EP3767175A1 - Method and device for adjusting the sensitivity of a detector for monitoring a flame in a heater - Google Patents
Method and device for adjusting the sensitivity of a detector for monitoring a flame in a heater Download PDFInfo
- Publication number
- EP3767175A1 EP3767175A1 EP20185200.1A EP20185200A EP3767175A1 EP 3767175 A1 EP3767175 A1 EP 3767175A1 EP 20185200 A EP20185200 A EP 20185200A EP 3767175 A1 EP3767175 A1 EP 3767175A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alternating voltage
- flame
- voltage pulses
- length
- pulses
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/12—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
- F23N5/123—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M11/00—Safety arrangements
- F23M11/04—Means for supervising combustion, e.g. windows
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/20—Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays
- F23N5/203—Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/18—Chopper
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/42—Function generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2229/00—Flame sensors
- F23N2229/12—Flame sensors with flame rectification current detecting means
Definitions
- the invention is in the field of regulating or monitoring a combustion process in a heating device, in particular a burner for preparing hot water or heating a building.
- a heating device in particular a burner for preparing hot water or heating a building.
- an ionization measurement is carried out in a flame area, especially in many heating devices. Such measurements should enable stable regulation over long periods of time.
- flame monitoring is typically carried out in heating devices, the main task of which is to ensure that no fuel gas is supplied after the heating device has been started if there is no flame. This prevents the formation of a potentially explosive mixture and the escape of unburned fuel gas.
- An electronic flame monitor that is often used uses an ignition electrode that is already present, which is otherwise not required for any other purpose after a flame has been ignited, to generate an ionization signal which is used to monitor the flame.
- the specially prepared ionization signal can not only reliably detect the presence of a flame or its extinction, but also measure, for example, the physical lifting of the flame from the burner due to excessive air supply at an early stage. In this way, it can be switched off early if the flame becomes unstable.
- ionization electrode an ignition or ionization electrode
- This current or a voltage signal derived therefrom, called ionization signal in the following, are measured and, if necessary after digitization, further processed in an analog / digital converter for flame monitoring.
- an AC voltage source with a high output resistance has hitherto been used, which initially supplies an AC voltage without a DC voltage component to the ionization electrode and the counter electrode (ground).
- the present invention is intended to provide a remedy here in order to enable safe and reliable operation of a heater with qualitatively and / or quantitatively precise flame monitoring with little expenditure on equipment and at low cost.
- the method according to the invention for adapting the sensitivity of a detector for monitoring a flame in a heating device is characterized in that an alternating voltage source generates individual alternating voltage pulses of a predeterminable alternating voltage frequency and a predeterminable length between an ionization electrode located in a flame area and a counter electrode, with a time interval lies between the start of the individual AC voltage pulses, and wherein the length and / or the spacing of the individual AC voltage pulses can be adjusted.
- an effective amplitude of the alternating voltage can be set, which allows a simpler and, above all, more cost-effective design than when using a conventional alternating voltage source with adjustable amplitude.
- the desired accuracy of flame monitoring does not depend on whether the alternating voltage is sinusoidal and continuous or not. It is only important that the effective amplitude, i.e. the integral of the individual amplitudes, can be reproducibly set over a certain period of time and that the integral of positive and negative half-waves is essentially constant over time, i.e. negative and positive half-waves occur approximately equally.
- the shape of the alternating voltage pulses does not matter, so that individual pulses z. B. may have decreasing amplitudes. With the shape and length of the individual alternating voltage pulses remaining the same, the effective amplitude of the alternating voltage, which only affects the ionization signal, can be adjusted by setting the time interval between the alternating voltage pulses. In this way, the sensitivity of the measurement can be adjusted during operation.
- the alternating voltage frequency is preferably higher than a repetition frequency resulting from the time interval between the alternating voltage pulses, in particular greater than 1 kilohertz [kHz]. Frequencies in the kilohertz range can be generated with smaller transformers than lower frequencies, which makes smaller electronic circuits possible.
- the alternating voltage frequency is greater than 15 kHz.
- pulses can be generated which contain several successive waves, possibly decaying in their amplitude, and which can be repeated at suitable time intervals.
- Suitable distances arise in particular with a repetition frequency between 0.2 and 15 kHz.
- the effective amplitude (voltage) of the alternating voltage can be set over a wide range with these values.
- the maximum amplitude of the alternating voltage pulses is between 50 and 300 volts [V], preferably between 100 and 200 V.
