EP3460180B1 - Schraubenspindelpumpe - Google Patents

Schraubenspindelpumpe Download PDF

Info

Publication number
EP3460180B1
EP3460180B1 EP18182916.9A EP18182916A EP3460180B1 EP 3460180 B1 EP3460180 B1 EP 3460180B1 EP 18182916 A EP18182916 A EP 18182916A EP 3460180 B1 EP3460180 B1 EP 3460180B1
Authority
EP
European Patent Office
Prior art keywords
bushing
pump according
spindle
screw spindle
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18182916.9A
Other languages
English (en)
French (fr)
Other versions
EP3460180A1 (de
Inventor
Ralf Richter
Oliver Troßmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leistritz Pumpen GmbH
Original Assignee
Leistritz Pumpen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leistritz Pumpen GmbH filed Critical Leistritz Pumpen GmbH
Priority to PL18182916T priority Critical patent/PL3460180T3/pl
Publication of EP3460180A1 publication Critical patent/EP3460180A1/de
Application granted granted Critical
Publication of EP3460180B1 publication Critical patent/EP3460180B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/02Arrangements of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump
    • F04C15/0046Internal leakage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/16Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/16Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • F04C2/165Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type having more than two rotary pistons with parallel axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/001Pumps for particular liquids
    • F04C13/002Pumps for particular liquids for homogeneous viscous liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0034Sealing arrangements in rotary-piston machines or pumps for other than the working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/56Bearing bushings or details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/04Force
    • F04C2270/044Force axial
    • F04C2270/0445Controlled or regulated

