EP3374696B1 - Procédé et dispositif de détection de signal de flamme - Google Patents

Procédé et dispositif de détection de signal de flamme Download PDF

Info

Publication number
EP3374696B1
EP3374696B1 EP16788076.4A EP16788076A EP3374696B1 EP 3374696 B1 EP3374696 B1 EP 3374696B1 EP 16788076 A EP16788076 A EP 16788076A EP 3374696 B1 EP3374696 B1 EP 3374696B1
Authority
EP
European Patent Office
Prior art keywords
signal
value
burner
threshold value
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16788076.4A
Other languages
German (de)
English (en)
Other versions
EP3374696A1 (fr
Inventor
Martin Ries
Arno Clemens
Richard Pfüller
Sebastian Hack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Viessmann Werke GmbH and Co KG
Original Assignee
Viessmann Werke GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viessmann Werke GmbH and Co KG filed Critical Viessmann Werke GmbH and Co KG
Publication of EP3374696A1 publication Critical patent/EP3374696A1/fr
Application granted granted Critical
Publication of EP3374696B1 publication Critical patent/EP3374696B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2208/00Control devices associated with burners
    • F23D2208/10Sensing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/10Correlation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/16Measuring bridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/42Function generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/10Flame sensors comprising application of periodical fuel flow fluctuations