- Each alternating voltage pulse should preferably have essentially no direct voltage component so that the rectifying effect of the flame can be easily measured and evaluated. Any small DC voltage component that may be present should in any case be constant so that it can be compensated if necessary.
- each alternating voltage pulse has an amplitude that decreases along its length.
- z. B on the principle of a so-called "flyback converter” can be used.
- a simple microcontroller can then be used to easily set the effective amplitude by varying the time intervals between the alternating voltage pulses.
- the so-called pulse duty factor resulting from the length of the pulses and the time interval is used to set a desired effective amplitude of the alternating voltage, so that the sensitivity of the measurement can be adapted to operating conditions.
- the AC voltage source is preferably designed for frequencies greater than 15 kHz and AC voltage pulses of constant length while the time interval between the AC voltage pulses can be adjusted.
- the time interval between the start of two consecutive alternating voltage pulses can be set between 0.005 and 5 milliseconds [ms], preferably between 0.05 and 1 ms.
- the invention also relates to a computer program product, comprising commands which cause the heating device to carry out the described method with the described device.
- FIG. 1 shows schematically an embodiment of a device proposed here.
- a flame area 2 forms during operation.
- Air enters the heater 1 via an air supply 3 and a fan 5.
- Combustion gas is mixed with the air via a combustion gas supply 4 and a combustion gas valve 6.
- An ignition electrode 7 ignites the mixture at the start of the combustion process and is then z. B. used as part of a flame monitor 11.
- an ionization electrode 8 is typically used to measure an ionization signal in the flame region 2, which is used to control the lambda value when the heater is in operation.
- a control unit 10, which regulates the fan 5 and / or fuel gas valve 6 accordingly, is used for this purpose.
- a flame monitor 11, with which the present invention is concerned, ensures that fuel gas is only supplied when a stable flame is detected.
- a further ionization electrode usually the ignition electrode 7 can be used for this purpose, is used to generate a further ionization signal, its electronic processing is specially designed for the task of flame monitoring.
- an alternating voltage source 12 is specially designed for this purpose.
- Fig. 2 shows schematically an exemplary embodiment for a circuit such as can be used for flame monitoring.
- An AC voltage source 12 with a high output resistance 13 initially supplies an AC voltage, essentially without a DC voltage component, to the ignition electrode 7 and the counter electrode 9 (ground).
- the voltage only drops in a half-wave due to the rectifying effect of the flame (shown as a diode in the equivalent circuit diagram), so that an alternating voltage is also present at the input of evaluation electronics 14 (amplifier and converter) a negative DC voltage component is present, which becomes the desired ionization signal in the evaluation electronics 14 and can be converted in an analog / digital converter 15 and then processed further.
- This entire arrangement forms a detector for flame monitoring, which only supplies an ionization signal when a flame is present, the ionization signal also having a typical profile from which, for example, the incipient physical lift-off of the flames from gas outlet openings can be recognized, so that a shutdown can also occur with the onset of instability due to a gas velocity that is too high or a lambda value that is too high.
- the sensitivity of the detector depends on the amplitude of the alternating voltage used, which is why this is generally adjustable in its amplitude in the prior art, for example between 50 and 200 V at a frequency of 200 Hz, for example.
- an alternating voltage source 12 which has an alternating voltage pulse generator 17, a microcontroller 18 and an adjuster 19.
- This structure creates an inexpensive and space-saving alternating voltage source 12 in which an effective amplitude can be set according to the desired sensitivity of the detector.
- An effective amplitude does not have the form of a typical approximately sinusoidal alternating voltage, but leads to the same ionization signals during further processing as a sinusoidal alternating voltage with this amplitude.
- FIG. 3 illustrates qualitatively what happens in the process of setting the effective amplitude according to the invention.
- the upper part of FIG. 4 shows how a sinusoidal alternating voltage of the amplitude U1 changes when the amplitude is reduced to a value U2.
- the voltage U is plotted against time t in the diagram.
- Fig. 2 shows how the effective amplitude of an alternating voltage formed from individual alternating voltage pulses 13 of length L can be adjusted by changing the distance T between the individual alternating voltage pulses 13. At a distance T1, the effective amplitude is greater than at a greater distance T2. If the maximum amplitude Umax of the individual alternating voltage pulses 13 is suitably selected, possibly also their frequency F1, an effective amplitude corresponding to that in the upper part of FIG Fig. 3 sinusoidal alternating voltages shown can be set.