Definitions

  • the invention relates to a screw pump with a housing, a housing cover and at least one running spindle accommodated in a bore in the housing, and a bushing arranged on the housing cover with a receiving space delimited by a cylindrical flange into which the running spindle engages with one end, the bushing has an opening on the bottom, via which a fluid supplied via a cover-side supply channel can be supplied with pressure against the end face of the running spindle from the side opposite the running spindle.
  • Screw pumps are used to pump a wide variety of fluid media. They comprise a housing with at least two spindles, a drive spindle and at least one drive spindle driven by the drive spindle, but often two drive spindles, which are arranged on both sides of the central drive spindle, are also provided. The one or more spindles are driven by the drive spindle after the spindles mesh. Cavities are formed via the engagement, which form the delivery spaces for the fluid to be delivered. In this way it is possible to convey the fluid supplied on one side from this suction side to the pressure side.
  • the structure and function of such a screw pump is basically known.
  • a socket is provided on the housing cover, which is designed as a pocket socket. It is fastened on the cover side with several bolt connections, the fixing being such that a slight lateral movement is possible in the unloaded state.
  • This free spindle end as well as the bushing with its cylindrical flange are located in a free space on the housing side, which means that the spindle protrudes from and in the actual housing bore Free space runs into the sack.
  • a fluid usually the fluid to be conveyed, which is returned from the pressure side, is guided from the socket bottom via an axial bore, which is provided in known screw pumps via an elongated, longitudinally drilled screw, into the receiving space, where the Fluid presses against the front of the spindle.
  • This means that the axial thrust compensation is realized through a hydrostatically depressed space between the bush and the spindle.
  • a clear overcompensation of the diameter of the surfaces to be printed is realized in such a way that there is always a resultant force component which presses the bushing against the housing cover.
  • a very small and long control bore is formed in the spindle, through which the supplied fluid is discharged to the suction side. This arrangement results in a static state depending on the pressure and viscosity of the fluid.
  • the invention is based on the problem of specifying a screw pump which is improved in comparison with this.
  • the invention provides that the bush engages with a radial flange with radial play in a receptacle in the cover that is open toward the housing, and the radial flange is axially supported on the housing, and that the cylindrical flange of the bush engages in the bore at least in sections and in this is included with game.
  • the screw spindle according to the invention is characterized by a novel arrangement or mounting of the bush.
  • the socket is no longer screwed to the housing cover, but is only inserted with radial play in a cover-side receptacle. It has a radial flange with which it is supported axially on the front face of the housing. This means that the housing extends right up to the lid.
  • the bush engages at least in sections in the bore in which the spindle is received with little play. This bore engagement automatically centers the bush relative to the spindle.
  • This configuration according to the invention enables very simple assembly. Because it is only necessary to slide the one or the respective bush as a separate component onto the spindle end and thus insert it into the spindle bore. Then only the housing cover has to be put on and positioned in its circumferential orientation so that the bush engages in the corresponding cover-side receptacle. In this final assembly position, in which the housing cover is then screwed to the housing, the bushing-side radial flange is then arranged between the receptacle or the housing cover and the housing, that is to say axially fixed with slight play. At the same time, after the bushing is arranged in the receptacle with play and at the same time is also accommodated in the bore with little play, a lateral offset or tolerance compensation is possible.
  • the screw pump according to the invention is characterized by a much simpler construction, since fewer components are required after the bushing can no longer be fixed to the housing cover with corresponding fastening screws or bolts.
  • it is characterized by a high degree of ease of installation, since it is only necessary to simply insert the or each bushing, which can also be referred to as a pocket bushing, into the bore of the spindle, after which only the housing cover has to be put on. Large fit diameters are also eliminated the surrounding structure such as pump body and suction housing due to the simple plug-in solution.
  • the entire length of the cylindrical flange engages in the bore. This means that the bore in which the spindle is received runs directly to the end of the housing or ends at the front of the housing, so there is no bore extension or the like.
  • a particularly expedient development of the invention provides that the bushing is designed as an aperture in the region of the opening, that is to say that an aperture opening is provided.
  • a diaphragm or a diaphragm opening is characterized in that the ratio of the length of the opening bore with a small, constant diameter to the diameter itself is approximately 1 or less than 1. This in turn means that the pressure loss built up via the orifice is almost independent of viscosity.
  • the control valve can consequently be used to set and regulate the pressure loss required for axial thrust regulation, this pressure regulation or the axial thrust compensation being largely or completely independent of the viscosity of the fluid, so that the screw pump or the thrust compensation system provided according to the invention can be used to convey fluids with different viscosities , unlike known screw pumps, which show a high viscosity dependency in the thrust compensation system.
  • the bushing has an outer diameter which, as described, corresponds to the diameter of the spindle bore in which the cylindrical flange is accommodated with little play.
  • the socket also has an inner diameter in the receiving space, which is the diameter of the compensation surface on the spindle side, i.e. corresponds to the spindle end face.
  • the bushing has the orifice opening or the regulating orifice which regulates the pressure loss required for regulating the axial thrust.
  • the running spindle only has a closed diameter, ie it has a cylindrical spindle end with which it engages in the bushing.
  • the diameter of the running spindle in the thrust compensation system is selected in such a way that the pressurized surface in the bushing, that is to say the spindle end face, is somewhat larger than the surface to which the fluid is applied.
  • the orifice and the resulting leakage flow, which is discharged from the thrust compensation system to the suction side, is defined in such a way that the pressure loss is set which is required to overcome the overcompensation. This means that a self-regulating hydrostatic thrust compensation system can be implemented that is almost independent of viscosity.
  • the viscosity independence of the thrust compensation system is ensured by the bush being designed as a diaphragm, that is to say having an opening in the form of a diaphragm opening through which the compensating fluid is supplied.
  • This opening can either have a constant diameter over its entire length, that is to say that the socket base is correspondingly thin, for example has a total thickness of 2 mm with an opening diameter of 2 mm.
  • the opening it is also possible for the opening to have a first section with a constant diameter that adjoins the inlet side, to which a second section that opens toward the end face, preferably in a conical manner, adjoins.
  • the diaphragm base can be designed to be significantly stronger after the diaphragm opening has a number of sections.
  • the first section which has a constant, small diameter and which defines the degree of pressure loss via the orifice, is provided directly on the fluid inlet side.
  • This opening section is, for example, 2 mm long and has a diameter of 2 mm.
  • the opening widens towards the spindle side, so the first section merges into a second section, this transition, for example can be designed conical. So different types of bushings are conceivable.
  • the opening having a constant diameter or the conically widening section merges into a round distribution section which is open towards the end face.
  • a correspondingly large diameter reduction is provided on the socket bottom, towards the spindle side, which forms a distribution section in which either the opening, for example 2 mm long, with the constant diameter, opens out, or in which the conically opening one second section opens.
  • the ratio of the opening length with constant diameter to the diameter of the opening is less than or equal to 1.
  • the opening length with a constant diameter is 2 mm, and the diameter is also 2 mm, so that a ratio of 1 is given.
  • the diameter can also be somewhat larger, so that a ratio of less than 1 results.
  • the concrete dimensioning of the bore dimensioning depends on the dimensioning of the pressurized surfaces involved and the degree of overcompensation on the spindle side in order to set the pressure loss via the orifice plate that is required to overcome the overcompensation.
  • a defined pressure loss is set by the thrust compensation according to the invention using the bushing cover, which is such that in connection with the given leakage current the overcompensation and thus the force with which the bushing is pressed against the housing cover is largely reduced, that the bushing can also move laterally or radially when the load is on, i.e. when the pump is working. This in turn leads to the bush also carrying out corresponding lateral compensating movements of the spindle, so that the spindle is always optimally guided in the bush.
  • the fluid flows onto the socket on the underside of the socket bottom.
  • the socket bottom in turn, is accommodated in the housing-side receptacle.
  • an annular seal is expediently arranged between the housing cover and the bushing.
  • the diameter of the seal is preferably smaller or larger in the interval between +/- 10% than the diameter of the end face of the spindle.
  • the pressure surface against which the fluid presses is defined by this seal.
  • the seal prevents the fluid from flowing off to the side, so that it is ensured that the fluid only flows off through the orifice opening.
  • this contact surface on the socket bottom side is provided, which approximately corresponds to the counterpressure surface on the spindle, that is to say the spindle end face. This is also useful for setting a low counterforce with which the socket is pressed against the housing cover in the event of a load, in order to ensure the lateral mobility of the socket even in the event of a load.
  • the seal can either be received in an annular receptacle on the bottom of the socket, that is to say that an annular groove is formed on the socket bottom.
  • an annular groove is formed on the socket bottom.
  • a ring receptacle or annular groove can also be formed on the housing cover.
  • a particularly advantageous development of the invention provides that the receiving space, in which the cylindrical spindle engages with its cylindrical ends, widens conically towards the spindle at least in the region of the free end of the cylindrical flange.
  • the bushing therefore has a cylindrical inner circumference which extends from the bushing base and widens conically towards the free end of the cylindrical bushing flange.
  • the cylindrical spindle engages with the cylindrical spindle end in the bush, it extends into the area of the cylindrical inner circumference. If a corresponding pressure builds up, the spindle is slightly moved away from the bush, which means that the spindle end is slightly moved axially out of the cylindrical inner circumference. Due to the subsequent conical extension section, a narrow annular gap opens between the bush and the spindle end, through which the fluid can then flow as a leakage current. The pressure in the thrust compensation system drops again slightly, the spindle is moved slightly axially into the bush again, the annular gap closes again slightly, a slightly higher pressure builds up. In this way, a hydrostatic state arises in an extremely short time, the thrust compensation system bringing itself into this hydrostatic state in a self-regulating manner.
  • the receiving space can open at an angle between 5 ° -15 °, in particular between 8 ° -12 ° and preferably with 10 °.
  • the area of the conical widening should expediently extend at least over half the length of the flange and then merge into the cylindrical inner circumferential area or an area with a cylindrical inner circumference.
  • a particularly expedient development of the invention provides that an annular collar reducing the diameter of the flange is provided in the region of the bottom of the bush.
  • This ring collar serves as a contact surface or contact collar against which the face of the spindle runs when the spindle is moved into the bushing. In this case there is too little pressure in the thrust compensation system to axially push back the spindle. If the end face of the running spindle now runs against the ring collar, the counterpressure area on the running spindle suddenly decreases after there is only a reduced end face on the running spindle against the fluid against which the fluid presses with its constant fluid pressure.
  • the socket itself is secured against rotation by a securing element on the housing cover, so that it is ensured that the socket is not rotated by the rotating spindle.
  • the securing element can be a pin which engages in a bore on the cover side and in a receptacle formed on the end face on the housing base or on the radial flange. Either an end blind hole or a lateral recess in which the pin engages can thus be formed.
  • a screw spindle can only have one running spindle and one drive spindle.
  • two or more running spindles are provided in the respective bores, each of which is assigned a bushing, and which are driven by a common drive spindle.
  • two or more sockets are provided, they preferably communicate via a common supply line, so that they are supplied simultaneously via a supply line with the fluid, as described, with the medium to be conveyed, so that overall a closed fluid circuit also results within the thrust compensation system .
  • Fig. 1 shows an inventive screw pump 1 in a partial view as an exploded view.
  • a housing 2 is shown, in which a first bore 3 for receiving a drive spindle and, to the side, two bores 4, 5 for receiving a running spindle each, which mesh with the drive spindle, are formed in the center.
  • the spindles are not shown here.
  • the bores 4, 5 receiving the running spindles extend directly to the end face 6 of the housing 2.
  • housing cover 7 which is screwed onto the housing 2 by means of suitable fastening screws, finally.
  • bushings 8, 9 which are part of a hydraulic thrust compensation system via which the two running spindles are axially supported.
  • the structure and function of the sockets 8, 9 will be discussed below.
  • two pins 10, 11 are used, which on the one hand are inserted into corresponding blind bores 12, 13 on the housing and which on the other hand pass through corresponding lateral recesses 14, 15 on the bushings 8, 9. This prevents the bushings 8, 9 from being set in rotation by the spindles engaging in them.
  • Fig. 2 shows a partial sectional view of the screw pump 1 from Fig. 1 , wherein the housing 2 is shown cut here.
  • the drive spindle 16 and the two running spindles 17, 18 can be seen, the spindles meshing with one another with their corresponding screw profiles.
  • the housing cover 7 is placed on the housing 2 and screwed to it.
  • the two bushings 8, 9 are pushed onto the running spindles 17, 18, that is, the spindle ends engage in the bushings 8, 9.
  • the sockets clearly catch 8, 9, each with a cylindrical flange 19, 20 with little play in the bores 4, 5, in which the running spindles 17, 18 are received, by means of which the bushings 8, 9 are centered.
  • the socket base 23, 24 is each provided with a radial flange 25, 26 which, as will be discussed below, is supported on the end face 6 of the housing 2.
  • an inlet duct 34 which is formed on the housing cover 7 and from which two branch ducts 35, 36 extend, which run to the sockets 8, 9, and thus thus open into the corresponding receptacle 21, 22. This can be used to supply a pressure compensation fluid via which the axial thrust compensation is implemented.
  • Fig. 3 shows a sectional view through the screw pump 1 accordingly Fig. 2 , here also the drive spindle 16 and the two running spindles 17, 18 and the bushings 8, 9 are shown in section.
  • the sockets 8, 9 can be seen in the corresponding receptacles 21, 22. With their radial flanges 25, 26 they rest on the end face 6 of the housing 2, which is possible after the bores 4, 5 extend directly to the end face 6, the housing cover 7 being in direct contact with the end face 6.
  • each bushing in the respective bushing base 23, 24 has an aperture 37, 38 through which the inlet channel 34 and the fluid channels 35, 36 supplied fluid can enter the receiving space 32, 33.
  • the fluid flow is indicated by the corresponding arrows in Figure 3 shown.
  • the bushes 8, 9 are designed as screens, which will be discussed in more detail below. This means that a defined, viscosity-independent pressure drop from the inlet side with the feed channel 34 to the outlet side to the respective spindle 17, 18 can be realized via these orifices or orifices.
  • the bushings 8, 9 each have a cylindrical flange 19, 20. With this they engage, as stated, directly with little play in the respective bore 4, 5.
  • the respective flange 19, 20 is provided on its inside in the region of the socket base 23, 24 with a cylindrical inner circumferential region 39, 40, see among others Fig. 6 , which in turn is followed by a conically widening region 41, 42 (see again Fig. 6 ). Pressure control can be implemented in this way.
  • a more or less large annular gap is formed, through which the supplied fluid can flow off to the suction side of the pump.
  • the respective spindle end 28, 29 is inserted deeply, then the respective end face 30, 31 is located in the region of the cylindrical inner circumference, that is to say in the circumferential region 39, 40. If the running spindle 17, 18 is formed or generated by the pressure formed in the receiving space 32, 33 pushed out again somewhat, the respective end face 30, 31 moves into the conical widening area 41, 42, so that an annular gap results which increases the further the spindle 17, 18 is pushed out. The fluid in the receiving space 32, 33 can flow through this annular gap to the suction side, via which the pressure drops again and the respective spindle 17, 18 migrates somewhat into the bushing 8, 9 again. Overall, a static equilibrium state arises in an extremely short time, in which the respective spindle 17, 18 is hydraulically thrust-balanced.
  • the 3 and 4 furthermore show the fluid supply of the thrust compensation system comprising that in the manner according to the invention formed and mounted bushings 8, 9.
  • a fluid channel 43 running from the pressure side to the suction side and to the housing cover 7 is formed, which opens via a branch channel 44 into a cover-side fluid channel 45, which in turn opens into the supply channel 34.
  • the corresponding channels are closed by means of sealing plugs 46, 47.
  • the fluid, via which the hydraulic thrust compensation takes place, is therefore supplied from the pressure side with the corresponding pump pressure.
  • This pressure acts on the bottom surface 48, 49 of the respective bushing 8, 9.
  • This bottom surface 48, 49 is sealed off by a sealing element 50, 51 for receiving 21, 22.
  • corresponding annular grooves 52 are formed in the socket bottoms 23, 24, see here Fig. 6 , where an exemplary sectional view through the bushing 8 is shown, the bushing 8 and the bushing 9 being of identical design.
  • the bushings 8, 9 are received in the corresponding receptacles 21, 22 with little radial play, so they are floating and laterally movable. They are also accommodated with little play with their respective flanges 19, 20 in the bores 4, 5, so that overall there is a floating bearing.
  • This floating bearing is also retained in the event of a load, ie when fluid is being pumped.
  • a defined pressure drop results via the opening 37, 38 of the bushings 8, 9, which is designed in such a way that it is due to the overcompensation resulting from the size of the respective end face 30, 31 of the spindles 17, 18 resulting force that presses the bushings 8, 9 against the housing cover 7, as far as is reduced or minimized and compensated for, that in the load case the bushings are pressed firmly against the housing cover 7 while compressing the respective sealing elements 50, 51, but still since this resulting force is largely balanced, can be moved laterally.
  • Fig. 5-7 show a first embodiment of a socket used according to the invention, socket 8 being shown here by way of example.
  • the bushing 9 is of course identical to this. It has a cylindrical flange 19, as well as a radial flange 25, which extends the bottom 23 of the bushing laterally.
  • opening 37 which is designed as a diaphragm. This area is enlarged in Fig. 7 shown.
  • the opening 37 comprises a first section 53, which has a constant diameter.
  • the axial length of this section 53 preferably corresponds to the diameter of this cylindrical opening, so that there is a ratio of opening length to diameter of 1.
  • the ratio can also be less than 1, which means that the diameter is greater than the opening length.
  • this first section 53 is followed by a conically widening second section 54.
  • the pressure drop begins in this area and continues in a subsequent distribution section 55.
  • Fig. 6 shows, as already described, the annular groove 52 in which the corresponding ring seal 50 is received.
  • the annular groove 52 and thus the ring seal 50 in the case of assembly have a diameter which approximately corresponds to the diameter of the inner circumferential region 39, and consequently also the diameter of the end face 30 or 31. This means that the inflow face on the bushing base approximately corresponds to the end face 30, 31 corresponds to the counter pressure area.
  • the entire surface defined by the respective ring seal 50, 51 can be seen as the inflow surface, since in operation the respective bushing 8, 9 is pressed against the housing cover 7, but due to the defined pressure drop and thus force equalization, the respective bushing 8, 9 is possibly minimally spaced from the housing cover 7 and consequently the fluid can be distributed over the entire area delimited by the respective seal 50 and 51.
  • the fluid is guided to the respective orifice bushing 8, 9 via the respective channel geometry and enters the respective receiving space 32, 33. It flows against the respective end face 30, 31, ie the counter pressure surface. Due to the defined pressure drop across the respective orifice design, there is an extensive balancing of forces, so that only a relatively small resulting force with which the respective orifice 8, 9 is pressed against the housing cover 7 results, so that a floating bearing also remains is given in the case of load or pressure.
  • this thrust compensation system is very easy. After the housing 2 has been fitted with the drive spindle 16 and the two running spindles 17, 18, it is only necessary to push the two bushings 8, 9 onto the spindle ends 28, 29 and in doing so with the corresponding flanges 19, 20 into the respective bores 4, 5 introduce. Automatic centering is provided here. At the same time, when the pins 10 engage in the corresponding lateral recesses 14, 15, the anti-rotation device is implemented. Then only the housing cover 7 has to be attached and positioned in the circumferential direction so that the bottoms 23, 24 of the bushings 8, 9 engage in the corresponding receptacles 25, 26, after which the housing cover 7 can be screwed on.
  • Fig. 8 finally shows an embodiment of a bushing 8 according to the invention (the same applies to the bushing 9), in which an annular collar 56 is additionally formed on the inner circumference in the region 39, which reduces the diameter there.
  • the respective end face 30, 31 can run against this annular collar 56 if the spindle, for whatever reason, is immersed axially to such a depth. If the respective end face 30, 31 runs against the respective annular collar 56, the counter pressure surface against which the fluid works is reduced. As a result of the fact that no more fluid can flow out through the axially closed gap, the correspondingly high pressure builds up, which axially pushes the spindle back again. There is an increase in pressure in the respective receiving space 32, 33, which means that the respective spindle 17, 18 is immediately pressed out of the system on the respective ring collar 56 and the static equilibrium state is then established again.
  • Fig. 9 finally shows a sectional view through a screw pump 1 according to the invention, the housing 2 here consisting of a plurality of separate housing elements 57 which are axially assembled and connected to one another. Shown is the housing cover 7 and the axial thrust compensation system implemented via the bushings 8, 9, via which the two running spindles 17, 18 are hydraulically thrust balanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Description

