EP3387329B1 - Zuluftvorrichtung - Google Patents

Zuluftvorrichtung Download PDF

Info

Publication number
EP3387329B1
EP3387329B1 EP16872476.3A EP16872476A EP3387329B1 EP 3387329 B1 EP3387329 B1 EP 3387329B1 EP 16872476 A EP16872476 A EP 16872476A EP 3387329 B1 EP3387329 B1 EP 3387329B1
Authority
EP
European Patent Office
Prior art keywords
nozzle channel
channel structure
air
supply air
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16872476.3A
Other languages
English (en)
French (fr)
Other versions
EP3387329A1 (de
EP3387329C0 (de
EP3387329A4 (de
Inventor
Jari HEINOVAARA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alme Solutions Oy
Original Assignee
Alme Solutions Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alme Solutions Oy filed Critical Alme Solutions Oy
Publication of EP3387329A1 publication Critical patent/EP3387329A1/de
Publication of EP3387329A4 publication Critical patent/EP3387329A4/de
Application granted granted Critical
Publication of EP3387329C0 publication Critical patent/EP3387329C0/de
Publication of EP3387329B1 publication Critical patent/EP3387329B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/01Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station in which secondary air is induced by injector action of the primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/26Arrangements for air-circulation by means of induction, e.g. by fluid coupling or thermal effect

