EP3403021B1 - Beleuchtungseinheit für einen kraftfahrzeugscheinwerfer zum erzeugen eines lichtbündels mit hell-dunkel-grenze - Google Patents

Beleuchtungseinheit für einen kraftfahrzeugscheinwerfer zum erzeugen eines lichtbündels mit hell-dunkel-grenze Download PDF

Info

Publication number
EP3403021B1
EP3403021B1 EP17700768.9A EP17700768A EP3403021B1 EP 3403021 B1 EP3403021 B1 EP 3403021B1 EP 17700768 A EP17700768 A EP 17700768A EP 3403021 B1 EP3403021 B1 EP 3403021B1
Authority
EP
European Patent Office
Prior art keywords
light
intersection
reflector
base
focal line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17700768.9A
Other languages
English (en)
French (fr)
Other versions
EP3403021A1 (de
Inventor
Bernd EICHINGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZKW Group GmbH
Original Assignee
ZKW Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZKW Group GmbH filed Critical ZKW Group GmbH
Publication of EP3403021A1 publication Critical patent/EP3403021A1/de
Application granted granted Critical
Publication of EP3403021B1 publication Critical patent/EP3403021B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/27Thick lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/275Lens surfaces, e.g. coatings or surface structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/322Optical layout thereof the reflector using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/37Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors characterised by their material, surface treatment or coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention further relates to a motor vehicle headlight which has at least one such lighting unit.
  • the DE 60 2006 000 180 T2 describes a lighting unit for a motor vehicle headlight for generating a light beam with a cut-off line, of the type with a light source, a reflector, a diopter or an exit lens and a reflective deflecting surface.
  • a lighting device of the projection type for a vehicle having a light guide body by which light losses are minimized.
  • WO 2013/014046 A1 discloses a device for illuminating a surface, comprising a light source, a first optical element which collects the light from the light source and generates a collimated light beam, and a second optical element which deflects the collimated light beam.
  • the EP 2 620 695 A2 shows a motor vehicle headlight with a light emitter and a projection lens.
  • a similar lighting unit is, for example, from DE 60 2006 000 180 T2 known.
  • a lighting unit in connection with the present invention can be used in a motor vehicle headlight, for example, to implement part of a low beam distribution, in particular the upstream light distribution of a low beam distribution.
  • a lighting unit mentioned at the beginning can be realized in the area of the light exit surface with a low overall height, which in certain embodiments can only be up to 10mm or up to 15mm high, so that a slit-shaped light exit surface that extends in the horizontal direction results.
  • the light exit surface ie the outer surface of the exit lens
  • the light image that can be achieved therewith or the light distribution that can be achieved is often not sufficiently wide in the horizontal direction.
  • the outer surface of the exit lens is formed by a groove-shaped structure in a smooth base surface, the grooves forming the groove-shaped structure running in an essentially vertical direction, and preferably two in each case in the horizontal direction grooves lying next to one another are separated by a, in particular essentially vertical, elevation, which preferably extends over the entire vertical extent of the grooves.
  • the smooth base surface is preferably C0-rising and in particular has no horizontally extending edges.
  • the smooth base surface is cut with second, vertical cutting planes which run parallel to an optical axis of the exit lens
  • the resulting second base cutting curves are designed to be curved, in particular curved outwards, with the second base cutting planes preferably being formed. Intersection curves are continuous.
  • first outer surface intersection curves resulting when the outer surface is cut with first cutting planes connect points of the outer surface with one another at a maximum distance from the base surface.
  • the normal distance to the first outer surface intersection curve in the defined cutting planes is a function A (s) of a parameter s which specifies the position on the second basic intersection curve.
  • the structure according to the invention on the outer surface of the exit lens achieves a horizontal blurring of the exiting light rays, whereby the desired width of the light distribution can be achieved.
  • exactly one light source with exactly one collimator is provided.
  • first base intersection curves resulting when the smooth base surface is cut with first, non-vertical cutting planes run in a straight line, and the first outer surface intersection curves resulting when the outer surface is cut with these first cutting planes have a sinusoidal course exhibit.
  • the zero crossings of the sinusoidal first outer surface intersection curves lie on the first basic intersection curves.
  • the value for the constant k is identical for all first outer surface intersection curves.
  • the second cutting planes are vertical planes parallel to the optical axis of the light-permeable body, i.e. the exit lens of the optical body.
  • optical axis of the optical body in particular the center line of the optical body, is defined below the optical axis in relation to the apex of the exit lens.
  • the first cutting plane results as follows: the first cutting plane in the point under consideration is a plane that is normal to the tangential plane on the base surface, with this plane, ie the first cutting plane, also being normal to the second cutting plane in which the point is located.
  • the second cutting plane is a vertical cutting plane through the smooth base surface, which runs parallel to the optical axis (or through this optical axis) and in which the point under consideration lies.
  • the at least one light source is lower than the focal line area and the light emanating from the at least one light source is directed upwards in order to be reflected downward by the reflector in the direction of the focal line area.
  • the at least one light source is higher than the focal line area and the light emanating from the at least one light source is directed downwards in order to be reflected upwards by the reflector in the direction of the focal line area.
  • the reflector is a surface, for example a cylindrical surface, which has a parabola as a guide line, the focal line of the reflector is formed, for example, by a straight line which is preferably essentially parallel to the generatrix of the cylinder.
  • the parabolic axis is preferably orthogonal to the generators and parallel or antiparallel to the main emission direction of the at least one light source.
  • the reflector is a parabolic surface with a main axis in the vertical direction, which is, for example, trimmed in a cylindrical shape.
  • the trim does not have to be cylindrical.
  • the outer surface of the exit lens is curved outward in the vertical direction, and preferably extends in a straight line in the horizontal direction, and is formed, for example, by a cylindrical surface with a straight cross section along an outwardly convex curve.
  • An example of such an outwardly convex curve is called an aspherical lens contour.
  • it is a free-form lens that is curved outward in the vertical direction and not curved in the horizontal direction.
  • the cylindrical surface of the outer surface has generatrices which are essentially parallel to the generatrices of the reflector.
  • a light source is provided, but it can also be provided that several light sources lie next to one another, for example in the direction of a generator of the reflector, next to one another.
  • the distances between the light source emission points or light source emission surfaces, in particular their light emission focal points, are preferably identical.
  • the at least one light source comprises a light-emitting diode or a plurality of light-emitting diodes.
  • sinusoidal grooved optics are provided, the sinus function being normal to the lens surface, ie the smooth base surface of the exit lens.
  • the period preferably remains unchanged, while the groove depth (amplitude) preferably changes, in particular linearly, for example as above described by a certain initial value A 0 or A 0 * K (with this value the width of the light distribution can be adjusted) at the upper edge of the light exit surface changed to a value of zero or A 0 * (K - 1) at the lower edge of the lens.
  • the light distribution is broadened as desired, and it has surprisingly also been found that the light-dark boundary does not bend outwards, even if the focal line of the translucent body runs in a straight line.
  • top In the context of this description, the terms “top”, “bottom”, “horizontal”, “vertical” are to be understood as indicating the orientation when the unit is arranged in the normal position of use after it has been installed in a lighting device mounted in the vehicle.
  • Figure 1 shows a lighting unit 100 according to the invention for a motor vehicle headlight for generating a light beam with a cut-off line.
  • the lighting unit usually comprises one or more light sources, in the specific example three light sources 1, 1a, 1b, a reflector 2, an exit lens 3 with an outer surface 3a, a focal line area 4, which is arranged between the reflector 2 and the exit lens 3, and furthermore one collimator 10, 10a, 10b for each light source 1, 1a, 1b.
  • the light sources 1, 1a, 1b preferably each include a light-emitting diode or a plurality of light-emitting diodes.
  • the reflector 2 deflects the light rays S2 of the light bundles emerging from the collimators 10, 10a, 10b into a focal line FL lying in the focal line area 4, and the light rays S3 totally reflected by the reflector 2 are at least in vertical direction V is deflected in such a way that the light rays S4 emerging from the exit lens 3 form a light distribution with a light-dark boundary.
  • the light-dark boundary results from the image of a focal line area 4, in which the focal line FL lies, through the exit lens 3.