  • Die Erfindung betrifft eine Schraubenspindelpumpe mit einem Gehäuse, einem Gehäusedeckel und wenigstens einer in dem Gehäuse in einer Bohrung aufgenommenen Laufspindel, sowie einer am Gehäusedeckel angeordneten Buchse mit einem über einen zylindrischen Flansch begrenzten Aufnahmeraum, in den die Laufspindel mit einem Ende eingreift, wobei die Buchse bodenseitig eine Öffnung aufweist, über die von der der Laufspindel gegenüberliegenden Seite ein über einen deckelseitigen Zuführkanal zugeführtes Fluid mit Druck gegen die Stirnseite der Laufspindel zuführbar ist.
  • Schraubenspindelpumpen dienen der Förderung unterschiedlichster fluider Medien. Sie umfassen ein Gehäuse mit wenigstens zwei Spindeln, einer Antriebsspindel und wenigstens einer über die Antriebsspindel angetriebenen Laufspindel, wobei häufig aber auch zwei Laufspindeln, die beidseits der mittigen Antriebsspindel angeordnet sind, vorgesehen sind. Die eine oder die mehreren Laufspindeln werden über die Antriebsspindel angetrieben, nachdem die Spindeln miteinander kämmen. Über den Eingriff werden Hohlräume gebildet, die die Förderräume für das zu fördernde Fluid bilden. Hierüber ist es möglich, das an einer Seite zugeführte Fluid von dieser Saugseite zur Druckseite zu fördern. Der Aufbau und die Funktion einer solchen Schraubenspindelpumpe ist im Grunde nach bekannt.
  • Da die Laufspindeln in geringem Umfang axial beweglich sind, ist es erforderlich, einen Axialschubausgleich vorzusehen, der bei bekannten Schraubenspindelpumpen hydraulisch erfolgt. Hierzu ist am Gehäusedeckel eine Buchse vorgesehen, die als Sackbuchse ausgeführt ist. Sie ist mit mehreren Bolzenverbindungen deckelseitig befestigt, wobei die Fixierung derart ist, dass im unbelasteten Zustand eine geringe seitliche Bewegung möglich ist. In diese Buchse greift die Laufspindel mit ihrem freien, zylindrischen Ende mit geringem Spiel ein. Dieses freie Spindelende wie auch die Buchse mit ihrem zylindrischen Flansch befinden sich in einem gehäuseseitigen Freiraum, das heißt, dass die Laufspindel aus der eigentlichen Gehäusebohrung herausragt und in diesem Freiraum in die Sackbuchse läuft. Zum hydraulischen Axialschubausgleich wird über einen Zuführkanal ein Fluid, üblicherweise das zu fördernde Fluid, das von der Druckseite rückgeführt wird, vom Buchsenboden her über eine Axialbohrung, die bei bekannten Schraubenspindelpumpen über eine längliche, längsgebohrte Schraube bereitgestellt wird, in den Aufnahmeraum geführt, wo das Fluid gegen die Stirnseite der Laufspindel drückt. Das heißt, dass der Axialschubausgleich durch einen hydrostatisch bedrückten Raum zwischen Buchse und Laufspindel realisiert wird. Dabei ist bei bekannten Schraubenspindelpumpen eine deutliche Überkompensierung der Durchmesser der bedrückten Flächen realisiert, derart, dass sich stets eine resultierende Kraftkomponente, die die Buchse gegen den Gehäusedeckel drückt, gegeben ist. Um diese Überkompensation abzuregeln, wird eine sehr kleine und lange Steuerbohrung in der Laufspindel ausgebildet, über die das zugeführte Fluid an die Saugseite abgeführt wird. Durch diese Anordnung stellt sich je nach Druck und Viskosität des Fluids ein statischer Zustand ein.
  • Die Montage der im lastfreien Fall schwimmend gelagerten Buchsen und ihre Zentrierung ist sehr aufwändig, da, insbesondere wenn zwei Laufspindeln vorgesehen sind, das korrekte Ausrichten der einen oder der beiden Buchsen relativ zu dem Spindelende schwierig ist und sich aus diesem Grund die Buchse oder die Buchsen nur schwierig und mit mehreren Versuchen über die Spindelenden schieben lassen.
  • Die Druckschrift DE2828348 offenbart eine Schraubenspindelmaschine gemäß dem Oberbegriff des Anspruchs 1.
  • Aus der DE2324967 ist ein gattungsgemäßer Schraubenverdichter bekannt.
  • Der Erfindung liegt das Problem zu Grunde, eine dem gegenüber verbesserte Schraubenspindelpumpe anzugeben.
  • Zur Lösung dieses Problems ist erfindungsgemäß vorgesehen, dass die Buchse mit einem Radialflansch mit radialem Spiel in eine zum Gehäuse hin offene Aufnahme im Deckel eingreift und der Radialflansch axial am Gehäuse abgestützt ist, und dass der zylindrische Flansch der Buchse zumindest abschnittsweise in die Bohrung eingreift und in dieser mit Spiel aufgenommen ist.
  • Die erfindungsgemäße Schraubenspindel zeichnet sich durch eine neuartige Anordnung respektive Lagerung der Buchse aus. Die Buchse wird erfindungsgemäß nicht mehr am Gehäusedeckel verschraubt, sondern ist lediglich mit radialem Spiel in eine deckelseitige Aufnahme eingesetzt. Sie weist einen Radialflansch auf, mit dem sie axial an der Gehäusestirnseite abgestützt ist. Das heißt, dass sich das Gehäuse bis direkt an den Deckel erstreckt. Des Weiteren greift die Buchse mit ihren den Aufnahmeraum definierenden zylindrischen Flansch zumindest abschnittsweise in die Bohrung, in der die Laufspindel aufgenommen ist, mit geringem Spiel ein. Über diesen Bohrungseingriff wird die Buchse automatisch relativ zur Laufspindel zentriert.
  • Diese erfindungsgemäße Ausgestaltung ermöglicht eine sehr einfache Montage. Denn es ist lediglich erforderlich, die eine oder die jeweilige Buchse als separates Bauteil auf das Spindelende auf- und damit in die Spindelbohrung einzuschieben. Anschließend ist lediglich der Gehäusedeckel aufzusetzen und in seiner Umfangsausrichtung so zu positionieren, dass die Buchse in die entsprechende deckelseitige Aufnahme eingreift. In dieser Montageendstellung, in der der Gehäusedeckel sodann am Gehäuse verschraubt wird, ist dann der buchsenseitige Radialflansch zwischen der Aufnahme respektive dem Gehäusedeckel und dem Gehäuse angeordnet, also mit leichtem Spiel axial fixiert. Gleichzeitig ist, nachdem die Buchse mit Spiel in der Aufnahme angeordnet ist und gleichzeitig auch mit geringem Spiel in der Bohrung aufgenommen ist, ein seitlicher Versatz respektive Toleranzausgleich möglich.
  • Insgesamt zeichnet sich die erfindungsgemäße Schraubenspindelpumpe durch einen wesentlich einfacheren Aufbau aus, da weniger Bauteile erforderlich sind, nachdem die Buchse nicht mehr mit entsprechenden Befestigungsschrauben oder -bolzen am Gehäusedeckel zu fixieren ist. Darüber hinaus zeichnet sie sich durch ein hohes Maß an Montagefreundlichkeit aus, da es lediglich erforderlich ist, die oder jede Buchse, die auch als Sackbuchse bezeichnet werden kann, einfach in die Bohrung der Laufspindel zu stecken, wonach lediglich noch der Gehäusedeckel aufzusetzen ist. Ebenso entfallen große Passungsdurchmesser der umgebenden Struktur wie Pumpenkörper und Sauggehäuse aufgrund der einfachen Stecklösung.
  • Dabei ist es besonders bevorzugt, wenn der zylindrische Flansch mit seiner gesamten Länge in die Bohrung eingreift. Das heißt, dass die Bohrung, in der die Laufspindel aufgenommen ist, bis direkt an das Gehäuseende läuft respektive an der Gehäusestirnseite endet, dort ist also keine Bohrungserweiterung oder ähnliches vorgesehen.
  • Eine besonders zweckmäßige Weiterbildung der Erfindung sieht vor, dass die Buchse im Bereich der Öffnung als Blende ausgeführt ist, das heißt, dass eine Blendenöffnung vorgesehen ist. Eine Blende bzw. eine Blendenöffnung zeichnet sich dadurch aus, dass das Verhältnis der Länge der Öffnungsbohrung mit kleinem, konstantem Durchmesser zum Durchmesser selbst näherungsweise 1 oder kleiner 1 ist. Dies führt wiederum dazu, dass der über die Blende aufgebaute Druckverlust nahezu viskositätsunabhängig ist. Über diese Regelblende kann folglich der geforderte Druckverlust zur Axialschubregulierung eingestellt und reguliert werden, wobei diese Druckregulierung respektive der Axialschubausgleich von der Viskosität des Fluides weitestgehend oder vollständig unabhängig ist, so dass die Schraubenspindelpumpe respektive das erfindungsgemäß vorgesehene Schubausgleichssystem zur Förderung unterschiedlicher Viskositäten aufweisender Fluide verwendet werden kann, anders als bekannten Schraubenspindelpumpen, die eine hohe Viskositätsabhängigkeit im Schubausgleichssystem zeigen. Damit ergibt sich ein Schubausgleichssystem, bei dem der Auslassdruck, der Druckverlust über die Blende und die gewählte Kompensationsfläche, nämlich der Durchmesser der Laufspindelstirnfläche, soweit miteinander interagieren, dass sich ein stabiles hydrostatisches System ausbildet.