Definitions

  • the present invention relates to a supply air device comprising a nozzle channel structure directing a supply air flow into a room.
  • the supply air flow comprises primary air and secondary air.
  • the primary air flow entrains a flow of secondary air flow from the room to flow to the supply air device and further to return to the room.
  • the invention relates to a nozzle channel structure for a supply air device.
  • the secondary air is led instead of or in addition to a temperature controlling device through a filter in order to remove impurities from indoor air.
  • the filter causes a flow resistance, which is not advantageous for the function of the supply air device.
  • the flow resistance reduces the amount of secondary air flow, wherein the filtered secondary air flow does not have a significant effect on the quality of indoor air or temperature of indoor air, when the supply air device comprises a temperature controlling device.
  • the filter of the supply air device restricts the secondary air flowing through the filter, resulting in an excessive reduction in removing impurities and in the temperature controlling efficiency of the supply air device comprising the temperature controlling device.
  • DE 3114528 discloses a control device for an air-distributing device for air-conditioning rooms for outside-air supply or for heating or cooling.
  • the control device has an air-supply arrangement and an air blowingout arrangement with a primary blowpipe for a constant basic-load air quantity, a secondary blowpipe for a variable air quantity and a volumecontrol arrangement assigned to the secondary blowpipe, and separate supply pipes in the air-supply arrangement for hot air and cold air.
  • GB 1349961 discloses a ventilation system for buildings with an outer wall having fixed glazing, in which window elements and panels are fixed to the outside of hollow columns projecting into the building space. wherein the hollow columns are constructed as air-supply ducts for primary air and are connected together by a horizontal conduit connected to a central air-conditioning plant, means being provided on the hollow columns through which the primary air can flow laterally from the columns for supply to the window elements.
  • the nozzle channel structure is arranged to be fixed in a distance from the bottom of the supply air device forming a circulation space between the bottom of the supply air device and the nozzle channel structure for secondary air flows.
  • the nozzle channel structure is further arranged to be fixed in a distance from a side of the supply air device also forming the circulation space between the side of the supply air device and the nozzle channel structure for secondary air flows.
  • the side is the side outer side of the supply air device.
  • a supply air device comprises a nozzle channel structure comprising at least one nozzle and a mixing chamber.
  • the nozzle channel structure is arranged in a distance from the bottom of the supply air device forming a circulation space between the bottom of the supply air device and the nozzle channel structure.
  • Primary air is led to the nozzle channel structure and from the nozzle channel structure to the mixing chamber through said at least one nozzle as at least one primary air flow.
  • Said at least one primary air flow entrains secondary air from outside the supply air device to flow to the mixing chamber through the circulation space and the primary air and secondary air are arranged to be mixed in the mixing chamber before flowing out of the supply air device.
  • the nozzle channel structure comprises a plurality of nozzles.
  • the primary air is led to the nozzle channel structure from a central ventilation system or by using a separate fan.
  • the nozzle channel structure is a peripherally closed duct system.
  • the nozzle channel structure comprises at least two separate duct sections.
  • the nozzle channel structure is formed from a duct having straight shape.
  • the nozzle channel structure comprises separate ducts.
  • the supply air device further comprises a filter.
  • a supply air device wherein the supply air device further comprises a temperature controlling device for cooling or heating the secondary air, the secondary air is led through the temperature controlling device into the mixing chamber.
  • the supply air device comprises two or more nozzle channel structures with separate mixing chambers.
  • the nozzle channel structure comprises at least one duct which comprises a plurality of nozzles and wherein the nozzle channel structure is arranged to be fastened in a distance from the bottom of the supply air device for forming a circulation space between the bottom of the supply air device and the nozzle channel structure and wherein primary air is led to the nozzle channel structure and from the nozzle channel structure to the mixing chamber through said at least one nozzle as at least one primary air flow and wherein said at least one primary air flow entrains secondary air from outside the supply air device to flow to a mixing chamber of the supply air device and wherein at least a part of said secondary air flows to the mixing chamber through the circulation space.
  • the nozzle channel structure is a peripherally closed duct system.
  • the nozzle channel structure comprises at least two separate duct sections.
  • the nozzle channel structure is formed from a duct having straight shape.
  • the nozzle channel structure comprises separate ducts.
  • locations of the nozzle channel structure or a part of the nozzle channel structure inside a supply air device are adjustable.