Definitions

  • the invention relates to a method and a device for flame signal detection in a burner, in particular an oil or gas burner.
  • the invention relates to a method and a device for adapting the signal detection of a combustion control system to the flame resistance range of a burner.
  • an operating variable of a burner for example the air ratio ⁇
  • an alternating voltage is applied to the ionization electrode and a current flowing away from the ionization electrode and rectified due to the rectifying property of the flame is recorded as ionization current.
  • the measured ionization current is then compared by means of a control circuit with a target value for the ionization current corresponding to the setpoint value of the air ratio, and the composition of the air-fuel mixture is readjusted accordingly.
  • a method is, for example, in the publication DE 44 33 425 A1 described.
  • it is known to detect the presence of a flame in the combustion chamber by means of ionization current measurement or flame resistance measurement.
  • control circuit has a fixed measurement resolution, but the detected ionization current has a non-linear course over its modulation range. It is therefore not possible to measure the ionization current or flame resistance at several operating points of the burner with the optimum measurement resolution for the respective operating point.
  • a measuring device for a flame in which a direct current dependent on an ionization electrode and its flame resistance is amplified by means of a first amplifier and an alternating current dependent on the ionization electrode and its flame resistance is amplified by means of a second amplifier.
  • the amplified direct current signal is compared with the amplified alternating current signal by means of a first comparator.
  • the amplified direct current signal is compared with a reference value by means of a second comparator.
  • the first and the second comparator each output a pulse width modulated signal.
  • a method for flame signal detection by means of an ionization electrode protruding into a combustion chamber of a burner, to which an AC voltage is applied comprises the steps of: detecting a first signal, one of which is flowing from the ionization electrode Ionization current-dependent direct current signal, generating a second signal which has a predetermined, periodic profile, generating a third signal by adding the first signal and the second signal, generating a fourth signal by means of a first comparator by comparing the third signal with a first threshold value ( ie generating the fourth signal by comparing the third signal with the first threshold value), the first threshold value being a constant reference value and the fourth signal being formed by a sequence of rectangular pulses, generating a fifth signal by means of a second comparator by comparing the third signal with a second threshold value (ie generating the fifth signal by comparing the third signal with the second threshold value), the second threshold value being a constant reference value different from the first threshold value and the
  • the first and second threshold values can each be predefined.
  • the fourth and fifth signals can each be a signal (e.g. voltage signal) with a sequence of rectangular pulses, in particular a pulse width modulated (PWM) signal.
  • PWM pulse width modulated
  • the operating size of the burner can be, for example, the ionization current, the flame resistance, the flame temperature, the air ratio, or the burner output.
  • the method described above makes it possible to generate, by suitable selection of the curve profile and the first and second threshold values, signals which each offer optimum measurement resolution (sensitivity) for evaluating the ionization current signal for different operating points or operating ranges of the burner.
  • sensitivity sensitivity
  • the presence of the flame when the burner is starting up that is to say with a large flame resistance and a small ionization current
  • the Flame resistance in operation near the optimal air ratio that is to say with a low flame resistance and large ionization current, can be determined with high accuracy, and on the basis of which the composition of the air / fuel mixture can be readjusted with high accuracy.
  • the method according to the invention therefore brings about a linearization of the ionization current signal over the modulation range of the burner and thus enables safe and stable control of the burning process.
  • the predetermined course of the second signal has a first section (curve section) with a first slope value and a second section (curve section) with a second slope value different from the first slope value.
  • the predetermined curve shape preferably has an ascending flank and a descending flank, and the first section and the second section are each arranged together in the ascending flank or together in the descending flank.
  • the first section and the second section can each have the shape of a straight line, that is, straight line sections.
  • the first and second sections can be approximated straight lines that have averaged slope values.
  • the first and second sections can connect to one another or follow one another in the course of the curve over time.
  • the respectively desired measurement resolution (sensitivity) for different operating states or operating ranges of the burner can be selected independently of one another.
  • the first threshold value is selected such that for an ionization current occurring in a first operating state (or in a first operating range or at a first operating point) of the burner, the third signal has the first threshold value in each case at a first point in time within the period of the second signal (or within the Period intersects the approximately periodic third signal) for which the second signal has a signal value that falls within the first section of the periodic curve.
  • the first threshold value is selected such that the second signal has a signal value within the first curve section at the first point in time.
  • the first point in time is the point in time within the period of the second signal for which the value (signal value) of the third signal is equal to the first threshold value.
  • the first point in time is the point in time at which the third signal exceeds the first threshold value. If, on the other hand, the first section is located within the falling edge, the first point in time is the point in time at which the third signal falls below the first threshold value.
  • the second threshold value is also selected such that for an ionization current occurring in a second operating state (or in a second operating range or at a second operating point) of the burner, the third signal has the second threshold value at a second point in time within the period of the second signal (or within the period the approximately periodic third signal) for which the second signal has a signal value that falls in the second section.
  • the second threshold value is selected such that the second signal has a signal value within the second curve section at the second point in time.
  • the second point in time is the point in time within the period of the second signal for which the value (signal value) of the third signal is equal to the second threshold value.
  • the second point in time is the point in time at which the third signal exceeds the second threshold value. If, on the other hand, the second section is located within the falling edge, the second point in time is the point in time at which the third signal falls below the second threshold value.
  • an optimal measurement resolution for the respective operating state can be achieved for both the first operating state and the second operating state. For example, choosing a smaller slope for the first section of the curve means that small changes in the ionization current lead to large changes in the position of the first point in time, i.e. a high measurement resolution is achieved. Furthermore, for example, the selection of a larger slope for the second curve section has the effect that large changes in the ionization current lead to only small changes in the position of the second point in time, so that changes in the ionization current can be detected and evaluated over a large range of values.