  • the reflector 2, exit lens 3 and focal line area 4 as well as the collimators 10, 10a, 10b are formed from a translucent, one-piece body 101, and on the reflector boundary surface of the reflector 2 and the boundary surface of the focal line area 4 as well as on the collimator boundary surfaces of the collimators 10 , 10a, 10b, the light rays S1, S2, S3 propagating in the transparent body 101 are totally reflected.
  • the translucent material from which the body 101 is formed preferably has an index of refraction greater than that of air.
  • the material contains, for example, PMMA (polymethyl methacrylate) or PC (polycarbonate) and is particularly preferably formed therefrom.
  • the collimators 10, 10a, 10b align the light beams S1 fed into the collimator 10, 10a, 10b by the light source 1, 1a, 1b assigned to it to form a light bundle of essentially parallel light beams S2, which light bundle S2 is essentially normal to an exit plane E of the collimator 10, 10a, 10b.
  • the collimators 10, 10a, 10b emit the light in parallel in one direction (e.g. in the vertical direction V in the light image) and in the direction normal to it (horizontal H. in the photo) fan out accordingly.
  • the two outer collimators 10, 10b preferably have an asymmetrical emission characteristic in order to avoid reflections on the side surfaces of the transparent body 101 and the inhomogeneities caused thereby.
  • the light is therefore already scattered horizontally in front of the focal plane of the exit lens.
  • a broad light distribution in particular a broad front-end light distribution, can be achieved in conjunction with the diffusing optics according to the invention described further below on the front side of the light-permeable body 101.
  • the reflector 2 is designed, for example, as a cylindrical surface which has a parabola as a guide line, the focal line BL of the reflector being formed by a straight line that is essentially parallel to the generatrix of the cylinder.
  • the focal line of the reflector FL lies in the focal line area 4 of the body 101 and preferably essentially coincides with the focal line of the exit lens 3.
  • the focal line area 4 is an edge in the body 101.
  • the HD line is formed by mapping the edge 4, which is a curved line, in particular with a slight curvature or particularly preferably a straight line.
  • the light which may emerge below the edge 4 via the surface 4a is shaded by the surface 4a lying below the edge 4 being shaded, for example, by a screen or a dark, e.g. black or brown coating on its outside, etc., in order to prevent incorrect / Avoid stray light
  • the outer surface 3a of the exit lens 3 of the body 101 is curved outward in the vertical direction, preferably in such a way that in a central area the exit surface is further forward in the light exit direction than its upper and lower edge area.
  • the exit lens preferably runs in a straight line and is, for example, through a cylindrical surface with a straight cross section along a straight line outside convex curve is formed, or by a free-form lens that is curved in the vertical direction outward and not curved in the horizontal direction.
  • the cylindrical surface of the outer surface 3a has generatrices which are essentially parallel to the generatrices of the reflector, or are rectilinear sections of the free-form lens, preferably parallel to the generatrices of the reflector 2.
  • Figure 2 corresponds to a vertical section through the lighting unit Figure 1 .
  • the light sources 1 lie lower than the focal line area 4, and the light emanating from one light source is directed upwards in order to be reflected downward by the reflector 2, as already described in detail, in the direction of the focal line area 4.
  • Figure 3 shows a basically similarly constructed lighting unit, with the difference that here the at least one light source 1 is higher than the focal line area 4, and the light emanating from the at least one light source 1 is directed downwards in order to pass through the reflector 2 upwards in the direction of the Focal line area 4 to be reflected.
  • FIG. 4 shows a lighting unit from which a lighting unit 101 ′ according to the invention is based, as already shown in FIG Figures 1 - 3 is indicated in principle "generated".
  • the lighting unit 101 'off Figure 4 has the structure already described above, so that no further discussion is necessary here.
  • Illumination unit 101 'shown has an exit lens 3' with a smooth exit surface 3a '.
  • Figure 4a shows a light distribution with a light-dark boundary, for example a low beam distribution or a part, for example the area in front of a low beam distribution. Such a light distribution has a certain width, as in Figure 4a indicated.
  • FIG Fig. 5 again those already in Fig. 1 Illumination unit 101 shown.
  • the outer surface 3a of the exit lens 3 consists of a smooth base surface BF (corresponding to the exit surface 3a ' Fig. 4 ), which is provided with a groove-shaped structure, the grooves 3b forming the groove-shaped structure running in the vertical direction, that is to say from top to bottom.
  • the outer surface 3a of the exit lens 3 is formed by a groove-shaped structure in a smooth base surface BF, the grooves 3b forming the groove-shaped structure running in a substantially vertical direction, and preferably two grooves 3b lying next to one another in the horizontal direction by one, in particular substantially vertically extending elevation, which preferably extends over the entire vertical extent of the grooves 3b, are separated.
  • the necessary width for the desired light image in particular not for a light distribution in front of a low beam distribution, can often not be achieved.
  • the structure according to the invention on the outer surface of the exit lens achieves a horizontal blurring of the exiting light rays, whereby the desired width of the light distribution can be achieved, as shown schematically in FIG Figure 5a is shown.
  • Figure 6 and Figure 8 show vertical sections through the body 101, to be precise in each case an enlarged section of the light-permeable body between its focal line FL and the light exit surface 3a.
  • Figure 6 shows a second vertical section, which contains a point P under consideration on the base area BF
  • Figure 8 shows a second vertical section SE2 in which four points PA, PB, PC and PD considered as examples lie.
  • first, non-vertical cutting planes SE1 (these cutting planes SE1 are discussed in more detail below), for example at point P ( Figure 6 ) or according to the sections AA, BB, CC, DD ( Figure 8 ), this results in first basic intersection curves BSK1, which run in a straight line, with the intersecting the Outer surface 3a with these first cutting planes SE1 resulting first outer surface intersection curves SK1 (which correspond to the course of the lens outer surface in these cutting planes SE1) have a sinusoidal course.
  • the smooth base surface is a conceptual construct in relation to which the then actually realized outer surface is described.
  • the first, non-vertical section planes SE1 are a large number of such non-vertical section planes, which are precisely defined below.
  • Figure 7 shows such an exemplary first cutting plane SE1, in which the point P lies, which is normal to the tangential plane TE at the point P ( Figure 6 ), for a general illustration of the relationships.
  • the outer surface of the lens is shown in relation to a first basic section curve BSK1.
  • the basic intersection curve BSK1 is a straight line with the parameter x along this straight line BSK1.
  • the lens outer contour is a first outer surface intersection curve SK1, which in this example is proportional to sin (k * x).
  • Figure 8 shows a section along a second, vertical section plane SE2 parallel to the optical axis Z, with the four points PA, PB, PC and PD considered by way of example.
  • First section planes SE1 are shown in these four points, the corresponding courses of the resulting second outer surface section curves SK2 for the four selected section planes SE1 (corresponding to sections AA, BB, CC and DD) are shown in FIG Figures 9a-9d shown.
  • double the amplitude that is to say the distance between the maximum and minimum deflection, is shown in the sections.
  • typical values for the period length T [mm] are in a range up to 2.50 mm, preferably up to 2.00 mm.
  • preferred values are between 0.25 mm to 2.50 mm, for example between 1.25 mm and 2.00 mm.
  • Preferred values for the maximum amplitude A 0 [ ⁇ m], regardless of the embodiment shown, are in a range from 50 ⁇ m to 350 ⁇ m, a typical value is 250 ⁇ m.
  • 0.1 ⁇ (T / A 0 ) ⁇ 0.250 has been found to be a favorable range of values for the size ratio A 0 to T.
  • Figure 8 further shows (as well as Figure 6 ) that when the smooth base surface BF is cut with the second, vertical cutting planes SE2, which run parallel to an optical axis Z of the exit lens 3, the second base cutting curves BSK2 are curved, in particular curved outwards, preferably the second basic intersection curves BSK2 are continuous.
  • the second outer surface intersection curves SK2 resulting from a cutting of the outer surface 3a with defined second cutting planes SE2 connect points of the outer surface 3a with a maximum distance from the base surface BF.
  • the normal distance between the second outer surface intersection curve SK2 and the second basic intersection curve BSK2 can be determined as a function A (s) of a parameter s, which defines the position on the second basis -Section curve BSK2 indicates.
  • the second cutting plane is a vertical cutting plane through the smooth base surface BF, which runs parallel to the optical axis Z (or through this optical axis Z) and in which the point P under consideration lies.
  • the first cutting planes SE1 enclose an angle of 90 ° with the second basic cutting curve BSK2.
  • a typical value for the parameter K is in the range from 1.2 to 1.45, preferably around 1.33.
  • sinusoidal grooved optics are provided, the sinus function being normal to the lens surface, ie the smooth base surface of the exit lens.
  • the period preferably remains unchanged, while preferably the groove depth (amplitude), in particular linearly, from a certain starting value A 0 (with this value the width of the light distribution can be adjusted) at the upper edge of the light exit surface to a value of zero at the lower edge of the Lens changed.
  • the light distribution is broadened as desired, and it has surprisingly also been found that the light-dark boundary does not bend outwards, even if the focal line of the translucent body runs in a straight line.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