  • the supply air device according to the invention and arranged to be fixed to the ceiling or wall is based on the idea comprises a nozzle channel structure.
  • the term supply air device covers in this context also local exhaust ventilation devices.
  • the nozzle channel structure of the supply air device used for supplying primary air may be provided as a peripherally closed duct system, as separate ducts forming a duct system or as a duct system comprising at least two separate duct sections.
  • the sections may be connected together, for example, by connecting parts or the duct system may comprise at least two separate duct sections in which case a closed duct system is divided to at least two separate duct sections by a compartmentation wall(s).
  • the nozzle channel structure may have various shapes.
  • a cross-section of the at least one duct of the duct system of the nozzle channel structure is circular or oval.
  • the nozzle channel structure comprises a plurality of nozzles that are perforations without collars arranged on the perimeter of the nozzle channel structure in a distance from each other.
  • the number of nozzles, the diameter and shape of nozzles, the locations of nozzles relative to the longitudinal line of one or more parts of the nozzle channel structure and/or the distance between nozzles may be selected to be suitable for the purpose of the supply air device.
  • the nozzle channel structure may be made, for example, of metal or other suitable material.
  • Ducts or parts of nozzle channel structures may have different cross-sections.
  • a cross-section of duct(s) or part(s) of a nozzle channel structure may be non-angled or at least the underside i.e. the lower part of duct(s) or part(s) of the nozzle channel structure that is towards the floor may be non-angled.
  • the cross section is at least partly non-angeled.
  • Non-angled means that there is no angles in the cross-section of the structure or in the cross-section of the lower part of duct(s) or part(s) of the nozzle channel structure. Flowing air inside the supply air device turns towards surface of the duct or part of the nozzle channel structure, and flows along the surface towards nozzles. This is due to the coanda phenomenon. An angle in the structure may cause detaching of the flowing air from the surface. Detaching of the flowing may decrease entrainment of the secondary air which may in turn decrease air circulation effectiveness.
  • the non-angled cross-section of duct(s) or part(s) of a nozzle channel structure may be, for example circular, or a shape of oval or drop etc.
  • the cross-section of duct(s) or part(s) of a nozzle channel structure may also be rectangular.
  • cross-sections of ducts/parts of one nozzle channel structure may vary.
  • one or more part(s) of a nozzle channel structure may have rectangular shape and one or more other part(s) of the same nozzle channel structure may have circular shape.
  • a cross-section of the at least one duct of the duct system of the nozzle channel structure is however circular or oval.
  • the nozzle channel structure may be formed from a uniform channel or channel modules with a monolithic profile, which channel modules are configured to be fastened, for example, one after the other, so that each nozzle channel module constitutes a part of the nozzle channel structure.
  • the nozzle channel structure is arranged in a distance from a bottom of the supply air device.
  • the bottom of the supply air device is the part of the supply air device that is the upper part of the supply air device when it is fixed to the ceiling or towards the ceiling when it is fixed to the wall.
  • the nozzle channel structure increases entrainment of the secondary air by enabling circulating of the secondary air from a first side (a center side) of the primary air flow to the other side of the primary air flow through the circulating space between the bottom of the supply air device and the nozzle channel structure, wherein the other side is between the primary air flow and an outer wall of a discharge channel of the supply air device.
  • the air supplied to the conditioned room from air nozzles of the nozzle channel structure of the supply air device is called primary air.
  • the air may be supplied to the conditioned room, for example, from the central ventilation system or from the same room, from some other space/room or from outdoors by using a separate fan.
  • secondary air is drawn back into the supply air device to be mixed with primary air.
  • the arrangement according to the invention increases the secondary air flow by increasing entrainment of the secondary air, thereby enhancing the purification or temperature controlling of air in the room, if the supply air device is also equipped with a filter and/or a temperature controlling device.
  • the filter causes a flow resistance, which reduces the amount of secondary air flow. If an amount of secondary air decreases, the filtered secondary air flow may not have a significant effect on the quality or temperature of indoor air.
  • the amount of secondary air may be increased and the quality and/or temperature of indoor air can be kept on an effective level.
  • Figure 1 shows a cross-sectional view of a prior art supply air device 10 arranged to be installed in a ceiling or wall of a room.
  • Primary air is led via a supply air duct 11 to a supply air chamber 12 of the supply air device 10 from the outside of the device 10, normally from a central ventilation system. From the supply air chamber 12 the primary air is led through air nozzles 13 into a mixing chamber 14 located inside the supply air device 10, at a relatively high rate.
