EP3450846B1 - Combustion plant and method for operating the same - Google Patents

Combustion plant and method for operating the same Download PDF

Info

Publication number
EP3450846B1
EP3450846B1 EP18000551.4A EP18000551A EP3450846B1 EP 3450846 B1 EP3450846 B1 EP 3450846B1 EP 18000551 A EP18000551 A EP 18000551A EP 3450846 B1 EP3450846 B1 EP 3450846B1
Authority
EP
European Patent Office
Prior art keywords
flue
flue gas
nozzles
combustion
grate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18000551.4A
Other languages
German (de)
French (fr)
Other versions
EP3450846A1 (en
Inventor
Ulrich Martin
Robert von Raven
Martin Murer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Martin GmbH fuer Umwelt und Energietechnik
Original Assignee
Martin GmbH fuer Umwelt und Energietechnik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Martin GmbH fuer Umwelt und Energietechnik filed Critical Martin GmbH fuer Umwelt und Energietechnik
Priority to PL18000551T priority Critical patent/PL3450846T3/en
Publication of EP3450846A1 publication Critical patent/EP3450846A1/en
Application granted granted Critical
Publication of EP3450846B1 publication Critical patent/EP3450846B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/02Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air above the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B1/00Combustion apparatus using only lump fuel
    • F23B1/16Combustion apparatus using only lump fuel the combustion apparatus being modified according to the form of grate or other fuel support
    • F23B1/18Combustion apparatus using only lump fuel the combustion apparatus being modified according to the form of grate or other fuel support using inclined grate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/10Furnace staging
    • F23C2201/101Furnace staging in vertical direction, e.g. alternating lean and rich zones

Definitions

  • the invention relates to a method for operating a furnace, which has a fire grate for combustion, with a flue gas train, which has nozzles on opposite sides of the flue gas train, in order to inject a fluid into the flue gas.
  • the invention relates to a firing system with a flue gas flue, which has nozzles on opposite sides of the flue gas flue in order to inject a fluid into the flue gas.
  • the EP 0 675 323 A1 describes nozzles with which gas is supplied to the rising flue gas from the sides of the flue gas train.
  • the EP 2 128 523 A2 describes nozzles with which the rising flue gas is swirled with secondary air and the DE 10 2015 003 995 A1 describes a furnace with which the flue gas is swirled with recirculation gas. All systems result in an intensive mixing of the supplied gas with the flue gas in order to improve the burnout.
  • the invention is based on the object of further developing a method for operating such a furnace.
  • the invention is based on the finding that the nozzles can not only be used for swirling, but can also be arranged such that the flue gas moves on a wavy line in the flue gas train. This means that a single flue gas particle is not guided in a straight line or spiral from the firing grate in the flue gas duct. The particle is also not passed through the flue gas flue, with the risk of turbulence, in order to be mixed intensively with secondary air.
  • the flue gas particles flow through the flue gas train on a defined wavy line. This means that essentially all particles have a longer dwell time in the flue gas draft than would be possible with a straight flow. While individual flue gas particles have a particularly long path within the flue gas flue when swirling and other particles flow through the flue gas line particularly quickly, the flue gas duct according to the invention means that essentially all of the particles pass through a longer path in the flue gas line. This increases the dwell time of the particles in the flue gas flue and all particles have a defined dwell time on a defined path. Guiding on the wavy line is possible because hot flue gases have a viscous consistency and can therefore be guided through the nozzles on a path.
  • the nozzles are thus not used for swirling as in the prior art, but rather are oriented in such a way that the flue gases flow through the injected fluid on a wavy line, as a result of which the dwell time within the flue gas train is increased.
  • the nozzle parameters can be set using simple experiments can be set so that a defined wavy line is reached. This wavy line should have at least three and preferably even more than four reversal points.
  • a liquid can also be added as a fluid, which as a rule evaporates when it enters the flue gas duct. It is advantageous if a gas is added as the liquid. This gas can be air or steam, for example.
  • Known nozzles in flue gas flues are arranged in the flue gas flue such that the nozzle has an orientation perpendicular to the wall of the flue gas flue in which it is arranged.
  • a firing system with a fire grate and a flue gas flue which has nozzles on opposite sides of the flue gas flue, is particularly suitable in order to inject a fluid into the flue gas, the nozzles being arranged, aligned and designed in this way, as well as pressure and Volume flow of the injected fluid are adjustable such that the flue gas is moved back and forth in the flue gas train on a wavy line and the main nozzle direction of the two nozzles arranged on opposite sides of the flue gas train at an angle of at least 5 °, preferably more than 10 ° from one Nozzle connecting line lies.
  • the main nozzle direction of a nozzle deviates from the shortest connection to the opposite side of the flue gas duct by at least 5 °, preferably more than 10 °.
  • the main nozzle direction of at least one nozzle deviates from a horizontal plane in the flue gas draft by at least 5 °, preferably more than 10 °.
  • An extension of the flue gas train is understood to mean a cross section of the flue gas train that widens in the flow direction of the flue gases.
  • the direction of flow of the flue gases in a wave-shaped line is understood to mean the connection of the reversal points of the wave.
  • Another embodiment of the furnace which is also relevant to the invention, provides for the flue gas flue to have a lower and an upper region, and in the lower region the access from the fire grate to the flue gas flue is arranged offset to the upper region.
  • the height of the flue gas train can also be changed by relocating the access from the fire grate for the flue gas flue to the remaining flue gas flue, the length of time in the flue gas flue is increased
  • a special embodiment provides that at least one nozzle is arranged above the fire grate in the flow direction of the flue gas in front of the flue gas flue on a wall opposite the fire grate in order to inject a fluid into the flue gas.
  • the object on which the invention is based is also achieved with a method in which the combustion air as primary combustion air and secondary combustion air or as secondary combustion air is added in different ways, distributed over several addition points, during operation of the incineration plant. While the addition of the combustion air is usually optimized and is no longer changed during the operation of the incineration plant, the invention proposes the distribution of the Varying combustion air to different addition points during the operation of the incinerator.
  • the combustion air can be added to the nozzles and the grate, or the distribution of the partial volume flows to these nozzles can also be varied in a controlled manner.
  • the distribution of the combustion air to the individual addition points NO x , CO and / or O 2 is carried out in an optimized manner. This means that in order to optimize parameters such as NO x , CO and / or O 2 , the distribution of the volume flow of the addition to the individual nozzles and / or to the nozzles and the grate is changed during the operation of the incineration plant.
  • the distribution of the combustion air is distributed among the nozzles in the flue gas flue in such a way that an almost constant burnout is achieved per time.
  • the gas and / or solids burnout can be optimized.
  • the nozzles make it possible to vary the level of the burnout within the flue gas flue and to analyze the burnout by measurements as a function of the height in the flue gas flue and, depending on this, to vary the fluid addition via the nozzles in such a way that, for example, a certain degree of burnout in a specific one
  • the flue gas draft is not undercut.
  • the furnace 1 shown has a fire grate 2 and a flue gas flue 3.
  • the arrows 4 indicate the addition of primary air to the fire grate 2 and the arrows 5 to 9 indicate the addition of secondary air via nozzles.
  • the nozzles 10 to 14 are only indicated schematically.
  • the nozzle 10 is arranged above the fire grate 2 and the nozzles 11 and 12 are arranged on one side 15 of the flue gas duct 3 and the nozzles 13 and 14 are arranged on the opposite side 16 of the flue gas duct 3.
  • the dotted lines 17 to 21 indicate the main nozzle direction of the nozzles 10 to 14.
  • angle 22 shows the orientation relative to a line 23 connecting the nozzles 12 and 14.
  • the angle 24 shows the orientation of the main nozzle direction 17 with respect to the shortest connection 25 from the nozzle 14 to the opposite side 15 of the flue gas duct 3
  • angle 26 shows the main nozzle direction 17 of the nozzle 14 with respect to a horizontal plane 27 in the flue gas duct 3.
  • the two opposite sides 15 and 16 of the flue gas duct 3 are at an angle 28 to one another, so that the flue gas duct 3 widens conically in the area between the access 29 to the flue gas duct 3 and a transition 30 to vertical sides 31 and 32 of the flue gas duct 3.
  • the nozzle 10 with its main nozzle direction 21 is arranged on a wall 35 opposite the fire grate 2 and is therefore located in a region 36 above the fire grate 2 and before entering the lower region 33.
  • the nozzles 10 to 14 When the combustion system 1 is in operation, the nozzles 10 to 14 produce a wavy line 37 of the flue gas 38 which arises on the fire grate 2.
  • the addition of secondary combustion air 39 to 43 as gas to the flue gas 38 creates the wavy line 37 with its reversal points 44 to 48.
  • the primary combustion air 49 is fed to the combustion system 1 via the grate 2.
  • a preferred method also provides that either the secondary combustion air 39 to 43 or the primary combustion air 49 and the secondary combustion air 39 to 43 vary in volume during the operation of the incinerator as a volume flow or mass flow, depending on the different addition points on the grate 2 or on the nozzles 10 until 14 is added distributed.
  • the combustion air ratio can vary during the operation of the incinerator. However, it is advantageous if the combustion air ratio is kept constant.
  • Sensors 50, 51 and 52 for NO x , CO and / or O 2 are connected to a controller 53 in order to optimize the distribution of the combustion air from primary combustion air 49 and secondary combustion air 39 to 43 to the individual addition points.
  • the burnout can be determined from the measured values determined with the sensors 50 to 52 and this makes it possible to adjust the distribution of the combustion air to the nozzles in such a way that the burnout remains almost constant over time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Incineration Of Waste (AREA)
  • Air Supply (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betreiben einer eine Feuerungsanlage, die für die Verbrennung einen Feuerrost aufweist, mit einem Rauchgaszug, der Düsen an gegenüberliegenden Seiten des Rauchgaszuges aufweist, um ein Fluid in das Rauchgas einzudüsen. Darüber hinaus betrifft die Erfindung eine Feuerungsanlage mit einem Rauchgaszug, der Düsen an gegenüberliegenden Seiten des Rauchgaszuges aufweist, um ein Fluid in das Rauchgas einzudüsen.The invention relates to a method for operating a furnace, which has a fire grate for combustion, with a flue gas train, which has nozzles on opposite sides of the flue gas train, in order to inject a fluid into the flue gas. In addition, the invention relates to a firing system with a flue gas flue, which has nozzles on opposite sides of the flue gas flue in order to inject a fluid into the flue gas.