  • the first slope value is preferably less than the second slope value, and the first operating state corresponds to a higher flame resistance than the second operating state.
  • the ionization current With a higher flame resistance, for example when the burner starts up, the ionization current is small and in absolute terms has correspondingly small changes. By selecting a lower slope for the first curve section, such relatively small changes in the ionization current can also be detected, and the presence of the flame can be reliably detected. At the same time, the composition of the air-fuel mixture can be readjusted with high accuracy. With a lower flame resistance, for example in the heating mode of the burner in the vicinity of an optimal air ratio, the ionization current is correspondingly larger and accordingly changes over a wide range of values.
  • the value of the operating variable is preferably determined by mathematically and / or logically combining the fourth signal and the fifth signal (or signals derived therefrom).
  • the method can have the further steps: determining a first value of the operating variable of the burner based on the fourth signal, determining a second value of the operating variable of the burner based on the fifth signal, and determining a third value of the operating variable of the burner based on at least one of the first value and the second value.
  • the third value can be obtained by mathematically and / or logically combining the first value and the second value.
  • the weighting can take place as a function of an operating state derived from the first and / or second value.
  • Such a determination of the value of the operating variable of the burner makes it possible to use the fourth and fifth signals which provide the optimum measurement resolution for the current operating state or operating range of the burner.
  • a device for flame signal detection by means of an ionization electrode protruding into a combustion chamber of a burner, to which an AC voltage is applied comprises an arrangement (for example a measuring device) for detecting a first signal, which is a direct current signal dependent on an ionization current flowing off the ionization electrode; a signal generator for generating a second Signal that has a predetermined, periodic course; Means (eg an adder) for generating a third signal by adding the first signal and the second signal; a first comparator for generating a fourth signal by comparing the third signal with a first threshold (ie for generating the fourth signal by comparing the third signal with the first threshold), the first threshold being a constant reference value and the fourth signal being a sequence is formed by rectangular pulses; a second comparator for generating a fifth signal by comparing the third signal with a second threshold value (ie for generating the fifth signal by comparing the third signal with the second threshold value),
  • the first and second threshold values can each be predefined.
  • the fourth and fifth signals can each be a signal (e.g. voltage signal) with a sequence of rectangular pulses, in particular a PWM signal.
  • the predetermined course of the second signal has a first section (curve section) with a first slope value and a second section (curve section) with a second slope value different from the first slope value.
  • the predetermined curve shape preferably has an ascending flank and a descending flank Edge on, and the first section and the second section are each arranged together in the rising edge, or together in the falling edge.
  • the first section and the second section can each have the shape of a straight line, that is, straight line sections.
  • the first and second sections can be approximated straight lines that have averaged slope values.
  • the first and second sections can connect to one another or follow one another in the course of the curve over time.
  • the first threshold value is selected such that for an ionization current occurring in a first operating state (or in a first operating range or at a first operating point) of the burner, the third signal has the first threshold value in each case at a first point in time within the period of the second signal (or within the period the approximately periodic third signal) for which the second signal has a signal value that falls in the first section of the periodic curve.
  • the first threshold value is selected such that the second signal has a signal value within the first curve section at the first point in time.
  • the first point in time is the point in time within the period of the second signal for which the value (signal value) of the third signal is equal to the first threshold value.
  • the first time is the time at which the third signal exceeds the first threshold. If, on the other hand, the first section is within the falling edge, the first point in time is the point in time at which the third signal falls below the first threshold value.
  • the second threshold value is also selected such that for an ionization current occurring in a second operating state (or in a second operating range or at a second operating point) of the burner, the third signal has the second threshold value at a second point in time within the period of the second signal (or within the period the approximately periodic third signal) for which the second signal has a signal value that falls in the second section.
  • the second threshold value is selected such that the second signal has a signal value within the second curve section at the second point in time.
  • the second point in time is the point in time within the period of the second signal for which the value (signal value) of the third signal is equal to the second threshold value.
  • the second point in time is the point in time at which the third signal exceeds the second threshold value. If, on the other hand, the second section is located within the falling edge, the second point in time is the point in time at which the third signal falls below the second threshold value.
  • the first slope value is preferably less than the second slope value, and the first operating state corresponds to a higher flame resistance than the second operating state.
  • the means for determining the operating variable of the burner are designed to determine the value of the operating variable by mathematically and / or logically combining the fourth signal and the fifth signal (or signals derived therefrom).
  • the means for determining the size of the company The burner may be configured to determine a first value of the operating size of the burner based on the fourth signal, a second value of the operating size of the burner based on the fifth signal, and a third value of the operating size of the burner based on at least one of the first value and the second value.
  • the third value can be obtained by mathematically and / or logically combining the first value and the second value.
  • the weighting can take place as a function of an operating state derived from the first and / or second value.
  • Figure 1 shows an arrangement 10 for measuring or detecting the ionization current flowing from an ionization electrode projecting into a flame, or a first signal which is dependent on the ionization current.
  • a provided supply voltage for example mains voltage
  • a transformer 11 is converted into an AC voltage of a suitable amplitude by means of a transformer 11 and applied to the ionization electrode 15 via a capacitor 14. Due to the rectifier property of the flame, the capacitor 14 is charged with a voltage proportional to the ionization current. This leads to a shift in the zero point of the AC voltage.
  • the resulting AC voltage ie a signal (voltage signal) dependent on the current flowing from the ionization electrode 15, is filtered by a low-pass filter 12, and the filtered DC voltage component is output at an output 13 of the arrangement 10.
  • This is a negative voltage due to the polarity of the rectifier property of the flame.