  • Die Erfindung betrifft eine Beleuchtungseinheit für einen Kraftfahrzeugscheinwerfer zum Erzeugen eines Lichtbündels mit Hell-Dunkel-Grenze, mit:
    • zumindest einer Lichtquelle,
    • einem Reflektor,
    • einer Austrittslinse mit einer Außenfläche,
    • einen Brennlinienbereich, welcher zwischen dem Reflektor und der Austrittslinse angeordnet ist,
    • sowie weiters mit je einem Kollimator für jede Lichtquelle, wobei der Kollimator die von der ihm zugeordneten Lichtquelle in den Kollimator eingespeisten Lichtstrahlen zu einem Lichtbündel von Lichtstrahlen ausrichtet,
    • und wobei der Reflektor die Lichtstrahlen des aus dem Kollimator austretenden Lichtbündels in eine in dem Brennlinienbereich liegende Brennlinie ablenkt,
    • und wobei die von dem Reflektor reflektierten Lichtstrahlen von der Austrittslinse zumindest in vertikaler Richtung derart abgelenkt werden, dass die aus der Austrittslinse austretenden Lichtstrahlen eine Lichtverteilung mit einer Hell-Dunkel-Grenze bilden, wobei sich die Hell-Dunkel-Grenze als Abbildung der Brennlinie bzw. des Brennlinienbereiches durch die Austrittslinse ergibt,
      und wobei
    • Reflektor, Austrittslinse und Brennlinienbereich, sowie vorzugsweise der zumindest eine Kollimator, aus einem lichtdurchlässigen Körper gebildet sind, und wobei an der Reflektor-Begrenzungsfläche des Reflektors und/oder der Begrenzungsfläche des Brennlinienbereiches, und vorzugsweise an der Kollimator-Begrenzungsfläche des zumindest einen Kollimators, die sich in dem lichtdurchlässigen Körper fortpflanzenden Lichtstrahlen totalreflektiert werden.
  • Weiters betrifft die Erfindung einen Kraftfahrzeugscheinwerfer, welcher zumindest eine solche Beleuchtungseinheit aufweist.
  • Die DE 60 2006 000 180 T2 beschreibt eine Beleuchtungseinheit für einen Kraftfahrzeugscheinwerfer zum Erzeugen eines Lichtbündels mit Hell-Dunkel-Grenze, der Art mit einer Lichtquelle, einem Reflektor, einem Diopter oder einer Austrittslinse und einer reflektierenden Ablenkfläche.
  • Aus der EP 2 818 792 A2 ist eine Beleuchtungsvorrichtung des Projektionstyps für ein Fahrzeug bekannt, mit einem Lichtleitkörper, durch welchen Lichtverluste minimiert werden.
  • Das Dokument WO 2013/014046 A1 offenbart eine Vorrichtung zur Beleuchtung einer Fläche, umfassend eine Lichtquelle, ein erstes optisches Element, welches das Licht der Lichtquelle sammelt und einen kollimierten Lichtstrahl erzeugt, und ein zweites optisches Element, welches den kollimierten Lichtstrahl ablenkt.
  • Die EP 2 620 695 A2 zeigt einen Kraftfahrzeugscheinwerfer mit einem Lichtemitter und einer Projektionslinse.
  • Eine ähnliche Beleuchtungseinheit ist beispielsweise aus der DE 60 2006 000 180 T2 bekannt geworden.
  • Eine Beleuchtungseinheit im Zusammenhang mit der vorliegenden Erfindung kann in einem Kraftfahrzeug-Scheinwerfer z.B. zur Realisierung eines Teiles einer Abblendlichtverteilung, insbesondere der Vorfeld-Lichtverteilung einer Abblendlichtverteilung verwendet werden.
  • Aktuelle Designtrends verlangen oftmals Scheinwerfer, welche in vertikaler Richtung schmale und in horizontaler Richtung ausgedehnte, schlitzförmige Lichtaustrittsöffnungen aufweisen. Eine eingangs erwähnte Beleuchtungseinheit kann im Bereich der Lichtaustrittsfläche mit einer geringen Bauhöhe, die bei gewissen Ausführungsformen nur bis zu 10mm oder bis zu 15mm hoch sein kann, realisiert werden, sodass sich eine schlitzförmige, sich in horizontaler Richtung erstreckende Lichtaustrittsfläche ergibt.
  • Bei den eingangs erwähnten Beleuchtungseinheiten, wie sie auch in der oben genannten DE 60 2006 000 180 T2 beschrieben ist, ist vorgesehen, dass die Lichtaustrittsfläche, d.h. die Außenfläche der Austrittslinse, glatt ausgebildet ist. Dabei hat sich herausgestellt, dass oftmals das damit erzielbare Lichtbild bzw. die erzielbare Lichtverteilung in horizontaler Richtung nicht ausreichend breit ist.
  • Es ist eine Aufgabe der Erfindung, eine verbesserte Beleuchtungseinheit anzugeben.
  • Diese Aufgabe wird mit einer eingangs erwähnten Beleuchtungseinheit dadurch gelöst, dass erfindungsgemäß die Außenfläche der Austrittslinse durch eine rillenförmige Struktur in einer glatten Basisfläche gebildet ist, wobei die die rillenförmige Struktur bildenden Rillen in im Wesentlichen vertikaler Richtung verlaufen, und wobei vorzugsweise jeweils zwei in horizontaler Richtung nebeneinander liegende Rillen durch eine, insbesondere im Wesentlichen vertikal verlaufende, Erhebung, die sich vorzugsweise über die gesamte Vertikalerstreckung der Rillen erstreckt, getrennt sind. Die glatte Basisfläche ist vorzugsweise C0-steig und weist insbesondere keine horizontal verlaufenden Kanten auf.
  • Weiters ist vorgesehen, dass die sich bei einem Schneiden der glatten Basisfläche mit zweiten, vertikalen Schnittebenen, welche parallel zu einer optischen Achse der Austrittslinse verlaufen, ergebenden zweiten Basis-Schnittkurven gekrümmt, insbesondere nach Außen gekrümmt, ausgebildet sind, wobei vorzugsweise die zweiten Basis-Schnittkurven stetig sind.
  • In diesem Zusammenhang ist vorgesehen, dass die sich bei einem Schneiden der Außenfläche mit ersten Schnittebenen ergebenden ersten Außenflächen-Schnittkurven Punkte der Außenfläche mit maximalem Abstand zu der Basisfläche miteinander verbinden.
  • Bei einem Fortschreiten entlang der zweiten Basis-Schnittkurve ist in den definierten Schnittebenen der Normalabstand zu der ersten Außenflächen-Schnittkurve eine Funktion A(s) eines Parameters s, welcher die Position auf der zweiten Basis-Schnittkurve angibt.
  • Es ist vorgesehen, dass sich bei einem Fortschreiten entlang der zweiten Basis-Schnittkurve der Normalabstand A(s) kontinuierlich vergrößert, wobei vorzugsweise der Normalabstand an einem unteren Rand der Basisfläche geringer ist als an einem oberen Rand der Basisfläche, wobei sich der Normalabstand A(s) beispielsweise nach dem Zusammenhang A(s) = A0 * (K - s), mit s[0, 1], wobei s = 0 die Position am oberen Rand und s = 1 die Position am unteren Rand bezeichnet, und K = 1 oder K > 1, ergibt.
  • Für K = 1 ist somit A0 der Normalabstand an einem oberen oder unteren, vorzugsweise dem oberen Rand (s = 0) der Basisfläche (BF), am unteren Rand (s = 1) gilt dementsprechend A(1) = 0.
  • Für einen Wert K > 1 gilt, dass am oberen Rand (s = 0) der Normalabstand A(0) = K*A0 ist, und am unteren Rand ist der Normalabstand A(1) = A0 * (K - 1) > 0.
  • Im Fall mit K > 1 hat sich teilweise eine bessere optische Effizienz gezeigt als im Fall K = 1.
  • Wie eingangs beschrieben kann mit einer glatten Außenfläche der Austrittslinse oftmals nicht die notwendige Breite für das gewünschte Lichtbild, insbesondere nicht für eine Vorfeld-Lichtverteilung einer Abblendlichtverteilung, erzielt werden. Durch die erfindungsgemäße Struktur auf der Außenfläche der Austrittslinse wird ein horizontales Verwischen der austretenden Lichtstrahlen erreicht, wodurch sich die gewünschte Breite der Lichtverteilung erzielen lässt.
  • Vorzugsweise ist genau eine Lichtquelle mit genau einem Kollimator vorgesehen.
  • Vorzugsweise kann vorgesehen sein, dass die sich bei einem Schneiden der glatten Basisfläche mit ersten, nicht-vertikalen Schnittebenen ergebenden ersten Basis-Schnittkurven geradlinig verlaufen, und wobei die sich bei einem Schneiden der Außenfläche mit diesen ersten Schnittebenen ergebenden ersten Außenflächen-Schnittkurven einen sinusförmigen Verlauf aufweisen.
  • Insbesondere kann vorgesehen sein, dass die ersten Außenflächen-Schnittkurven in den ersten Schnittebenen, in Bezug auf die Basis-Schnittkurve der jeweiligen ersten Schnittebene, proportional zu sinN(k*x) verlaufen, mit N = 1, 2, 3, ...., wobei x die Koordinate entlang der jeweiligen Basis-Schnittkurve und k eine Konstante bezeichnet.
  • Dabei kann vorgesehen sein, dass die Nulldurchgänge der sinusförmigen ersten Außenflächen-Schnittkurven auf den ersten Basis-Schnittkurven liegen.
  • Es gilt somit, dass der Verlauf proportional zu sinN(k*x) + c mit c = 0 ist.
  • Insbesondere kann vorgesehen sein, dass der Wert für die Konstante k für alle ersten Außenflächen-Schnittkurven identisch ist.
  • Die zweiten Schnittebenen sind vertikale Ebenen parallel zu der optischen Achse des lichtdurchlässigen Körpers, d.h. der Austrittslinse des optischen Körpers.
  • Unter der optischen Achse ist die optische Achse des optischen Körpers, insbesondere die Mittenlinie des Optikkörpers definiert in Bezug auf den Apex der Austrittslinse.
