EP3475584B1 - Accumulateur hydropneumatique à piston - Google Patents

Accumulateur hydropneumatique à piston Download PDF

Info

Publication number
EP3475584B1
EP3475584B1 EP17731805.2A EP17731805A EP3475584B1 EP 3475584 B1 EP3475584 B1 EP 3475584B1 EP 17731805 A EP17731805 A EP 17731805A EP 3475584 B1 EP3475584 B1 EP 3475584B1
Authority
EP
European Patent Office
Prior art keywords
piston
housing
accumulator
guide
cladding tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17731805.2A
Other languages
German (de)
English (en)
Other versions
EP3475584A1 (fr
Inventor
Peter Kloft
Herbert Baltes
Alexander ALBERT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydac Technology GmbH
Original Assignee
Hydac Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102016007824.3A external-priority patent/DE102016007824A1/de
Priority claimed from DE102016007798.0A external-priority patent/DE102016007798A1/de
Application filed by Hydac Technology GmbH filed Critical Hydac Technology GmbH
Publication of EP3475584A1 publication Critical patent/EP3475584A1/fr
Application granted granted Critical
Publication of EP3475584B1 publication Critical patent/EP3475584B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • F15B1/08Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor
    • F15B1/24Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with rigid separating means, e.g. pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/31Accumulator separating means having rigid separating means, e.g. pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/50Monitoring, detection and testing means for accumulators
    • F15B2201/515Position detection for separating means