Es ist bekannt, bei einer Feuerungsanlage nicht nur die Primärluft zu variieren, sondern auch die Sekundärluft über unterschiedliche Düsen dem Rauchgas zuzugeben. Die Zugabe von Fluiden im Sekundärverbrennungsbereich dient der Verwirbelung der Rauchgase und soll eine homogene Vermischung von Rauchgas und über die Düsen zugegebene Sekundärluft bewirken. Durch spezielle Düsenausbildungen wird in der Praxis eine starke Verwirbelung erreicht, die zu einer Vermischung der zugegebenen Sekundärluft mit dem Rauchgas führt. Dies wird beispielsweise in der DE 19 47 164 A , der CN 102 620 285 A und der US 2004/0 185 399 A1 beschrieben. Hier geht es darum, durch eine geeignete Düsenanordnung und durch darauf abgestimmte Gasströme das Rauchgas von den Wandungen fern zu halten und möglichst im Zentrum des Rauchgaszuges optimal zu durchmischen.It is known not only to vary the primary air in a furnace, but also to add the secondary air to the flue gas via different nozzles. The addition of fluids in the secondary combustion area serves to swirl the flue gases and is intended to achieve a homogeneous mixing of flue gas and secondary air added via the nozzles. Due to special nozzle designs, strong turbulence is achieved in practice, which leads to a mixing of the added secondary air with the flue gas. This is for example in the DE 19 47 164 A , the CN 102 620 285 A and the US 2004/0 185 399 A1 described. The aim here is to keep the flue gas away from the walls by means of a suitable nozzle arrangement and by means of coordinated gas flows and to mix it optimally in the center of the flue gas duct.