  • Die Buchse weist dabei einen Außendurchmesser auf, der wie beschrieben dem Durchmesser der Laufspindelbohrung entspricht, in der der zylindrische Flansch mit geringem Spiel aufgenommen ist. Die Buchse weist ferner einen Innendurchmesser im Aufnahmeraum auf, der dem Durchmesser der spindelseitigen Kompensationsfläche, also der Spindelstirnfläche entspricht. Ferner weist die Buchse die Blendenöffnung respektive die Regelblende auf, die den geforderten Druckverlust zur Axialschubregulierung reguliert. Die Laufspindel hingegen besteht im Bereich des Axialschubausgleichssystems nur noch aus einem geschlossenen Durchmesser, weist also ein zylindrisches Spindelende auf, mit dem sie in die Buchse eingreift. Dabei ist der Durchmesser der Laufspindel im Schubausgleichssystem, also im Eingriffsabschnitt in die Buchse so gewählt, dass die bedrückte Fläche in der Buchse, also die Spindelstirnfläche, etwas größer ist als die mit dem Fluid beaufschlagte Fläche. Die Blende und der sich einstellende Leckagestrom, der aus dem Schubausgleichsystem zur Saugseite abgeführt wird, ist so definiert, dass sich der Druckverlust einstellt, der zur Überwindung der Überkompensation benötigt wird. Hierüber lässt sich also ein selbstregulierendes hydrostatisches Schubausgleichssystem realisieren, das nahezu viskositätsunabhängig ist.
  • Wie beschrieben wird die Viskositätsunabhängigkeit des Schubausausgleichssystems dadurch sichergestellt, dass die Buchse als Blende ausgeführt ist, also eine als Blendenöffnung ausgeführte Öffnung, über die das Ausgleichsfluid zugeführt wird, aufweist. Diese Öffnung kann entweder über ihre gesamte Länge einen konstanten Durchmesser aufweisen, das heißt, dass der Buchsenboden entsprechend dünn ist, beispielsweise eine Gesamtstärke von 2 mm bei einem Öffnungsdurchmesser von 2 mm aufweist. Alternativ ist es auch möglich, dass die Öffnung einen an die Eintrittsseite anschließenden ersten Abschnitt mit konstantem Durchmesser aufweist, an dem sich ein zur Stirnseite hin, vorzugsweise kegelig, öffnender zweiter Abschnitt anschließt. Bei dieser Ausgestaltung ist der Blendenboden deutlich stärker auslegbar, nachdem die Blendenöffnung quasi mehrere Abschnitte aufweist. Der erste Abschnitt, der einen konstanten, kleinen Durchmesser aufweist und der den Grad des Druckverlusts über die Blende definiert, ist direkt an der Fluideintrittseite vorgesehen. Dieser Öffnungsabschnitt ist beispielsweise 2 mm lang und weist einen Durchmesser von 2 mm auf. Zur Spindelseite hin erweitert sich die Öffnung, der erste Abschnitt geht also in einen zweiten Abschnitt über, wobei dieser Übergang beispielsweise kegelig gestaltet sein kann. Es sind also verschiedene Buchsenausführungen denkbar.
  • Weiterhin ist es denkbar, dass die einen konstanten Durchmesser aufweisende Öffnung oder der sich kegelig erweiternde Abschnitt in einen zur Stirnseite hin offenen runden Verteilabschnitt übergeht. Das heißt, dass am Buchsenboden, zur Spindelseite hin, eine entsprechend im Durchmesser groß dimensionierte Senkung vorgesehen ist, die einen Verteilabschnitt bildet, in dem entweder die beispielsweise 2 mm lange, den konstanten Durchmesser aufweisende Öffnung direkt mündet, oder in der der sich kegelig öffnende zweite Abschnitt mündet.
  • Unabhängig von der konkreten Blendenkonfiguration ist es zweckmäßig, wenn das Verhältnis der Öffnungslänge mit konstantem Durchmesser zum Durchmesser der Öffnung kleiner gleich 1 ist. Beispielsweise beträgt die Öffnungslänge mit konstantem Durchmesser 2 mm, auch der Durchmesser beträgt 2 mm, so dass ein Verhältniswert von 1 gegeben ist. Der Durchmesser kann aber auch etwas größer sein, so dass sich ein Verhältniswert kleiner 1 ergibt. Die konkrete Auslegung der Bohrungsdimensionierung erfolgt in Abhängigkeit der Dimensionierung der beteiligten druckbeaufschlagten Flächen und des Grades der Überkompensation an der Spindelseite, um eben den Druckverlust über die Blende einzustellen, der zur Überwindung der Überkompensation benötigt wird.
  • Die Verwendung der Blende, unabhängig davon, wie diese nun konkret ausgestaltet ist, und darüber die Möglichkeit der Erzeugung eines viskositätsunabhängigen, definierten Druckverlusts über die Blende ermöglicht es, exakt den Druckverlust einzustellen, der für eine weitgehende Überwindung der Überkompensation benötigt wird. Wie einleitend beschrieben stellt sich aufgrund der Überkompensation der bedrückten Fläche an der Spindelseite eine resultierende Kraft ein, mit der die Buchse gegen den Gehäusedeckel gedrückt wird. Im lastfreien Fall, wenn die Pumpe also nicht betrieben wird, ist die Buchse für einen gewissen Spielausgleich oder Toleranzausgleich seitlich, also radial bewegbar. Fördert die Pumpe jedoch, so baut sich ein entsprechender Druck auf, aus dem eine Kraft resultiert, mit der die Buchse gegen den Gehäusedeckel gedrückt wird. Ist diese Kraft relativ groß, so ist die seitliche oder radiale Beweglichkeit der Buchse nicht mehr gegeben, die Buchse ist festgelegt. Dies führt wiederum dazu, dass eine etwaige seitliche Bewegung oder ein etwaiges seitliches Auswandern der Laufspindel, das im Betrieb stattfindet, dazu führt, dass die Laufspindel gegen die Innenwandung des zylindrischen Flansches der Buchse läuft, so dass es dort zu Abrieb, als abrasiven Verschleiß kommen kann.
  • Wird nun durch den erfindungsgemäßen Schubausgleich unter Verwendung der Buchsenblende ein definierter Druckverlust eingestellt, der derart ist, dass in Verbindung mit dem gegebenen Leckagestrom die Überkompensation und damit die Kraft, mit der die Buchse gegen den Gehäusedeckel gedrückt wird, weitgehend reduziert wird, ist sichergestellt, dass die Buchse auch im Lastfall, wenn also die Pumpe arbeitet, seitlich bzw. radial beweglich ist. Dies wiederum führt dazu, dass die Buchse entsprechende seitliche Ausgleichbewegungen der Laufspindel mit vollzieht, so dass die Laufspindel stets optimal in der Buchse geführt ist.
  • Wie beschrieben strömt das Fluid die Buchse an der Unterseite des Buchsenbodens an. Der Buchsenboden seinerseits ist in der gehäusebodenseitigen Aufnahme aufgenommen. Um zu vermeiden, dass das Fluid zur Seite hin ausweicht und teilweise nicht durch die Blendenöffnung tritt, ist zweckmäßigerweise zwischen dem Gehäusedeckel und der Buchse eine ringförmige Dichtung angeordnet. Bevorzugt ist der Durchmesser der Dichtung im Intervall zwischen +/- 10% kleiner oder größer als der Durchmesser der Stirnfläche der Spindel. Über diese Dichtung definiert sich die Andruckfläche, gegen die das Fluid drückt. Über die Dichtung wird einerseits verhindert, dass das Fluid zur Seite hin abfließt, so dass sichergestellt ist, dass das Fluid nur über die Blendenöffnung abfließt. Darüber hinaus wird durch entsprechende Auslegung der Dichtung im Durchmesser eine Dimensionierung dieser buchsenbodenseitigen Andruckfläche vorgesehen, die näherungsweise der Gegendruckfläche an der Spindel, also der Spindelstirnfläche entspricht. Auch dies ist für die Einstellung einer geringen Gegenkraft, mit der im Lastfall die Buchse gegen den Gehäusedeckel gedrückt wird, zweckmäßig, um die seitliche Beweglichkeit der Buchse auch im Lastfall sicherzustellen.
  • Dabei kann die Dichtung entweder in einer Ringaufnahme am Boden der Buchse aufgenommen sein, das heißt, dass eine Ringnut am Buchsenboden ausgebildet ist. Alternativ kann eine solche Ringaufnahme respektive Ringnut auch am Gehäusedeckel ausgebildet sein.
  • Wie beschrieben ist es erforderlich, einen Leckagestrom aus dem Schubausgleichssystem zur Saugseite hin abzuführen. Im Stand der Technik erfolgt dies wie ausgeführt über eine sehr dünne, lange Steuerbohrung in der Laufspindel, die einen axialen Bohrungsabschnitt und einen von diesem zur Seite hin, also radial abgehenden Bohrungsabschnitt aufweist. Die Ausbildung dieser Leckagebohrung ist sehr aufwändig und umständlich. Demgegenüber sieht eine besonders vorteilhafte Weiterbildung der Erfindung vor, dass sich der Aufnahmeraum, in den die Laufspindel mit ihren zylindrischen Enden eingreift, zumindest im Bereich des freien Endes des zylindrischen Flansches zur Spindel hin konisch erweitert. Die Buchse weist also einen vom Buchsenboden abgehenden zylindrischen Innenumfang auf, der sich zum freien Ende des zylindrischen Buchsenflansches hin konisch erweitert. Die Laufspindel greift mit ihrem zylindrischen Spindelende in die Buchse ein, sie erstreckt sich bis in den Bereich des zylindrischen Innenumfangs. Baut sich ein entsprechender Druck auf, so wird die Laufspindel geringfügig von der Buchse wegbewegt, was dazu führt, dass das Spindelende aus dem zylindrischen Innenumfang leicht axial herausbewegt wird. Es öffnet sich aufgrund des anschließenden konischen Erweiterungsabschnitts ein schmaler Ringspalt zwischen Buchse und Laufspindelende, über den sodann das Fluid als Leckagestrom abfließen kann. Der Druck im Schubausgleichsystem sinkt wieder etwas, die Spindel wird wieder geringfügig axial in die Buchse bewegt, der Ringspalt schließt sich wieder etwas, es baut sich ein etwas höherer Druck auf. Auf diese Weise stellt sich in äußerst kurzer Zeit ein hydrostatischer Zustand ein, wobei sich das Schubausgleichssystem selbstregulierend in diesen hydrostatischen Zustand bringt.
  • Der Aufnahmeraum kann sich dabei mit einem Winkel zwischen 5°-15°, insbesondere zwischen 8°-12° und vorzugsweise mit 10° öffnen.
    Der Bereich der konischen Erweiterung sollte sich zweckmäßigerweise wenigstens über die halbe Länge des Flansches erstrecken und anschließend in den zylindrischen Innenzumfangsbereich bzw. einen Bereich mit zylindrischen Innenumfang übergehen.