Definitions

  • the invention relates to a hydropneumatic piston accumulator having the features in the preamble of claim 1.
  • Hydraulic accumulators such as hydropneumatic piston accumulators
  • hydropneumatic piston accumulators are used in hydraulic systems to absorb certain volumes of pressurized fluid, such as hydraulic oil, and to return them to the system when required.
  • pressurized fluid such as hydraulic oil
  • the position of the piston changes so that the accumulator absorbs hydraulic oil when the pressure rises, with the gas in the other Working space is compressed.
  • the compressed gas expands, pushing stored hydraulic oil back into the hydraulic circuit.
  • the resulting changes in the volumes of the working chambers during operation result in a corresponding axial movement of the piston.
  • the pressure prevailing in the working chamber of the working gas is adapted to the pressure level in the oil-side working chamber, so that the piston is located at suitable points within the accumulator housing and thereby can carry out the working movements between piston end positions in the accumulator housing. Determining the position that the piston assumes at a given fluid pressure in the oil-side working chamber also enables the level of filling pressure of the working gas in the associated working chamber to be determined and thus allows the piston accumulator to be monitored for proper functionality.
  • the JP H07-269503 describes a hydropneumatic piston accumulator with the features in the preamble of claim 1, with an accumulator housing defining a housing longitudinal axis, in which a piston can be moved longitudinally between two opposite housing covers, which in the housing has a working space for a compressible medium, such as a working gas, from a working space for a incompressible medium, such as hydraulic oil, separates and has at least part of a displacement measuring device that continuously determines the respective position of the piston in the housing, wherein a rod-like guide is arranged in a stationary manner in the accumulator housing, which completely extends through the piston in each of its travel positions in the accumulator housing and along which the piston can be moved until it strikes one of the two housing covers, the piston being sealed off from this guide by means of a sealing device, and wherein a hollow rod forming the guide has a preferably pressure-resistant, circular enveloping tube.
  • More piston accumulators go out JP S62-97307 , the DE 71 03 342 U , the JP S61-123201 and the JP S60-143901 out.
  • the object of the invention is to provide a hydropneumatic piston accumulator of the type mentioned at the outset, the travel measuring device of which enables the position of the piston to be determined in a particularly simple and advantageous manner.
  • an essential feature of the invention is that the cladding tube is closed or open at its non-fixed free end.
  • the cladding tube can be open at its unfixed free end or closed at its unfixed free end.
  • the pressure between the interior of the tube and the working space at the free end of the tube can be equalized via the free end of the tube, so that no high demands are made on the compressive strength of the cladding tube.
  • the interior of the tube can be depressurized, so that no particularly complex seal is required on the receptacle formed for the pulse converter on the housing cover with passage leading to the interior of the pipe.
  • the rod-like guide is arranged in a stationary manner in the accumulator housing, which completely extends through the piston in each of its travel positions in the accumulator housing and along which the piston can be moved until it hits one of the two housing covers, and that the piston is opposite to this guide is sealed by a sealing device.
  • the secure internal guidance of the piston which is provided according to the invention by the rod-like guidance of the piston, ensures a more reliable and more accurate measured value generation compared to the prior art when using different measuring methods known in the prior art.
  • the seal formed between the piston and the rod-like guide and the safe separation of the media in the working chambers that this causes ensure a particularly reliable function of the piston accumulator, even while the measured value is being recorded.
  • a magnetostrictive measuring system is used as the path measuring device.
  • a non-inventive laser measuring system as in the documents DE 10 2011 007 765 A1 or DE 10 2014 105 154 A1 shown, be trained.
  • a system such as that described in document DE 10 2013 009 614 A1 is shown.
  • a passage which is preferably formed coaxially to the longitudinal axis in the piston and on which a permanent magnet device is located can be provided.
  • the permanent magnet device can serve as a position indicator.
  • the rod-like guide can be formed by a covering element made of an electrically non-conductive material which immediately surrounds the measuring wire.
  • An electrical return conductor for the current pulse that triggers the measuring process can also be embedded in this covering element, which is made of plastic, for example.
  • the hollow rod forming the rod-like guide is formed by a preferably pressure-resistant, circular enveloping tube. This preferably consists of a non-magnetic, metallic material. The smooth one The outer surface enables the piston to be guided through the passage with ease when the piston is moved.
  • the arrangement is such that the accumulator housing has a cylindrical tube which is closed at both ends by a housing cover, the cladding tube being fixed with at least one open end to one of the housing covers and the sensor connected to the waveguide of the magnetostrictive measuring system being attached to this , a pulse transmitter/receiver having a pulse converter is arranged.
  • the cover accommodating the open end of the cladding tube is adjacent to the gas-side working space.
  • This can be used with advantage also arrange the pulse converter of the respective sensor system in the housing cover that accommodates the open end of the cladding tube on the gas-side working chamber, so that the opposite housing cover remains unhindered for the connection of the pipeline leading to the associated hydraulic system (not shown).
  • the cover accommodating the open end of the cladding tube can adjoin the oil-side working space.