  • In einem betrachteten Punkt auf der Basisfläche ergeben sich die ersten Schnittebene wie folgt: die erste Schnittebene in dem betrachteten Punkt ist eine Ebene, die normal steht auf die Tangentialebene an die Basisfläche, wobei diese Ebene, d.h. die erste Schnittebene, weiters noch normal auf die zweite Schnittebene, in welcher der Punkt liegt, steht. Bei der zweiten Schnittebene handelt es sich, wie oben schon ausgeführt, um eine vertikale Schnittebene durch die glatte Basisfläche, welche parallel zu der optischen Achse (oder durch diese optische Achse) verläuft, und in welcher der betrachtete Punkt liegt.
  • Bei einer Basisfläche, welche lediglich in vertikaler Richtung gekrümmt ist, in horizontaler Richtung normal auf die optische Achse aber geradlinig verläuft, ändert sich zwischen benachbarten ersten Schnittebenen zwar der Winkel in Bezug auf die optische Achse, in horizontaler Richtung normal zu der optischen Achse verlaufen hingegen alle Schnittebenen geradlinig und "parallel" zueinander.
  • Somit gibt es bei dieser Ausgestaltung vertikale zweite Schnittebenen, in welchen jeweils die übereinander liegenden "Nulldurchgänge", also jene Bereiche, wo die Außenfläche und die Basisfläche zusammenfallen, miteinander durch entsprechende zweite Außenflächen-Schnittkurven, die in diesem Fall mit den zweiten Basis-Schnittkurven zusammenfallen, verbunden sind.
  • Genauso gibt es zweite Schnittebenen, in welchen die zweiten Außenflächen-Schnittkurven die negativen Normalabstände/Amplituden miteinander verbinden. Für eine eindeutige Beschreibung ist es aber ausreichend, die zweiten Außenflächen-Schnittkurven für die "positiven" Normalabstände/Amplituden anzugeben, die anderen Zusammenhänge ergeben sich durch den Sinus-Verlauf in den ersten Schnittebenen
  • Es kann sein, dass die zumindest eine Lichtquelle tiefer liegt als der Brennlinienbereich, und das von der zumindest einen Lichtquelle ausgehende Licht nach oben geleitet wird, um durch den Reflektor nach unten in Richtung des Brennlinienbereiches reflektiert zu werden.
  • Es kann auch vorgesehen sein, dass die zumindest eine Lichtquelle höher liegt als der Brennlinienbereich, und das von der zumindest einen Lichtquelle ausgehende Licht nach unten geleitet wird, um durch den Reflektor nach oben in Richtung des Brennlinienbereiches reflektiert zu werden.
  • Vorzugsweise ist vorgesehen, dass der Reflektor eine Fläche, beispielsweise eine Zylinderfläche, ist, die eine Parabel als Leitlinie aufweist, wobei die Brennlinie des Reflektors beispielsweise durch eine Gerade gebildet ist, die vorzugsweise zu den Erzeugenden des Zylinders im Wesentlichen parallel ist. Vorzugsweise ist die Parabelachse ist orthogonal zu den Erzeugenden und parallel bzw. antiparallel zur Hauptabstrahlrichtung der zumindest einen Lichtquelle.
  • Es kann auch vorgesehen sein, dass der Reflektor eine parabelförmige Fläche mit Hauptachse in vertikaler Richtung ist, die beispielsweise zylinderförmig beschnitten wird. Der Beschnitt muss aber nicht zylinderförmig sein.
  • Beispielsweise kann vorgesehen sein, dass die Außenfläche der Austrittslinse in vertikaler Richtung nach Außen gekrümmt ist, und in horizontaler Richtung vorzugsweise geradlinig verläuft, und beispielsweise durch eine Zylinderfläche mit geradem Querschnitt entlang einer nach außen konvexen Kurve gebildet ist. Ein Beispiel für eine solche nach Außen konvexe Kurve ist eine asphärische Linsenkontur genannt.
  • Beispielsweise handelt es sich um eine Freiformlinse, die in vertikaler Richtung nach Außen gekrümmt und in horizontaler Richtung nicht gekrümmt ist.
  • Insbesondere kann weiters vorgesehen sein, dass die Zylinderfläche der Außenfläche Erzeugende aufweist, die zu den Erzeugenden des Reflektors im Wesentlichen parallel sind.
  • Es kann vorgesehen sein, dass eine Lichtquelle vorgesehen ist, es kann aber auch vorgesehen sein, dass mehrere Lichtquellen nebeneinander, beispielsweise in der Richtung einer Erzeugenden des Reflektors, nebeneinander liegen. Bevorzugt sind die Abstände zwischen den Lichtquellen-Emissionspunkten bzw. Lichtquellen-Emissionsflächen, insbesondere deren Licht-Emissions-Schwerpunkten, ident.
  • Die zumindest eine Lichtquelle umfasst eine Leuchtdiode oder eine Mehrzahl von Leuchtdioden.
  • Bei einer Ausführungsform der Erfindung ist zusammenfassend eine sinusförmige Rillenoptik vorgesehen, wobei die Sinus-Funktion normal zu der Linsenoberfläche, d.h. der glatten Basisfläche der Austrittslinse steht. Die Periode bleibt vorzugsweise unverändert, während vorzugsweise sich die Rillentiefe (Amplitude), insbesondere linear, z.B. wie oben beschrieben von einem bestimmten Ausgangswert A0 oder A0*K (mit diesem Wert kann die Breite der Lichtverteilung eingestellt werden) an der Oberkante der Lichtaustrittsfläche auf einen Wert von Null oder A0*(K - 1) an der Unterkante der Linse verändert.
  • Damit kann erreicht werden, dass sich die Lichtverteilung wie gewünscht verbreitert, und überraschender Weise hat sich dabei auch ergeben, dass sich die Hell-Dunkel-Grenze nach Außen, auch bei einer geradlinig verlaufenden Brennlinie des lichtdurchlässigen Körpers, nicht aufbiegt.
  • Im Folgenden ist die Erfindung an Hand der Zeichnung näher erörtert. In dieser zeigt
    • Fig. 1 die wesentlichen Bestandteile einer erfindungsgemäßen Beleuchtungseinheit für einen Kraftfahrzeugscheinwerfer,
    • Fig. 2 einen vertikalen Schnitt parallel zu einer optischen Achse der Beleuchtungseinheit aus Figur 1,
    • Fig. 3 einen vertikalen Schnitt parallel zu einer optischen Achse einer weiteren erfindungsgemäßen Beleuchtungseinheit,
    • Fig. 4 eine perspektivische Ansicht einer Beleuchtungseinheit mit einem lichtdurchlässigen Körper, dessen Austrittslinse keine Rillenstruktur aufweist,
    • Fig. 4a eine mit einer Beleuchtungseinheit aus Figur 4 erzeugte Lichtverteilung,
    • Fig. 5 nochmals die Beleuchtungseinheit aus Figur 1 und
    • Fig. 5a die mit dieser erzeugte Lichtverteilung,
    • Fig. 6 zeigt in einem Vertikalschnitt einen vergrößerten Ausschnitt des lichtdurchlässigen Körpers zwischen seiner Brennlinie und der Lichtaustrittsfläche,
    • Fig. 7 den Verlauf der Lichtaustrittsfläche der Austrittslinse des lichtdurchlässigen Körpers in einem Schnitt entlang einer beispielhaften ersten Schnittebene SE1 aus Figur 6,
    • Fig. 8 nochmals den Vertikalschnitt aus Figur 6 mit exemplarischen Schnittflächen A-A, B-B, C-C und D-D,
    • Fig. 9a - Fig. 9d den Verlauf der Lichtaustrittsfläche der Austrittslinse des lichtdurchlässigen Körpers in den verschiedenen Schnitten A-A, B-B, C-C und D-D gemäß Figur 8 für K = 1, und
    • Fig. 10a - Fig. 10d den Verlauf der Lichtaustrittsfläche der Austrittslinse des lichtdurchlässigen Körpers in den verschiedenen Schnitten A-A, B-B, C-C und D-D gemäß Figur 8 für K > 1.
  • Im Rahmen dieser Beschreibung sind die Begriffe "oben", "unten", "horizontal", "vertikal" als Angaben der Ausrichtung zu verstehen, wenn die Einheit in normaler Benutzungsstellung angeordnet ist, nachdem sie in einer im Fahrzeug montierten Beleuchtungsvorrichtung eingebaut wurde.
  • Figur 1 zeigt eine erfindungsgemäße Beleuchtungseinheit 100 für einen Kraftfahrzeugscheinwerfer zum Erzeugen eines Lichtbündels mit Hell-Dunkel-Grenze. Die Beleuchtungseinheit umfasst üblicherweise eine oder mehrere Lichtquellen, in dem konkreten Beispiel drei Lichtquellen 1, 1a, 1b, einen Reflektor 2, eine Austrittslinse 3 mit einer Außenfläche 3a, einen Brennlinienbereich 4, welcher zwischen dem Reflektor 2 und der Austrittslinse 3 angeordnet ist, sowie weiters je einen Kollimator 10, 10a, 10b für jede Lichtquelle 1, 1a, 1b.
  • Die Lichtquellen 1, 1a, 1b umfassen vorzugsweise jeweils eine Leuchtdiode oder eine Mehrzahl von Leuchtdioden.
  • Der Reflektor 2 lenkt die Lichtstrahlen S2 der aus den Kollimatoren 10, 10a, 10b austretenden Lichtbündel in eine in dem Brennlinienbereich 4 liegende Brennlinie FL ab, und die von dem Reflektor 2 total-reflektierten Lichtstrahlen S3 werden von der Austrittslinse 3 des Körpers 101 zumindest in vertikaler Richtung V derart abgelenkt, dass die aus der Austrittslinse 3 austretenden Lichtstrahlen S4 eine Lichtverteilung mit einer Hell-Dunkel-Grenze bilden. Die Hell-Dunkel-Grenze ergibt sich dabei als Abbildung eines Brennlinienbereiches 4, in welchem die Brennlinie FL liegt, durch die Austrittslinse 3.
  • Reflektor 2, Austrittslinse 3 und Brennlinienbereich 4 sowie die Kollimatoren 10, 10a, 10b sind aus einem lichtdurchlässigen, einstückigen Körper 101 gebildet, und an der Reflektor-Begrenzungsfläche des Reflektors 2 und der Begrenzungsfläche des Brennlinienbereiches 4 sowie an den Kollimator-Begrenzungsflächen der Kollimatoren 10, 10a, 10b, die sich in dem lichtdurchlässigen Körper 101 fortpflanzenden Lichtstrahlen S1, S2, S3 totalreflektiert werden.
  • Der entsprechende Verlauf der Lichtstrahlen ist in den Figuren 2 und 3 dargestellt.
  • Das lichtdurchlässige Material, aus dem der Körper 101 gebildet ist, weist vorzugsweise einen Brechungsindex größer als jener von Luft auf. Das Material enthält z.B. PMMA (Polymethylmethacrylat) oder PC (Polycarbonat) und ist insbesondere vorzugsweise daraus gebildet.