- the invention thus enables an alternative, cost-effective design for an adjustable AC voltage source in a detector for flame monitoring in a heating device.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Control Of Combustion (AREA)
Abstract
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Anpassung der Empfindlichkeit eines Detektors (11) zur Überwachung einer Flamme in einem Heizgerät (1), wobei eine Wechselspannungsquelle (12) einzelne Wechselspannungspulse (13) einer Wechselspannungsfrequenz (F1) und einer vorgebbaren Länge (L) zwischen einer in einem Flammenbereich (2) liegenden lonisationselektrode (7) und einer Gegenelektrode (9) erzeugt, wobei ein zeitlicher Abstand (T) zwischen dem Beginn aufeinander folgender Wechselspannungspulse (13) liegt, und wobei die Länge (L) und/oder der Abstand (T) der einzelnen Wechselspannungspulse (13) einstellbar sind. Die Vorrichtung in einem Heizgerät (1) mit einer Luftzufuhr (3) und einer Brenngaszufuhr (4), umfasst eine lonisationselektrode (7) in einem Flammenbereich (2), eine Gegenelektrode (9), eine Wechselspannungsquelle (11) und eine Auswertelektronik (14) zur Ermittlung eines Ionisationssignales. Die Wechselspannungsquelle (12) ist für eine in zeitlichen Abständen (T) erfolgende Erzeugung von einzelnen Wechselspannungspulsen (13) einer Wechselspannungsfrequenz (F1), insbesondere größer 1 kHz, und einer vorgebbaren Länge (L) ausgebildet ist, wobei die Länge (L) und/oder der zeitliche Abstand (T) der einzelnen Wechselspannungspulse (13) einstellbar sind. Durch eine solche Einstellung der effektiven Amplitude der Wechselspannungsquelle (12) lässt sich die Empfindlichkeit des Detektors (11) anpassen.The invention relates to a method and a device for adapting the sensitivity of a detector (11) for monitoring a flame in a heating device (1), with an alternating voltage source (12) individual alternating voltage pulses (13) having an alternating voltage frequency (F1) and a predeterminable length (L. ) generated between an ionization electrode (7) located in a flame area (2) and a counter electrode (9), with a time interval (T) between the start of successive alternating voltage pulses (13), and with the length (L) and / or the distance (T) between the individual alternating voltage pulses (13) can be adjusted. The device in a heating device (1) with an air supply (3) and a fuel gas supply (4) comprises an ionization electrode (7) in a flame area (2), a counter electrode (9), an AC voltage source (11) and evaluation electronics (14) ) to determine an ionization signal. The AC voltage source (12) is designed for the generation of individual AC voltage pulses (13) at time intervals (T) with an AC voltage frequency (F1), in particular greater than 1 kHz, and a predefinable length (L), the length (L) and / or the time interval (T) between the individual alternating voltage pulses (13) can be set. By setting the effective amplitude of the AC voltage source (12) in this way, the sensitivity of the detector (11) can be adapted.
Description
Die Erfindung liegt auf dem Gebiet der Regelung oder Überwachung eines Verbrennungsprozesses in einem Heizgerät, insbesondere einem Brenner zur Warmwasserbereitung oder Beheizung eines Gebäudes. Zur Messung einer Qualität der Verbrennung, die hauptsächlich von dem während der Verbrennung vorliegenden Verhältnis von Luft zu Brenngas (Lambda-Wert, auch Luftzahl genannt) abhängt, wird insbesondere bei vielen Heizgeräten eine lonisationsmessung in einem Flammenbereich durchgeführt. Solche Messungen sollen eine stabile Regelung über lange Zeiträume ermöglichen.The invention is in the field of regulating or monitoring a combustion process in a heating device, in particular a burner for preparing hot water or heating a building. To measure the quality of the combustion, which mainly depends on the ratio of air to fuel gas (lambda value, also called air ratio) during the combustion, an ionization measurement is carried out in a flame area, especially in many heating devices. Such measurements should enable stable regulation over long periods of time.