  • the connection for hydraulic oil can be arranged, axially offset, on the cover next to the centrally arranged receptacle for the pulse converter of the sensor system.
  • the magnetostrictive measuring system can advantageously also be formed by a component which can be removed from an open end of the cladding tube and has a flexible casing which preferably can be rolled up and surrounds the waveguide in the manner of a hose.
  • a component which can be removed from an open end of the cladding tube and has a flexible casing which preferably can be rolled up and surrounds the waveguide in the manner of a hose.
  • the Figures 1 to 12 show exemplary embodiments in which the piston accumulator is provided with a magnetostrictive measuring system.
  • the 13 shows an embodiment with an ultrasonic measuring system.
  • the exemplary embodiments of the piston accumulator shown in the drawings have an accumulator housing designated as a whole by 1, which in all exemplary embodiments shown has a cylinder tube 3 forming a round hollow cylinder as the main part. This is tightly closed at both ends by a screwed-in housing cover 5 and 7, between which a piston 9 can be moved freely along the longitudinal axis 11 of the housing.
  • the piston 9 separates a working chamber 13 on the gas side, which receives a working gas, such as N 2 , which is under a filling pressure, as a compressible medium, from a working chamber 15, which receives an incompressible medium, such as hydraulic oil.
  • connection opening 17 is arranged coaxially to the longitudinal axis 11 in the housing cover 7 adjoining the working chamber 15 on the oil side.
  • a filling channel 19 is provided, offset to the longitudinal axis 11, at the outer end of which a filling valve 21 of the usual type is arranged, via which a filling quantity of the Working gas can be introduced.
  • a sensor receptacle 23 is also provided in the housing cover 5 adjacent to the gas-side working chamber 13, which has a seat 25 for a screw-in part of the pulse converter 26 and a through-opening 27 in the outer end region. through which the strand 29 of the cladding elements of the waveguide along the longitudinal axis 11 and through a passage 31 formed in the piston 9 over the length of the measuring section in the direction of the other housing cover 7 .
  • the strand 29 forms the strand-like inner guide for the separating piston 9 .
  • the 2 which faces the piston 9 in 1 shows the details of the central passage 31.
  • the piston 9 On its outer circumference, the piston 9 has deepened annular grooves 33 and 35, as is usual with such accumulator pistons for an external seal between the fluid and media chambers for piston seals, not shown, on and offset from these in the direction of the two axial end regions, flatter annular grooves 37 and 39 for guide rails, also not shown.
  • the piston 9 has a round pot-like depression 41 on the side of the piston that faces the gas-side working chamber 13 in the accumulator housing 1, the flat bottom 43 of which is located approximately halfway along the axial length of the piston 9.
  • the passage 31 has a through bore 51 which, coaxially to the longitudinal axis 11, extends from the base 43 to the end face of the piston.
  • the bore 51 In the bore area adjacent to the base 43, the bore 51 has a circular-cylindrical enlargement 53, which forms the seat for an annular body 45, which is fixed in the enlargement 53 by screws 47 running parallel to the bore 51.
  • Annular grooves 49 and 50 are formed in the unexpanded portion of the seal ring bore 51 as part of the inner seal.
  • the fixed in the extension 53 annular body 45 forms the carrier for serving as a position encoder permanent magnet device.
  • This is formed by a magnet ring 55 which is fixed by gluing to the free surface of the ring body 45 flush with the base 43 .
  • the inner diameter of the magnet ring arranged coaxially to the bore 51 55 is slightly larger than the diameter of the bore 51.
  • the screws 47 and the annular body 45 are made of duroplastic plastic.
  • the 3 and 4 show a second exemplary embodiment of the piston accumulator, which is part of the invention, in which a cladding tube 57 is provided as the outer cladding element that surrounds the cladding elements forming the strand 29, which has one, open end 59 on the media chamber 13 adjoining the gas side Lid 5 is fixed by means of a soldered or welded connection 24 in such a way that the open end 59 merges into the through-opening 27 of the sensor receptacle 23 . At the opposite end 60, the cladding tube 57 is closed.
  • the cladding tube 57 is pressure-resistant, for example made of a non-magnetic metallic material, the interior of the tube remains pressureless, regardless of the accumulator pressure prevailing in the working spaces 13, 15, so that the seal on the seat 25 of the sensor receptacle 23 does not have to be particularly demanding.
  • the smooth surface of the enveloping tube 57 enables the piston 9 to be guided smoothly on the passage 31 and, as a result, an advantageous operating behavior of the piston accumulator.
  • the enveloping tube 57 forms the rod guide for the piston 9 .
  • the third embodiment of figure 5 and 6 differs from the example described above only in that the cladding tube 57 is also open at the end 60 which is adjacent to the housing cover 7 adjoining the oil-side working chamber 15 .
  • the interior of the enveloping tube 57 is pressure-balanced with respect to the working pressure of the accumulator, so that no pressure-resistant construction of the enveloping tube 57 in the form of the rod guide is required. Therefore, besides a non-magnetic metal tube, a plastic tube can also be used.
  • the 7 and 8th show another embodiment in which the cladding tube 57 with its open end 60 not just before the oil-side Connection opening 17 having housing cover 7 ends, but is accommodated in this in a centrally continuous bore 61.
  • the bore 51 in the passage 31 of the piston 9 this is stepped in the longitudinal direction, with an enlargement 54 being formed on the inner end region of the bore 61 which has the same shape and size as the enlargement 53 in the piston 9 is equivalent to.
  • the same ring body 45 as is used in the piston 9 is inserted in this extension 54 and also secured with screws 47.
  • the end part of the cladding tube 57 which extends through the ring body 45 is sealed in the bore 61 by sealing rings 62 and 63 .