  • Es kann vorgesehen sein, dass die Kollimatoren 10, 10a, 10b die von der ihm zugeordneten Lichtquelle 1, 1a, 1b in den Kollimator 10, 10a, 10b eingespeisten Lichtstrahlen S1 zu einem Lichtbündel von im Wesentlichen parallelen Lichtstrahlen S2 ausrichten, welches Lichtbündel S2 sich im Wesentlichen normal zu einer Austrittsebene E des Kollimators 10, 10a, 10b ausbreitet.
  • Generell, und insbesondere auch bei der konkreten Ausführungsform kann es hingegen von Vorteil sein, wenn die Kollimatoren 10, 10a, 10b das Licht in einer Richtung parallel abstrahlen (z.B. in der Richtung vertikal V im Lichtbild) und in der Richtung normal darauf (horizontal H im Lichtbild) entsprechend auffächern. Vorzugsweise haben äußere, insbesondere die beiden äußeren Kollimatoren 10, 10b eine asymmetrische Abstrahlcharakteristik, um Reflexionen an den Seitenflächen des lichtdurchlässigen Körpers 101 und dadurch hervorgerufene Inhomogenitäten zu vermeiden.
  • Im vorliegenden Fall ist eine Ausführungsform mit drei Lichtquellen und drei Kollimatoren dargestellt. Es ist allerdings auch die Verwendung von lediglich einer einzigen Lichtquelle, insbesondere genauer einer Leuchtdiode, und einem einzigen zugeordneten Kollimator ausreichend, um die gewünschte Lichtverteilung erzielen zu können.
  • Es wird also bereits vor der Fokalebene der Austrittslinse das Licht horizontal gestreut. Durch diese Aufweitung des Lichts, kann im Zusammenspiel mit der weiter unten beschrieben erfindungsgemäßen Streuoptik an der Frontseite des lichtdurchlässigen Körpers 101 kann eine breite Lichtverteilung, insbesondere eine breite Vorfeld-Lichtverteilung, erreicht werden.
  • Es wäre auch denkbar, durch Anpassung der horizontalen Abstrahlcharakteristik eine asymmetrische Vorfeld-Lichtverteilung zu erzeugen, indem beispielsweise der zentrale Kollimator nicht symmetrisch ausgeführt ist. Durch eine horizontale Stufe im Brennlinienbereich könnte auch ein asymmetrischer Verlauf der Hell-Dunkel-Grenze umgesetzt werden.
  • Der Reflektor 2 ist beispielsweise als eine Zylinderfläche ausgebildet, die eine Parabel als Leitlinie aufweist, wobei die Brennlinie BL des Reflektors durch eine Gerade gebildet ist, die zu den Erzeugenden des Zylinders im Wesentlichen parallel ist.
  • Die Brennlinie des Reflektors FL liegt im Brennlinienbereich 4 des Körpers 101 und fällt vorzugsweise im Wesentlichen mit der Brennlinie der Austrittslinse 3 zusammen.
  • Der Brennlinienbereich 4 ist eine Kante in dem Körper 101. Durch Abbildung der Kante 4, bei der es sich um eine gekrümmte Linie, insbesondere mit geringer Krümmung oder besonders vorzugsweise um eine gerade Linie handelt, wird die HD-Linie gebildet.
  • Das möglicherweise unterhalb der Kante 4 über die Fläche 4a austretende Licht wird abgeschattet, indem die unterhalb der Kante 4 liegende Fläche 4a z.B. durch eine Blende oder eine dunkle, z.B. schwarze oder braune Beschichtung an ihrer Außenseite, etc., abgeschattet wird, um Fehl/Streulicht zu vermeiden
  • Die Außenfläche 3a der Austrittslinse 3 des Körpers 101 ist in vertikaler Richtung nach Außen gekrümmt, und zwar vorzugsweise derart, dass in einem mittleren Bereich die Austrittsfläche in Lichtaustrittsrichtung weiter vorne ist als ihr oberer und unterer Randbereich. In horizontaler Richtung verläuft die Austrittslinse vorzugsweise geradlinig, und ist beispielsweise durch eine Zylinderfläche mit geradem Querschnitt entlang einer nach außen konvexen Kurve gebildet ist, oder durch eine Freiformlinse, die in vertikaler Richtung nach Außen gekrümmt und in horizontaler Richtung nicht gekrümmt ist.
  • Insbesondere kann weiters vorgesehen sein, dass die Zylinderfläche der Außenfläche 3a Erzeugende aufweist, die zu den Erzeugenden des Reflektors im Wesentlichen parallel sind, bzw. sind geradlinig verlaufende Abschnitte der Freiformlinse vorzugsweise parallel zu den Erzeugenden des Reflektors 2.
  • Figur 2 entspricht einem Vertikalschnitt durch die Beleuchtungseinheit aus Figur 1. Hier liegen die Lichtquellen 1 tiefer liegt als der Brennlinienbereich 4, und das von den einen Lichtquellen ausgehende Licht wird nach oben geleitet, um durch den Reflektor 2 wie bereits eingehend beschrieben nach unten in Richtung des Brennlinienbereiches 4 reflektiert zu werden.
  • Figur 3 zeigt eine grundsätzlich ähnlich aufgebaute Beleuchtungseinheit, mit dem Unterschied, dass hier die zumindest eine Lichtquelle 1 höher als der Brennlinienbereich 4 liegt, und das von der zumindest einen Lichtquelle 1 ausgehende Licht wird nach unten geleitet, um durch den Reflektor 2 nach oben in Richtung des Brennlinienbereiches 4 reflektiert zu werden.
  • Figur 4 zeigt eine Beleuchtungseinheit, von welcher ausgehend eine erfindungsgemäße Beleuchtungseinheit 101' wie bereits in den Figuren 1 - 3 prinzipiell angedeutet "erzeugt" wird. Die Beleuchtungseinheit 101' aus Figur 4 hat den grundsätzlich oben schon beschriebenen Aufbau, sodass sich eine weitere Erörterung hier erübrigt. Die in Figur 4 gezeigte Beleuchtungseinheit 101' weist eine Austrittslinse 3' mit einer glatten Austrittsfläche 3a' auf.
  • Fig. 4a zeigt eine Lichtverteilung mit einer Hell-Dunkel-Grenze, z.B. eine Abblendlichtverteilung oder einen Teil, z.B. das Vorfeld einer Abblendlichtverteilung. Eine solche Lichtverteilung hat eine gewisse Breite, wie in Fig. 4a angedeutet.
  • Ausgehend von einer solchen Beleuchtungseinheit 101' ist nun in Fig. 5 nochmals die bereits in Fig. 1 gezeigte Beleuchtungseinheit 101 dargestellt.
  • Der Unterschied zu der Ausführung nach Fig. 4 liegt darin, dass bei der Beleuchtungseinheit 101 aus Fig. 5 die Außenfläche 3a der Austrittslinse 3 aus einer glatten Basisfläche BF (entsprechend der Austrittsfläche 3a' aus Fig. 4) besteht, welche mit einer rillenförmigen Struktur versehen ist, wobei die die rillenförmige Struktur bildenden Rillen 3b in vertikaler Richtung, also von oben nach unten, verlaufen. Konkret ist die Außenfläche 3a der Austrittslinse 3 durch eine rillenförmige Struktur in einer glatten Basisfläche BF gebildet, wobei die die rillenförmige Struktur bildenden Rillen 3b in im Wesentlichen vertikaler Richtung verlaufen, und wobei vorzugsweise jeweils zwei in horizontaler Richtung nebeneinander liegende Rillen 3b durch eine, insbesondere im Wesentlichen vertikal verlaufende, Erhebung, die sich vorzugsweise über die gesamte Vertikalerstreckung der Rillen 3b erstreckt, getrennt sind.
  • Wie eingangs beschrieben kann mit einer glatten Außenfläche BF, 3a' der Austrittslinse oftmals nicht die notwendige Breite für das gewünschte Lichtbild, insbesondere nicht für eine Vorfeld-Lichtverteilung einer Abblendlichtverteilung, erzielt werden. Durch die erfindungsgemäße Struktur auf der Außenfläche der Austrittslinse wird ein horizontales Verwischen der austretenden Lichtstrahlen erreicht, wodurch sich die gewünschte Breite der Lichtverteilung erzielen lässt, wie dies schematisch in Fig. 5a gezeigt ist.
  • Die Figuren 6 - 8, 9a - 9d, 10a - 10d zeigen im Folgenden noch eine bevorzugte Ausgestaltung dieser erfindungsgemäßen Rillenstruktur.
  • Figur 6 und Figur 8 zeigen Vertikalschnitte durch den Körper 101, und zwar jeweils einen vergrößerten Ausschnitt des lichtdurchlässigen Körpers zwischen seiner Brennlinie FL und der Lichtaustrittsfläche 3a.
  • Figur 6 zeigt dabei einen zweiten vertikalen Schnitt, welcher einen betrachteten Punkt P auf der Basisfläche BF enthält, die Figur 8 zeigt einen zweiten vertikalen Schnitt SE2, in welchem vier beispielhaft betrachtete Punkte PA, PB, PC und PD liegen.
  • Schneidet man die glatte Basisfläche BF mit ersten, nicht-vertikalen Schnittebenen SE1 (diese Schnittebenen SE1 sind weiter unten noch genauer erörtert), beispielsweise im Punkt P (Figur 6) oder entsprechend den Schnitten A-A, B-B, C-C, D-D (Figur 8), so ergeben sich erste Basis-Schnittkurven BSK1, die geradlinig verlaufen, wobei die sich bei einem Schneiden der Außenfläche 3a mit diesen ersten Schnittebenen SE1 ergebenden ersten Außenflächen-Schnittkurven SK1 (die dem Verlauf der Linsen-Außenfläche in diesen Schnittebenen SE1 entsprechen) einen sinusförmigen Verlauf aufweisen.
  • Bei der glatten Basisfläche handelt es sich um ein gedankliches Konstrukt, in Bezug auf welche die dann tatsächlich realisierte Außenfläche beschrieben wird. Bei den ersten, nicht vertikalen Schnittebenen SE1 handelt es sich um eine Vielzahl an solchen nicht-vertikalen Schnittebenen, die im Folgenden noch genau definiert werden.
  • In dem gezeigten, bevorzugten Beispiel verlaufen die ersten Außenflächen-Schnittkurven SK1 in den ersten Schnittebenen SE1, in Bezug auf die Basis-Schnittkurve BSK1 der jeweiligen ersten Schnittebene SE1, proportional zu sinN(k*x), mit N = 1, 2, 3, .... (im gezeigten Beispiel N = 1), wobei x die Koordinate entlang der jeweiligen Basis-Schnittkurve BSK1 und k eine Konstante bezeichnet.