Außerdem wird in Heizgeräten typischerweise auch eine Flammenüberwachung durchgeführt, deren wesentliche Aufgabe darin besteht, sicherzustellen, dass nach dem Start des Heizgerätes keine Zufuhr von Brenngas erfolgt, wenn keine Flamme vorliegt. Damit werden die Entstehung eines eventuell explosiven Gemisches und das Austreten von unverbranntem Brenngas verhindert. Dies kann auf viele verschiedene Weisen erreicht werden. Es gibt optische, thermische und elektronische Systeme. Ein oft eingesetzter elektronischer Flammenwächter nutzt eine ohnehin vorhandene Zündelektrode, die ansonsten nach der Zündung einer Flamme nicht anderweitig benötigt wird, zur Erzeugung eines lonisationssignals, welches zur Überwachung der Flamme dient. Das speziell aufbereitete lonisationssignal kann nicht nur das Vorhandensein einer Flamme bzw. deren Erlöschen sicher detektieren, sondern beispielsweise auch das physische Abheben der Flamme vom Brenner durch zu hohe Luftzufuhr frühzeitig messen. So kann bei Instabilitäten der Flamme frühzeitig eine Abschaltung erfolgen.In addition, flame monitoring is typically carried out in heating devices, the main task of which is to ensure that no fuel gas is supplied after the heating device has been started if there is no flame. This prevents the formation of a potentially explosive mixture and the escape of unburned fuel gas. This can be achieved in many different ways. There are optical, thermal and electronic systems. An electronic flame monitor that is often used uses an ignition electrode that is already present, which is otherwise not required for any other purpose after a flame has been ignited, to generate an ionization signal which is used to monitor the flame. The specially prepared ionization signal can not only reliably detect the presence of a flame or its extinction, but also measure, for example, the physical lifting of the flame from the burner due to excessive air supply at an early stage. In this way, it can be switched off early if the flame becomes unstable.
Nach dem Stand der Technik wird bisher im Betrieb eine Flammenüberwachung oft durch Anlegen einer in der Amplitude konstanten oder einstellbaren Wechselspannung an eine Zünd- oder lonisationselektrode (im Folgenden: lonisationselektrode) durchgeführt, wobei der bei Vorhandensein von Flammen ionisierte Flammenbereich eine gleichrichtende Wirkung hat, so dass ein lonisationsstrom hauptsächlich jeweils nur während einer Halbwelle des Wechselstromes fließt. Dieser Strom oder ein daraus abgeleitetes Spannungssignal, im Folgenden lonisationssignal genannt, werden gemessen und gegebenenfalls nach einer Digitalisierung in einem Analog/Digital-Wandler zur Flammenüberwachung weiterverarbeitet. Insbesondere wird bisher eine Wechselspannungsquelle mit einem hohen Ausgangswiderstand eingesetzt, die zunächst eine Wechselspannung ohne Gleichspannungsanteil an die lonisationselektrode und die Gegenelektrode (Masse) liefert. Beim Auftreten einer Flamme zwischen den beiden fällt auf Grund des hohen Ausgangswiderstandes die Spannung wegen der Gleichrichterwirkung der Flamme im Wesentlichen nur in einer Halbwelle ab, so dass an einer Auswerteelektronik (Verstärker und Umwandler) eine Wechselspannung mit einem negativen Gleichspannungsanteil anliegt, die in der Auswerteelektronik zu einem lonisationssignal verarbeitet und in einem Analog/Digitalwandler in ein Digitalsignal umgewandelt werden kann. Bei bekannten Flammenüberwachungssystemen werden z. B. Wechselspannungen mit einer Frequenz bis zu 200 Hertz [Hz] und Amplituden von 50 bis 200 Volt [V] eingesetzt. Eine Einstellung der Spannung ist wünschenswert, um die Empfindlichkeit der Überwachung einstellen zu können, erfordert aber einen erheblichen Schaltungstechnischen und apparativen Aufwand, insbesondere auch einen relativ großen Transformator.According to the prior art, flame monitoring has hitherto often been carried out during operation by applying an alternating voltage that is constant or adjustable in amplitude to an ignition or ionization electrode (hereinafter: ionization electrode), the flame area ionized in the presence of flames having a rectifying effect, see above that an ionization current mainly only flows during one half-cycle of the alternating current. This current or a voltage signal derived therefrom, called ionization signal in the following, are measured and, if necessary after digitization, further processed in an analog / digital converter for flame monitoring. In particular, an AC voltage source with a high output resistance has hitherto been used, which initially supplies an AC voltage without a DC voltage component to the ionization electrode and the counter electrode (ground). When a flame occurs between the two, due to the high output resistance, the voltage essentially only drops in a half-wave due to the rectifying effect of the flame, so that an alternating voltage with a negative direct voltage component is applied to the evaluation electronics (amplifier and converter), which is in the evaluation electronics processed into an ionization signal and converted into a digital signal in an analog / digital converter. In known flame monitoring systems z. B. AC voltages with a frequency of up to 200 Hertz [Hz] and amplitudes of 50 to 200 volts [V] are used. Adjustment of the voltage is desirable in order to be able to adjust the sensitivity of the monitoring, but it requires a considerable outlay in terms of circuit technology and equipment, in particular also a relatively large transformer.