  • connection opening 17 provided for access to the oil-side working chamber 15 is arranged in a position that is radially offset relative to the longitudinal axis.
  • a fluid connection (not shown) can also be provided between the connection opening 17 and the bore 61 on the housing cover 7 that has the connection opening 17, so that the jacket tube 57 also carries the accumulator pressure inside in this exemplary embodiment and accordingly, as in the embodiment of FIG figure 5 and 6 , is pressure balanced.
  • FIG. 12 shows an embodiment that is similar to the embodiment of FIG 3 and 4 corresponds, except that a through opening 65 and seat 66 for the pulse converter 26, not shown in this figure, are provided on the oil-side housing cover 7, the open end 60 fixed to the cover 7 opening into the through opening 65.
  • the connection opening 17 for the oil-side working chamber 15 is offset radially with respect to the longitudinal axis.
  • the 10 shows an embodiment with a storage housing 1 of great length.
  • the structure of the gas side housing cover 5 and the oil side housing cover 7 correspond to the cover structure of FIG 7 and 8th , wherein the cladding tube 57 is fixed to these covers 5, 7 with both open ends.
  • a seat for forming a sensor receptacle 23 is provided both on the gas-side cover 5 and on the oil-side cover 7.
  • the stepped bore 61, the 7 and 8th , in the expanded end section 67 a seat for a second pulse converter 28.
  • the pulse converters 26 and 28 each cover one half of the long measuring section with their respective strand 29 containing the waveguide.
  • the construction of the storage case 1 corresponds to the example of FIG 3 and 4 .
  • the strand 29 containing the waveguide of the sensor system is flexible due to the covering elements formed from an elastomer. After being pulled out of the enveloping tube 57, which is closed at the free end 60 and is therefore pressureless, the strand 29 can be pulled out and rolled up without interrupting operation of the piston accumulator when a relevant measurement period has ended. As a result, the sensor system can be used to monitor a plurality of piston accumulators into which it is inserted via the through-opening 27 located in the housing cover 5 .
  • the position indicator is made of a ferromagnetic material as a one-piece round body, which has a flat circular disk 58 at each of the two axially opposite ends, on the outer diameter of which the position indicator is slidably guided in the enveloping tube 57 .
  • the discs 58 are connected to one another in one piece via a connecting part 59 which is reduced in diameter.
  • the axial distance of the discs 58 is adapted to the axial height of the magnetic ring 55 in such a way that the end faces of the discs 58 are flush with the axial end faces of the magnetic ring 55, so that an optimal magnetic flux is formed with the magnetic ring 55.
  • the end face of the disc 58 of the position transmitter which faces the end 60 of the cladding tube 57, forms the reflection surface for the measuring radiation entering the cladding tube 57 from the end 60.
  • the position indicator is “pulled along” by means of the magnetic force mentioned, so that the respective position of the position indicator corresponds to the position of the piston 9 .
  • the end 60 of the cladding tube 57 receiving stepped bore 61 of the housing cover 7 has, in the same way as is the case with the bore 51 on the passage 31 of the piston 9, a circular cylindrical extension 54, in which the same ring body 45, as it is also used as a plastic body on the passage 31 of the piston 9 and is secured by screws 47 .
  • the annular body 45 forms a fitting border for the inserted end section of the cladding tube 57.
  • the distance measuring device has a transmitter/receiver 75 for the ultrasonic measuring method, for which the outer, widened bore section 67 of the bore 61 in the oil-side housing cover 7 forms a seat .
  • an ultrasonic transducer with a disc-shaped piezoceramic 78 extends into the end area of the tube 57 in order to determine the distance to the reflection surface on the facing disc 58 of the position transmitter 57.
  • the transmitter/receiver 75 could also be arranged on the gas-side housing cover 5, in which case the widened, end-side bore section 73 of the through-opening 27 could form the seat for the path measuring device.
  • the position indicator then preferably has a reflecting surface for laser light on its upper side which throws back the laser light emitted by the transmitter 75 to the receiver 75.
  • the position of the piston 9 and possibly also its displacement speed and/or the acceleration values when starting and braking can then be determined from the differences in running time.
  • the sensor chain of a Hall sensor measuring system for example, according to the teaching of DE 10 2013 014 282 A1 deploy.
  • the hollow guide rod 57 also accommodates parts of the overall measurement system.
  • the rod-like guide is accommodated in the accumulator housing 1 coaxially to the longitudinal axis 11 .
  • the guide extending through the piston 9 could also be arranged eccentrically to the longitudinal axis 11 parallel to the latter in the accumulator housing 1 .
  • several guide rods arranged parallel to one another within the accumulator housing 1 would also be conceivable.
  • the separating piston 9 then requires corresponding access openings for the relevant guides.
  • the respective guide rod regularly extends through the interior of the accumulator housing 1 between its two end-side housing covers 5, 7 and is also arranged to run coaxially with the accumulator housing 1.
  • the sealing device 49, 50 acting between the guide rod and the piston 9 is effective in every traversing state of the piston 9 and the two sealing rings, accommodated in the annular grooves 49, 50, engage around the pertinent guide rod with abutment.
  • the two sealing rings guided in the annular grooves 49, 50 are at a definable axial distance from one another, viewed in the direction of the longitudinal axis 11, and, as part of the inner guidance of the piston 9, stabilize its axial movement along the guide rod 29, 57.
  • the sealing device 49, 50 is arranged on the inside of the piston 9 and viewed in the direction of the figure above the annular body 45 screwed into the piston 9 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Claims (6)