  • the primary air flow blown into the mixing chamber 14 entrains secondary air 16 from the room through a circulation air opening 15 to the supply air device 10 and further to the mixing chamber 14.
  • Primary air flowing from adjacent nozzles 13 forms a primary air flow wall 17 in the mixing chamber 14.
  • air circulation effectiveness refers to secondary air (l/s) / primary air (l/s).
  • Figure 2 shows a simplified perspective image of a supply air device 20 comprising a nozzle channel structure 21 according to the example embodiment and arranged to be installed in a ceiling or wall of a room.
  • Primary air may be led via a supply air duct (not shown in the figure 2 ) to a supply air chamber 22 of the supply air device 20 from the outside of the supply air device 20, normally from a central ventilation system. From the supply air chamber 22 the primary air may be led to the nozzle channel structure 21 via one or more supply air openings (shown in figure 3 ).
  • the primary air may be led to the nozzle channel structure 21, for example, via supply air openings that are arranged to at least one corner of the hollow rectangle shaped nozzle channel structure 21. Supply air openings may also be arranged to at least one other part(s) of the nozzle channel structure 21.
  • the primary air may be led through air nozzles 23 of the nozzle channel structure 21 into a mixing chamber 24 located inside the supply air device 20.
  • the primary air flow blown into the mixing chamber 24 may entrain secondary air from the room through a circulation air opening 25 into the supply air device 20 and further into the mixing chamber 24.
  • Primary air flowing from adjacent nozzles 23 may form a primary air flow wall.
  • the sides of the flows that are towards the outer walls of the supply air device 20 The passing of the secondary air through the primary air flow wall is the more difficult the closer the nozzles 23 are.
  • the use of the nozzle channel structure 21 which is attached at a distance from the bottom 26 of the supply air device 20 allows secondary air to find its way i.e. to circulate also to the other side of the primary air flow wall through the circulation space between the upper part of the nozzle channel structure 21 and the bottom 26 of the supply air device 20.
  • primary air and secondary air will be mixed. From the mixing chamber 24, the mixture of primary air and secondary air flows to the room.
  • Figure 3 shows a simplified perspective image of a supply air device 30 comprising a nozzle channel structure 31 according to the example embodiment and arranged to be installed in a ceiling or wall of a room.
  • the nozzle channel structure 31 is again attached at a distance from the bottom of the supply air device 30.
  • the supply air device 30 comprises also a filter 36.
  • Primary air may be led into the supply air device 30 via a supply air duct 37. Inside the supply air device 30 primary air is led into a supply air chamber 32. From the supply air chamber 32 the primary air is led to the nozzle channel structure 31 comprising a plurality of air nozzles (not shown) via one or more supply air openings 38.
  • the primary air is led through air nozzles of the nozzle channel structure 31 into a mixing chamber 34 of the supply air device 30.
  • the primary air flow blown into the mixing chamber 34 entrains secondary air from the room through a circulation air opening 35 into the supply air device 30.
  • the secondary air flows through the filter 36 on its way to the mixing chamber 34. At least part of the secondary air circulates through the circulation space between the nozzle channel structure 31 and the bottom of the device 30 before it mixes with the primary air in the mixing chamber 34. From the mixing chamber 34, the mixture of primary air and filtered secondary air flows into the room.
  • a supply air device may comprise in addition to or instead of a separate filter or filter arrangement.
  • the secondary air may pass via the filter and/or a temperature controlling device, for example, a heat exchanger when flowing into the mixing chamber.
  • the secondary air flow can be led in whole or in part through the filter.
  • the cross-sectional area of the filter covers the whole secondary air flow. It is also possible to arrange the filter to the mixing chamber in such a way that both the primary air and the secondary air are led through the filter before entering to the room.
  • the secondary air flow may be temperature controlled in whole, or only a part of the secondary air flow is passed through the temperature controlling device.
  • the supply air device may be equipped with a heat exchanger bypass plate, wherein the need of temperature controlling can be adjusted according to the load.
  • the need for temperature controlling the air flow may vary, and the adjustment may be made by changing the amount or temperature of the water flow of the temperature controlling device.
  • the supply air device may also be used solely for the purification of air, wherein the device comprises no temperature controlling device.
  • the filter or filter arrangement may be arranged between a circulated air opening and a mixing chamber through which the secondary air flow is led.
  • the filter or filter arrangement may be an electric particle filter, an electrostatic precipitator, a fabric filter made of electret material, an electric fabric filter, a gas filter or any other suitable filter. If the filter is an electric particle filter, the supply air device further comprises an ionizer arranged to charge airborne impurity particles of the secondary air flow by means of ions produced by corona discharge, placed on the secondary air flow before the filter.