Die EP 0 675 323 A1 beschreibt Düsen, mit denen Gas dem aufsteigenden Rauchgas entgegen von den Seiten des Rauchgaszuges zugeführt wird. Die EP 2 128 523 A2 beschreibt Düsen, mit denen das aufsteigende Rauchgas mit Sekundärluft verwirbelt wird und die DE 10 2015 003 995 A1 beschreibt eine Feuerungsanlage, mit der das Rauchgas mit Rezirkulationsgas verwirbelt wird. Alle Anlagen führen dazu, dass eine intensive Vermischung von zugeführtem Gas mit dem Rauchgas erreicht wird, um den Ausbrand zu verbessern.The EP 0 675 323 A1 describes nozzles with which gas is supplied to the rising flue gas from the sides of the flue gas train. The EP 2 128 523 A2 describes nozzles with which the rising flue gas is swirled with secondary air and the DE 10 2015 003 995 A1 describes a furnace with which the flue gas is swirled with recirculation gas. All systems result in an intensive mixing of the supplied gas with the flue gas in order to improve the burnout.

Der Erfindung liegt die Aufgabe zu Grunde, ein Verfahren zum Betreiben einer derartigen Feuerungsanlage weiterzuentwickeln.The invention is based on the object of further developing a method for operating such a furnace.

Diese Aufgabe wird mit einem Verfahren mit den Merkmalen des Patentanspruchs 1 gelöst.This object is achieved with a method having the features of patent claim 1.

Der Erfindung liegt die Erkenntnis zu Grunde, dass die Düsen nicht nur für eine Verwirbelung verwendet werden können, sondern auch so angeordnet sein können, dass sich das Rauchgas auf einer wellenförmigen Linie im Rauchgaszug bewegt. Das heißt, ein einzelnes Rauchgaspartikel wird nicht auf einer geraden Linie oder Spirale vom Feuerungsrost kommend im Rauchgaszug geführt. Der Partikel wird auch nicht unter Inkaufnahme von Verwirbelungen durch den Rauchgaszug geführt, um intensiv mit Sekundärluft vermischt zu werden.The invention is based on the finding that the nozzles can not only be used for swirling, but can also be arranged such that the flue gas moves on a wavy line in the flue gas train. This means that a single flue gas particle is not guided in a straight line or spiral from the firing grate in the flue gas duct. The particle is also not passed through the flue gas flue, with the risk of turbulence, in order to be mixed intensively with secondary air.

Erfindungsgemäß fließen die Rauchgaspartikel auf einer definierten Wellenlinie durch den Rauchgaszug. Dies führt dazu, dass im Wesentlichen alle Partikel eine längere Verweilzeit im Rauchgaszug haben als dies bei einer geraden Durchströmung möglich wäre. Während bei einer Verwirbelung einzelne Rauchgaspartikel einen besonders langen Weg innerhalb des Rauchgaszuges haben und andere Partikel besonders schnell den Rauchgaszug durchströmen, führt die erfindungsgemäße Rauchgasführung dazu, dass im wesentlichen alle Partikel eine längere Bahn im Rauchgaszug durchlaufen. Dadurch erhöht sich die Verweilzeit der Partikel im Rauchgaszug und alle Partikel haben eine definierte Verweilzeit auf einer definierten Bahn. Die Führung auf der wellenförmigen Linie ist möglich, da heiße Rauchgase eine zähflüssige Konsistenz haben und daher durch die Düsen auf einer Bahn geführt werden können. Dies führt zu einer reproduzierbaren einheitlichen Behandlung des Rauchgases und vermeidet, dass insbesondere in Randbereichen des Rauchgaszuges Rauchgaspartikel in geraden Strähnen relativ geradlinig durch den Rauchgaszug fließen, während andere Partikel durch Verwirbelungen bedingt sehr lange im Rauchgaszug verweilen.According to the invention, the flue gas particles flow through the flue gas train on a defined wavy line. This means that essentially all particles have a longer dwell time in the flue gas draft than would be possible with a straight flow. While individual flue gas particles have a particularly long path within the flue gas flue when swirling and other particles flow through the flue gas line particularly quickly, the flue gas duct according to the invention means that essentially all of the particles pass through a longer path in the flue gas line. This increases the dwell time of the particles in the flue gas flue and all particles have a defined dwell time on a defined path. Guiding on the wavy line is possible because hot flue gases have a viscous consistency and can therefore be guided through the nozzles on a path. This leads to a reproducible uniform treatment of the flue gas and avoids that flue gas particles in straight strands flow in a relatively straight line through the flue gas flue, particularly in the edge areas of the flue gas flue, while other particles remain in the flue gas line for a very long time due to turbulence.

Erfindungsgemäß werden die Düsen somit nicht wie im Stand der Technik für eine Verwirbelung eingesetzt, sondern gezielt so ausgerichtet, dass die Rauchgase durch das eingedüste Fluid auf einer Wellenlinie fließen, wodurch die Verweilzeit innerhalb des Rauchgaszuges erhöht wird.According to the invention, the nozzles are thus not used for swirling as in the prior art, but rather are oriented in such a way that the flue gases flow through the injected fluid on a wavy line, as a result of which the dwell time within the flue gas train is increased.

Um die Rauchgase auf einer wellenförmigen Linie zu führen, müssen Druck, Volumenstrom und Ausrichtung sowie die Ausbildung der Düsen speziell eingestellt werden. Je nach geometrischer Ausbildung des Rauchgaszuges können die Düsenparameter mittels einfacher Versuche so eingestellt werden, dass eine definierte wellenförmige Linie erreicht wird. Diese wellenförmige Linie sollte mindestens drei und vorzugsweise sogar mehr als vier Umkehrpunkte aufweisen.In order to guide the flue gases on a wavy line, pressure, volume flow and alignment as well as the design of the nozzles have to be adjusted. Depending on the geometric design of the flue gas duct, the nozzle parameters can be set using simple experiments can be set so that a defined wavy line is reached. This wavy line should have at least three and preferably even more than four reversal points.

Als Fluid kann auch eine Flüssigkeit zugegeben werden, die in der Regel beim Eintritt in den Rauchgaszug verdampft. Vorteilhaft ist es, wenn als Flüssigkeit ein Gas zugegeben wird. Dieses Gas kann beispielsweise Luft oder Dampf sein.A liquid can also be added as a fluid, which as a rule evaporates when it enters the flue gas duct. It is advantageous if a gas is added as the liquid. This gas can be air or steam, for example.