  • the arrangement 10 can furthermore comprise suitable resistors 16.
  • the first signal is the signal output at the output 13.
  • Figure 2 schematically shows a block diagram of an example of the method according to the invention.
  • the individual blocks correspond to method steps or corresponding devices and means which are designed to carry out the respective method steps.
  • the supply voltage (for example mains voltage) is converted into an AC voltage with a suitable amplitude, and in block 210 is applied to the ionization electrode 15.
  • the supply voltage for example mains voltage
  • 210 is applied to the ionization electrode 15.
  • blocks 205, 210 are schematically the AC voltage applied to the ionization electrode 15 and the resulting voltage signal tapped at the ionization electrode. A negative offset is impressed on the original AC voltage signal by the current flowing away from the ionization electrode 15.
  • the signal obtained is filtered in block 215 using the low pass 12.
  • a first signal which is dependent on an ionization current flowing out of the ionization electrode, is thereby obtained.
  • the low pass 12 isolates the negative offset impressed on the AC voltage signal and outputs it as the first signal.
  • An example of the temporal course of the first signal is in Figure 2 shown below block 215.
  • a second signal that has a periodic curve (curve profile), for example a voltage signal with a periodic curve profile, is generated.
  • the periodic course during operation of the burner is predefined, but can in principle be selected or adapted in accordance with the burner properties.
  • the generation can take place, for example, by means of a curve generator or signal generator (means for generating the second signal).
  • the second signal can be generated by using suitable software and a digital-to-analog converter, or by means of pulse width modulation, and can be adapted to the respective burner properties.
  • a burner-specific curve profile can be stored in a memory beforehand.
  • a schematic example of the curve is in Figure 2 shown above block 220.
  • the predetermined curve shape (ie the signal value as a function of time) has a first section with a first slope value (change in the signal value per unit of time or first time derivative of the curve shape) and a second section with a second slope value in each period of the second signal, the two slope values being different from one another.
  • the course of the curve also has an ascending flank and a descending flank in each period.
  • the first section and the second section are preferably each arranged on the same flank, i.e. both on the rising flank, or both on the descending flank.
  • the two sections can connect to each other. In order to obtain PWM signals with a fixed frequency as a result, the edge in which the two sections are not arranged can also run very steeply or essentially vertically.
  • the two sections each have the shape of a straight line or an approximate straight line. In the case of an approximate straight line, the respective slope value can be obtained by averaging slope values.
  • FIG. 4 Examples of two possible curves of the second signal are shown in Figure 4 shown. Both curves have a first section 401 with a lower gradient value.
  • the first of the two curve profiles also has a second section 402, and the second of the two curve sections has a second section 403.
  • the slope value of the second section 402, 403 is greater than that of the first section 401.
  • the first section 401 and the second sections 402, 403 each directly adjoin one another or merge into one another. Below the first section 401 and / or above the second section 402, 403, the course of the curve can have further sections.
  • the descending flank of the curve runs in the example of Figure 4 substantially vertical to obtain fixed frequency PWM signals in blocks 230, 235 described below.
  • the first signal and the second signal are added together (mixed) to obtain a third signal.
  • the addition or generation of the third signal is carried out by an adder (means for generating the third signal).
  • the weighting of the two signals is determined by a mixing ratio or a mixing resistance.
  • the sensitivity or measurement resolution of the overall system can be determined by a suitable choice of the mixing ratio (i.e. equally for all operating areas). Higher weighting of the first signal increases the sensitivity of the measurement, but reduces the range of values covered by the measurement. In contrast, a higher weighting of the second signal reduces the sensitivity of the measurement, but increases the range of values that can be covered by the measurement.
  • the third signal is a periodic signal with a period that is equal to the period of the second signal, otherwise an approximately periodic signal.
  • the mixed voltage thus obtained, or generally the third signal is compared with a first reference value (first threshold value), and a fourth signal (eg voltage signal) is generated on the basis of the comparison.
  • the fourth signal is a signal (for example a voltage signal) which is formed by a sequence of rectangular pulses, in particular a PWM signal.
  • a first level (eg the upper level) of the PWM signal is output if the signal value of the third signal is above the first threshold value, and the second level (eg the lower level) if the signal value of the third signal is below the first threshold.
  • the third signal is compared with the first threshold value by means of a first comparator (means for generating the fourth signal).
  • a schematic example of the time course of the fourth signal is shown in Figure 2 shown above block 250.
  • the first reference value (threshold value) is in block 240 as a constant signal (eg voltage signal), for example by using a controllable one Voltage source or a DA converter (means for generating the first threshold value).
  • the controllable voltage source can be controlled, for example, by means of a PWM control signal.
  • the mixed voltage, or generally the third signal is compared with a second reference value (second threshold value), and a fifth signal (eg voltage signal) is generated on the basis of the comparison.
  • the fifth signal is a signal (eg voltage signal) which is formed by a sequence of rectangular pulses, in particular a PWM signal.
  • a first level (eg the upper level) of the PWM signal is output if the signal value of the third signal is above the second threshold value, and the second level (eg the lower level) if the signal value of the third signal is below the second threshold.
  • the third signal is compared with the second threshold value by means of a second comparator (means for generating the fifth signal).
  • a schematic example of the time course of the fifth signal is in Figure 2 shown above block 255.
  • the second reference value is generated in block 245 as a constant signal (e.g. voltage signal), for example by using a controllable voltage source or a DA converter (means for generating the second threshold value).
  • the controllable voltage source can be controlled, for example, by means of a PWM control signal.
  • the first threshold value is preferably selected such that the third signal has the first threshold value for an ionization current (or flame resistance) occurring in a first operating state (or in a first operating range or at a first operating point) of the burner crosses at a first point in time within the period of the second signal (or within the period the approximately periodic third signal) for which the second signal has a signal value that falls within the first section of the periodic curve.
  • the first threshold value is selected such that the second signal has a signal value within the first curve section at the first point in time. The first point in time is the point in time within the period of the second signal for which the value (signal value) of the third signal is equal to the first threshold value.
  • the first point in time is the point in time at which the third signal exceeds the first threshold value. If, on the other hand, the first section is located within the falling edge, the first point in time is the point in time at which the third signal falls below the first threshold value.