Hier will die vorliegende Erfindung Abhilfe schaffen, um einen sicheren und zuverlässigen Betrieb eines Heizgerätes mit einer qualitativ und/oder quantitativ präzisen Flammenüberwachung bei geringem apparativem Aufwand und kostengünstig zu ermöglichen.The present invention is intended to provide a remedy here in order to enable safe and reliable operation of a heater with qualitatively and / or quantitatively precise flame monitoring with little expenditure on equipment and at low cost.
Zur Lösung dieser Aufgabe dienen ein Verfahren, eine Vorrichtung sowie ein Computerprogrammprodukt gemäß den unabhängigen Ansprüchen. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den jeweiligen abhängigen Ansprüchen angegeben. Die Beschreibung, insbesondere im Zusammenhang mit den Figuren, veranschaulicht die Erfindung und gibt weitere Ausführungsbeispiele an.A method, a device and a computer program product according to the independent claims serve to solve this problem. Advantageous configurations and developments of the invention are specified in the respective dependent claims. The description, in particular in connection with the figures, illustrates the invention and specifies further exemplary embodiments.
Das erfindungsgemäße Verfahren zur Anpassung der Empfindlichkeit eines Detektors zur Überwachung einer Flamme in einem Heizgerät, zeichnet sich dadurch aus, dass eine Wechselspannungsquelle einzelne Wechselspannungspulse einer vorgebbaren Wechselspannungsfrequenz und einer vorgebbaren Länge zwischen einer in einem Flammenbereich liegenden lonisationselektrode und einer Gegenelektrode erzeugt, wobei ein zeitlicher Abstand zwischen dem Beginn der einzelnen Wechselspannungspulse liegt, und wobei die Länge und/oder der Abstand der einzelnen Wechselspannungspulse einstellbar sind. Auf diese Weise lässt sich eine effektive Amplitude der Wechselspannung einstellen, was eine einfachere und vor allem kostengünstigere Bauweise erlaubt als bei Verwendung einer in der Amplitude einstellbaren konventionellen Wechselspannungsquelle. Es hat sich gezeigt, dass es für die angestrebte Genauigkeit einer Flammenüberwachung nicht darauf ankommt, ob die Wechselspannung sinusförmig und kontinuierlich ist oder nicht. Wichtig ist lediglich, dass die effektive Amplitude, also das Integral der einzelnen Amplituden über eine gewisse Zeit reproduzierbar einstellbar ist und dass auch das Integral von positiven und negativen Halbwellen über die Zeit im Wesentlichen konstant ist, also negative und positive Halbwellen in etwa gleich auftreten. Auf die Form der Wechselspannungspulse kommt es hingegen nicht an, so dass einzelne Pulse z. B. abfallende Amplituden haben können. Bei gleichbleibender Form und Länge der einzelnen Wechselspannungspulse lässt sich die effektive Amplitude der Wechselspannung, die allein sich auf das lonisationssignal auswirkt, durch Einstellung des zeitlichen Abstandes der Wechselspannungspulse einstellen. So kann die Empfindlichkeit der Messung im Betrieb angepasst werden.The method according to the invention for adapting the sensitivity of a detector for monitoring a flame in a heating device is characterized in that an alternating voltage source generates individual alternating voltage pulses of a predeterminable alternating voltage frequency and a predeterminable length between an ionization electrode located in a flame area and a counter electrode, with a time interval lies between the start of the individual AC voltage pulses, and wherein the length and / or the spacing of the individual AC voltage pulses can be adjusted. In this way, an effective amplitude of the alternating voltage can be set, which allows a simpler and, above all, more cost-effective design than when using a conventional alternating voltage source with adjustable amplitude. It has been shown that the desired accuracy of flame monitoring does not depend on whether the alternating voltage is sinusoidal and continuous or not. It is only important that the effective amplitude, i.e. the integral of the individual amplitudes, can be reproducibly set over a certain period of time and that the integral of positive and negative half-waves is essentially constant over time, i.e. negative and positive half-waves occur approximately equally. The shape of the alternating voltage pulses, however, does not matter, so that individual pulses z. B. may have decreasing amplitudes. With the shape and length of the individual alternating voltage pulses remaining the same, the effective amplitude of the alternating voltage, which only affects the ionization signal, can be adjusted by setting the time interval between the alternating voltage pulses. In this way, the sensitivity of the measurement can be adjusted during operation.