  • air circulation effectiveness refers to secondary air (l/s) / primary air (l/s).
  • the air circulation effectiveness is important, for example, in situations where a certain amount of air should be purified by a supply air device.
  • supply air devices may have a circulation effectiveness value of 2 and with the nozzle channel structure a value of 5.
  • the air circulation effectiveness may be more than double when the nozzle channel structure is used.
  • Figure 4 shows a primary air flow wall 40 provided by a nozzle channel structure 42 according to the example embodiment.
  • the air flow wall 40 is provided by adjacent nozzles 41 of the nozzle channel structure 42 by leading primary air through air nozzles 41 at a relatively high rate.
  • Figure 5a shows a nozzle channel structure according to an example embodiment.
  • the nozzle channel structure 50 has a shape of a rectangle and it comprises a plurality of nozzles 51 at each side of the rectangle. Locations of nozzles relative to the longitudinal line of one or more parts of the nozzle channel structure 50 can vary. In this embodiment, locations of nozzles relative to the longitudinal line 52 of one side/part of the nozzle channel structure 53 vary.
  • Figure 5b shows a nozzle channel structure according to an example embodiment. This nozzle channel structure 50 has a shape of a rectangle with round corners and it comprises a plurality of nozzles 51.
  • Figure 5c shows a nozzle channel structure according to an example embodiment.
  • This nozzle channel structure 50 has a shape of a toroid and it comprises a plurality of nozzles 51.
  • Figure 5d shows a nozzle channel structure according to an example embodiment.
  • This nozzle channel structure 50 has a shape of an oval and it comprises a plurality of nozzles 51.
  • Each nozzle channel structure 50 of figures 5a-5d comprises one or more supply air openings. Via one or more supply air openings the primary air is led to the nozzle channel structure 50 from a supply air chamber or directly from a supply air duct.
  • FIG. 5e shows a nozzle channel structure according to an example embodiment.
  • This nozzle channel structure 50 has separate ducts 54, which are not connected to each other.
  • Each duct comprises one or more supply air openings. Via one or more supply air openings the primary air is led to each duct 54 of the nozzle channel structure 50 from a supply air chamber or directly from a supply air duct.
  • this nozzle channel structure comprises a plurality of nozzles 51.
  • the ducts 54 may have one open end or both ends may be open.
  • the ducts 54 may be connected together by corner pieces so that the air can flow from one duct 54 to at least one other duct 54 or the ducts 54 may be such that they are not connected to each other.
  • Figure 5f shows a nozzle channel structure according to an example embodiment.
  • This nozzle channel structure 50 is formed from a duct 54 having straight shape.
  • This nozzle channel structure 50 comprises a slit nozzle 51.
  • a cross-section(s) of nozzle channel structure may vary. It may be triangular, circular rectangular, oval or any other suitable shape. According to the invention, a cross-section of the at least one duct of the duct system of the nozzle channel structure is however circular or oval.
  • Figure 6 shows a cross-sectional view of a supply air device 60 according to an example embodiment.
  • Figure 6 also shows an example route of air circulation inside the supply air device 60.
  • Primary air 61 is led into the supply air device 60 via a supply air duct (not shown). Inside the supply air device 60 primary air 61 is led into a supply air chamber 62. From the supply air chamber 62 the primary air 61 is led to a nozzle channel structure 63 comprising a plurality of air nozzles 64. From the nozzle channel structure 63 the primary air 61 is led through air nozzles 64 to a mixing chamber 65. The primary air 61 blown into the mixing chamber 65 entrains secondary air 66a, 66b from a room through a circulation air opening 67 into the supply air device 60.
  • the supply air device 60 comprises a filter 68a through which the secondary air 66a, 66b flows when flowing to the mixing chamber 65.
  • second part of the secondary air 66b may circulate also to the other side of flows provided by the nozzles 64 through the circulation space 69 between the bottom of the supply air device 60 and the nozzle channel structure 63.
  • the first part of the secondary air 66a may not circulate through the circulation space 69, but is directly entrained.
  • the possibility to flow also to the other side of air flows provided by the nozzles 64 increases the entrainment and therefore the amount of the secondary air 66a, 66b. From the mixing chamber 65, the mixture of primary air 61 and filtered secondary air 66a, 66b flows into the room.
  • Increased amount of secondary air 66a, 66b improves circulation effectiveness which therefore improves removal of impurities from room air, if a filter is used, and/or temperature controlling, heating or cooling, of room air, if the supply air device is equipped with a heat exchanger, for example, heating or cooling coil.
  • the part of image 6 comprising the circulation space 69 between the bottom of the supply air device 60 is also shown enlarged. It is also shown a first alternative filter location 68b for the filter 68a that may be arranged to the circulation air opening 67 and a second alternative filter location 68c for the filter 68a that may be arranged to the mixing chamber 65.