  • the first operating state of the burner can be the start-up mode in which the flame resistance is correspondingly high (e.g. approximately 70 to 100 M ⁇ ). Because of the large flame resistance, there is a comparatively small ionization current with absolutely small changes per unit of time.
  • the slope value of the first section can be selected to be small (or less than the slope value of the second section), and the first threshold value can further be selected such that at the point in time (first point in time) at which the third signal signals the first Threshold value (if the first section is arranged on the rising edge of the second signal) or at the point in time when it falls below the first threshold value (if the first section is arranged on the falling edge of the second signal), the signal value of the second signal is within the first section.
  • the second threshold value can be selected such that for an ionization current (or flame resistance) occurring in a second operating state (or in a second operating range or at a second operating point) of the burner, the third signal always reaches the second threshold value at a second point in time the period of the second signal (or within the period the approximately periodic third signal) for which the second signal has a signal value that falls in the second section.
  • the second threshold value is selected such that the second signal has a signal value within the second curve section at the second point in time.
  • the second point in time is the point in time within the period of the second signal for which the value (signal value) of the third signal is equal to the second threshold value.
  • the second point in time is the point in time at which the third signal exceeds the second threshold value. If, on the other hand, the second section is located within the falling edge, the second point in time is the point in time at which the third signal falls below the second threshold value.
  • the second operating state of the burner can be operation (for example heating operation) in the vicinity of an optimal air ratio (for example ⁇ ⁇ 1.3) in which the flame resistance is correspondingly low (for example about 70 to 100 k ⁇ ). Because of the small flame resistance, there is a comparatively large ionization current with absolutely large changes per unit of time.
  • an optimal air ratio for example ⁇ ⁇ 1.3
  • the flame resistance is correspondingly low (for example about 70 to 100 k ⁇ ). Because of the small flame resistance, there is a comparatively large ionization current with absolutely large changes per unit of time.
  • the slope value of the second section can be chosen to be large (or greater than the slope value of the first section), and the second threshold value can further be chosen such that at the point in time (second point in time) at which the third signal the second Threshold value (if the second section is arranged on the rising edge of the second signal) or at the point in time at which it falls below the second threshold value (if the second section is arranged on the falling edge of the second signal), the signal value of the second signal is within the second section.
  • the position of the first and second operating areas in which detection of the ionization current or flame resistance with a corresponding measurement resolution is desired can be specified by selecting the first and second reference voltages given the curve shape of the second signal. If necessary, an overlap area of the operating areas can be determined by a suitable choice of the reference voltages. By choosing the first and second slope values, however, the respective measurement resolution is specified. A larger slope value means a lower measurement resolution (sensitivity), and a lower slope value means a higher measurement resolution.
  • the ionization signal curve (or flame resistance signal curve) of a burner can be linearized over the entire modulation range via the suitable choice of the curve curve of the second signal.
  • This enables safe and stable control of the combustion system or the combustion process.
  • the method according to the invention offers five parameters (first threshold value, second threshold value, first slope value, second slope value, mixing ratio), by means of which an optimal ionization signal curve for the combustion control can be achieved.
  • the relationship between measurement resolution (sensitivity), slope values and threshold values is in Figure 3 exemplified that as first example includes the operation in a first operating state and as a second example the operation of the burner in a second operating state.
  • This in Figure 3 The third signal shown results from a shift of the second signal to negative voltage values due to the addition of the (negative) first signal.
  • the third signal also has a first section 301 and a second section 302, the second section 302 here having a greater slope value than the first section 301. If, in the first example, the third signal crosses the first threshold value 303 in the region of the first section 301, even small changes 304 in the ionization current (or the signal value of the third signal) result in relatively large changes 305 in the time of crossing.
  • the fourth and fifth signals are preferably PWM signals.
  • the size of the ionization current determines the pulse duration (or the duty cycle, or the "duty cycle") of the respective PWM signals.
  • the fourth signal provides the necessary resolution for the operating range of the burner in which the flame has a high resistance (high-resistance range)
  • the fifth signal provides the necessary resolution for the operating range of the burner, in to which the flame has a low resistance (low-resistance area).
  • the (time-varying) pulse width (i.e. width or duration of the rectangular pulses) of the fourth signal is determined, and a sixth signal indicating this pulse width is generated or output.
  • the (time-varying) pulse width (i.e. width or duration of the rectangular pulses) of the fifth signal is determined in block 255, and a seventh signal indicating this pulse width is generated or output.
  • a value of an operating variable of the burner for example ionization current, flame resistance, flame temperature, air ratio, burner output, can now be determined. This can be done by mathematically and / or logically linking the respective signals, for example by mathematically and / or logically linking the fourth and fifth signals, or by mathematically and / or logically linking the sixth and seventh signals.
  • a table for the sixth and seventh signals can be stored in a memory, which relates the values of the operating variable to corresponding values of the pulse duration.
  • the value of the farm size to be output can then be determined on the basis of the values of the farm size determined using these tables.
  • the operating range in which the burner is currently located can be estimated from the two values determined using the tables. Corresponding to this estimated operating range, one of the two values determined using the tables can then be used as the value to be output. For example, if the estimated operating range corresponds more closely to the first operating range, the value determined on the basis of the sixth signal can be output, otherwise that based on the seventh signal determined value. Furthermore, weighting factors for the two values determined using the tables can be derived on the basis of the estimated operating range, and a weighted sum of these values can be used as the value to be output. In general, within the scope of the method according to the invention, the value of the operating variable to be output is determined by mathematically and / or logically combining the fourth and fifth signals, in a preferred embodiment of the sixth and seventh signals.
  • the value of the operating variable can be determined in an evaluation circuit (means for determining the operating variable of the burner).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Control Of Combustion (AREA)