Bekannte Düsen in Rauchgaszügen sind derart im Rauchgaszug angeordnet, dass die Düse eine Ausrichtung senkrecht zur Wandung des Rauchgaszuges hat, in der sie angeordnet ist.Known nozzles in flue gas flues are arranged in the flue gas flue such that the nozzle has an orientation perpendicular to the wall of the flue gas flue in which it is arranged.

Für die der Erfindung zugrunde liegende Lösung eignet sich besonders eine Feuerungsanlage mit einem Feuerrost und einem Rauchgaszug, der Düsen an gegenüberliegenden Seiten des Rauchgaszuges aufweist, um ein Fluid in das Rauchgas einzudüsen, wobei die Düsen derart angeordnet, ausgerichtet und ausgebildet sind, sowie Druck und Volumenstrom des eingedüsten Fluids derart einstellbar sind, dass das Rauchgas im Rauchgaszug auf einer wellenförmigen Linie hin und her bewegt wird und die Hauptdüsenrichtung der zwei an gegenüberliegenden Seiten des Rauchgaszuges angeordneten Düsen in einem Winkel von mindesten 5°, vorzugsweise mehr als 10° von einer die Düse verbindenden Linie liegt.For the solution on which the invention is based, a firing system with a fire grate and a flue gas flue, which has nozzles on opposite sides of the flue gas flue, is particularly suitable in order to inject a fluid into the flue gas, the nozzles being arranged, aligned and designed in this way, as well as pressure and Volume flow of the injected fluid are adjustable such that the flue gas is moved back and forth in the flue gas train on a wavy line and the main nozzle direction of the two nozzles arranged on opposite sides of the flue gas train at an angle of at least 5 °, preferably more than 10 ° from one Nozzle connecting line lies.

Insbesondere wenn der Düse keine andere Düse gegenüber liegt, ist es vorteilhaft, wenn die Hauptdüsenrichtung einer Düse von der kürzesten Verbindung zur gegenüberliegenden Seite des Rauchgaszuges um mindestens 5°, vorzugsweise mehr als 10° abweicht.In particular if the nozzle is not opposite to any other nozzle, it is advantageous if the main nozzle direction of a nozzle deviates from the shortest connection to the opposite side of the flue gas duct by at least 5 °, preferably more than 10 °.

Bezogen auf eine horizontale Linie ist es vorteilhaft, wenn die Hauptdüsenrichtung mindestens einer Düse von einer horizontalen Ebene im Rauchgaszug um mindestens 5°, vorzugsweise mehr als 10° abweicht.Relative to a horizontal line, it is advantageous if the main nozzle direction of at least one nozzle deviates from a horizontal plane in the flue gas draft by at least 5 °, preferably more than 10 °.

Es ist vorteilhaft, wenn sich der Rauchgaszug vom Feuerrost in Flussrichtung des Rauchgases erweitert.It is advantageous if the flue gas flue widens from the fire grate in the direction of flow of the flue gas.

Eine derartige Erweiterung des Rauchgaszuges führt zu einer umgekehrten Düse und somit zu einer Verlangsamung der Strömung im Rauchgaszug. Somit wird kumulativ oder alternativ zur Bewegung der Rauchgase auf einer wellenförmigen Linie vorgeschlagen, die Strömungsgeschwindigkeit der Rauchgase im Rauchgaszug durch eine Erweiterung des Rauchgaszuges zu verringern. Unter einer Erweiterung des Rauchgaszuges wird ein sich in Flussrichtung der Rauchgase erweiternder Querschnitt des Rauchgaszuges verstanden. Dabei wird unter der Strömungsrichtung der Rauchgase bei einer wellenförmigen Linie die Verbindung der Umkehrpunkte der Welle verstanden.Such an expansion of the flue gas train leads to an inverted nozzle and thus to a slowdown of the flow in the flue gas train. Thus, cumulatively or as an alternative to moving the flue gases on a wavy line, it is proposed to reduce the flow velocity of the flue gases in the flue gas flue by expanding the flue gas flue. An extension of the flue gas train is understood to mean a cross section of the flue gas train that widens in the flow direction of the flue gases. The direction of flow of the flue gases in a wave-shaped line is understood to mean the connection of the reversal points of the wave.

Eine ebenfalls erfindungsrelevante Ausführungsform der Feuerungsanlage sieht vor, dass der Rauchgaszug einen unteren und einen oberen Bereich aufweist und im unteren Bereich der Zugang vom Feuerrost zum Rauchgaszug versetzt zum oberen Bereich angeordnet ist.Another embodiment of the furnace, which is also relevant to the invention, provides for the flue gas flue to have a lower and an upper region, and in the lower region the access from the fire grate to the flue gas flue is arranged offset to the upper region.

Während die Rauchgase im Rauchgaszug im Wesentlichen nach oben strömen und die Verweildauer im Rauchgaszug durch das Bewegen der Rauchgase auf einer wellenförmigen Linie und/oder durch eine Erweiterung des Rauchgaszuges erhöht werden kann, kann bei unveränderter Höhe des Rauchgaszuges auch durch eine Versetzung des Zugangs vom Feuerrost zum Rauchgaszug zum übrigen Rauchgaszug die Verweildauer im Rauchgaszug erhöht werden.While the flue gases in the flue gas train essentially flow upwards and the length of time in the flue gas train can be increased by moving the flue gases on a wavy line and / or by expanding the flue gas train, the height of the flue gas train can also be changed by relocating the access from the fire grate for the flue gas flue to the remaining flue gas flue, the length of time in the flue gas flue is increased

Eine spezielle Ausführungsform sieht vor, dass oberhalb des Feuerrostes in Flussrichtung des Rauchgases vor dem Rauchgaszug an einer dem Feuerrost gegenüberliegenden Wand mindestens eine Düse angeordnet ist, um ein Fluid in das Rauchgas einzudüsen.A special embodiment provides that at least one nozzle is arranged above the fire grate in the flow direction of the flue gas in front of the flue gas flue on a wall opposite the fire grate in order to inject a fluid into the flue gas.