  1. Accumulateur hydropneumatique à piston, comprenant une enveloppe (1) d'accumulateur, qui définit un axe (11) longitudinal de l'enveloppe et dans laquelle un piston (9) peut être déplacé longitudinalement entre deux flasques (5, 7) en opposition d'enveloppe, lequel sépare, dans l'enveloppe (1), un espace (13) de travail pour un fluide compressible, comme un gaz de travail, d'un espace (15) de travail pour un fluide incompressible, comme de l'huile hydraulique, et a au moins une partie (55) d'un système (23, 26, 29) magnétostrictif de mesure, déterminant continuellement la position respective du piston (9) dans l'enveloppe (1), d'un dispositif de mesure de course, dans lequel, dans l'enveloppe (1) de l'accumulateur est disposé de manière fixe un guidage (29, 57) de type à barre, qui traverse complètement le piston (9) dans chacune de ses positions de déplacement dans l'enveloppe (1) de l'accumulateur et le long duquel le piston (9) est guidé avec possibilité de se déplacer jusqu'à la butée respective sur l'un des deux flasques (5, 7) de l'enveloppe, dans lequel le piston (9) est rendu étanche par rapport à ce guidage (29, 57) au moyen d'un dispositif (49, 50) d'étanchéité, et dans lequel une barre (57) creuse, formant le guidage, a un tube (57) de gainage de section transversale circulaire, de préférence résistant à la pression, dans lequel le guidage (29, 57) du piston a un guide d'onde (29) du système (23, 26, 29) magnétostrictif de mesure, dans lequel l'enveloppe (1) de l'accumulateur a un tube (3) cylindrique, qui est fermé aux deux extrémités par les flasques (5, 7) de l'enveloppe, dans lequel le tube (57) de gainage est fixé par une extrémité ouverte à l'un des flasques (5, 7) de l'enveloppe, dans lequel est monté sur celui-ci le convertisseur (26) d'impulsion, ayant un émetteur / récepteur d'impulsions, relié au guide d'onde du système (23, 26, 29) magnétostrictif de mesure,
    caractérisé en ce que
    le tube (57) de gainage est fermé ou ouvert à son extrémité (60) libre, qui n'est pas fixée.
  2. Accumulateur à piston suivant la revendication 1, caractérisé en ce qu'il est prévu, pour le guidage (29, 57), un passage (31), qui est constitué dans le piston (9), de préférence coaxialement à l'axe (11) longitudinal, et sur lequel se trouve un dispositif (55) à aimant permanent.
  3. Accumulateur à piston suivant l'une des revendications précédentes, caractérisé en ce que, pour le système (23, 26, 29) magnétostrictif de mesure, est prévu un élément (29) de gainage en un matériau non conducteur de l'électricité entourant directement le fil de mesure.
  4. Accumulateur à piston suivant l'une des revendications précédentes, caractérisé en ce que le flasque (5) recevant l'extrémité ouverte du tube (57) de gainage est voisin de l'espace (13) de travail du côté du gaz.
  5. Accumulateur à piston suivant l'une des revendications précédentes, caractérisé en ce que le flasque (7) recevant l'extrémité (60) ouverte du tube (57) de gainage est voisin de l'espace (15) de travail du côté de l'huile.
  6. Accumulateur à piston suivant l'une des revendications précédentes, caractérisé en ce que le système (23, 26, 29) magnétostrictif de mesure est formé d'une pièce pouvant être retirée d'une extrémité ouverte du tube (57) de gainage, et ayant une gaine (29) souple, de préférence pouvant être déroulée, entourant le guide d'onde à la manière d'un tube souple.
EP17731805.2A 2016-06-25 2017-06-19 Accumulateur hydropneumatique à piston Active EP3475584B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016007824.3A DE102016007824A1 (de) 2016-06-25 2016-06-25 Hydropneumatischer Kolbenspeicher
DE102016007798.0A DE102016007798A1 (de) 2016-06-25 2016-06-25 Hydropneumatischer Kolbenspeicher
PCT/EP2017/000705 WO2017220196A1 (fr) 2016-06-25 2017-06-19 Accumulateur à piston hydropneumatique

