekennzeichnet durch einen maximalen Summengehalt von Mn und Al von 20 Gew.-%.
  4. Stahlband nach mindestens einem der Ansprüche 1 bis 3, gekennzeichnet durch folgende Legierungszusammensetzung in Gew.-%:
    Al: 1 bis 6
    Si: 0,5 bis 1
    Mn: >1,0 bis 7
    Cu: >0,1 bis 2,0
    Ni: > 0,1 bis 3,0
  5. Stahlband nach mindestens einem der Ansprüche 1 bis 4, gekennzeichnet durch folgende Legierungszusammensetzung in Gew.-%:
    Al: >6 bis 10
    Si: 0,5 bis 0,8, vorzugsweise 0,3 bis 0,5
    Mn: >0,5 bis 3, vorzugsweise >0,5 bis 2
    Cu: >0,1 bis 2,5, vorzugsweise >0,1 bis 0,5
    Ni: > 0,1 bis 2,5
  6. Stahlband nach mindestens einem der Ansprüche 1 bis 5 aufweisend eine spezifische Dichte von 6,40 bis 7,30 g/cm3.
  7. Stahlband nach mindestens einem der Ansprüche 1 bis 6 aufweisend eine Festigkeit Rm von 450 bis 690 MPa, eine Streckgrenze Rp0,2 von 310 bis 550 MPa und eine Dehnung A80 von 5 bis 30 %.
  8. Verfahren zur Herstellung eines Stahlbandes zur Herstellung eines nichtkornorientierten Elektroblechs, umfassend die Schritte:
    - Erschmelzen einer Stahlschmelze aus einem Stahl nach mindestens einem der vorgenannten Ansprüche 1 bis 7,
    - Vergießen der Stahlschmelze zu einem Vorband mittels eines endabmessungsnahen horizontalen oder vertikalen Bandgießverfahrens oder Vergießen der Stahlschmelze zu einer Bramme oder Dünnbramme mittels eines horizontalen oder vertikalen Brammen- oder Dünnbrammengießverfahrens,
    - Wiedererwärmen der Bramme oder Dünnbramme auf 1050 °C bis 1250 °C und anschließendes Warmwalzen der Bramme oder Dünnbramme zu einem Warmband oder Wiedererwärmen des endabmessungsnah erzeugten Vorbandes auf 1000 °C bis 1100 °C und anschließendes Warmwalzen des Vorbandes zu einem Warmband oder Warmwalzen des Vorbandes ohne Wiedererwärmen aus der Gießhitze zu einem Warmband mit optionalem Zwischenerwärmen zwischen einzelnen Walzstichen des Warmwalzens,
    - Aufhaspeln des Warmbandes bei einer Haspeltemperatur zwischen 850 °C und Raumtemperatur,
    - Optionales Glühen des Warmbandes mit folgenden Parametern:
    Glühtemperatur: 550 °C bis 800 °C, Glühdauer: 20 bis 80 min, anschließende Abkühlung an Luft,
    - Ein- oder mehrstufiges Fertigwalzen des Warmbandes oder des endabmessungsnah erzeugten Vorbandes mit einer Dicke von kleiner 3 mm zu Stahlband mit einer Enddicke von minimal 0,10mm.
    - anschließendes Glühen des Stahlbandes mit folgenden Parametern:
    Glühtemperatur: 900 bis 1080 °C, Glühdauer: 10 bis 60 Sekunden mit anschließender Abkühlung an Luft zum Einstellen einer Isolationsschicht im Wesentlichen bestehend aus Al2O3 und/oder SiO2 auf dem Stahlband mit einer Dicke im Bereich von 10µm bis 100µm, vorzugsweise im Bereich von 20µm bis 100µm, besonders vorzugsweise im Bereich von 20µm bis 50µm.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Warmband vor dem Fertigwalzen auf eine Temperatur oberhalb der Raumtemperatur aufgewärmt und bei dieser Temperatur auf die vorgesehene Enddicke fertiggewalzt wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Warmband vor dem Fertigwalzen auf eine Temperatur von 350 bis 570 °C, insbesondere von 350 bis 520 °C, aufgewärmt und bei dieser Temperatur auf die vorgesehene Enddicke fertiggewalzt wird.
  11. Verfahren nach den Ansprüchen 8 bis 10, dadurch gekennzeichnet, dass bei einem mehrstufigen Fertigwalzen zwischen den Walzschritten eine Wiedererwärmung auf eine Temperatur von 600 bis 800 °C erfolgt und anschließend eine Abkühlung auf Walztemperatur erfolgt.
EP17745283.6A 2016-07-29 2017-07-13 Stahlband zur herstellung eines nichtkornorientierten elektroblechs und verfahren zur herstellung eines solchen stahlbandes Active EP3491158B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016114094 2016-07-29
PCT/EP2017/067703 WO2018019602A1 (de) 2016-07-29 2017-07-13 Stahlband zur herstellung eines nichtkornorientierten elektroblechs und verfahren zur herstellung eines solchen stahlbandes