Bevorzugt ist die Wechselspannungsfrequenz höher als eine sich aus dem zeitlichen Abstand der Wechselspannungspulse ergebende Wiederholfrequenz, insbesondere größer als 1 Kilohertz [kHz]. Frequenzen im Kilohertz-Bereich lassen sich mit kleineren Transformatoren erzeugen als niedrigere Frequenzen, wodurch insgesamt kleinere elektronische Schaltungen möglich werden.The alternating voltage frequency is preferably higher than a repetition frequency resulting from the time interval between the alternating voltage pulses, in particular greater than 1 kilohertz [kHz]. Frequencies in the kilohertz range can be generated with smaller transformers than lower frequencies, which makes smaller electronic circuits possible.
In einer besonderen Ausführungsform der Erfindung ist die Wechselspannungsfrequenz größer 15 kHz. Damit lassen sich Pulse erzeugen, die einige aufeinander folgende, möglicherweise in ihrer Amplitude abklingende Wellen enthalten und in geeigneten zeitlichen Abständen wiederholt werden können.In a particular embodiment of the invention, the alternating voltage frequency is greater than 15 kHz. In this way, pulses can be generated which contain several successive waves, possibly decaying in their amplitude, and which can be repeated at suitable time intervals.
Geeignete Abstände ergeben sich insbesondere bei einer Wiederholfrequenz zwischen 0,2 und 15 kHz. Die effektive Amplitude (Spannung) der Wechselspannung lässt sich mit diesen Werten in einem weiten Bereich einstellen.Suitable distances arise in particular with a repetition frequency between 0.2 and 15 kHz. The effective amplitude (voltage) of the alternating voltage can be set over a wide range with these values.
Die maximale Amplitude der Wechselspannungspulse liegt bei einer bevorzugten Ausführungsform der Erfindung zwischen 50 und 300 Volt [V], vorzugsweise zwischen 100 und 200 V.In a preferred embodiment of the invention, the maximum amplitude of the alternating voltage pulses is between 50 and 300 volts [V], preferably between 100 and 200 V.
Bevorzugt soll jeder Wechselspannungspuls im Wesentlichen keinen Gleichspannungsanteil aufweisen, damit die Gleichrichterwirkung der Flamme leicht gemessen und ausgewertet werden kann. Ein eventuell vorhandener kleiner Gleichspannungsanteil sollte jedenfalls konstant sein, so dass er gegebenenfalls kompensiert werden kann.Each alternating voltage pulse should preferably have essentially no direct voltage component so that the rectifying effect of the flame can be easily measured and evaluated. Any small DC voltage component that may be present should in any case be constant so that it can be compensated if necessary.
Bei einer besonderen Ausführungsform der Erfindung weist jeder Wechselspannungspuls eine während seiner Länge abnehmende Amplitude auf. Zur Erzeugung solcher Pulse kann z. B. auf das Prinzip eines sogenannten "Flyback Converters" zurückgegriffen werden. Mit einem einfachen Microcontroller kann dann eine einfache Einstellung der effektiven Amplitude durch Variation der zeitlichen Abstände der Wechselspannungspulse vorgenommen werden.In a particular embodiment of the invention, each alternating voltage pulse has an amplitude that decreases along its length. To generate such pulses z. B. on the principle of a so-called "flyback converter" can be used. A simple microcontroller can then be used to easily set the effective amplitude by varying the time intervals between the alternating voltage pulses.
Eine erfindungsgemäße Vorrichtung zur Anpassung der Empfindlichkeit eines Detektors zur Überwachung einer Flamme in einem Heizgerät mit einer Luftzufuhr und einer Brenngaszufuhr umfasst eine lonisationselektrode in einem Flammenbereich, eine Gegenelektrode, eine Wechselspannungsquelle und eine Auswertelektronik zur Ermittlung eines lonisationssignales, wobei die Wechselspannungsquelle für eine in zeitlichen Abständen erfolgende Erzeugung von einzelnen Wechselspannungspulsen einer Wechselspannungsfrequenz, insbesondere größer 1 kHz, und einer vorgebbaren Länge ausgebildet ist und wobei die Länge und/oder der Abstand der einzelnen Wechselspannungspulse einstellbar sind. Das sich aus Länge der Pulse und zeitlichem Abstand ergebende sogenannte Tastverhältnis wird zur Einstellung einer gewünschten effektiven Amplitude der Wechselspannung genutzt, womit die Empfindlichkeit der Messung an Betriebsbedingungen angepasst werden kann.A device according to the invention for adapting the sensitivity of a detector for monitoring a flame in a heating device with an air supply and a fuel gas supply comprises an ionization electrode in a flame area, a counter electrode, an AC voltage source and evaluation electronics for determining an ionization signal, the AC voltage source for one at time intervals taking place generation of individual alternating voltage pulses of an alternating voltage frequency, in particular greater than 1 kHz, and a predeterminable length and wherein the length and / or the spacing of the individual alternating voltage pulses are adjustable. The so-called pulse duty factor resulting from the length of the pulses and the time interval is used to set a desired effective amplitude of the alternating voltage, so that the sensitivity of the measurement can be adapted to operating conditions.