Publications (2)

Publication Number Publication Date
EP3475584A1 EP3475584A1 (fr) 2019-05-01
EP3475584B1 true EP3475584B1 (fr) 2022-08-10

Family

ID=58544901

Family Applications (3)

Application Number Title Priority Date Filing Date
EP17717082.6A Active EP3475583B1 (fr) 2016-06-25 2017-04-11 Accumulateur hydropneumatique à piston
EP23162104.6A Pending EP4230874A3 (fr) 2016-06-25 2017-04-11 Accumulateur hydropneumatique à piston
EP17731805.2A Active EP3475584B1 (fr) 2016-06-25 2017-06-19 Accumulateur hydropneumatique à piston

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP17717082.6A Active EP3475583B1 (fr) 2016-06-25 2017-04-11 Accumulateur hydropneumatique à piston
EP23162104.6A Pending EP4230874A3 (fr) 2016-06-25 2017-04-11 Accumulateur hydropneumatique à piston

Country Status (4)

Country Link
US (2) US10781830B2 (fr)
EP (3) EP3475583B1 (fr)
JP (2) JP2019521294A (fr)
WO (2) WO2017220179A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019521294A (ja) * 2016-06-25 2019-07-25 ハイダック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングHydac Technology Gesellschaft Mit Beschrankter Haftung 油空圧式ピストン型アキュムレータ
WO2022061396A1 (fr) * 2020-09-25 2022-03-31 Schenck Process Australia Pty Limited Transducteur à déplacement linéaire
CN112762028B (zh) * 2021-01-18 2022-07-05 国家石油天然气管网集团有限公司华南分公司 一种稳压封闭油箱

