EP3767175A1 - Procédé et dispositif de réglage de la sensibilité d'un détecteur permettant de surveiller une flamme dans un appareil chauffant - Google Patents

Procédé et dispositif de réglage de la sensibilité d'un détecteur permettant de surveiller une flamme dans un appareil chauffant Download PDF

Info

Publication number
EP3767175A1
EP3767175A1 EP20185200.1A EP20185200A EP3767175A1 EP 3767175 A1 EP3767175 A1 EP 3767175A1 EP 20185200 A EP20185200 A EP 20185200A EP 3767175 A1 EP3767175 A1 EP 3767175A1
Authority
EP
European Patent Office
Prior art keywords
alternating voltage
flame
voltage pulses
length
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20185200.1A
Other languages
German (de)
English (en)
Inventor
Jochen Grabe
Stefan Hucke
Tobias Funke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP3767175A1 publication Critical patent/EP3767175A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • F23M11/04Means for supervising combustion, e.g. windows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/20Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays
    • F23N5/203Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/18Chopper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/42Function generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/12Flame sensors with flame rectification current detecting means

Definitions

  • the invention is in the field of regulating or monitoring a combustion process in a heating device, in particular a burner for preparing hot water or heating a building.
  • a heating device in particular a burner for preparing hot water or heating a building.
  • an ionization measurement is carried out in a flame area, especially in many heating devices. Such measurements should enable stable regulation over long periods of time.
  • flame monitoring is typically carried out in heating devices, the main task of which is to ensure that no fuel gas is supplied after the heating device has been started if there is no flame. This prevents the formation of a potentially explosive mixture and the escape of unburned fuel gas.
  • An electronic flame monitor that is often used uses an ignition electrode that is already present, which is otherwise not required for any other purpose after a flame has been ignited, to generate an ionization signal which is used to monitor the flame.
  • the specially prepared ionization signal can not only reliably detect the presence of a flame or its extinction, but also measure, for example, the physical lifting of the flame from the burner due to excessive air supply at an early stage. In this way, it can be switched off early if the flame becomes unstable.
  • ionization electrode an ignition or ionization electrode
  • This current or a voltage signal derived therefrom, called ionization signal in the following, are measured and, if necessary after digitization, further processed in an analog / digital converter for flame monitoring.
  • an AC voltage source with a high output resistance has hitherto been used, which initially supplies an AC voltage without a DC voltage component to the ionization electrode and the counter electrode (ground).
  • the present invention is intended to provide a remedy here in order to enable safe and reliable operation of a heater with qualitatively and / or quantitatively precise flame monitoring with little expenditure on equipment and at low cost.
  • the method according to the invention for adapting the sensitivity of a detector for monitoring a flame in a heating device is characterized in that an alternating voltage source generates individual alternating voltage pulses of a predeterminable alternating voltage frequency and a predeterminable length between an ionization electrode located in a flame area and a counter electrode, with a time interval lies between the start of the individual AC voltage pulses, and wherein the length and / or the spacing of the individual AC voltage pulses can be adjusted.
  • an effective amplitude of the alternating voltage can be set, which allows a simpler and, above all, more cost-effective design than when using a conventional alternating voltage source with adjustable amplitude.
  • the desired accuracy of flame monitoring does not depend on whether the alternating voltage is sinusoidal and continuous or not. It is only important that the effective amplitude, i.e. the integral of the individual amplitudes, can be reproducibly set over a certain period of time and that the integral of positive and negative half-waves is essentially constant over time, i.e. negative and positive half-waves occur approximately equally.
  • the shape of the alternating voltage pulses does not matter, so that individual pulses z. B. may have decreasing amplitudes. With the shape and length of the individual alternating voltage pulses remaining the same, the effective amplitude of the alternating voltage, which only affects the ionization signal, can be adjusted by setting the time interval between the alternating voltage pulses. In this way, the sensitivity of the measurement can be adjusted during operation.
  • the alternating voltage frequency is preferably higher than a repetition frequency resulting from the time interval between the alternating voltage pulses, in particular greater than 1 kilohertz [kHz]. Frequencies in the kilohertz range can be generated with smaller transformers than lower frequencies, which makes smaller electronic circuits possible.
  • the alternating voltage frequency is greater than 15 kHz.
  • pulses can be generated which contain several successive waves, possibly decaying in their amplitude, and which can be repeated at suitable time intervals.
  • Suitable distances arise in particular with a repetition frequency between 0.2 and 15 kHz.
  • the effective amplitude (voltage) of the alternating voltage can be set over a wide range with these values.
  • the maximum amplitude of the alternating voltage pulses is between 50 and 300 volts [V], preferably between 100 and 200 V.
  • Each alternating voltage pulse should preferably have essentially no direct voltage component so that the rectifying effect of the flame can be easily measured and evaluated. Any small DC voltage component that may be present should in any case be constant so that it can be compensated if necessary.