Claims (13)

  1. Procédé de détection de signal de flamme au moyen d'une électrode d'ionisation (15), faisant saillie dans une chambre de combustion d'un brûleur, sur laquelle une tension alternative est appliquée, avec les étapes :
    de détection (215) d'un premier signal, qui est un signal de courant continu dépendant d'un courant d'ionisation provenant de l'électrode d'ionisation (15) ;
    de production (220) d'un deuxième signal, qui présente une variation périodique prédéfinie ;
    de production (225) d'un troisième signal par addition du premier signal et du deuxième signal ;
    de production (230) d'un quatrième signal au moyen d'un premier comparateur par comparaison du troisième signal à une première valeur seuil, dans lequel la première valeur seuil est une valeur de référence constante et le quatrième signal est formé par une suite d'impulsions rectangulaires ;
    de production (235) d'un cinquième signal au moyen d'un deuxième comparateur par comparaison du troisième signal à une deuxième valeur seuil, dans lequel la deuxième valeur seuil est une valeur de référence constante, différente de la première valeur seuil, et le cinquième signal est formé par une suite d'impulsions rectangulaires ; et
    de détermination (250, 255) d'une grandeur de fonctionnement du brûleur sur la base d'au moins un du quatrième signal et du cinquième signal,
    dans lequel la variation prédéfinie du deuxième signal présente une première partie avec une première valeur de pente et une deuxième partie avec une deuxième valeur de pente différente de la première valeur de pente.
  2. Procédé selon la revendication 1, dans lequel la première valeur seuil est sélectionnée de sorte que, pour un courant d'ionisation apparaissant dans un premier état de fonctionnement du brûleur, le troisième signal croise la première valeur seuil respectivement à un premier moment à l'intérieur de la période du deuxième signal pour lequel le deuxième signal présente une valeur de signal qui rentre dans la première partie.
  3. Procédé selon la revendication 1 ou 2, dans lequel la deuxième valeur seuil est sélectionnée de sorte que, pour un courant d'ionisation apparaissant dans un deuxième état de fonctionnement du brûleur, le troisième signal croise la deuxième valeur seuil respectivement à un deuxième moment à l'intérieur de la période du deuxième signal pour lequel le deuxième signal présente une valeur de signal qui rentre dans la deuxième partie.
  4. Procédé selon au moins l'une des revendications précédentes, dans lequel la grandeur de fonctionnement du brûleur est déterminée par combinaison mathématique et/ou logique du quatrième signal et du cinquième signal, ou de signaux dérivés de ceux-ci.
  5. Procédé selon au moins l'une des revendications précédentes, avec les autres étapes :
    de détermination d'une première valeur de la grandeur de fonctionnement du brûleur sur la base du quatrième signal ;
    de détermination d'une deuxième valeur de la grandeur de fonctionnement du brûleur sur la base du cinquième signal ;
    de détermination d'une troisième valeur de la grandeur de fonctionnement du brûleur sur la base d'au moins une de la première valeur et de la deuxième valeur.
  6. Procédé selon la revendication 5, dans lequel la troisième valeur est déterminée par combinaison mathématique et/ou logique de la première valeur et de la deuxième valeur.
  7. Procédé selon au moins l'une des revendications 1 à 6, dans lequel la première valeur de pente est inférieure à la deuxième valeur de pente, et le premier état de fonctionnement correspond à une résistance aux flammes plus élevée que le deuxième état de fonctionnement.
  8. Dispositif de détection de signal de flamme au moyen d'une électrode d'ionisation (15), faisant saillie dans une chambre de combustion d'un brûleur, sur laquelle une tension alternative est appliquée, le dispositif comprenant :
    un ensemble (10) pour la détection d'un premier signal, qui est un signal de courant continu dépendant d'un courant d'ionisation provenant de l'électrode d'ionisation (15) ;
    un générateur de signal (220) pour la production d'un deuxième signal, qui présente une variation périodique prédéfinie ;
    des moyens (225) pour la production d'un troisième signal par addition du premier signal et du deuxième signal ;
    un premier comparateur (230) pour la production d'un quatrième signal par comparaison du troisième signal à une première valeur seuil, dans lequel la première valeur seuil est une valeur de référence constante et le quatrième signal est formé par une suite d'impulsions rectangulaires ;
    un deuxième comparateur (235) pour la production d'un cinquième signal par comparaison du troisième signal à une deuxième valeur seuil, dans lequel la deuxième valeur seuil est une valeur de référence constante, différente de la première valeur seuil, et le cinquième signal est formé par une suite d'impulsions rectangulaires ; et
    des moyens (250, 255) pour la détermination d'une grandeur de fonctionnement du brûleur sur la base d'au moins un du quatrième signal et du cinquième signal,
    dans lequel la variation prédéfinie du deuxième signal présente une première partie avec une première valeur de pente et une deuxième partie avec une deuxième valeur de pente différente de la première valeur de pente.
  9. Dispositif selon la revendication 8, dans lequel la première valeur seuil est sélectionnée de sorte que, pour un courant d'ionisation apparaissant dans un premier état de fonctionnement du brûleur, le troisième signal croise la première valeur seuil respectivement à un premier moment à l'intérieur de la période du deuxième signal pour lequel le deuxième signal présente une valeur de signal qui rentre dans la première partie.
  10. Dispositif selon la revendication 8 ou 9, dans lequel la deuxième valeur seuil est sélectionnée de sorte que, pour un courant d'ionisation apparaissant dans un deuxième état de fonctionnement du brûleur, le troisième signal croise la deuxième valeur seuil respectivement à un deuxième moment à l'intérieur de la période du deuxième signal pour lequel le deuxième signal présente une valeur de signal qui tombe dans la deuxième partie.
  11. Dispositif selon au moins l'une des revendications 8 à 10, dans lequel les moyens pour la détermination de la grandeur de fonctionnement du brûleur sont configurés pour déterminer la grandeur de fonctionnement du brûleur par combinaison mathématique et/ou logique du quatrième signal et du cinquième signal, ou de signaux dérivés de ceux-ci.
  12. Dispositif selon au moins l'une des revendications 8 à 11, dans lequel les moyens pour la détermination de la grandeur de fonctionnement du brûleur sont configurés pour déterminer une première valeur de la grandeur de fonctionnement du brûleur sur la base du quatrième signal, pour déterminer une deuxième valeur de la grandeur de fonctionnement du brûleur sur la base du cinquième signal, et pour déterminer une troisième valeur de la grandeur de fonctionnement du brûleur sur la base d'au moins une de la première valeur et de la deuxième valeur, et
    dans lequel les moyens pour la détermination de la grandeur de fonctionnement du brûleur sont éventuellement configurés en plus pour déterminer la troisième valeur par combinaison mathématique et/ou logique de la première valeur et de la deuxième valeur.
  13. Dispositif selon au moins l'une des revendications 8 à 12, dans lequel la première valeur de pente est inférieure à la deuxième valeur de pente, et le premier état de fonctionnement correspond à une résistance aux flammes plus élevée que le deuxième état de fonctionnement.
EP16788076.4A 2015-11-11 2016-10-26 Procédé et dispositif de détection de signal de flamme Active EP3374696B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015222263.2A DE102015222263B3 (de) 2015-11-11 2015-11-11 Verfahren und vorrichtung zur flammensignalerfassung
PCT/EP2016/075733 WO2017080820A1 (fr) 2015-11-11 2016-10-26 Procédé et dispositif de détection de signal de flamme