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7103342U (de) * 1971-01-29 1971-08-05 Montan Hydraulik Gmbh & Co Kg Hydro Speicher
US2729244A (en) * 1952-09-25 1956-01-03 Parker Appliance Co Hydraulic accumulators
US2800924A (en) * 1953-09-30 1957-07-30 Bendix Aviat Corp Accumulator
US3043340A (en) * 1961-05-16 1962-07-10 Cadillacjordan G M B H Piston-operated pressure reservoir
US3454050A (en) * 1967-01-31 1969-07-08 Pressure Products Ind Inc Accumulators
GB1330648A (en) * 1969-12-25 1973-09-19 Aisin Seiki Hydraulic brake master cylinder brake fluid reservoirs
DE2336965A1 (de) * 1973-07-20 1975-02-06 Hydraulik Zubehoer Ges Fuer Hydropneumatischer druckspeicher
JPS59175601A (ja) * 1983-03-22 1984-10-04 Hitachi Ltd 蓄圧器のピストン位置検出方法
JPS60143901A (ja) 1983-12-29 1985-07-30 株式会社ユ−エム工業 手挽鋸
JPS60143901U (ja) * 1984-03-07 1985-09-24 株式会社東芝 アキユムレ−タ
US4799048A (en) * 1984-09-28 1989-01-17 Nippondenso Co., Ltd. Accumulator
JPS61123201A (ja) 1984-11-19 1986-06-11 Yagi Antenna Co Ltd 分配/混合器
JPS61123201U (fr) * 1985-01-21 1986-08-02
JPH0799723B2 (ja) * 1985-10-24 1995-10-25 三菱電機株式会社 均一磁界コイル
JPS6297307U (fr) * 1985-12-09 1987-06-20
JPS6453501U (fr) * 1987-09-26 1989-04-03
DE3734547A1 (de) * 1987-10-13 1989-05-03 Festo Kg Kolben-zylinder-aggregat
JPH02186102A (ja) * 1989-01-10 1990-07-20 Nakamura Koki Kk ピストン型アキュムレータのピストン位置検知装置
US5238029A (en) * 1991-10-04 1993-08-24 Fanuc Robotics North America, Inc. Method and system for fluid transfer and non-contact sensor for use therein
DE4227657A1 (de) * 1992-08-21 1994-02-24 Hydac Technology Gmbh Ultraschall-Prüfeinrichtung für Gasdruckspeicher
JPH07269503A (ja) * 1994-03-30 1995-10-17 Nakamura Koki Kk ピストン型アキュムレータのピストン位置検出装置
US6412476B1 (en) * 2000-08-02 2002-07-02 Ford Global Tech., Inc. Fuel system
SE520636C2 (sv) * 2001-11-12 2003-08-05 Stroemsholmen Ab Anordning vid en energiackumelerande kolv-cylinderdon
DE10310427A1 (de) * 2003-03-11 2004-09-30 Hydac Technology Gmbh Hydrospeicher
DE102004057769A1 (de) * 2004-11-30 2006-06-01 Mts Mikrowellen-Technologie Und Sensoren Gmbh Abstandmessvorrichtung und Verfahren zur Bestimmung eines Abstands
DE102011007765A1 (de) 2011-04-20 2012-10-25 Robert Bosch Gmbh Kolbenspeicher mit Vorrichtung zur Positionsbestimmung eines in dem Kolbenspeicher verlagerbaren Trennelementes
CN103958902B (zh) * 2011-10-10 2017-06-09 阿格斯·彼特·罗伯森 蓄压器
DE102011090050A1 (de) 2011-12-28 2013-07-04 Robert Bosch Gmbh Verfahren zum Bestimmen einer Position eines Kolbens in einem Kolbendruckspeicher mittels Induktivsensoren sowie geeignet ausgebildeter Kolbendruckspeicher
DE102012022871A1 (de) 2012-11-22 2014-05-22 Hydac System Gmbh Stellvorrichtung
US8939177B2 (en) * 2013-03-15 2015-01-27 Lsp Products Group, Inc. In-line water hammer arrester
DE102013009614A1 (de) 2013-06-06 2014-12-11 Hydac Electronic Gmbh Ultraschall-Wegmesssystem und Verfahren zur Ultraschall-Wegmessung
DE102013014282A1 (de) 2013-08-27 2015-03-05 Hydac Electronic Gmbh Positionsmesssystem und Verfahren zur Positionsermittlung
US20150285272A1 (en) * 2014-04-08 2015-10-08 Yokogawa Electric Corporation Apparatus and methods for passive pressure modulation
DE102014105154A1 (de) 2014-04-11 2015-10-15 Mhwirth Gmbh Verfahren zur Positions- und/oder Bewegungserfassung eines Kolbens in einem Zylinder sowie Zylinderanordnung
JP2019521294A (ja) * 2016-06-25 2019-07-25 ハイダック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングHydac Technology Gesellschaft Mit Beschrankter Haftung 油空圧式ピストン型アキュムレータ