Die der Erfindung zugrunde liegende Aufgabe wird auch mit einem Verfahren gelöst, bei dem die Verbrennungsluft als Primärverbrennungsluft und Sekundärverbrennungsluft oder als Sekundärverbrennungsluft während des Betriebs der Verbrennungsanlage variierend unterschiedlich auf mehrere Zugabestellen verteilt zugegeben wird. Während üblicherweise die Zugabe der Verbrennungsluft optimiert wird und während des Betriebs der Verbrennungsanlage nicht mehr verändert wird, schlägt die Erfindung vor, die Verteilung der Verbrennungsluft auf unterschiedliche Zugabestellen während des Betriebs der Verbrennungsanlage zu variieren.The object on which the invention is based is also achieved with a method in which the combustion air as primary combustion air and secondary combustion air or as secondary combustion air is added in different ways, distributed over several addition points, during operation of the incineration plant. While the addition of the combustion air is usually optimized and is no longer changed during the operation of the incineration plant, the invention proposes the distribution of the Varying combustion air to different addition points during the operation of the incinerator.

Es ist zwar bekannt, bei Feuerungsanlagen im Bereich des Feuerungsrostes die Primärluft entsprechend einer optischen Analyse der Verbrennung auf dem Rost quer zur Förderrichtung auf dem Rost zu variieren. Neu ist jedoch die Variation der Luftzugabe zwischen Primär- und Sekundärverbrennungsluft und die Variation innerhalb unterschiedlicher Zugabestellen der Sekundärluft. Dabei ist es besonders vorteilhaft, wenn während der Variation das Verbrennungsluftverhältnis (λ) konstant gehalten wird.It is known to vary the primary air in combustion systems in the area of the grate according to an optical analysis of the combustion on the grate, transversely to the conveying direction on the grate. What is new, however, is the variation in the air addition between the primary and secondary combustion air and the variation within different addition points of the secondary air. It is particularly advantageous if the combustion air ratio (λ) is kept constant during the variation.

Die Verbrennungsluft kann auf die Düsen und den Rost verteilt zugegeben werden oder es kann auch die Verteilung der Teilvolumenströme auf diese Düsen gesteuert variiert werden.The combustion air can be added to the nozzles and the grate, or the distribution of the partial volume flows to these nozzles can also be varied in a controlled manner.

Besonders vorteilhaft ist es, wenn während des Betriebs der Verbrennungsanlage die Verteilung der Verbrennungsluft auf die einzelnen Zugabestellen NOx, CO und/oder O2 optimiert durchgeführt wird. Das heißt zur Optimierung von Parametern wie NOx, CO und/oder O2 wird die Verteilung des Volumenstroms der Zugabe an den einzelnen Düsen und/oder an den Düsen und dem Rost während des Betriebs der Verbrennungsanlage verändert.It is particularly advantageous if, during the operation of the incineration plant, the distribution of the combustion air to the individual addition points NO x , CO and / or O 2 is carried out in an optimized manner. This means that in order to optimize parameters such as NO x , CO and / or O 2 , the distribution of the volume flow of the addition to the individual nozzles and / or to the nozzles and the grate is changed during the operation of the incineration plant.

Kumulativ oder alternativ wird vorgesehen, dass die Verteilung der Verbrennungsluft derart auf die Düsen im Rauchgaszug verteilt wird, dass ein nahezu konstanter Ausbrand pro Zeit erreicht wird. Dabei können der Gas- und/oder der Feststoffausbrand optimiert werden.Cumulatively or alternatively, it is provided that the distribution of the combustion air is distributed among the nozzles in the flue gas flue in such a way that an almost constant burnout is achieved per time. The gas and / or solids burnout can be optimized.

Die Düsen ermöglichen es, die Höhe der Ebene des Ausbrandes innerhalb des Rauchgaszuges zu variieren und durch Messungen den Ausbrand in Abhängigkeit von der Höhe im Rauchgaszug zu analysieren und davon abhängig die Fluidzugabe über die Düsen so zu variieren, dass beispielsweise ein bestimmter Ausbrandgrad in einer bestimmten Höhe des Rauchgaszuges nicht unterschritten wird.The nozzles make it possible to vary the level of the burnout within the flue gas flue and to analyze the burnout by measurements as a function of the height in the flue gas flue and, depending on this, to vary the fluid addition via the nozzles in such a way that, for example, a certain degree of burnout in a specific one The flue gas draft is not undercut.

Ein vorteilhaftes Ausführungsbeispiel ist in der Zeichnung dargestellt und wird im Folgenden näher erläutert. Es zeigt

Figur 1
schematisch die Anordnung von Fluidzugabestellen an einer Feuerungsanlage und
Figur 2
schematisch eine wellenförmige Linie von Rauchgasen in einem Rauchgaszug.
An advantageous embodiment is shown in the drawing and is explained in more detail below. It shows
Figure 1
schematically the arrangement of fluid addition points on a furnace and
Figure 2
schematically a wavy line of flue gases in a flue gas train.

Die in Figur 1 gezeigte Feuerungsanlage 1 hat einen Feuerrost 2 und einen Rauchgaszug 3. Die Pfeile 4 deuten die Zugabe von Primärluft am Feuerrost 2 an und die Pfeile 5 bis 9 deuten die Zugabe von Sekundärluft über Düsen an. Die Düsen 10 bis 14 sind nur schematisch angedeutet. Dabei ist die Düse 10 oberhalb des Feuerrostes 2 angeordnet und die Düsen 11 und 12 sind an einer Seite 15 des Rauchgaszuges 3 und die Düsen 13 und 14 sind an der gegenüberliegenden Seite 16 des Rauchgaszuges 3 angeordnet.In the Figure 1 The furnace 1 shown has a fire grate 2 and a flue gas flue 3. The arrows 4 indicate the addition of primary air to the fire grate 2 and the arrows 5 to 9 indicate the addition of secondary air via nozzles. The nozzles 10 to 14 are only indicated schematically. The nozzle 10 is arranged above the fire grate 2 and the nozzles 11 and 12 are arranged on one side 15 of the flue gas duct 3 and the nozzles 13 and 14 are arranged on the opposite side 16 of the flue gas duct 3.

Die punktierten Linien 17 bis 21 deuten die Hauptdüsenrichtung der Düsen 10 bis 14 an.The dotted lines 17 to 21 indicate the main nozzle direction of the nozzles 10 to 14.