  • Eine besonders zweckmäßige Weiterbildung der Erfindung sieht vor, dass im Bereich des Bodens der Buchse ein den Durchmesser des Flansches verringender Ringbund vorgesehen ist. Dieser Ringbund dient als Anlauffläche oder Anlaufbund, gegen den die Stirnseite der Spindel läuft, wenn die Laufspindel in die Buchse bewegt wird. In diesem Fall ist im Schubausgleichssystem ein zu geringer Druck gegeben, um die Laufspindel wieder axial zurückzudrücken. Läuft die Laufspindel mit ihrer Stirnfläche nun gegen den Ringbund, so verkleinert sich schlagartig die Gegendruckfläche an der Laufspindel, nachdem aufgrund der Anlage am Ringbund nur noch eine verkleinerte Stirnfläche an der Laufspindel gegeben ist, gegen die das Fluid mit seinem konstanten Fluiddruck drückt. Dadurch, dass durch den axial geschlossenen Spalt kein Fluid mehr abströmen kann baut sich der entsprechend hohe Druck auf, der die Laufspindel wieder axial zurückdrückt. Es baut sich schlagartig ein entsprechend hoher Druck im Schubausgleichssystem auf, der die Laufspindel wieder axial zurückdrückt. Sollte es beim Anlaufen der Schraubenspindelpumpe oder im Betrieb zu einer solchen Situation kommen, stellt sich anschließend umgehend wieder der hydrostatische Zustand ein.
  • Die Buchse selbst ist über ein Sicherungselement am Gehäusedeckel gegen eine Verdrehung gesichert, so dass sichergestellt wird, dass die Buchse über die rotierende Laufspindel nicht mitgedreht wird. Das Sicherungselement kann ein Stift sein, der in eine deckelseitige Bohrung und in eine am Gehäuseboden stirnseitig oder am Radialflansch seitlich ausgebildete Aufnahme eingreift. Es kann also entweder ein stirnseitiges Sackloch oder eine seitliche Vertiefung ausgebildet werden, in die der Stift eingreift.
  • Wie bereits beschrieben kann eine Schraubenspindel nur eine Laufspindel und eine Antriebsspindel aufweisen. Denkbar ist es aber auch, dass zwei oder mehr Laufspindeln in jeweiligen Bohrungen vorgesehen sind, denen jeweils eine Buchse zugeordnet ist, und die über eine gemeinsame Antriebsspindel angetrieben werden.
  • Sind zwei oder mehr Buchsen vorgesehen, so kommunizieren diese bevorzugt über eine gemeinsame Zuleitung, so dass sie simultan über eine Zuleitung mit dem Fluid, wie beschrieben, dem zu fördernden Medium, versorgt werden, so dass sich insgesamt ein geschlossener Fluidkreislauf auch innerhalb des Schubausgleichssystems ergibt.
  • Weitere Vorteile und Einzelheiten der vorliegenden Erfindung ergeben sich aus den im Folgenden beschriebenen Ausführungsbeispielen sowie anhand der Zeichnungen. Dabei zeigen:
  • Fig. 1
    eine Explosionsdarstellung, perspektivisch, eines Teils einer erfindungsgemäßen Schraubenspindelpumpe,
    Fig. 2
    eine Teilschnittansicht durch eine erfindungsgemäße Schraubenspindelpumpe,
    Fig. 3
    eine Schnittansicht entsprechend Fig. 2 mit zusätzlich geschnittenen Buchsen und Laufspindeln,
    Fig. 4
    eine Schnittansicht in einer Ebene 90° zur Ebene gem. Fig. 3,
    Fig. 5
    eine Perspektivansicht einer Buchse der Schraubenspindelpumpe,
    Fig. 6
    eine Schnittansicht durch die Buchse aus Fig. 5,
    Fig. 7
    eine vergrößerte Detailansicht des Bereichs VII aus Fig. 6,
    Fig. 8
    eine Schnittansicht durch eine Buchse einer zweiten Ausführungsform, und
    Fig. 9
    eine erfindungsgemäße Schraubenspindelpumpe, teilgeschnitten, in gesamter Länge.
  • Fig. 1 zeigt eine erfindungsgemäße Schraubenspindelpumpe 1 in einer Teilansicht als Explosionsdarstellung. Gezeigt ist ein Gehäuse 2, in dem mittig eine erste Bohrung 3 zur Aufnahme einer Antriebsspindel sowie seitlich versetzt dazu zwei Bohrungen 4, 5 zur Aufnahme jeweils einer Laufspindel, die mit der Antriebsspindel kämmen, ausgebildet ist. Die Spindeln sind hier nicht gezeigt. Die die Laufspindeln aufnehmenden Bohrungen 4, 5 erstrecken sich bis unmittelbar an die Stirnfläche 6 des Gehäuses 2.
  • Gezeigt ist des Weiteren ein Gehäusedeckel 7, der mittels geeigneter Befestigungsschrauben am Gehäuse 2, dieses abschließend, festgeschraubt wird.
  • Dargestellt sind des Weiteren zwei Buchsen 8, 9, die Teil eines hydraulischen Schubausgleichssystems sind, über das die beiden Laufspindeln axial abgestützt sind. Auf den Aufbau und die Funktion der Buchsen 8, 9 wird nachfolgend noch eingegangen. Zur drehfesten Fixierung der Buchsen dienen zwei Stifte 10, 11, die einerseits in entsprechende, gehäuseseitige Sackbohrungen 12, 13 eingesetzt werden, und die andererseits entsprechende seitliche Ausnehmungen 14, 15 an den Buchsen 8, 9 durchgreifen. Hierüber wird verhindert, dass die Buchsen 8, 9 über die in sie eingreifenden Laufspindeln in Drehung versetzt werden.
  • Fig. 2 zeigt eine Teilschnittansicht der Schraubenspindelpumpe 1 aus Fig. 1, wobei das Gehäuse 2 hier geschnitten gezeigt ist. Zu erkennen ist zum einen die Antriebsspindel 16 sowie die beiden Laufspindeln 17, 18, wobei die Spindeln mit ihren entsprechenden Schneckenprofilen miteinander kämmen. Der Gehäusedeckel 7 ist auf das Gehäuse 2 aufgesetzt und daran verschraubt. Die beiden Buchsen 8, 9 sind auf die Laufspindeln 17, 18 aufgeschoben, das heißt, die Spindelenden greifen in die Buchsen 8, 9 ein. Ersichtlich greifen die Buchsen 8, 9 mit jeweils einem zylindrischen Flansch 19, 20 mit geringem Spiel in die Bohrungen 4, 5, in denen die Laufspindeln 17, 18 aufgenommen sind, ein, hierüber werden die Buchsen 8, 9 zentriert. Mit ihrem anderen Ende sind sie in entsprechenden Aufnahmen 21, 22, die deckelseitig ausgebildet sind, aufgenommen. Der Buchsenboden 23, 24 ist jeweils mit einem Radialflansch 25, 26 versehen, der, worauf nachfolgend eingegangen wird, an der Stirnfläche 6 des Gehäuses 2 abgestützt ist.
  • Dargestellt ist des Weiteren ein Zulaufkanal 34, der am Gehäusedeckel 7 ausgebildet ist, und von dem aus zwei Stichkanäle 35, 36 abgehen, die zu den Buchsen 8, 9 laufen, mithin also in der entsprechenden Aufnahme 21, 22 münden. Hierüber kann ein Druckausgleichsfluid zugeführt werden, über das der Axialschubausgleich realisiert wird.
  • Fig. 3 zeigt eine Schnittansicht durch die Schraubenspindelpumpe 1 entsprechend Fig. 2, wobei hier auch die Antriebsspindel 16 sowie die beiden Laufspindeln 17, 18 und die Buchsen 8, 9 geschnitten gezeigt sind.
  • Ersichtlich sind die Buchsen 8, 9 in den entsprechenden Aufnahmen 21, 22 aufgenommen. Mit ihren Radialflanschen 25, 26 liegen sie an der Stirnfläche 6 des Gehäuses 2 an, was möglich ist, nachdem sich die Bohrungen 4, 5 bis unmittelbar an die Stirnfläche 6 erstrecken, wobei an der Stirnfläche 6 direkt der Gehäusedeckel 7 anliegt.
  • Gezeigt sind die jeweils zylindrischen Spindelenden 28, 29 der beiden Laufspindeln 17, 18. Ebenfalls ersichtlich ist, dass die Spindelenden 28, 29 in die Buchsen 8, 9 eingreifen. Sie sind in den Buchsen 8, 9 mit minimalem Spiel aufgenommen, wobei sich zwischen den Buchsenboden 23, 24 und der jeweiligen Stirnfläche 30, 31 der Laufspindeln 17, 18 jeweils ein Aufnahmeraum 32, 33 ausbildet, in dem das über den Zulaufkanal 34 und die beiden Stichkanäle 35, 36 zugeführte Fluid, bei dem es sich um das über die Pumpe zu fördernde Fluid handelt, eingebracht wird. Hierzu weist jede Buchse im jeweiligen Buchsenboden 23, 24 eine Blendenöffnung 37, 38 auf, durch die das über den Zulaufkanal 34 und die Stichkanäle 35, 36 zugeführte Fluid in den Aufnahmeraum 32, 33 eintreten kann. Der Fluidfluss ist über die entsprechenden Pfeile in Figur 3 dargestellt.
  • Die Buchsen 8, 9 sind dabei, was die jeweiligen Öffnungen 37, 38 angeht, als Blenden ausgeführt, worauf nachfolgend noch eingegangen wird. Das heißt, dass über diese Blenden oder Blendenöffnungen ein definierter, viskositätsunabhängiger Druckabfall von der Zulaufseite mit dem Zuführkanal 34 zur Ablaufseite zur jeweiligen Laufspindel 17, 18 hin realisiert werden kann.
  • Wie ausgeführt weisen die Buchsen 8, 9 jeweils einen zylindrischen Flansch 19, 20 auf. Mit diesem greifen sie, wie ausgeführt, unmittelbar mit geringem Spiel in die jeweilige Bohrung 4, 5 ein. Der jeweilige Flansch 19, 20 ist an seiner Innenseite im Bereich des Buchsenbodens 23, 24 mit einem zylindrischen Innenumfangsbereich 39, 40 versehen, siehe unter anderem Fig. 6, an den sich wiederum jeweils ein sich konisch erweiternder Bereich 41, 42 anschließt (siehe wiederum Fig. 6). Hierüber kann eine Druckregelung realisiert werden. Je nachdem, wie tief das jeweilige Spindelende 28, 29 in die jeweilige Buchse 8, 9 eintaucht, bildet sich ein mehr oder weniger großer Ringspalt, über den das zugeführte Fluid an die Saugseite der Pumpe abfließen kann. Ist das jeweilige Spindelende 28, 29 tief eingeschoben, so befindet sich die jeweilige Stirnfläche 30, 31 im Bereich des zylindrischen Innenumfangs, also in dem Umfangsbereich 39, 40. Wird durch den im Aufnahmeraum 32, 33 ausgebildeten oder erzeugten Druck die Laufspindel 17, 18 wieder etwas herausgeschoben, so bewegt sich die jeweilige Stirnfläche 30, 31 in den konischen Erweiterungsbereich 41, 42, so dass sich ein Ringspalt ergibt, der umso größer wird, je weiter die Laufspindel 17, 18 herausgeschoben wird. Das Fluid im Aufnahmeraum 32, 33 kann über diesen Ringspalt an die Saugseite abfließen, worüber der Druck wieder sinkt und die jeweilige Laufspindel 17, 18 wieder etwas in die Buchse 8, 9 wandert. Insgesamt stellt sich hierüber in äußerst kurzer Zeit ein statischer Gleichgewichtszustand ein, in den die jeweilige Laufspindel 17, 18 hydraulisch schubausgeglichen ist.