Also Published As

Publication number Publication date
US20200309158A1 (en) 2020-10-01
US10781830B2 (en) 2020-09-22
EP4230874A2 (fr) 2023-08-23
EP3475583B1 (fr) 2023-06-07
EP3475583A1 (fr) 2019-05-01
EP3475583C0 (fr) 2023-06-07
JP2019521294A (ja) 2019-07-25
WO2017220179A1 (fr) 2017-12-28
JP2019519739A (ja) 2019-07-11
WO2017220196A1 (fr) 2017-12-28
EP3475584A1 (fr) 2019-05-01
US10941789B2 (en) 2021-03-09
EP4230874A3 (fr) 2023-08-30
US20190120257A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
DE102009032897B4 (de) Kolben-Zylinderaggregat
DE2349181C3 (de) Verfahren und Einrichtung zum Messen der Eigenschaften von Bohrlochformationen
EP3475584B1 (fr) Accumulateur hydropneumatique à piston
WO2000031420A1 (fr) Accumulateur d'agent de pression
EP3004656B1 (fr) Système de mesure de déplacement à ultrasons et procédé permettant la mesure d'un déplacement par ultrasons
WO2016151015A1 (fr) Amortisseur de vibrations présentant une longueur raccourcie
EP3129661B1 (fr) Methode pour acquisition de la position ou mouvement d'un piston dans un cylindre
DE102016007798A1 (de) Hydropneumatischer Kolbenspeicher
DE102005029494B4 (de) Kolben-Zylinder-Anordnung
DE102014005637A1 (de) Fluid-Arbeitsgerätschaft
DE102005060208A1 (de) Messaufnehmer eines magnetisch induktiven Durchflussmessgeräts
DE102008058185A1 (de) Werkzeugspannvorrichtung
DE10225246A1 (de) Kontraktionseinheit mit Positionssensoreinrichtung
EP3301404B1 (fr) Capteur de position
EP2519747B1 (fr) Dispositif de guidage pour soufflet métallique
DE102013104717B4 (de) Hydraulikzylinder mit integriertem Wegaufnehmer
EP0082933B1 (fr) Dispositif de détection de la position d'un piston de cylindre
DE3634730A1 (de) Arbeitszylinder, insbesondere pneumatikzylinder fuer komponenten von handlingautomaten
DE202014001604U1 (de) Kolbenzylindereinheit
DE4115342A1 (de) Hydropneumatischer speicher mit einer fuehrung
EP3343182B1 (fr) Capteur de trajectoire linéaire destiné à détecter un mouvement linéaire d'un objet
DE102016007824A1 (de) Hydropneumatischer Kolbenspeicher
DE10207598A1 (de) Druckmittelspeicher
WO2005098299A1 (fr) Systeme de soupape comportant un systeme de capteur de deplacement encapsule
EP3301403A1 (fr) Capteur de position

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HYDAC TECHNOLOGY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1510737

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017013600

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220810

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221110

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221210

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017013600

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

26N No opposition filed

Effective date: 20230511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230608

Year of fee payment: 7

Ref country code: FR

Payment date: 20230605

Year of fee payment: 7

Ref country code: DE

Payment date: 20230630

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230412

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230619

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230619

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630