  • each alternating voltage pulse has an amplitude that decreases along its length.
  • z. B on the principle of a so-called "flyback converter” can be used.
  • a simple microcontroller can then be used to easily set the effective amplitude by varying the time intervals between the alternating voltage pulses.
  • the so-called pulse duty factor resulting from the length of the pulses and the time interval is used to set a desired effective amplitude of the alternating voltage, so that the sensitivity of the measurement can be adapted to operating conditions.
  • the AC voltage source is preferably designed for frequencies greater than 15 kHz and AC voltage pulses of constant length while the time interval between the AC voltage pulses can be adjusted.
  • the time interval between the start of two consecutive alternating voltage pulses can be set between 0.005 and 5 milliseconds [ms], preferably between 0.05 and 1 ms.
  • the invention also relates to a computer program product, comprising commands which cause the heating device to carry out the described method with the described device.
  • FIG. 1 shows schematically an embodiment of a device proposed here.
  • a flame area 2 forms during operation.
  • Air enters the heater 1 via an air supply 3 and a fan 5.
  • Combustion gas is mixed with the air via a combustion gas supply 4 and a combustion gas valve 6.
  • An ignition electrode 7 ignites the mixture at the start of the combustion process and is then z. B. used as part of a flame monitor 11.
  • an ionization electrode 8 is typically used to measure an ionization signal in the flame region 2, which is used to control the lambda value when the heater is in operation.
  • a control unit 10, which regulates the fan 5 and / or fuel gas valve 6 accordingly, is used for this purpose.
  • a flame monitor 11, with which the present invention is concerned, ensures that fuel gas is only supplied when a stable flame is detected.
  • a further ionization electrode usually the ignition electrode 7 can be used for this purpose, is used to generate a further ionization signal, its electronic processing is specially designed for the task of flame monitoring.
  • an alternating voltage source 12 is specially designed for this purpose.
  • Fig. 2 shows schematically an exemplary embodiment for a circuit such as can be used for flame monitoring.
  • An AC voltage source 12 with a high output resistance 13 initially supplies an AC voltage, essentially without a DC voltage component, to the ignition electrode 7 and the counter electrode 9 (ground).
  • the voltage only drops in a half-wave due to the rectifying effect of the flame (shown as a diode in the equivalent circuit diagram), so that an alternating voltage is also present at the input of evaluation electronics 14 (amplifier and converter) a negative DC voltage component is present, which becomes the desired ionization signal in the evaluation electronics 14 and can be converted in an analog / digital converter 15 and then processed further.
  • This entire arrangement forms a detector for flame monitoring, which only supplies an ionization signal when a flame is present, the ionization signal also having a typical profile from which, for example, the incipient physical lift-off of the flames from gas outlet openings can be recognized, so that a shutdown can also occur with the onset of instability due to a gas velocity that is too high or a lambda value that is too high.
  • the sensitivity of the detector depends on the amplitude of the alternating voltage used, which is why this is generally adjustable in its amplitude in the prior art, for example between 50 and 200 V at a frequency of 200 Hz, for example.
  • an alternating voltage source 12 which has an alternating voltage pulse generator 17, a microcontroller 18 and an adjuster 19.
  • This structure creates an inexpensive and space-saving alternating voltage source 12 in which an effective amplitude can be set according to the desired sensitivity of the detector.
  • An effective amplitude does not have the form of a typical approximately sinusoidal alternating voltage, but leads to the same ionization signals during further processing as a sinusoidal alternating voltage with this amplitude.
  • FIG. 3 illustrates qualitatively what happens in the process of setting the effective amplitude according to the invention.
  • the upper part of FIG. 4 shows how a sinusoidal alternating voltage of the amplitude U1 changes when the amplitude is reduced to a value U2.
  • the voltage U is plotted against time t in the diagram.
  • Fig. 2 shows how the effective amplitude of an alternating voltage formed from individual alternating voltage pulses 13 of length L can be adjusted by changing the distance T between the individual alternating voltage pulses 13. At a distance T1, the effective amplitude is greater than at a greater distance T2. If the maximum amplitude Umax of the individual alternating voltage pulses 13 is suitably selected, possibly also their frequency F1, an effective amplitude corresponding to that in the upper part of FIG Fig. 3 sinusoidal alternating voltages shown can be set.
  • the invention thus enables an alternative, cost-effective design for an adjustable AC voltage source in a detector for flame monitoring in a heating device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Control Of Combustion (AREA)
EP20185200.1A 2019-07-16 2020-07-10 Procédé et dispositif de réglage de la sensibilité d'un détecteur permettant de surveiller une flamme dans un appareil chauffant Pending EP3767175A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019119206.4A DE102019119206A1 (de) 2019-07-16 2019-07-16 Verfahren und Vorrichtung zur Anpassung der Empfindlichkeit eines Detektors zur Überwachung einer Flamme in einem Heizgerät

Publications (1)

Publication Number Publication Date
EP3767175A1 true EP3767175A1 (fr) 2021-01-20

Family

ID=71575151

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20185200.1A Pending EP3767175A1 (fr) 2019-07-16 2020-07-10 Procédé et dispositif de réglage de la sensibilité d'un détecteur permettant de surveiller une flamme dans un appareil chauffant