  • Die Fig. 3 und 4 zeigen des Weiteren die Fluidversorgung des Schubausgleichssystems umfassend die in der erfindungsgemäßen Weise ausgebildet und gelagerten Buchsen 8, 9. Im Gehäuse 2 ist ein von der Druckseite zur Saugseite respektive zum Gehäusedeckel 7 laufender Fluidkanal 43 ausgebildet, der über einen Stichkanal 44 in einem deckelseitigen Fluidkanal 45 mündet, der seinerseits im Zuführkanal 34 mündet. Soweit erforderlich sind die entsprechenden Kanäle über Verschlusstopfen 46, 47 verschlossen. Das Fluid, über das der hydraulische Schubausgleich erfolgt, wird also von der Druckseite mit entsprechendem Pumpendruck zugeführt. Mit diesem Druck wird die Bodenfläche 48, 49 der jeweiligen Buchse 8, 9 beaufschlagt. Diese Bodenfläche 48, 49 ist über jeweils ein Dichtelement 50, 51 zur Aufnahme 21, 22 hin abgedichtet. Hierzu sind in den Buchsenböden 23, 24 entsprechende Ringnuten 52 ausgebildet, siehe hierzu Fig. 6, wo exemplarisch eine Schnittansicht durch die Buchse 8 gezeigt ist, wobei die Buchse 8 und die Buchse 9 identisch ausgeführt sind.
  • Die Buchsen 8, 9 sind in den entsprechenden Aufnahmen 21, 22 mit geringem Radialspiel aufgenommen, sind also schwimmend gelagert und seitlich beweglich. Sie sind ebenfalls mit geringem Spiel mit ihren jeweiligen Flanschen 19, 20 in den Bohrungen 4, 5 aufgenommen, so dass sich insgesamt eine schwimmende Lagerung ergibt.
  • Diese schwimmende Lagerung wird auch im Lastfall beibehalten, wenn also Fluid gefördert wird. In diesem Fall ergibt sich über die als Blendenöffnung ausgeführte Öffnung 37, 38 der Buchsen 8, 9 ein definierter Druckabfall, der derart ausgelegt ist, dass die sich aufgrund der Überkompensation, resultierend aus der Größe der jeweiligen Stirnfläche 30, 31 der Laufspindeln 17, 18 ergebende Kraft, die die Buchsen 8, 9 gegen den Gehäusedeckel 7 drückt, soweit reduziert respektive minimiert und ausgeglichen wird, dass im Lastfall die Buchsen unter Zusammendrücken der jeweiligen Dichtelemente 50, 51 zwar fest gegen den Gehäusedeckel 7 gedrückt werden, jedoch nach wie vor, da diese resultierende Kraft eben weitgehend ausgeglichen ist, seitlich beweglich sind. Dies ermöglicht es, dass ein etwaiges seitliches Auswandern der jeweiligen Laufspindel 17, 18 ausgeglichen werden kann, das heißt, dass die jeweilige Buchse 8, 9 über das jeweilige Spindelende 28, 29 seitlich mitgenommen und verschoben wird, wobei dieser Seitenversatz natürlich im Bereich weniger Hundertstelmillimeter erfolgt. In jedem Fall aber können die Buchsen 8, 9 auch im Lastfall zur Seite ausweichen, so dass sie den Laufspindeln 17, 18 folgen und diese nicht abrasiv an den zylindrischen Flanschen 19, 20 angreifen.
  • Die Fig. 5-7 zeigen eine erste Ausführungsform einer erfindungsgemäß verwendeten Buchse, wobei hier exemplarisch die Buchse 8 dargestellt ist. Identisch dazu ist natürlich die Buchse 9 ausgeführt. Sie weist einen zylindrischen Flansch 19 auf, wie auch einen Radialflansch 25, der den Boden 23 der Buchse seitlich verlängert.
  • Die Schnittansicht gemäß Fig. 6 und die vergrößerte Detailansicht gemäß Fig. 7 zeigen detailliert den weiteren Aufbau der Buchse 8. Ersichtlich erstreckt sich der sich konisch erweiternde Bereich 41 des Innenumfangs bis nahezu oder etwas über die Hälfte der axialen Länge des Flansches 19, an ihn schließt sich sodann der einen konstanten Durchmesser aufweisende zylindrische Innenumfangsbereich 39 an.
  • Gezeigt ist des Weiteren die Öffnung 37, die als Blende ausgeführt ist. Dieser Bereich ist vergrößert in Fig. 7 gezeigt.
  • Die Öffnung 37 umfasst zum einen einen ersten Abschnitt 53, der einen konstanten Durchmesser aufweist. Die axiale Länge dieses Abschnitts 53 entspricht bevorzugt dem Durchmesser dieser zylindrischen Öffnung, so dass sich ein Verhältnis aus Öffnungslänge zu Durchmesser von 1 ergibt. Alternativ kann das Verhältnis auch kleiner 1 sein, das heißt, dass der Durchmesser größer als die Öffnungslänge ist.
  • An diesen ersten Abschnitt 53 schließt sich im gezeigten Beispiel ein sich konisch erweiternder zweiter Abschnitt 54 an. In diesem Bereich beginnt bereits der Druckabfall, der sich in einem anschließenden Verteilabschnitt 55 fortsetzt.
  • Fig. 6 zeigt, wie bereits beschrieben, die Ringnut 52, in der die entsprechende Ringdichtung 50 aufgenommen ist. Die Ringnut 52 und damit im Montagefall die Ringdichtung 50 weisen einen Durchmesser auf, der näherungsweise dem Durchmesser des Innenumfangsbereichs 39 entspricht, mithin also auch dem Durchmesser der Stirnfläche 30 bzw. 31. Das heißt, dass die Anströmfläche am Buchsenboden näherungsweise der Stirnfläche 30, 31, also der Gegendruckfläche entspricht. Es ist als Anströmfläche die gesamte, über die jeweilige Ringdichtung 50, 51 definierte Fläche zu sehen, da im Betrieb die jeweilige Buchse 8, 9 zwar gegen den Gehäusedeckel 7 gedrückt wird, jedoch aufgrund des definiert eingestellten Druckabfalls und damit Kräfteausgleichs die jeweilige Buchse 8, 9 ggf. minimal vom Gehäusedeckel 7 beabstandet ist und folglich das Fluid sich über die gesamte, über die jeweilige Dichtung 50 und 51 abgegrenzte Fläche verteilen kann.
  • Im Betrieb wird wie beschrieben das Fluid über die jeweilige Kanalgeometrie an die jeweilige Blendenbuchse 8, 9 geführt und tritt in den jeweiligen Aufnahmeraum 32, 33 ein. Es strömt gegen die jeweilige Stirnfläche 30, 31, also die Gegendruckfläche. Aufgrund des definierten Druckabfalls über die jeweilige Blendenausgestaltung kommt es zu einem weitgehenden Kräfteausgleich, so dass nur eine relativ geringe resultierende Kraft, mit der die jeweilige Blende 8, 9 gegen den Gehäusedeckel 7 gedrückt wird, resultiert, so dass nach wie vor eine schwimmende Lagerung auch im Last- oder Druckfall gegeben ist.
  • Aufgrund der erfindungsgemäßen Innenumfangsgeometrie der jeweiligen Buchse 8, 9 stellt sich auf schnelle und einfache Weise ein statischer Gleichgewichtszustand hinsichtlich der Spindelaxialposition ein. Denn aufgrund des an der jeweiligen Stirnfläche 30, 31 anliegenden Drucks wird die jeweilige Laufspindel 17, 18 axial relativ zur Buchse 8, 9 bewegt, resultierend in einer entsprechenden Variation des jeweiligen Spaltquerschnitts, über den das Fluid als Leckagestrom aus dem jeweiligen Aufnahmeraum 32, 33 abfließen kann, so dass sich ein entsprechender statischer Zustand einstellt.
  • Die Montage dieses Schubausgleichssystems ist erdenklich einfach. Es ist nach Bestücken des Gehäuses 2 mit der Antriebsspindel 16 und den beiden Laufspindeln 17, 18 lediglich erforderlich, die beiden Buchsen 8, 9 auf die Spindelenden 28, 29 aufzuschieben und dabei mit den entsprechenden Flanschen 19, 20 in die jeweiligen Bohrungen 4, 5 einzuführen. Hierüber ist eine automatische Zentrierung gegeben. Gleichzeitig ist, wenn die Stifte 10 in die entsprechenden seitlichen Vertiefungen 14, 15 eingreifen, die Verdrehsicherung realisiert. Sodann ist lediglich noch der Gehäusedeckel 7 anzusetzen und in Umfangsrichtung so zu positionieren, dass die Böden 23, 24 der Buchsen 8, 9 in die entsprechenden Aufnahmen 25, 26 eingreifen, wonach der Gehäusedeckel 7 verschraubt werden kann.
  • Fig. 8 zeigt schließlich eine Ausführung einer erfindungsgemäßen Buchse 8 (gleiches gilt für die Buchse 9), bei der zusätzlich am Innenumfang im Bereich 39 ein Ringbund 56 ausgebildet ist, der den dortigen Durchmesser verkleinert. Gegen diesen Ringbund 56 kann die jeweilige Stirnfläche 30, 31 laufen, wenn die Laufspindel aus welchem Grund auch immer axial derart tief eintaucht. Läuft die jeweilige Stirnfläche 30, 31 gegen den jeweiligen Ringbund 56, so verkleinert sich die Gegendruckfläche, gegen die das Fluid arbeitet. Dadurch, dass durch den axial geschlossenen Spalt kein Fluid mehr abströmen kann baut sich der entsprechend hohe Druck auf, der die Laufspindel wieder axial zurückdrückt. Es kommt zu einem Druckanstieg im jeweiligen Aufnahmeraum 32, 33, was dazu führt, dass die jeweilige Laufspindel 17, 18 sofort wieder aus der Anlage am jeweiligen Ringbund 56 gedrückt wird und sich daraufhin wiederum der statische Gleichgewichtszustand einstellt.
  • Fig. 9 zeigt schließlich eine Schnittansicht durch eine erfindungsgemäße Schraubenspindelpumpe 1, wobei hier das Gehäuse 2 aus mehreren separaten Gehäuseelementen 57 besteht, die axial zusammengesetzt und miteinander verbunden sind. Gezeigt ist der Gehäusedeckel 7 sowie das über die Buchsen 8, 9 realisierte Axialschubausgleichssystem, über das die beiden Laufspindeln 17, 18 hydraulisch schubausgeglichen sind.