  • Figure 7 shows a simplified cross-sectional view of a part of a supply air device 70 comprising, two, a first and a second nozzle channel structures according to an example embodiment.
  • Nozzle channel structures 71a, 71b are arranged on top of each other and both nozzle channel structures 71a, 71b comprise own mixing chambers 74a, 74b on top of each other so that there is a separating wall 73 between mixing chambers 74a, 74b.
  • these nozzle channel structures 71a, 71b may have any shape, for example, a circular rectangular etc. They may even have different shapes.
  • one supply air device may comprise more than two nozzle channel structures one on the other.
  • a cross-section of the at least one duct of the duct system of the nozzle channel structure is however circular or oval.
  • the first nozzle channel structure 71a is again attached at a distance from the bottom of the supply air device 70 and the second nozzle channel structure 71b is attached at a distance from the separating wall 73 for forming circulation spaces.
  • the supply air device 70 comprises also a filter 76.
  • Primary air may be led into the supply air device 70 via a supply air duct.
  • In the supply air device 70 primary air is led into a supply air chamber 72. From the supply air chamber 72 the primary air is led to the nozzle channel structures 71a, 71b comprising a plurality of air nozzles via one or more supply air openings.
  • the primary air is led through air nozzles of the nozzle channel structures 71a, 71b into mixing chambers 74a, 74b of the supply air device 70 as primary air flows 75a, 75b.
  • the secondary air 77a, 77b flow through the filter 76 on its way to the mixing chambers 74a, 74b.
  • At least part of the secondary air 74a, 74b circulates through the circulation space between the first nozzle channel structure 71a and the bottom of the device 70 or the other part through the circulation space between the second nozzle channel structure 71b and the separating wall 73 before they mix with the primary air of primary air flows 75a, 75b in the mixing chambers 74a, 74b. From the mixing chambers 74a, 74b, the mixture of primary air and filtered secondary air flows into the room.
  • This structure comprising a first and a second nozzle channel structures according to the invention increases the secondary air flow even more by increasing entrainment of the secondary air, thereby enhancing the purification or temperature controlling of air in the room.
  • the nozzles according to the invention are provided as perforations without collars.
  • Figure 8 shows a simplified supply air device according to an example embodiment.
  • Primary air 81 is led into the supply air device 80 via a supply air duct 82.
  • primary air 81 is led to a nozzle channel structure 83 comprising a plurality of air nozzles 84.
  • the nozzle channel structure 83 is formed as a continuation part of the supply air duct 82 or as a separate part connected to the supply air duct 82.
  • the nozzle channel structure 83 is, in this example embodiment, formed from a duct having straight shape. From the nozzle channel structure 83 the primary air 81 is led through air nozzles 84 to a mixing chamber 85.
  • the primary air 81 blown into the mixing chamber 85 entrains secondary air 86a, 86b from a room through a circulation air opening 88 into the supply air device 80.
  • second part of the secondary air 86b may circulate through the circulation space 87 between the wall of the supply air device 80 and the nozzle channel structure 83.
  • the first part of the secondary air 86a may not circulate through the circulation space 87, but is directly entrained.
  • the primary air 81 may be led to the supply air device 80 via the supply air duct 82 by using a fan or a central ventilation system.
  • FIG. 9 shows a supply air device according to an example embodiment in use.
  • the supply air device 90 is used as a local exhaust ventilation device in this example embodiment.
  • Primary air 91 is led into the supply air device 90.
  • primary air 91 is led to a nozzle channel structure 93 comprising a plurality of air nozzles. From the nozzle channel structure 93 the primary air 91 is led through air nozzles to a mixing chamber 95.
  • the primary air 91 blown into the mixing chamber 95 entrains secondary air 96a, 96b from a room 92 through a circulation air opening 98 into the supply air device 90.
  • second part of the secondary air 96b may circulate through the circulation space 97 between the bottom 94 of the supply air device 90 and the nozzle channel structure 93.
  • the first part of the secondary air 96a may not circulate through the circulation space 97, but is directly entrained.
  • the supply air device 90 is used for removing gases or odours 99 locally.
  • the local exhaust ventilation device or a supply air device may be fixed also to a separate support structure instead of a ceiling or a wall.
  • one or more fans are arranged to provide air directly for a nozzle channel structure according to embodiments of the invention without a supply air ducts.
  • a supply air device may further comprise one or more openings on its sides of its casing, so that primary air that is turned to blow towards the outer walls of the supply air device may be blow out through those openings with secondary air that it has entrained. It is also possible to adjust location of a nozzle channel structure or a part of the nozzle channel structure or one of the nozzle channel structures, when comprising more than one nozzle channel structures in relation to the bottom and/or walls of the supply air device. In other words, location of the nozzle channel structure or a part of the nozzle channel structure inside the supply air device is adjustable.