  • Dabei kann vorgesehen sein, dass die Nulldurchgänge der sinusförmigen ersten Außenflächen-Schnittkurven SK1 auf den ersten Basis-Schnittkurven BSK1 liegen. Es gilt somit, dass der Verlauf proportional zu sinN(k*x) + c mit c = 0 ist.
  • Figur 7 zeigt eine solche beispielhafte erste Schnittebene SE1, in welcher der Punkt P liegt, welche normal auf die Tangentialebene TE in dem Punkt P steht (Figur 6), zur allgemeinen Veranschaulichung der Zusammenhänge. In diesem Schnitt ist die Linsen-Außenfläche in Bezug auf eine erste Basis-Schnittkurve BSK1 dargestellt. Die Basis-Schnittkurve BSK1 ist eine Gerade mit dem Parameter x entlang dieser Geraden BSK1. Die Linsen-Außenkontur ist in diesem Schnitt eine erste Außenflächen-Schnittkurve SK1, welche in diesem Beispiel proportional zu sin(k*x) ist. Abhängig von einer Position s (zum Parameter s siehe die weiter untenstehenden Erörterungen), welche dem Punkt P entspricht, d.h. s = sP in dem Schnitt gemäß Figur 6 ist die maximale Amplitude bestimmt durch A(sP), wie in Figur 7 eingezeichnet. Die Bestimmung der Amplitude wird weiter unten ebenfalls noch näher erörtert.
  • Figur 8 zeigt einen Schnitt entlang einer zweiten, vertikalen Schnittebenen SE2 parallel zur optischen Achse Z, mit den vier beispielhaft betrachteten Punkten PA, PB, PC und PD.
  • In diesen vier Punkten sind erste Schnittebenen SE1 dargestellt, die entsprechenden Verläufe der sich ergebenden zweiten Außenflächen-Schnittkurven SK2 für die vier ausgewählten Schnittebenen SE1 (entsprechend den Schnitten A-A, B-B, C-C und D-D) sind in den Figuren 9a - 9d gezeigt. Der besseren Übersichtlichkeit halber ist in den Schnitten jeweils die doppelte Amplitude, also der Abstand zwischen maximaler und minimaler Auslenkung dargestellt.
  • Erkennbar ist wiederum, in Entsprechung zur Figur 6, der sinus-förmige Verlauf der zweiten Außenflächen-Schnittkurve SK2, für k gilt dabei k = 2*π/T, mit der Periodenlänge T. Vorzugsweise ist vorgesehen, dass der Wert für die Konstante k für alle ersten Außenflächen-Schnittkurven SE1 identisch ist.
  • Generell, unabhängig von der gezeigten Ausführungsform, liegen typische Werte für die Periodenlänge T [mm] in einem Bereich bis 2,50 mm, bevorzugt bis 2,00 mm. Insbesondere liegen bevorzugte Werte zwischen 0,25 mm bis 2,50 mm, beispielsweise zwischen 1,25 mm bis 2,00 mm.
  • Bevorzugte Werte für die maximale Amplitude A0 [µm], unabhängig von der gezeigten Ausführungsform, liegen in einem Bereich von 50 µm bis 350 µm, ein typischer Wert liegt bei 250 µm.
  • Als günstiger Wertebereich für das Größenverhältnis A0 zu T hat sich beispielsweise 0,1 < (T/A0) < 0,250 ergeben.
  • Obige Angaben gelten für den Fall K = 1 (zum Parameter K siehe die Ausführungen weiter oben in der Beschreibungseinleitung), für den Fall K > 1 gelten die analogen Überlegungen, wobei in diesem Fall die in den beiden vorstehenden Absätzen A0 durch A0*K zu sersetzen ist.
  • Figur 8 zeigt weiters (ebenso wie Figur 6), dass die sich bei einem Schneiden der glatten Basisfläche BF mit den zweiten, vertikalen Schnittebenen SE2, welche parallel zu einer optischen Achse Z der Austrittslinse 3 verlaufen, ergebenden zweiten Basis-Schnittkurven BSK2 gekrümmt, insbesondere nach Außen gekrümmt, ausgebildet sind, wobei vorzugsweise die zweiten Basis-Schnittkurven BSK2 stetig sind.
  • In diesem Zusammenhang ist dabei vorgesehen, dass die sich bei einem Schneiden der Außenfläche 3a mit definierten zweiten Schnittebenen SE2 ergebenden zweiten Außenflächen-Schnittkurven SK2 Punkte der Außenfläche 3a mit maximalem Abstand zu der Basisfläche BF miteinander verbinden. Die zweiten Ebenen SE sind somit vorzugsweise vertikale Schnittebenen parallel zu der optischen Achse Z, für welche gilt, dass der Betrag von sinN(k*x) = 1 ist. Diese zweiten Ebenen sind für die Definition der Linsen-Außenfläche ausreichend, die Bereiche zwischen diesen vertikalen Ebenen werden durch die oben beschriebene Sinus-Funktion definiert.
  • Bei einem Fortschreiten entlang der zweiten Basis-Schnittkurven BSK2 in den definierten Schnittebenen SE2 lässt sich der Normalabstand der zweiten Außenflächen-Schnittkurve SK2 zu der zweiten Basis-Schnittkurve BSK2 als eine Funktion A(s) eines Parameters s, welcher die Position auf der zweiten Basis-Schnittkurve BSK2 angibt, darstellen.
  • Vorerst noch einmal auf die ersten Schnittebenen zurückkommend, ist zu sagen, dass sich in einem betrachteten Punkt P (Fig. 6), PA, PB, PC, PD (Fig. 8) auf der Basisfläche BF die ersten Schnittebene SE1 wie folgt ergeben: die erste Schnittebene SE1 in dem betrachteten Punkt P, PA, ... ist eine Ebene, die normal steht auf die Tangentialebene TE an die Basisfläche BF, wobei diese Ebene (= Schnittebene SE1) weiters noch normal auf die zweite Schnittebene SE2, in welcher der Punkt P liegt, steht. Bei der zweiten Schnittebene handelt es sich, wie oben schon ausgeführt, um eine vertikale Schnittebene durch die glatte Basisfläche BF, welche parallel zu der optischen Achse Z (oder durch diese optische Achse Z) verläuft, und in welcher der betrachtete Punkt P liegt. Die ersten Schnittebenen SE1 schließen mit der zweiten Basis-Schnittkurve BSK2 einen Winkel von 90° ein.
  • Bei einer Basisfläche, welche lediglich in vertikaler Richtung gekrümmt ist, in horizontaler Richtung normal auf die optische Achse Z aber geradlinig verläuft, ändert sich zwischen benachbarten ersten Schnittebenen SE1 zwar der Winkel in Bezug auf die optische Achse Z, in horizontaler Richtung normal zu der optischen Achse Z verlaufen hingegen alle Schnittebenen geradlinig und "parallel" zueinander.
  • Nun wieder zurückkommend auf die zweiten, vertikalen Schnittebenen SE2 und auf den Verlauf der Außenflächen-Schnittkurve SK2, folgt die Funktion A(s) beispielsweise dem Zusammenhang A(s) = A0 * (1 - s), mit s[0, 1], wobei A0 der Normalabstand an dem oberen Rand der Basisfläche BF ist.
  • Dabei ist s = 0 die Position am oberen Rand der Basisfläche, wo somit A(0) = A0 gilt, am unteren Rand gilt A(1) = 0. Der Parameter stellt somit eine normierte Bogenlänge entlang der Schnittkurve BSK2 dar.
  • Für den Parameter s gilt in den vier Punkten gemäß Figur 8:
    • PA: s = sPA = 1,
    • PB: s = sPB, sPB < 1,
    • PC: s = sPC, sPC < sPB, und
    • PD: s = sPD = 0.
    A s PA = A 0 * 0 = 0 , A s PD = A 0 * 1 = A 0 , sowie 0<A s PB < A s PC < A s PD = A 0 .
    Figure imgb0001
  • Somit gibt es bei dieser Ausgestaltung vertikale zweite Schnittebenen, in welchen jeweils die übereinander liegenden "Nulldurchgänge", also jene Bereiche, wo die Außenfläche und die Basisfläche zusammenfallen, miteinander durch entsprechende zweite Außenflächen-Schnittkurven, die in diesem Fall mit den zweiten Basis-Schnittkurven zusammenfallen, verbunden sind.
  • Genauso gibt es zweite Schnittebenen, in welchen die zweiten Außenflächen-Schnittkurven die negativen Normalabstände/Amplituden miteinander verbinden. Für eine eindeutige Beschreibung ist es aber ausreichend, die zweiten Außenflächen-Schnittkurven für die "positiven" Normalabstände/Amplituden anzugeben, die anderen Zusammenhänge ergeben sich durch den Sinus-Verlauf in den ersten Schnittebenen.
  • Der oben beschriebene Zusammenhang A(s) = A0*(1 - s) ist ein Spezialfall des allgemeineren Falles A(s) = A0*(K - s), mit K = 1. Es hat sich herausgestellt, dass zum Teil die optische Effizienz für K > 1 besser ist als für K = 1. Ein typischer Wert für den Parameter K liegt im Bereich von 1,2 - 1,45, vorzugsweise bei ca. 1,33.
  • In diesem in den Figuren 10a - 10d dargestellten Fall gilt A s PA = A 0 * K 1 > 0 , A s PD = A 0 * K , sowie A 0 * K 1 < A s PB < A s PC < A s PD = A 0 * K .
    Figure imgb0002
  • Zusammenfassend lässt sich die Kontur der Außenfläche 3a über einer "gedachten" Basisfläche BF darstellen als z s , x = A s * sin N k * x .
    Figure imgb0003
  • Bei einer Ausführungsform der Erfindung ist zusammenfassend eine sinusförmige Rillenoptik vorgesehen, wobei die Sinus-Funktion normal zu der Linsenoberfläche, d.h. der glatten Basisfläche der Austrittslinse steht. Die Periode bleibt vorzugsweise unverändert, während vorzugsweise sich die Rillentiefe (Amplitude), insbesondere linear, von einem bestimmten Ausgangswert A0 (mit diesem Wert kann die Breite der Lichtverteilung eingestellt werden) an der Oberkante der Lichtaustrittsfläche auf einen Wert von Null an der Unterkante der Linse verändert.
  • Damit kann erreicht werden, dass sich die Lichtverteilung wie gewünscht verbreitert, und überraschender Weise hat sich dabei auch ergeben, dass sich die Hell-Dunkel-Grenze nach Außen, auch bei einer geradlinig verlaufenden Brennlinie des lichtdurchlässigen Körpers, nicht aufbiegt.