Zur Hauptdüsenrichtung 17 zeigt der Winkel 22 die Ausrichtung relativ zu einer die Düsen 12 und 14 verbindenden Linie 23. Der Winkel 24 zeigt die Ausrichtung der Hauptdüsenrichtung 17 in Bezug auf die kürzeste Verbindung 25 von der Düse 14 zur gegenüberliegenden Seite 15 des Rauchgaszuges 3. Der Winkel 26 zeigt schließlich die Hauptdüsenrichtung 17 der Düse 14 in Bezug auf eine horizontale Ebene 27 im Rauchgaszug 3.To the main nozzle direction 17, the angle 22 shows the orientation relative to a line 23 connecting the nozzles 12 and 14. The angle 24 shows the orientation of the main nozzle direction 17 with respect to the shortest connection 25 from the nozzle 14 to the opposite side 15 of the flue gas duct 3 Finally, angle 26 shows the main nozzle direction 17 of the nozzle 14 with respect to a horizontal plane 27 in the flue gas duct 3.

Die zwei gegenüberliegenden Seiten 15 und 16 des Rauchgaszuges 3 stehen in einem Winkel 28 zueinander, sodass sich der Rauchgaszug 3 im Bereich zwischen dem Zugang 29 zum Rauchgaszug 3 und einem Übergang 30 zu senkrechten Seiten 31 und 32 des Rauchgaszuges 3 konisch erweitert.The two opposite sides 15 and 16 of the flue gas duct 3 are at an angle 28 to one another, so that the flue gas duct 3 widens conically in the area between the access 29 to the flue gas duct 3 and a transition 30 to vertical sides 31 and 32 of the flue gas duct 3.

Dadurch entsteht ein unterer Bereich 33 des Rauchgaszuges 3 zwischen dem Zugang 29 vom Feuerrost 2 zum Rauchgaszug 3 und dem Übergang 30 vom Bereich 33 des Rauchgaszuges 3 mit den schrägen Seiten 15, 16 zu dem Bereich 34 des Rauchgaszuges mit senkrechten Wänden 31 und 32, der versetzt zu diesem zweiten Bereich 34 zwischen den senkrechten Wänden 31 und 32 angeordnet ist.This creates a lower region 33 of the flue gas duct 3 between the access 29 from the fire grate 2 to the flue gas duct 3 and the transition 30 from the region 33 of the flue gas duct 3 with the sloping sides 15, 16 to the region 34 of the flue gas duct with vertical walls 31 and 32, the is offset from this second region 34 between the vertical walls 31 and 32.

Die Düse 10 mit ihrer Hauptdüsenrichtung 21 ist an einer dem Feuerrost 2 gegenüberliegenden Wand 35 angeordnet und liegt somit in einem Bereich 36 oberhalb des Feuerrostes 2 und vor dem Eintritt in den unteren Bereich 33.The nozzle 10 with its main nozzle direction 21 is arranged on a wall 35 opposite the fire grate 2 and is therefore located in a region 36 above the fire grate 2 and before entering the lower region 33.

Beim Betrieb der Feuerungsanlage 1 entsteht durch die Düsen 10 bis 14 eine wellenförmige Linie 37 des Rauchgases 38, das auf dem Feuerrost 2 entsteht. Durch die Zugabe von Sekundärverbrennungsluft 39 bis 43 als Gas zum Rauchgas 38 entsteht die wellenförmige Linie 37 mit ihren Umkehrpunkten 44 bis 48. Über den Rost 2 wird die Primärverbrennungsluft 49 der Feuerungsanlage 1 zugeführt.When the combustion system 1 is in operation, the nozzles 10 to 14 produce a wavy line 37 of the flue gas 38 which arises on the fire grate 2. The addition of secondary combustion air 39 to 43 as gas to the flue gas 38 creates the wavy line 37 with its reversal points 44 to 48. The primary combustion air 49 is fed to the combustion system 1 via the grate 2.

Dies ermöglicht es, die Verbrennungsluft so zuzugeben, dass das Rauchgas 38 auf der wellenförmigen Linie 37 fließt. Ein bevorzugtes Verfahren sieht darüber hinaus vor, dass entweder die Sekundärverbrennungsluft 39 bis 43 oder die Primärverbrennungsluft 49 und die Sekundärverbrennungsluft 39 bis 43 während des Betriebs der Verbrennungsanlage als Volumenstrom oder Massestrom in der Menge variierend auf die unterschiedlichen Zugabestellen am Rost 2 oder an den Düsen 10 bis 14 verteilt zugegeben wird. Dabei kann das Verbrennungsluftverhältnis während des Betriebs der Verbrennungsanlage variieren. Vorteilhaft ist es jedoch, wenn das Verbrennungsluftverhältnis konstant gehalten wird.This makes it possible to add the combustion air so that the flue gas 38 flows on the wavy line 37. A preferred method also provides that either the secondary combustion air 39 to 43 or the primary combustion air 49 and the secondary combustion air 39 to 43 vary in volume during the operation of the incinerator as a volume flow or mass flow, depending on the different addition points on the grate 2 or on the nozzles 10 until 14 is added distributed. The combustion air ratio can vary during the operation of the incinerator. However, it is advantageous if the combustion air ratio is kept constant.

Sensoren 50, 51 und 52 für NOx, CO und/oder O2 sind mit einer Steuerung 53 verbunden, um die Verteilung der Verbrennungsluft aus Primärverbrennungsluft 49 und Sekundärverbrennungsluft 39 bis 43 auf die einzelnen Zugabestellen zu optimieren.Sensors 50, 51 and 52 for NO x , CO and / or O 2 are connected to a controller 53 in order to optimize the distribution of the combustion air from primary combustion air 49 and secondary combustion air 39 to 43 to the individual addition points.

Aus den mit den Sensoren 50 bis 52 ermittelten Messwerten kann der Ausbrand ermittelt werden und dies ermöglicht es, die Verteilung der Verbrennungsluft auf die Düsen so einzustellen, dass der Ausbrand pro Zeit nahezu konstant bleibt.The burnout can be determined from the measured values determined with the sensors 50 to 52 and this makes it possible to adjust the distribution of the combustion air to the nozzles in such a way that the burnout remains almost constant over time.