Bevorzugt ist die Wechselspannungsquelle für Frequenzen größer 15 kHz und Wechselspannungspulse gleichbleibender Länge bei Einstellbarkeit des zeitlichen Abstandes der Wechselspannungspulse ausgelegt.The AC voltage source is preferably designed for frequencies greater than 15 kHz and AC voltage pulses of constant length while the time interval between the AC voltage pulses can be adjusted.
Der zeitliche Abstand zwischen dem Beginn zweier aufeinander folgender Wechselspannungspulse ist bei einer bevorzugten Ausführungsform zwischen 0,005 und 5 Millisekunden [ms] einstellbar, vorzugsweise zwischen 0,05 und 1 ms.In a preferred embodiment, the time interval between the start of two consecutive alternating voltage pulses can be set between 0.005 and 5 milliseconds [ms], preferably between 0.05 and 1 ms.
Die Erfindung betrifft auch ein Computerprogrammprodukt, umfassend Befehle, die bewirken, dass das Heizgerät das beschriebene Verfahren mit der beschriebenen Vorrichtung ausführt.The invention also relates to a computer program product, comprising commands which cause the heating device to carry out the described method with the described device.
Ein schematisches Ausführungsbeispiel der Erfindung, auf das diese jedoch nicht beschränkt ist, und die Funktionsweise des erfindungsgemäßen Verfahrens werden nun anhand der Zeichnung detailliert erläutert. Es stellen dar:
- Fig. 1:
- schematisch ein Heizgerät mit einer Flammenüberwachung,
- Fig. 2:
- eine schematische Schaltung zur Erzeugung eines lonisationssignals gemäß der Erfindung und
- Fig. 3:
- ein Diagramm zur Veranschaulichung einer Veränderung der effektiven Amplitude einer Wechselspannung im Vergleich zwischen Stand der Technik und der Erfindung.
- Fig. 1:
- schematically a heater with a flame monitor,
- Fig. 2:
- a schematic circuit for generating an ionization signal according to the invention and
- Fig. 3:
- a diagram to illustrate a change in the effective amplitude of an alternating voltage in comparison between the prior art and the invention.
Im unteren Teil der
Die Erfindung ermöglicht damit eine alternative kostengünstige Bauweise für eine einstellbare Wechselspannungsquelle bei einem Detektor zur Flammenüberwachung in einem Heizgerät.The invention thus enables an alternative, cost-effective design for an adjustable AC voltage source in a detector for flame monitoring in a heating device.