Publications (2)

Publication Number Publication Date
EP3374696A1 EP3374696A1 (fr) 2018-09-19
EP3374696B1 true EP3374696B1 (fr) 2020-06-17

Family

ID=57209454

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16788076.4A Active EP3374696B1 (fr) 2015-11-11 2016-10-26 Procédé et dispositif de détection de signal de flamme

Country Status (5)

Country Link
US (1) US10704785B2 (fr)
EP (1) EP3374696B1 (fr)
CA (1) CA3004930A1 (fr)
DE (1) DE102015222263B3 (fr)
WO (1) WO2017080820A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018118288A1 (de) * 2018-07-27 2020-01-30 Ebm-Papst Landshut Gmbh Verfahren zur Überwachung und Regelung einer Brennerflamme eines Heizgerätebrenners
DE102020104210A1 (de) 2020-02-18 2021-08-19 Vaillant Gmbh Verfahren und Vorrichtung zur Regelung eines Brenngas-Luft-Gemisches in einem Heizgerät bei variabler Leistung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1096992A (en) * 1964-01-08 1967-12-29 Graviner Manufacturing Co Improvements in radiation detectors
FR2238393A5 (fr) 1973-07-17 1975-02-14 Rv Const Electriques
US4220857A (en) * 1978-11-01 1980-09-02 Systron-Donner Corporation Optical flame and explosion detection system and method
DE4433425C2 (de) * 1994-09-20 1998-04-30 Stiebel Eltron Gmbh & Co Kg Regeleinrichtung zum Einstellen eines Gas-Verbrennungsluft-Gemisches bei einem Gasbrenner
US5785512A (en) * 1996-12-17 1998-07-28 Fireye, Inc. Infrared emittance combustion analyzer
US6150659A (en) * 1998-04-10 2000-11-21 General Monitors, Incorporated Digital multi-frequency infrared flame detector
DE19947181B4 (de) * 1999-10-01 2005-03-17 Gaswärme-Institut eV Verfahren zur Bestimmung eines für die aktuelle Luftzahl repräsentativen Signals
DE10023273A1 (de) 2000-05-12 2001-11-15 Siemens Building Tech Ag Messeinrichtung für eine Flamme
US7769532B2 (en) * 2008-03-31 2010-08-03 Perkins Engines Company Limited Method for operating fuel injection system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA3004930A1 (fr) 2017-05-18
WO2017080820A1 (fr) 2017-05-18
US10704785B2 (en) 2020-07-07
US20180372316A1 (en) 2018-12-27
DE102015222263B3 (de) 2017-05-24
EP3374696A1 (fr) 2018-09-19