Claims (17)

  1. A method for operating a combustion plant (1) which has a grate for the combustion, with a flue (3) which has nozzles (11 to 14) on opposing sides (15, 16) of the flue (3), through which nozzles a fluid is injected into the flue gas, characterised in that the nozzles (11 to 14) are arranged, oriented and designed, and the pressure and volumetric flow rate of the injected fluid are set such that the flue gas (38) is moved to and fro on an undulating line (37) within the flue (3).
  2. The method according to Claim 1, characterised in that the fluid is a gas.
  3. The method according to Claim 2, characterised in that the gas is air.
  4. The method according to Claim 2, characterised in that the gas is steam.
  5. The method according to any one of the preceding claims, characterised in that the undulating line (37) has at least three and preferably more than four turning points (44 to 48).
  6. The method according to any one of the preceding claims, characterised in that at least some of the combustion air (39 to 43 and 49) is added to the flue gas (38) through the nozzles (11 to 14), and the combustion air (39 to 43 and 49) is added as primary combustion air (49) and secondary combustion air (39 to 43) or as secondary air (39 to 43) such that it is distributed differently over multiple addition points (2, 10 to 14) in a varying manner during operation of the combustion plant (1).
  7. The method according to Claim 6, characterised in that the combustion air ratio is kept constant.
  8. The method according to Claim 6 or 7, characterised in that the combustion air (39 to 43 and 49) is added such that it is distributed over the nozzles (10 to 14) and the grate (2).
  9. The method according to any one of Claims 6 to 8, characterised in that the distribution of the partial volumetric flows over the nozzles (10 to 14) is varied in a controlled manner.
  10. The method according to any one of Claims 6 to 9, characterised in that during operation of the combustion plant (1), the distribution of the combustion air (39 to 43 and 49) over the individual addition points (10 to 14, 4) is carried out in a NOx-, CO- and/or O2-optimised manner.
  11. The method according to any one of Claims 6 to 10, characterised in that the distribution of the combustion air (39 to 43 and 49) is distributed over the nozzles (10 to 14) such that a virtually constant burnout (gas and/or solids burnout) over time is achieved.
  12. A combustion plant with a grate and a flue (3) which has nozzles (11 to 14) on opposing sides (15, 16) of the flue (3) in order to inject a fluid into the flue gas, characterised in that the nozzles (11 to 14) are arranged, oriented and designed, and the pressure and volumetric flow rate of the injected fluid can be set such that the flue gas (38) is moved to and fro on an undulating line (37) within the flue (3), and the main nozzle direction (17 to 20) of the two nozzles (11 to 14) arranged on opposing sides (15, 16) of the flue (3) is at an angle (22) of at least 5°, preferably more than 10°, from a line (23) connecting the nozzles (11 to 14).
  13. The combustion plant according to Claim 12, characterised in that the main nozzle direction (17 to 21) of a nozzle (11 to 14) deviates from the shortest connection (25) to the opposite side (15, 16) of the flue (3) by an angle (24) of at least 5°, preferably more than 10°.
  14. The combustion plant according to Claim 12 or 13, characterised in that the main nozzle direction (17 to 21) of at least one nozzle (10 to 14) deviates from a horizontal plane (27) in the flue (3) by an angle (26) of at of least 5°, preferably more than 10°.
  15. The combustion plant according to any one of Claims 12 to 14, characterised in that the flue (3) widens in the flow direction of the flue gas (38) away from the grate (2).
  16. The combustion plant according to any one of Claims 12 to 15, characterised in that the flue (3) has a lower region (33) and an upper region (34), and in the lower region (33) the access (29) from the grate (2) to the flue (3) is offset to the upper region (34).
  17. The combustion plant according to any one of Claims 12 to 16, characterised in that there is at least one nozzle (10) above the grate (2) in the flow direction of the flue gas (38) before the flue (3) on a wall (35) opposite the grate (2), in order to inject a fluid into the flue gas (38).
EP18000551.4A 2017-08-30 2018-06-21 Combustion plant and method for operating the same Active EP3450846B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL18000551T PL3450846T3 (en) 2017-08-30 2018-06-21 Combustion plant and method for operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017008123.9A DE102017008123A1 (en) 2017-08-30 2017-08-30 Furnace and method for operating a furnace

Publications (2)

Publication Number Publication Date
EP3450846A1 EP3450846A1 (en) 2019-03-06
EP3450846B1 true EP3450846B1 (en) 2020-04-29

Family

ID=62750735

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18000551.4A Active EP3450846B1 (en) 2017-08-30 2018-06-21 Combustion plant and method for operating the same

Country Status (11)

Country Link
US (1) US20190063745A1 (en)
EP (1) EP3450846B1 (en)
JP (1) JP7341449B2 (en)
BR (1) BR102018067278A2 (en)
CA (1) CA3014250A1 (en)
DE (1) DE102017008123A1 (en)
DK (1) DK3450846T3 (en)
ES (1) ES2805832T3 (en)
MX (1) MX2018010405A (en)
PL (1) PL3450846T3 (en)
SG (1) SG10201806938TA (en)