Claims (16)

  1. Schraubenspindelpumpe mit einem Gehäuse (2), einem Gehäusedeckel (7) und wenigstens einer in dem Gehäuse (2) in einer Bohrung (4, 5) aufgenommenen Laufspindel (17, 18), sowie einer am Gehäusedeckel (7) angeordneten Buchse (8, 9) mit einem über einen zylindrischen Flansch (19, 20) begrenzten Aufnahmeraum (32, 33), in den die Laufspindel (17, 18) mit einem Ende (28, 29) eingreift, wobei die Buchse (8, 9) bodenseitig eine Öffnung (37, 38) aufweist, über die von der der Laufspindel (17, 18) gegenüberliegenden Seite ein über einen deckelseitigen Zuführkanal (34) zugeführtes Fluid mit Druck gegen die Stirnseite (30, 31) der Laufspindel (17, 18) zuführbar ist, dadurch gekennzeichnet, dass die Buchse (8, 9) mit einem Radialflansch (25, 26) mit radialem Spiel in eine zum Gehäuse (2) hin offene Aufnahme (21, 22) im Deckel (7) eingreift und der Radialflansch (25, 26) axial am Gehäuse (2) abgestützt ist, und dass der zylindrische Flansch (19, 20) der Buchse (8, 9) zumindest abschnittsweise in die Bohrung (4, 5) eingreift und in dieser mit Spiel aufgenommen ist.
  2. Schraubenspindelpumpe nach Anspruch 1, dadurch gekennzeichnet, dass der zylindrische Flansch (19, 20) mit seiner gesamten Länge in die Bohrung (4, 5) eingreift.
  3. Schraubenspindelpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Buchse (8, 9) im Bereich der Öffnung (37, 38) als Blende ausgeführt ist.
  4. Schraubenspindelpumpe nach Anspruch 3, dadurch gekennzeichnet, dass die Öffnung (37, 38) über ihre gesamte Länge einen konstanten Durchmesser aufweist, oder das die Öffnung (37, 38) einen an die Eintrittsseite anschließenden ersten Abschnitt (53) mit konstantem Durchmesser aufweist, an den sich ein zur Stirnseite (30, 31) hin, vorzugsweise kegelig, öffnender zweiter Abschnitt (54) anschließt.
  5. Schraubenspindelpumpe nach Anspruch 4, dadurch gekennzeichnet, dass die einen konstanten Durchmesser aufweisende Öffnung (37, 38) oder der sich kegelig erweiternde Abschnitt (54) in einen zur Stirnseite (30, 31) hin offenen runden Verteilabschnitt (55) übergeht.
  6. Schraubenspindelpumpe nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das Verhältnis der Öffnungslänge mit konstantem Durchmesser zum Durchmesser der Öffnung ≤ 1 ist.
  7. Schraubenspindelpumpe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem Gehäusedeckel (7) und der Buchse (8, 9) eine ringförmige Dichtung (50, 51) angeordnet ist, deren Durchmesser zwischen +/- 10% kleiner oder größer als der Durchmesser der Stirnfläche (30, 31) der Laufspindel (17, 18) ist.
  8. Schraubenspindelpumpe nach Anspruch 7, dadurch gekennzeichnet, dass die Dichtung (50, 51) in einer Ringaufnahme (52) am Boden (23, 24) der Buchse (8, 9) oder am Gehäusedeckel (7) aufgenommen ist.
  9. Schraubenspindelpumpe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass sich der Aufnahmeraum (32, 33), in den die Laufspindel (17, 18) mit ihren zylindrischen Ende (28, 29) eingreift, zumindest im Bereich des freien Endes des zylindrischen Flansches (19, 20) zur Laufspindel (17, 18) hin konisch erweitert.
  10. Schraubenspindelpumpe nach Anspruch 9, dadurch gekennzeichnet, dass sich der Aufnahmeraum (32, 33) mit einem Winkel zwischen 5° - 15°, insbesondere zwischen 8° - 12° und vorzugsweise mit 10° öffnet.
  11. Schraubenspindelpumpe nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass sich der Bereich (41, 42) der konischen Erweiterung über wenigstens die halbe Länge des Flansches (19, 20) erstreckt.
  12. Schraubenspindelpumpe nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass im Bereich des Bodens (23, 24) der Buchse (8, 9) ein den Durchmesser des Flansches verringernder Ringbund (56) vorgesehen ist.
  13. Schraubenspindelpumpe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Buchse (8, 9) über ein Sicherungselement (10, 11) am Gehäusedeckel (7) gegen eine Verdrehung gesichert ist.
  14. Schraubenspindelpumpe nach Anspruch 13, dadurch gekennzeichnet, dass das Sicherungselement ein Stift (10, 11) ist, der in eine deckelseitige oder gehäuseseitige Bohrung (12, 13) und in eine am Boden (23, 24) stirnseitig oder am Radialflansch (25, 26) seitlich ausgebildete Aufnahme (14, 15) eingreift.
  15. Schraubenspindelpumpe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zwei oder mehr Laufspindeln (17, 18) in jeweiligen Bohrungen (4, 5) vorgesehen sind, denen jeweils eine Buchse (8, 9) zugeordnet ist.
  16. Schraubenspindelpumpe nach Anspruch 15, dadurch gekennzeichnet, dass alle Buchsen (8, 9) mit einer gemeinsamen Zuleitung (34) kommunizieren und simultan mit Fluid versorgt werden.
EP18182916.9A 2017-09-21 2018-07-11 Schraubenspindelpumpe Active EP3460180B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL18182916T PL3460180T3 (pl) 2017-09-21 2018-07-11 Pompa śrubowa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017121882.3A DE102017121882B3 (de) 2017-09-21 2017-09-21 Schraubenspindelpumpe