Claims (13)

  1. Beleuchtungseinheit für einen Kraftfahrzeugscheinwerfer zum Erzeugen eines Lichtbündels mit Hell-Dunkel-Grenze, mit:
    - zumindest einer Lichtquelle (1, 1a, 1b),
    - einem Reflektor (2),
    - einer Austrittslinse (3) mit einer Außenfläche (3a),
    - einen Brennlinienbereich (4), welcher zwischen dem Reflektor (2) und der Austrittslinse (3) angeordnet ist,
    sowie weiters mit je einem Kollimator (10, 10a, 10b) für jede Lichtquelle (1, 1a, 1b), wobei der Kollimator (10, 10a, 10b) die von der ihm zugeordneten Lichtquelle (1, 1a, 1b) in den Kollimator (10, 10a, 10b) eingespeisten Lichtstrahlen (S1) zu einem Lichtbündel von Lichtstrahlen (S2) ausrichtet,
    und wobei der Reflektor (2) die Lichtstrahlen (S2) des aus dem Kollimator (10, 10a, 10b) austretenden Lichtbündels in eine in dem Brennlinienbereich (4) liegende Brennlinie (FL) ablenkt,
    und wobei die von dem Reflektor (2) reflektierten Lichtstrahlen (S3) von der Austrittslinse (3) zumindest in vertikaler Richtung (V) derart abgelenkt werden, dass die aus der Austrittslinse (3) austretenden Lichtstrahlen (S4) eine Lichtverteilung mit einer Hell-Dunkel-Grenze bilden, wobei sich die Hell-Dunkel-Grenze als Abbildung der Brennlinie (FL) bzw. des Brennlinienbereiches (4) durch die Austrittslinse (3) ergibt,
    und wobei
    Reflektor (2), Austrittslinse (3) und Brennlinienbereich (4), sowie vorzugsweise der zumindest eine Kollimator (10, 10a, 10b), aus einem lichtdurchlässigen Körper (101) gebildet sind, und wobei an der Reflektor-Begrenzungsfläche des Reflektors (2) und/oder der Begrenzungsfläche des Brennlinienbereiches (4), und vorzugsweise an der Kollimator-Begrenzungsfläche des zumindest einen Kollimators (10, 10a, 10b), die sich in dem lichtdurchlässigen Stück (101) fortpflanzenden Lichtstrahlen (S1, S2, S3) totalreflektiert werden,
    dadurch gekennzeichnet, dass
    die Außenfläche (3a) der Austrittslinse (3) durch eine rillenförmige Struktur in einer glatten Basisfläche (BF) gebildet ist, wobei die die rillenförmige Struktur bildenden Rillen (3b) in im Wesentlichen vertikaler Richtung verlaufen, und wobei vorzugsweise jeweils zwei in horizontaler Richtung nebeneinander liegende Rillen (3b) durch eine, insbesondere im Wesentlichen vertikal verlaufende, Erhebung, die sich vorzugsweise über die gesamte Vertikalerstreckung der Rillen (3b) erstreckt, getrennt sind, wobei die Basisfläche ein gedankliches Konstrukt ist, in deren Bezug die tatsächlich realisierte Außenfläche beschrieben wird, wobei
    die sich bei einem Schneiden der Basisfläche mit zweiten, vertikalen Schnittebenen (SE2), welche parallel zu einer optischen Achse (Z) der Austrittslinse (3) verlaufen, ergebenden zweiten Basis-Schnittkurven (BSK2) gekrümmt, insbesondere nach Außen gekrümmt, ausgebildet sind, wobei vorzugsweise die zweiten Basis-Schnittkurven (BSK2) stetig sind, wobei
    die sich bei einem Schneiden der Außenfläche (3a) mit ersten Schnittebenen (SE1) ergebenden ersten Außenflächen-Schnittkurven (SK1) Punkte der Außenfläche (3a) mit maximalem Abstand zu der Basisfläche (BF) miteinander verbinden, wobei die ersten Schnittebenen (SE1) normal auf eine Tangentialebene (TE) der Basisfläche (BF) stehen, wobei bei einem Fortschreiten entlang der zweiten Basis-Schnittkurve (BSK2) in den ersten Schnittebenen (SE1) der Normalabstand von der Basisfläche (BF) zu der ersten Außenflächen-Schnittkurve (SK1) eine Funktion A(s) eines Parameters s, welcher die Position auf der zweiten Basis-Schnittkurve (BSK2) angibt, ist, wobei sich bei einem Fortschreiten entlang der zweiten Basis-Schnittkurve (BSK2) der Normalabstand A(s) kontinuierlich vergrößert, wobei vorzugsweise der Normalabstand an einem unteren Rand der Basisfläche (BF) geringer ist als an einem oberen Rand der Basisfläche und wobei unten und oben als eine Ausrichtung zu verstehen ist, wenn die Beleuchtungseinheit in einer in einem Fahrzeug montierten Beleuchtungsvorrichtung eingebaut wurde, wobei sich der Normalabstand A(s) beispielsweise nach dem Zusammenhang A(s) = A0 * (K - s), mit s[0, 1], wobei s = 0 den oberen Rand und s = 1 den unteren Rand bezeichnet, und K = 1 oder K > 1, ergibt, wobei A0 der Normalabstand an einem oberen oder unteren, vorzugsweise dem oberen Rand der Basisfläche (BF) ist.
  2. Beleuchtungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass die sich bei einem Schneiden der Basisfläche (BF) mit ersten, nicht-vertikalen Schnittebenen (SE1) ergebenden ersten Basis-Schnittkurven (BSK1) geradlinig verlaufen, und wobei die sich bei einem Schneiden der Außenfläche (3a) mit diesen ersten Schnittebenen (SE1) ergebenden ersten Außenflächen-Schnittkurven (SK1) einen sinusförmigen Verlauf aufweisen, wobei die erste Außenflächen-Schnittkurve (SK1) die Linsen-Außenkontur bildet.
  3. Beleuchtungseinheit nach Anspruch 2, dadurch gekennzeichnet, dass die ersten Außenflächen-Schnittkurven (SK1) in den ersten Schnittebenen (SE1), in Bezug auf die Basis-Schnittkurve (BSK1) der jeweiligen ersten Schnittebene (SE1), proportional zu sinN(k*x) verlaufen, mit N = 1, 2, 3, .... aufweisen, wobei x die Koordinate entlang der jeweiligen Basis-Schnittkurve (BSK1) und k eine Konstante bezeichnet.
  4. Beleuchtungseinheit nach Anspruch 3, dadurch gekennzeichnet, dass die Nulldurchgänge der sinusförmigen ersten Außenflächen-Schnittkurven (SK1) auf den ersten Basis-Schnittkurven (BSK1) liegen.
  5. Beleuchtungseinheit nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Wert für die Konstante k für alle ersten Außenflächen-Schnittkurven (SK1) identisch ist.
  6. Beleuchtungseinheit nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die zumindest eine Lichtquelle tiefer liegt als der Brennlinienbereich (4), und das von der zumindest einen Lichtquelle ausgehende Licht nach oben geleitet wird, um durch den Reflektor (2) nach unten in Richtung des Brennlinienbereiches (4) reflektiert zu werden.
  7. Beleuchtungseinheit nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die zumindest eine Lichtquelle höher liegt als der Brennlinienbereich (4), und das von der zumindest einen Lichtquelle ausgehende Licht nach unten geleitet wird, um durch den Reflektor (2) nach oben in Richtung des Brennlinienbereiches (4) reflektiert zu werden.
  8. Beleuchtungseinheit nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Reflektor (2) eine Fläche, beispielsweise eine Zylinderfläche, ist, die eine Parabel als Leitlinie aufweist, wobei die Brennlinie des Reflektors beispielsweise durch eine Gerade gebildet ist, die vorzugsweise zu den Erzeugenden des Zylinders im Wesentlichen parallel ist.
  9. Beleuchtungseinheit nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Außenfläche (3a) der Austrittslinse (3) in vertikaler Richtung nach Außen gekrümmt ist, und in horizontaler Richtung vorzugsweise geradlinig verläuft, und beispielsweise durch eine Zylinderfläche mit geradem Querschnitt entlang einer nach außen konvexen Kurve gebildet ist.
  10. Beleuchtungseinheit nach Anspruch 8 und 9, dadurch gekennzeichnet, dass die Zylinderfläche der Außenfläche (3a) Erzeugende aufweist, die zu den Erzeugenden des Reflektors im Wesentlichen parallel sind.
  11. Beleuchtungseinheit nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass mehrere Lichtquellen (1, 1a, 1b) nebeneinander, beispielsweise in der Richtung einer Erzeugenden des Reflektors (2), nebeneinander liegen.
  12. Beleuchtungseinheit nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die zumindest eine Lichtquelle (1, 1a, 1b) eine Leuchtdiode oder eine Mehrzahl von Leuchtdioden umfasst.
  13. Kraftfahrzeugscheinwerfer mit zumindest einer Beleuchtungseinheit nach einem der Ansprüche 1 bis 12.
EP17700768.9A 2016-01-14 2017-01-09 Beleuchtungseinheit für einen kraftfahrzeugscheinwerfer zum erzeugen eines lichtbündels mit hell-dunkel-grenze Active EP3403021B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50015/2016A AT518109B1 (de) 2016-01-14 2016-01-14 Beleuchtungseinheit für einen Kraftfahrzeugscheinwerfer zum Erzeugen eines Lichtbündels mit Hell-Dunkel-Grenze
PCT/AT2017/060003 WO2017120630A1 (de) 2016-01-14 2017-01-09 Beleuchtungseinheit für einen kraftfahrzeugscheinwerfer zum erzeugen eines lichtbündels mit hell-dunkel-grenze