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1947164A1 (en) * 1969-09-18 1971-03-25 Koppers Wistra Ofenbau Gmbh Waste incineration plant
JPH04214109A (en) * 1990-11-30 1992-08-05 Hitachi Zosen Corp Combustion gas mixing structure in refuse incinerator
DE59101576D1 (en) * 1991-02-07 1994-06-09 Martin Umwelt & Energietech Combustion air supply method and furnace.
JPH04366307A (en) * 1991-06-13 1992-12-18 Mitsubishi Heavy Ind Ltd Supplying method for secondary air in burner
JP2649626B2 (en) * 1992-01-24 1997-09-03 株式会社荏原製作所 Fluidized bed combustion device with integrated exhaust gas passage
JP2642568B2 (en) * 1992-11-11 1997-08-20 三機工業株式会社 Secondary combustion method of refuse incinerator
US5762008A (en) * 1993-04-20 1998-06-09 Martin Gmbh Fuer Umwelt- Und Enetgietechnik Burning fuels, particularly for incinerating garbage
JP3383959B2 (en) * 1993-10-07 2003-03-10 三機工業株式会社 Waste incinerator combustion method and apparatus
FR2718223B1 (en) * 1994-03-29 1996-06-21 Babcock Entreprise Device for charging large solid fuels into a fireplace, for example whole used tires.
DE19613777C2 (en) * 1996-04-04 2002-01-17 Michael Mimor Incinerator and post-combustion process
JPH10205733A (en) * 1997-01-14 1998-08-04 Takuma Co Ltd Secondary air supply method in fluidized bed combustion furnace
JPH10205734A (en) * 1997-01-14 1998-08-04 Takuma Co Ltd Secondary air supply method in stoker type combustion furnace
DE19723298A1 (en) * 1997-06-04 1998-12-10 Abb Patent Gmbh Controlling mixing quality in refuse incinerator
NL1015519C2 (en) * 2000-06-14 2001-12-28 Amsterdam Gem Dienst Afvalverw Flue gas recirculation at a waste incineration plant.
ATE404820T1 (en) * 2002-04-03 2008-08-15 Keppel Seghers Holdings Pte Lt METHOD AND DEVICE FOR CONTROLLING THE PRIMARY AND SECONDARY AIR INJECTION OF A WASTE INCINERATION PLANT
US20040185399A1 (en) * 2003-03-19 2004-09-23 Goran Moberg Urea-based mixing process for increasing combustion efficiency and reduction of nitrogen oxides (NOx)
DE102005001907B4 (en) * 2005-01-14 2007-05-10 Steinmüller Engineering GmbH Process and installation for burning a fuel
EP1726876B1 (en) * 2005-05-27 2015-05-06 Takuma Co., Ltd. Improved method of combusting solid waste
RU2415339C2 (en) 2008-05-29 2011-03-27 Мартин ГмбХ Фюр Умвельт-Унд Энергитехник Combustion plant and control method of combustion plant
US8327779B2 (en) * 2008-09-26 2012-12-11 Air Products And Chemicals, Inc. Combustion system with steam or water injection
JP5452906B2 (en) 2008-11-25 2014-03-26 株式会社タクマ Combustion control system for combustion furnace and combustion control method thereof
DE102011116723A1 (en) * 2011-10-24 2013-04-25 Robert Bosch Gmbh Secondary combustion chamber with secondary air injection
CN102620285A (en) * 2012-04-05 2012-08-01 哈尔滨工业大学 Cyclone burner and air burnout arrangement structure for boiler
DE102015003995A1 (en) 2015-03-30 2016-10-06 Martin GmbH für Umwelt- und Energietechnik Process for combustion management in grate firing and grate firing
JP6443758B2 (en) * 2015-03-31 2018-12-26 Jfeエンジニアリング株式会社 Grate-type waste incinerator and waste incineration method
JP5996762B1 (en) * 2015-11-19 2016-09-21 株式会社タクマ Waste combustion control method and combustion control apparatus to which the method is applied

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2019045130A (en) 2019-03-22
US20190063745A1 (en) 2019-02-28
MX2018010405A (en) 2019-03-28
CA3014250A1 (en) 2019-02-28
AU2018214150A1 (en) 2019-03-21
PL3450846T3 (en) 2020-10-19
ES2805832T3 (en) 2021-02-15
JP7341449B2 (en) 2023-09-11
BR102018067278A2 (en) 2019-03-19
DK3450846T3 (en) 2020-08-03
DE102017008123A1 (en) 2019-02-28
EP3450846A1 (en) 2019-03-06
SG10201806938TA (en) 2019-03-28

Similar Documents

Publication Publication Date Title
EP2588805B1 (en) Burner
EP0892212B1 (en) Pressure spray nozzle
EP0794383B1 (en) Method of operating a pressurised atomising nozzle
DE69831355T2 (en) Pulverized coal burner
CH680467A5 (en)
DE60006341T2 (en) STATIC MIXER
CH687831A5 (en) Premix burner.
WO2005095863A1 (en) Burner
EP0684428A2 (en) Device for injecting air into the combustion space of a flare burner and flare burner
EP0619456A1 (en) Fuel supply system for combustion chamber
DE2417147A1 (en) GAS TURBINE COMBUSTION DEVICE AND METHOD OF OPERATING THE DEVICE
EP1265029A2 (en) Burner system
EP1048898A1 (en) Burner
EP1463911B1 (en) Burner with sequential fuel injection
EP0742411B1 (en) Air supply for a premix combustor
DE4440558A1 (en) Premix burner
EP3450846B1 (en) Combustion plant and method for operating the same
EP0430144B1 (en) Method and apparatus for reducing the concentration of nitrogen oxides in waste gases of combustion processes
EP4089325B1 (en) Nozzle for blowing gas into a combustion plant with a pipe and a swirl generator, flue with such a nozzle and method of using such a nozzle
DE19731474C1 (en) Method of operating corner burners for tangential firing
EP1205713B1 (en) Method of fuel injection in a burner
DE4412315A1 (en) Method of operating gas turbine combustion chamber
DE102006011655A1 (en) System for mixing second fluid into first fluid, e.g. introducing aqueous ammonia into flue gas, comprises static mixers and second fluid introduction nozzles embedded in channel for first fluid
DE19704802A1 (en) Device and method for burning fuel
DE3642612C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MARTIN GMBH FUER UMWELT- UND ENERGIETECHNIK

17P Request for examination filed

Effective date: 20190226

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190701

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018001280

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1263887

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200728

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200829

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200831

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018001280

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2805832

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200621

26N No opposition filed

Effective date: 20210201

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230622

Year of fee payment: 6

Ref country code: NL

Payment date: 20230620

Year of fee payment: 6

Ref country code: FR

Payment date: 20230628

Year of fee payment: 6

Ref country code: DK

Payment date: 20230622

Year of fee payment: 6

Ref country code: DE

Payment date: 20230620

Year of fee payment: 6

Ref country code: CZ

Payment date: 20230612

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230619

Year of fee payment: 6

Ref country code: SE

Payment date: 20230620

Year of fee payment: 6

Ref country code: PL

Payment date: 20230524

Year of fee payment: 6

Ref country code: FI

Payment date: 20230621

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 6

Ref country code: ES

Payment date: 20230830

Year of fee payment: 6

Ref country code: CH

Payment date: 20230702

Year of fee payment: 6

Ref country code: GB

Payment date: 20230622

Year of fee payment: 6