Publications (2)

Publication Number Publication Date
EP3491158A1 EP3491158A1 (de) 2019-06-05
EP3491158B1 true EP3491158B1 (de) 2020-12-02

Family

ID=59416665

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17745283.6A Active EP3491158B1 (de) 2016-07-29 2017-07-13 Stahlband zur herstellung eines nichtkornorientierten elektroblechs und verfahren zur herstellung eines solchen stahlbandes

Country Status (6)

Country Link
US (1) US11047018B2 (de)
EP (1) EP3491158B1 (de)
KR (1) KR102364477B1 (de)
CN (1) CN109477188B (de)
RU (1) RU2715586C1 (de)
WO (1) WO2018019602A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101901313B1 (ko) * 2016-12-19 2018-09-21 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP7415135B2 (ja) * 2019-11-15 2024-01-17 日本製鉄株式会社 無方向性電磁鋼板の製造方法
DE102019133493A1 (de) * 2019-12-09 2021-06-10 Salzgitter Flachstahl Gmbh Elektroband oder -blech, Verfahren zur Erzeugung hierzu und daraus hergestelltes Bauteil
JP7477748B2 (ja) 2020-02-20 2024-05-02 日本製鉄株式会社 無方向性電磁鋼板および熱延鋼板
EP4082772A1 (de) * 2021-04-30 2022-11-02 Wickeder Westfalenstahl GmbH Elektroblech, verwendung eines elektroblechs und verfahren zur herstellung eines elektroblechs
DE102021115174A1 (de) 2021-06-11 2021-11-11 Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts Verfahren zur Herstellung eines höherpermeablen, nichtkornorientierten Elektrobleches und dessen Verwendung

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100240995B1 (ko) * 1995-12-19 2000-03-02 이구택 절연피막의 밀착성이 우수한 무방향성 전기강판의 제조방법
AUPQ078999A0 (en) * 1999-06-04 1999-06-24 Ceramic Fuel Cells Limited Air-side solid oxide fuel cell components
JP4507316B2 (ja) 1999-11-26 2010-07-21 Jfeスチール株式会社 Dcブラシレスモーター
JP4116749B2 (ja) 1999-12-16 2008-07-09 新日本製鐵株式会社 無方向性電磁鋼板
IT1316029B1 (it) 2000-12-18 2003-03-26 Acciai Speciali Terni Spa Processo per la produzione di acciaio magnetico a grano orientato.
DE10153234A1 (de) 2001-10-31 2003-05-22 Thyssenkrupp Stahl Ag Für die Herstellung von nichtkornorientiertem Elektroblech bestimmtes, warmgewalztes Stahlband und Verfahren zu seiner Herstellung
ATE338146T1 (de) 2002-05-08 2006-09-15 Ak Steel Properties Inc Verfahren zum kontinuierlichen giessen von nichtorientiertem elektrostahlband
EP1632582B1 (de) 2003-05-06 2011-01-26 Nippon Steel Corporation Blech aus nicht orientiertem magnetischem stahl, das bezüglich eisenverlusten hervorragend ist, und herstellungsverfahren dafür
US20050000596A1 (en) 2003-05-14 2005-01-06 Ak Properties Inc. Method for production of non-oriented electrical steel strip
JP4457835B2 (ja) * 2004-09-29 2010-04-28 住友金属工業株式会社 低温酸化被膜形成処理用軟磁性鋼板および軟磁性鋼板、ならびにそれらの製造方法
CN101218362B (zh) 2005-07-07 2010-05-12 住友金属工业株式会社 无方向性电磁钢板及其制造方法
JP5186781B2 (ja) * 2007-03-08 2013-04-24 新日鐵住金株式会社 時効熱処理用無方向性電磁鋼板ならびに無方向性電磁鋼板およびその製造方法
JP4510911B2 (ja) 2008-07-24 2010-07-28 新日本製鐵株式会社 高周波用無方向性電磁鋼鋳片の製造方法
BR112013020657B1 (pt) 2011-02-24 2019-07-09 Jfe Steel Corporation Chapa de aço elétrico não orientado e método para produção da mesma
TW201316538A (zh) * 2011-10-06 2013-04-16 Univ Nat Taiwan 太陽能電池的製作方法
DE102012002642B4 (de) 2012-02-08 2013-08-14 Salzgitter Flachstahl Gmbh Warmband zur Herstellung eines Elektroblechs und Verfahren hierzu
JP6375692B2 (ja) * 2014-05-26 2018-08-22 新日鐵住金株式会社 無方向性電磁鋼板とその製造方法及び無方向性電磁鋼板用熱延板とその製造方法
JP2015224339A (ja) * 2014-05-30 2015-12-14 株式会社東芝 蛍光体、その製造方法及び発光装置
US10541071B2 (en) * 2014-06-26 2020-01-21 Nippon Steel Corporation Electrical steel sheet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US11047018B2 (en) 2021-06-29
KR102364477B1 (ko) 2022-02-16
WO2018019602A1 (de) 2018-02-01
CN109477188A (zh) 2019-03-15
CN109477188B (zh) 2021-09-14
US20190271053A1 (en) 2019-09-05
RU2715586C1 (ru) 2020-03-02
KR20190034585A (ko) 2019-04-02
EP3491158A1 (de) 2019-06-05