Publications (2)

Publication Number Publication Date
EP3460180A1 EP3460180A1 (de) 2019-03-27
EP3460180B1 true EP3460180B1 (de) 2020-04-15

Family

ID=62951863

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18182916.9A Active EP3460180B1 (de) 2017-09-21 2018-07-11 Schraubenspindelpumpe

Country Status (5)

Country Link
US (1) US10975864B2 (de)
EP (1) EP3460180B1 (de)
DE (1) DE102017121882B3 (de)
ES (1) ES2795754T3 (de)
PL (1) PL3460180T3 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019132653A1 (de) * 2019-12-02 2021-06-02 Leistritz Pumpen Gmbh Schraubenspindelpumpe
DE102020133555A1 (de) * 2020-12-15 2022-06-15 Leistritz Pumpen Gmbh Schraubenspindelpumpe
DE102021101111A1 (de) * 2021-01-20 2022-07-21 Netzsch Pumpen & Systeme Gmbh Schraubenspindelpumpe
DE102021133099A1 (de) * 2021-12-14 2023-06-15 Leistritz Pumpen Gmbh Schraubenspindelpumpe

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2466888A (en) * 1945-10-03 1949-04-12 Porter Co Inc H K Floating spacer bearing link for parallel shafts
US3811805A (en) 1972-05-16 1974-05-21 Dunham Bush Inc Hydrodynamic thrust bearing arrangement for rotary screw compressor
SE384069B (sv) * 1975-05-02 1976-04-12 Imo Industri Ab Skruvpump
SE414813B (sv) 1976-10-15 1980-08-18 Imo Industri Ab Hydraulisk maskin
DE2828348A1 (de) 1978-06-28 1980-01-10 Allweiler Ag Schraubenspindelmaschine
DE3010606A1 (de) * 1980-03-20 1981-10-15 Allweiler Ag, 7760 Radolfzell Schraubenspindelpumpe
DE19501610A1 (de) * 1994-12-28 1996-07-04 Allweiler Ag Schraubenspindelpumpe
DE19728744C1 (de) 1997-07-04 1998-11-26 Allweiler Ag Schraubenspindelpumpe
DE102006049663A1 (de) * 2006-10-18 2008-05-08 Willy Vogel Ag Schraubenspindelpumpe mit Scheibenpumpen-Axiallager
US8821140B2 (en) * 2010-04-29 2014-09-02 Dan Paval Gear pump
DE102012108566B4 (de) * 2012-09-13 2016-01-28 Dionex Softron Gmbh Steckereinheit und Verbindungseinrichtung für Flüssigkeit führende Komponenten, insbesondere für die Hochleistungsflüssigkeitschromatographie
CN103711690B (zh) 2013-12-19 2016-07-06 黄山工业泵制造有限公司 高压三螺杆泵
CN206035802U (zh) 2016-08-26 2017-03-22 黄山艾肯机械制造有限公司 一种低粘度高压力的螺杆泵

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3460180A1 (de) 2019-03-27
US20190085844A1 (en) 2019-03-21
DE102017121882B3 (de) 2019-01-24
PL3460180T3 (pl) 2020-11-02
US10975864B2 (en) 2021-04-13
BR102018016229A2 (pt) 2019-04-16
ES2795754T3 (es) 2020-11-24

Similar Documents

Publication Publication Date Title
EP3460180B1 (de) Schraubenspindelpumpe
DE3590198C2 (de) Ventilplatte für eine hydrostatische Axialkolbeneinheit
EP3250836B1 (de) Gleitlageranordnung eines drehelements auf einem lagerbolzen, insbesondere eines planetenrades auf einem planetenradbolzen eines planetenradgetriebes
DE60101537T2 (de) Nockenmechanismus mit Kreuzrollenlager
DE10203886B4 (de) Vorsteuerventil
AT390129B (de) Hydrodynamische gleitlageranordnung fuer drehende lagerzapfen bzw. wellenzapfen
DE10144641A1 (de) Entspannungsventil
EP0669465A2 (de) Lageranordnung für eine Pumpenwelle einer Pumpe für das Fördern von Medien mit unterschiedlicher Viskosität
EP0715078A2 (de) Zahnradpumpe
DE2536189A1 (de) Vorrichtung zur einstellung des dynamischen axialen gegenstromschubes bei schraubenpumpen
EP3412865B1 (de) Modulares system zur herstellung einer schraubenspindelpumpe
DE19737781A1 (de) Regler zur Regelung eines mindestens einer Hydrostatik- oder Aerostatiktasche einer Lagerung, Gewindespindelmutter, oder einer Führung zugeführten Medienstromes
DE102005032631A1 (de) Fluiddynamisches Lagersystem
DE10238415B4 (de) Gleitlager für eine Welle eines Abgasturboladers
CH641250A5 (de) Schraubenspindelpumpe.
DE1924894A1 (de) Maschinenlager
EP0038306A1 (de) Hydrostatisches hydrodynamisches Lager
DE102004021216B4 (de) Hochdruck-Innenzahnradmaschine mit mehrfacher hydrostatischer Lagerung pro Hohlrad
EP0508132B1 (de) Kolbenschieberventil
DE2520667C2 (de) Schraubenspindelpumpe
DE19681665B4 (de) Flügelzellenpumpe
DE1528615A1 (de) Hydrostatische Radialkolbeneinheit
DE1293599B (de) Zahnradpumpe
DE10017780B4 (de) Kolbenmaschine
CH638590A5 (de) Hydrostatische kolbenmaschine.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190925

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 13/00 20060101ALN20191118BHEP

Ipc: F04C 15/00 20060101ALI20191118BHEP

Ipc: F01C 21/02 20060101AFI20191118BHEP

Ipc: F04C 2/16 20060101ALI20191118BHEP

INTG Intention to grant announced

Effective date: 20191204

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 15/00 20060101ALI20191122BHEP

Ipc: F01C 21/02 20060101AFI20191122BHEP

Ipc: F04C 2/16 20060101ALI20191122BHEP

Ipc: F04C 13/00 20060101ALN20191122BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 13/00 20060101ALN20200207BHEP

Ipc: F04C 15/00 20060101ALI20200207BHEP

Ipc: F01C 21/02 20060101AFI20200207BHEP

Ipc: F04C 2/16 20060101ALI20200207BHEP

INTG Intention to grant announced

Effective date: 20200304

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018001191

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1257507

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200716

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200815

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2795754

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018001191

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

26N No opposition filed

Effective date: 20210118

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230629

Year of fee payment: 6

Ref country code: NL

Payment date: 20230720

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230731

Year of fee payment: 6

Ref country code: GB

Payment date: 20230724

Year of fee payment: 6

Ref country code: ES

Payment date: 20230821

Year of fee payment: 6

Ref country code: CH

Payment date: 20230801

Year of fee payment: 6

Ref country code: AT

Payment date: 20230718

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230724

Year of fee payment: 6

Ref country code: FR

Payment date: 20230724

Year of fee payment: 6

Ref country code: DE

Payment date: 20230713

Year of fee payment: 6