Similar Documents

Publication Publication Date Title
EP2457314B1 (fr) Procédé et circuit pour l'amélioration de facteur de puissance
DE10023273A1 (de) Messeinrichtung für eine Flamme
DE112018005238T5 (de) Schaltung und verfahren zum detektieren eines ausfalls einer led-lampe
CH694996A5 (de) Verfahren zu Ueberpruefen eines elektromagnetischen Durchflussmessers und elektromagnetische Durchflussmesseranordnung.
DE102012218773A1 (de) Verfahren und Einrichtung zur Messung eines Stroms durch einen Schalter
EP3374696B1 (fr) Procédé et dispositif de détection de signal de flamme
EP2891161A2 (fr) Procédé de régulation de l'intensité du courant électrique circulant dans une charge inductive, et circuit correspondant
EP1880096B1 (fr) Procede et dispositif de commande electrique d'une soupape au moyen d'un element de fermeture mecanique
EP3767175A1 (fr) Procédé et dispositif de réglage de la sensibilité d'un détecteur permettant de surveiller une flamme dans un appareil chauffant
DE3803611A1 (de) Schaltgeregelte stroemungssonde
DE10244466C1 (de) Schaltungsanordnung zum Betreiben einer linearen Abgassonde
DE102009029073B4 (de) Verfahren zur Durchführung eines Selbsttests für eine mikromechanische Sensorvorrichtung und entsprechende mikromechanische Sensorvorrichtung
DE102009001400A1 (de) Verfahren zur Überwachung der elektrischen Eigenschaften eines getaktet gesteuerten Lastkreises und Schaltungsanordnung zur Durchführung des Verfahrens
DE19843678A1 (de) Verfahren zur Bereitstellung eines Ausgangssignals mit einem gewünschten Wert einer Kenngröße am Ausgang eines Schaltnetzteils und Schaltung zur Durchführung des Verfahrens
EP3669150B1 (fr) Circuit de capture de température
DE10220773A1 (de) Verfahren und Einrichtung zur Regelung eines Verbrennungsprozesses, insbesondere eines Brenners
EP3825610A1 (fr) Procédé et dispositif de mesure de la valeur lambda dans un bruleur à combustion des fossiles, en particulier pour une installation de chauffage et/ou d'eau sanitaire
DE4233110A1 (de) Verfahren zur Bestimmung der elektrischen Leitfähigkeit von Flüssigkeiten und Vorrichtung zu dessen Durchführung
EP2136141A2 (fr) Procédé et dispositif de détermination d'au moins une grandeur d'influence d'un processus de combustion
EP4073500B1 (fr) Methode et unite de controle pour determiner la valeur de courant d'une sonde lambda a large bande
EP2865946B1 (fr) Dispositif de détermination d'un courant d'ionisation d'une flamme
DE102020108006A1 (de) Schaltungsvorrichtung und Verfahren zum Überwachen einer Brennerflamme
WO2020193579A1 (fr) Dispositif régulateur permettant la régulation d'une valeur efficace d'un courant électrique de charge au niveau d'une charge variant dans le temps, véhicule et procédé
DE102015116171B4 (de) Schweißgerät und Verfahren zum Betreiben desselben
WO2022078784A1 (fr) Procédé de diagnostic d'une sonde d'oxygène à large bande

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180611

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RIES, MARTIN

Inventor name: PFUELLER, RICHARD

Inventor name: CLEMENS, ARNO

Inventor name: HACK, SEBASTIAN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HACK, SEBASTIAN

Inventor name: RIES, MARTIN

Inventor name: PFUELLER, RICHARD

Inventor name: CLEMENS, ARNO

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190731

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010275

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1281768

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200918

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201031

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010275

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

26N No opposition filed

Effective date: 20210318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201026

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20211021

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20211019

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211021

Year of fee payment: 6

Ref country code: CH

Payment date: 20211022

Year of fee payment: 6

Ref country code: BE

Payment date: 20211021

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016010275

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20221101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1281768

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221026

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221101

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231031

Year of fee payment: 8