Similar Documents

Publication Publication Date Title
EP3491158B1 (de) Stahlband zur herstellung eines nichtkornorientierten elektroblechs und verfahren zur herstellung eines solchen stahlbandes
DE60306365T2 (de) Verfahren zum kontinuierlichen giessen von nichtorientiertem elektrostahlband
EP2690183B1 (de) Warmgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP0320820B1 (de) Verfahren zur Herstellung von austenitischem rostfreien Stahl mit ausgezeichneter Seewasserbeständigkeit
DE602004008909T2 (de) Verbessertes verfahren zur herstellung von nicht orientiertem elektrostahlband
EP2812456B1 (de) Verfahren zur herstellung eines elektroblechs aus einem warmbandstahl
EP2612942B1 (de) Nicht kornorientiertes Elektroband oder -blech, daraus hergestelltes Bauteil und Verfahren zur Erzeugung eines nicht kornorientierten Elektrobands oder -blechs
DE69916743T2 (de) Elektrostahlblech und dessen Herstellungsverfahren
EP2787088B1 (de) Verfahren zum herstellung eines nichtkornorientierten höherfesten elektroband, elektroband und dessen verwendung
EP1918402B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem ein Komplexphasen-Gefüge bildenden Stahl
EP3712283B1 (de) Verfahren zum herstellen eines bands aus einer kobalt-eisen-legierung
EP1056890B1 (de) Verfahren zur herstellung von nichtkornorientiertem elektroblech
EP2840159B1 (de) Verfahren zum Herstellen eines Stahlbauteils
DE102019110872A1 (de) Blechpaket und Verfahren zum Herstellen einer hochpermeablen weichmagnetischen Legierung
DD299102A7 (de) Verfahren zur herstellung von nichtorientiertem elektroblech
CH654027A5 (de) Verfahren zur herstellung feinkoerniger aluminiumwalzprodukte.
DE102014005662A1 (de) Werkstoffkonzept für einen umformbaren Leichtbaustahl
DE4336882C2 (de) Verfahren zur Vermeidung von Mo-Ausscheidungen in magnetischen Ni-Fe-Legierungen
DE3220307C2 (de) Verfahren zum Herstellen von kornorientiertem Siciliumstahlblech oder -band
EP1444372B1 (de) Verfahren zur herstellung von nichtkornorientiertem elektroblech
EP1918404B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem mit Aluminium legierten Mehrphasenstahl
DE60020217T2 (de) Nicht-orientiertes magnetisches stahlblech mit reduzierter magnetischer anisotropie in hochfrequenzbereichen und hervorragender pressbearbeitbarkeit
DE3942621A1 (de) Magnetische stahlplatte zur verwendung als element zur magnetischen abschirmung und verfahren zu ihrer herstellung
EP2942417B1 (de) Verfahren zur herstellung von hochpermeablem kornorientiertem elektroband
DE69736868T2 (de) Verfahren zum Herstellen nicht kornorientierter Elektrobleche und nach diesem Verfahren hergestellte Bleche

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200708

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1341024

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017008474

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210302

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210302

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210405

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017008474

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210402

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

26N No opposition filed

Effective date: 20210903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210713

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210402

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210713

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210713

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170713

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1341024

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230719

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202