Claims (11)

  1. Zuluftvorrichtung, umfassend:
    eine Düsenkanalstruktur (21), die ein Kanalsystem ist, das mindestens einen Kanal umfasst, der eine Vielzahl von Düsen (23), eine Zuluftkammer (22) und eine Mischkammer (24) umfasst,
    wobei die Düsenkanalstruktur (21) in einem Abstand von dem Boden und einer Seite der Zuluftvorrichtung (20) angeordnet ist, so dass ein Zirkulationsraum (69) zwischen dem Boden und der Düsenkanalstruktur (21) und zwischen der Seite und der Düsenkanalstruktur (21) gebildet wird, und wobei die Düsenkanalstruktur (21) eine oder mehrere Zuluftöffnungen aufweist, über die Primärluft von der Zuluftkammer (22) zu der Düsenkanalstruktur (21) geleitet wird, weiter von der Düsenkanalstruktur (21) zu der Mischkammer (24) durch die Vielzahl von Düsen (23) als Primärluftströme und wobei die Primärluftströme Sekundärluft von außerhalb der Zuluftvorrichtung (20) mitführen, um zu der Mischkammer (24) zu strömen und wobei ein Teil der Sekundärluft zu der Mischkammer (24) durch den Raum zwischen dem Boden und der Düsenkanalstruktur (21) strömt, dadurch gekennzeichnet, dass die Vielzahl der Düsen (23), die zum Ausblasen der die Sekundärluft mitführenden Primärluftströme ausgebildet sind, als kragenlose Perforationen vorgesehen sind, und wobei ein Querschnitt des mindestens einen Kanals kreisförmig oder oval ist.
  2. Zuluftvorrichtung nach Anspruch 1, wobei die Primärluft von einer zentralen Lüftungsanlage oder unter Verwendung eines separaten Ventilators der Düsenkanalstruktur (21) zugeführt wird.
  3. Zulufteinrichtung nach Anspruch 1 oder 2, wobei die Düsenkanalstruktur (21) ein peripher geschlossenes Kanalsystem ist.
  4. Zuluftvorrichtung nach Anspruch 1 oder 2, wobei die Düsenkanalstruktur (21) aus mindestens zwei separaten Kanalabschnitten oder separaten Kanälen besteht.
  5. Zuluftvorrichtung nach Anspruch 1 oder 2, wobei die Düsenkanalstruktur (21) aus einem Kanal mit gerader Form gebildet ist.
  6. Zuluftvorrichtung nach einem der vorhergehenden Ansprüche, wobei die Zuluftvorrichtung (20) ferner einen Filter (36) umfasst.
  7. Zuluftvorrichtung nach einem der vorhergehenden Ansprüche, wobei die Zuluftvorrichtung (20) ferner eine Temperiereinrichtung zum Kühlen oder Heizen der Sekundärluft aufweist, wobei die Sekundärluft durch die Temperiereinrichtung in die Mischkammer (24) geleitet wird.
  8. Zuluftvorrichtung nach einem der vorhergehenden Ansprüche, wobei die Zuluftvorrichtung zwei oder mehr Düsenkanalstrukturen (71a, 71b) mit separaten Mischkammern (74a, 74b) aufweist.
  9. Düsenkanalstruktur für eine Zuluftvorrichtung, wobei die Düsenkanalstruktur (21) ein Kanalsystem ist, das mindestens einen Kanal umfasst, der eine Vielzahl von Düsen (23) und eine oder mehrere Zuluftöffnungen aufweist, über die Primärluft als Primärluftströme zu der Düsenkanalstruktur (21) und von der Düsenkanalstruktur (21) durch die Vielzahl von Düsen geführt wird, und wobei die Primärluftströme Sekundärluft von außerhalb der Zuluftvorrichtung mitführen, dadurch gekennzeichnet, dass die Vielzahl von Düsen (23), die zum Ausblasen der die Sekundärluft mitführenden Primärluftströme ausgebildet sind, als kragenlose Perforationen vorgesehen sind, und wobei ein Querschnitt des mindestens einen Kanals kreisförmig oder oval ist.
  10. Düsenkanalstruktur nach Anspruch 9, wobei die Düsenkanalstruktur (21) ein peripher geschlossenes Kanalsystem ist.
  11. Düsenkanalstruktur nach einem der Ansprüche 9 oder 10, wobei die Düsenkanalstruktur (21) mindestens zwei separate Kanalabschnitte oder separate Kanäle aufweist.
EP16872476.3A 2015-12-09 2016-12-09 Zuluftvorrichtung Active EP3387329B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20155928A FI127646B (en) 2015-12-09 2015-12-09 Supply Unit
PCT/FI2016/050862 WO2017098088A1 (en) 2015-12-09 2016-12-09 A supply air device