Publications (2)

Publication Number Publication Date
EP3403021A1 EP3403021A1 (de) 2018-11-21
EP3403021B1 true EP3403021B1 (de) 2021-10-27

Family

ID=57850813

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17700768.9A Active EP3403021B1 (de) 2016-01-14 2017-01-09 Beleuchtungseinheit für einen kraftfahrzeugscheinwerfer zum erzeugen eines lichtbündels mit hell-dunkel-grenze

Country Status (5)

Country Link
EP (1) EP3403021B1 (de)
KR (1) KR102145335B1 (de)
CN (1) CN108474534B (de)
AT (1) AT518109B1 (de)
WO (1) WO2017120630A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3453951B1 (de) * 2017-09-07 2021-03-10 T.Y.C. Brother Industrial Co., Ltd. Lampenlinse
KR102463275B1 (ko) * 2017-12-28 2022-11-04 에스엘 주식회사 차량용 램프
CN108758563B (zh) * 2018-03-13 2023-09-29 深圳市美斯特光电技术有限公司 光控制元件及光源装置
AT521381B1 (de) 2018-07-19 2020-01-15 Pro Aqua Diamantelektroden Produktion Gmbh & Co Kg Verfahren und Vorrichtung zur Durchführung von Gaswäsche mittels einer Elektrolytlösung
FR3086735B1 (fr) * 2018-09-28 2021-06-25 Valeo Vision Piece optique monobloc en materiau transparent ou translucide a surface inactive avec portion diffusante
EP3653926B1 (de) * 2018-11-19 2022-02-16 ZKW Group GmbH Beleuchtungsvorrichtung für einen kraftfahrzeugscheinwerfer sowie kraftfahrzeugscheinwerfer
EP3671016A1 (de) * 2018-12-21 2020-06-24 ZKW Group GmbH Beleuchtungsvorrichtung für einen kraftfahrzeugscheinwerfer sowie kraftfahrzeugscheinwerfer
KR102558734B1 (ko) * 2018-12-26 2023-07-25 에스엘 주식회사 차량용 램프
JP7218041B2 (ja) * 2019-05-21 2023-02-06 市光工業株式会社 車両用導光体及び車両用灯具ユニット
CN112432132B (zh) * 2019-08-26 2022-03-18 比亚迪股份有限公司 一体化透镜、照明模组及车辆
JP7364409B2 (ja) * 2019-09-26 2023-10-18 株式会社小糸製作所 車両用ランプ
CN210740266U (zh) * 2019-10-25 2020-06-12 华域视觉科技(上海)有限公司 车灯光学元件
JP7363416B2 (ja) * 2019-11-27 2023-10-18 市光工業株式会社 車両用導光体及び車両用灯具ユニット
KR20220024739A (ko) 2019-12-20 2022-03-03 하스코 비전 테크놀로지 컴퍼니 리미티드 광학 소자, 차량용 램프 모듈, 차량용 램프 및 차량
CN212584877U (zh) 2020-01-02 2021-02-23 法雷奥照明公司 导光部件、照明装置和车辆
CN113154331B (zh) * 2020-01-22 2024-01-23 扬明光学股份有限公司 交通工具的投射装置及其制造方法、车前头灯
CN212132313U (zh) 2020-03-09 2020-12-11 华域视觉科技(上海)有限公司 车灯光学元件组件、车辆照明装置、车灯和车辆
CN112984454A (zh) * 2020-04-30 2021-06-18 华域视觉科技(上海)有限公司 车灯用光导体、远光照明模组及车灯
CN212746315U (zh) 2020-07-02 2021-03-19 华域视觉科技(上海)有限公司 透镜单元、辅助近光模组、透镜、近光照明模组和车辆
CN113028355B (zh) * 2021-03-23 2022-01-07 华域视觉科技(上海)有限公司 车灯光学组件、照明光学装置和车辆
CN113091014B (zh) * 2021-04-06 2022-02-22 华域视觉科技(上海)有限公司 车灯光学元件、车灯模组和车辆
FR3127547B1 (fr) * 2021-08-31 2023-10-13 Valeo Vision Module lumineux à sources à partie émissive maximisée

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006000180T2 (de) * 2005-04-21 2008-08-07 Valeo Vision Beleuchtungseinheit für Kraftfahrzeuge mit einer Lichtverteilung mit einer Hell-Dunkel Grenze

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2432678A1 (fr) * 1978-03-10 1980-02-29 Cibie Projecteurs Perfectionnements aux glaces de projecteurs et a leur fabrication
DE102006007450B4 (de) * 2006-02-17 2016-10-06 Automotive Lighting Reutlingen Gmbh Beleuchtungseinrichtung in einem Fahrzeug
FR2913095B1 (fr) * 2007-02-28 2013-07-05 Valeo Vision Projecteur pour vehicule automobile
JP5279329B2 (ja) * 2008-04-24 2013-09-04 パナソニック株式会社 レンズ付発光ユニット
WO2013014046A1 (en) * 2011-07-25 2013-01-31 Osram Ag A light source, for example for lighting surfaces
JP2015506301A (ja) * 2011-12-29 2015-03-02 ツィツァラ リヒトシステメ ゲーエムベーハー レーザー光源を備えるヘッドランプ用安全装置及び安全に関わる危険な状況でのレーザー光源のカットオフ方法
JP5950385B2 (ja) * 2012-01-25 2016-07-13 株式会社小糸製作所 車輌用前照灯
DE102013001072A1 (de) * 2013-01-23 2014-07-24 Docter Optics Se Fahrzeugscheinwerfer
AT514405B1 (de) * 2013-06-07 2015-05-15 Zkw Slovakia S R O Beleuchtungskörper für ein Fahrzeug
JP6131724B2 (ja) * 2013-06-11 2017-05-24 スタンレー電気株式会社 車両用灯具
DE102013212352A1 (de) * 2013-06-26 2014-12-31 Automotive Lighting Reutlingen Gmbh Kraftfahrzeugbeleuchtungseinrichtung mit einer Einkoppeloptik und einer Transport- und Umformoptik
FR3010772A1 (fr) * 2013-07-25 2015-03-20 Valeo Vision Dispositif d'emission de lumiere pour projecteur de vehicule automobile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006000180T2 (de) * 2005-04-21 2008-08-07 Valeo Vision Beleuchtungseinheit für Kraftfahrzeuge mit einer Lichtverteilung mit einer Hell-Dunkel Grenze

Also Published As

Publication number Publication date
CN108474534B (zh) 2021-11-23
EP3403021A1 (de) 2018-11-21
WO2017120630A1 (de) 2017-07-20
KR20180103962A (ko) 2018-09-19
CN108474534A (zh) 2018-08-31
KR102145335B1 (ko) 2020-08-19
AT518109A1 (de) 2017-07-15
AT518109B1 (de) 2017-11-15

Similar Documents

Publication Publication Date Title
EP3403021B1 (de) Beleuchtungseinheit für einen kraftfahrzeugscheinwerfer zum erzeugen eines lichtbündels mit hell-dunkel-grenze
EP3449178B1 (de) Beleuchtungseinheit für einen kraftfahrzeugscheinwerfer zum erzeugen eines lichtbündels mit hell-dunkel-grenze
EP3500794B1 (de) Beleuchtungseinheit für einen kraftfahrzeugscheinwerfer zum erzeugen von zumindest zwei lichtverteilungen
EP2771613B1 (de) Beleuchtungsmodul für ein kraftfahrzeug
EP3351849B1 (de) Led-modul und beleuchtungseinrichtung für ein kraftfahrzeug mit mehreren solcher led-module
DE3047816C2 (de)
AT513816B1 (de) Lichtführungseinheit für eine Leuchteinheit eines Scheinwerfers sowie Leuchteinheit und Schweinwerfer
EP1912018A1 (de) Projektionsscheinwerfer für Fahrzeuge
EP3899358B1 (de) Beleuchtungsvorrichtung für einen kraftfahrzeugscheinwerfer sowie kraftfahrzeugscheinwerfer
EP3653926B1 (de) Beleuchtungsvorrichtung für einen kraftfahrzeugscheinwerfer sowie kraftfahrzeugscheinwerfer
EP3571437B1 (de) Leuchtvorrichtung für einen kraftfahrzeugscheinwerfer
DE2923316C2 (de) Kraftfahrzeug-Scheinwerfer mit gerippter Streuscheibe und Verfahren zu deren Herstellung
EP3812653A1 (de) Signalleuchte mit einem lichtleiter
EP3461687B1 (de) Lichtleiteranordnung einer kraftfahrzeugleuchte und kraftfahrzeugleuchte mit einer solchen lichtleiteranordnung
DE102009005635B4 (de) Beleuchtungsvorrichtung für Fahrzeuge
DE10020348B4 (de) Reflektor für elektromagnetische Strahlen
DE102006051058A1 (de) Fahrzeugscheinwerfer
DE2810670B2 (de) Abgeblendeter Fahrzeugscheinwerfer
DE102017220488B4 (de) Scheinwerfer für Fahrzeuge
DE3103175A1 (de) Rueckfahrscheinwerfer fuer kraftfahrzeuge
EP4202289A1 (de) Optiksystem für einen kraftfahrzeugscheinwerfer
EP2074449B1 (de) Fahrzeugscheinwerfer
DE2241903A1 (de) Reflektor fuer leuchten
EP3550205A1 (de) Lichtleiter für ein kraftfahrzeuglichtmodul
DE2330254A1 (de) Strassenscheinwerfer fuer fahrzeuge

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180626

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 8/10 20060101AFI20170808BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200603

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017011820

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008100000

Ipc: F21S0041148000

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/32 20180101ALI20210505BHEP

Ipc: F21S 41/275 20180101ALI20210505BHEP

Ipc: F21S 41/27 20180101ALI20210505BHEP

Ipc: F21S 41/151 20180101ALI20210505BHEP

Ipc: F21S 41/148 20180101AFI20210505BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210630

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1442104

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017011820

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220127

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220128

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017011820

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220127

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

26N No opposition filed

Effective date: 20220728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220109

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220127

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220109

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1442104

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 8