Country Status (3)

Country Link
EP (1) EP3767175A1 (fr)
CN (1) CN112240564A (fr)
DE (1) DE102019119206A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253031A (zh) * 2021-05-19 2021-08-13 广东电网有限责任公司 一种输电线路山火跳闸试验平台
WO2023217327A1 (fr) * 2022-05-11 2023-11-16 Viessmann Climate Solutions Se Procédé pour faire fonctionner un ensemble brûleur

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028354A1 (fr) * 1993-05-28 1994-12-08 Honeywell Inc. Capteur du redressement d'une flamme employant l'excitation pulsee
EP1519114A1 (fr) * 2003-09-26 2005-03-30 Betronic Design B.V. Système de surveillance de flamme
US20060257804A1 (en) * 2005-05-12 2006-11-16 Honeywell International Inc. Dynamic dc biasing and leakage compensation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018122B4 (de) * 2007-04-16 2013-10-17 Viessmann Werke Gmbh & Co Kg Flammenüberwachungsvorrichtung mit einer Spannungserzeugungs- und Messanordnung und Verfahren zum Überwachen eines Brenners mittels der Flammenüberwachungsvorrichtung
DE102013009119A1 (de) * 2013-05-29 2014-12-04 Kübler Gmbh Verfahren zur Steuerung einer Heizungsanlage mit einer Vielzahl von Dunkelstrahler-Einheiten sowie Anordnung zur Durchführung des Verfahrens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028354A1 (fr) * 1993-05-28 1994-12-08 Honeywell Inc. Capteur du redressement d'une flamme employant l'excitation pulsee
EP1519114A1 (fr) * 2003-09-26 2005-03-30 Betronic Design B.V. Système de surveillance de flamme
US20060257804A1 (en) * 2005-05-12 2006-11-16 Honeywell International Inc. Dynamic dc biasing and leakage compensation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253031A (zh) * 2021-05-19 2021-08-13 广东电网有限责任公司 一种输电线路山火跳闸试验平台
WO2023217327A1 (fr) * 2022-05-11 2023-11-16 Viessmann Climate Solutions Se Procédé pour faire fonctionner un ensemble brûleur

Also Published As

Publication number Publication date
DE102019119206A1 (de) 2021-01-21
CN112240564A (zh) 2021-01-19

Similar Documents

Publication Publication Date Title
DE3750393T2 (de) Verfahren und Einrichtung, um den Coronaeffekt eines Elektroabscheiders zu detektieren.
DE3545158C2 (fr)
DE19502901C1 (de) Regeleinrichtung für einen Gasbrenner
EP0770824A2 (fr) Procédé et circuit pour commander un brûleur à gaz
DE69206182T2 (de) Hochfrequenz-Kommutationstyp geschützt durch Leistungsversorgung, insbesondere für elektrostatische Abscheider.
DE10023273A1 (de) Messeinrichtung für eine Flamme
EP3767175A1 (fr) Procédé et dispositif de réglage de la sensibilité d'un détecteur permettant de surveiller une flamme dans un appareil chauffant
EP2495496A1 (fr) Installation de brûleur
DE19539568C1 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
EP3690318A2 (fr) Procédé et dispositif de régulation d'un mélange air-gaz de combustion dans un appareil de chauffage
DE3311540A1 (de) Verfahren zum ueberwachen des brennerbetriebs unter anwendung des flammengleichrichteffekts und vorrichtung zum durchfuehren dieses verfahrens
DE102010001307A1 (de) Verfahren und Vorrichtung zur auf Ionisationsstrommessung basierenden Flammenerkennung
DE19626101B4 (de) Schaltungsanordnung zum Starten und Betreiben einer Hochdruckentladungslampe
DE3786762T2 (de) Verfahren und Vorrichtung zur Zündung von Entladungslampen.
DE4233224A1 (de) Vorrichtung zum erfassen eines ionenstroms einer brennkraftmaschine
DE2153695A1 (de) Verfahren und einrichtung zur regelung des strahlstroms bei technischen ladungstraegerstrahlgeraeten
DE19632983C2 (de) Regeleinrichtung für einen Gasbrenner
DE19839160B4 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
DE1638020B2 (de) Steuereinrichtung fuer einen netzgefuehrten mehrphasigen ruhenden stromrichter
EP1340988B1 (fr) Méthode et appareil pour mesurer l'impedance dans un réseau d'alimentation électrique
DE3635128A1 (de) Verfahren und vorrichtung zum nachweisen von oel in aerosoler verteilung in einem luftstrom
DE3346744A1 (de) Schaltungsanordnung zum ueberpruefen der lage von elektroden
DE60014980T2 (de) Flammenüberwachung in einem Brenner
DE102015222263B3 (de) Verfahren und vorrichtung zur flammensignalerfassung
DE10220773A1 (de) Verfahren und Einrichtung zur Regelung eines Verbrennungsprozesses, insbesondere eines Brenners

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210719

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230215