Publications (4)

Publication Number Publication Date
EP3387329A1 EP3387329A1 (de) 2018-10-17
EP3387329A4 EP3387329A4 (de) 2019-08-07
EP3387329C0 EP3387329C0 (de) 2023-07-26
EP3387329B1 true EP3387329B1 (de) 2023-07-26

Family

ID=59013733

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16872476.3A Active EP3387329B1 (de) 2015-12-09 2016-12-09 Zuluftvorrichtung

Country Status (4)

Country Link
EP (1) EP3387329B1 (de)
CN (1) CN108431508B (de)
FI (1) FI127646B (de)
WO (1) WO2017098088A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4255751A1 (de) 2020-12-01 2023-10-11 Respired Limited Luftreinigungsvorrichtung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3114528C2 (de) * 1981-04-10 1983-03-17 Paul Pollrich GmbH & Co, 4050 Mönchengladbach Luftverteilgerät zur Temperierung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL104275C (de) *
US2144466A (en) * 1937-03-13 1939-01-17 B F Sturtevant Co Heat exchange unit
DK89697C (da) * 1956-04-25 1960-09-12 Bahco Ab Anordning ved luftkonditioneringsanlæg.
DE2020643C3 (de) 1970-04-28 1979-09-20 Josef Gartner & Co, 8883 Gundelfingen Heiz-, Kühl- und Lüftungsanlage für Gebäude mit einer Vorhangwand
DE3241268C1 (de) * 1982-11-09 1984-01-19 Maurmann Ingenieurbüro GmbH, 5628 Heiligenhaus Deckenluftauslaß für Klimaanlagen
NO844320L (no) * 1984-10-30 1986-05-02 Norsk Viftefabrikk As Fremgangsmaate ved ventilasjon av rom.
FI120245B (fi) * 2004-04-23 2009-08-14 Halton Oy Tuloilmalaite
FI119126B (fi) * 2004-06-18 2008-07-31 Halton Oy Tuloilmalaite
KR20070064907A (ko) * 2005-12-19 2007-06-22 삼성전자주식회사 공기조화기
FI20075226L (fi) * 2007-04-03 2008-10-04 Valtion Teknillinen Tuloilmalaite ja menetelmä ilman puhdistamiseksi tuloilmalaitteessa
JP2013525726A (ja) * 2010-04-23 2013-06-20 カイプ プロプライエタリー リミテッド エアディフューザ及び空気循環システム
MX349628B (es) * 2010-11-18 2017-08-07 Oy Halton Group Ltd Dispositivos, métodos y sistemas de purificación de aire.
CN102677371A (zh) * 2012-06-12 2012-09-19 江苏万工科技集团有限公司 一种二次加速气流的主喷嘴及其供气系统
CN203478435U (zh) * 2013-09-18 2014-03-12 南通航运职业技术学院 全气候湿度自动调节诱导式空调器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3114528C2 (de) * 1981-04-10 1983-03-17 Paul Pollrich GmbH & Co, 4050 Mönchengladbach Luftverteilgerät zur Temperierung

Also Published As

Publication number Publication date
WO2017098088A1 (en) 2017-06-15
CN108431508A (zh) 2018-08-21
EP3387329A1 (de) 2018-10-17
EP3387329C0 (de) 2023-07-26
FI127646B (en) 2018-11-15
EP3387329A4 (de) 2019-08-07
CN108431508B (zh) 2021-02-02
FI20155928A (fi) 2017-06-10

Similar Documents

Publication Publication Date Title
KR20180051650A (ko) 정상 흐름 구조체 및 정상 흐름 구조체를 갖는 환기 장치
US20060211365A1 (en) Induction diffuser
KR101496971B1 (ko) 공기믹싱챔버를 갖는 공기조화기
WO2002042691A1 (en) Supply air terminal device
JP2012154611A (ja) ワンスパン空調システム
KR102052348B1 (ko) 환기장치
EP3387329B1 (de) Zuluftvorrichtung
KR100943859B1 (ko) 풍량조절구가 구비된 바닥 공조용 취출구
JP7068261B2 (ja) クリーンルーム装置および空気循環ユニット
CN206160326U (zh) 一种出风口风向可调的中央空调
NO316793B1 (no) Anordning for takmontert ventilasjon av lokaler og samtidig kjoling eller oppvarming av luften i lokalet
KR200458718Y1 (ko) 공조장치용 고소형 가변 선회 취출구
AU7950891A (en) Air conditioning system and method
FI127579B (en) incoming air
KR100611881B1 (ko) 실내공조용 취출구의 송풍베인
JP6878552B2 (ja) クリーンルーム装置および空気循環ユニット
KR100565508B1 (ko) 공기조화기의 실내기
JP2955519B2 (ja) 空調方法
CN114562786A (zh) 空气净化装置及包括空气净化装置的空气净化系统
JP2023089847A (ja) 空調システム
JPH0678833B2 (ja) 半導体製造用空気調和方法
FI105716B (fi) Tuloilmajärjestelmä
JPH0225065Y2 (de)
JP2023058361A (ja) 空調ユニット及び空調方法
CN113446692A (zh) 一种集成空气净化系统的贴壁送风装置及其送风方法

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20190709

RIC1 Information provided on ipc code assigned before grant

Ipc: F24F 13/26 20060101ALI20190703BHEP

Ipc: F24F 1/01 20110101AFI20190703BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211110

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230228

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016081461

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

U01 Request for unitary effect filed

Effective date: 20230731

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230803

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

U20 Renewal fee paid [unitary effect]

Year of fee payment: 8

Effective date: 20231026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726