- 11
- Heizgerätheater
- 22
- FlammenbereichFlame area
- 33
- LuftzufuhrAir supply
- 44th
- BrenngaszufuhrFuel gas supply
- 55
- Gebläsefan
- 66th
- BrenngasventilFuel gas valve
- 77th
- ZündelektrodeIgnition electrode
- 88th
- lonisationselektrodeionization electrode
- 99
- Brenner / GegenelektrodeBurner / counter electrode
- 1010
- RegeleinheitControl unit
- 1111
- Detektor/ FlammenüberwachungDetector / flame monitoring
- 1212
- WechselspannungsquelleAC voltage source
- 1313
- AusgangswiderstandOutput resistance
- 1414th
- AuswerteelektronikEvaluation electronics
- 1515th
- Analog/DigitalwandlerAnalog / digital converter
- 1616
- Ersatzschaltbild einer FlammeEquivalent circuit diagram of a flame
- 1717th
- Wechselspannungspuls-ErzeugerAlternating voltage pulse generator
- 1818th
- MicrocontrollerMicrocontroller
- 1919th
- EinstellerAdjuster
- U1U1
- erste Amplitudefirst amplitude
- U2U2
- zweite Amplitudesecond amplitude
- UmaxUmax
- Maximale AmplitudeMaximum amplitude
- TT
- zeitlicher Abstandtemporal distance
- T1T1
- erster zeitlicher Abstandfirst time interval
- T2T2
- zweiter zeitlicher Abstandsecond time interval
- F1F1
- WechselspannungsfrequenzAC voltage frequency
- f2f2
- WiederholfrequenzRepetition rate
Claims (12)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019119206.4A DE102019119206A1 (en) | 2019-07-16 | 2019-07-16 | Method and device for adapting the sensitivity of a detector for monitoring a flame in a heating device |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3767175A1 true EP3767175A1 (en) | 2021-01-20 |
Family
ID=71575151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20185200.1A Pending EP3767175A1 (en) | 2019-07-16 | 2020-07-10 | Method and device for adjusting the sensitivity of a detector for monitoring a flame in a heater |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3767175A1 (en) |
CN (1) | CN112240564A (en) |
DE (1) | DE102019119206A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113253031A (en) * | 2021-05-19 | 2021-08-13 | 广东电网有限责任公司 | Mountain fire trip test platform for power transmission line |
WO2023217327A1 (en) * | 2022-05-11 | 2023-11-16 | Viessmann Climate Solutions Se | Method for operating a burner device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994028354A1 (en) * | 1993-05-28 | 1994-12-08 | Honeywell Inc. | Flame rectification sensor employing pulsed excitation |
EP1519114A1 (en) * | 2003-09-26 | 2005-03-30 | Betronic Design B.V. | Flame guarding system |
US20060257804A1 (en) * | 2005-05-12 | 2006-11-16 | Honeywell International Inc. | Dynamic dc biasing and leakage compensation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007018122B4 (en) * | 2007-04-16 | 2013-10-17 | Viessmann Werke Gmbh & Co Kg | Flame monitoring device with a voltage generating and measuring arrangement and method for monitoring a burner by means of the flame monitoring device |
DE102013009119A1 (en) * | 2013-05-29 | 2014-12-04 | Kübler Gmbh | Method for controlling a heating system with a plurality of dark radiator units and arrangement for carrying out the method |
-
2019
- 2019-07-16 DE DE102019119206.4A patent/DE102019119206A1/en active Pending
-
2020
- 2020-07-10 EP EP20185200.1A patent/EP3767175A1/en active Pending
- 2020-07-13 CN CN202010669660.4A patent/CN112240564A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994028354A1 (en) * | 1993-05-28 | 1994-12-08 | Honeywell Inc. | Flame rectification sensor employing pulsed excitation |
EP1519114A1 (en) * | 2003-09-26 | 2005-03-30 | Betronic Design B.V. | Flame guarding system |
US20060257804A1 (en) * | 2005-05-12 | 2006-11-16 | Honeywell International Inc. | Dynamic dc biasing and leakage compensation |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113253031A (en) * | 2021-05-19 | 2021-08-13 | 广东电网有限责任公司 | Mountain fire trip test platform for power transmission line |
WO2023217327A1 (en) * | 2022-05-11 | 2023-11-16 | Viessmann Climate Solutions Se | Method for operating a burner device |
Also Published As
Publication number | Publication date |
---|---|
DE102019119206A1 (en) | 2021-01-21 |
CN112240564A (en) | 2021-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3750393T2 (en) | Method and device for detecting the corona effect of an electrostatic precipitator. | |
DE69619343T2 (en) | Pulse arc welding and fixture | |
DE3545158C2 (en) | ||
DE19502901C1 (en) | Regulating device for gas burner | |
EP0770824A2 (en) | Method and circuit for controlling a gas burner | |
DE69206182T2 (en) | High frequency commutation type protected by power supply, especially for electrostatic precipitators. | |
EP3767175A1 (en) | Method and device for adjusting the sensitivity of a detector for monitoring a flame in a heater | |
DE102010001307B4 (en) | Method and apparatus for ionization current based flame detection and flame monitoring system | |
DE3311540A1 (en) | METHOD FOR MONITORING BURNER OPERATION USING THE FLAME RECTIFIER EFFECT AND DEVICE FOR CARRYING OUT THIS METHOD | |
DE19626101B4 (en) | Circuit arrangement for starting and operating a high-pressure discharge lamp | |
DE69220815T2 (en) | CONTROL METHOD OF CURRENT PULSE SUPPLY FOR AN ELECTROSTATIC SEPARATOR | |
DE3786762T2 (en) | Method and device for igniting discharge lamps. | |
DE2153695A1 (en) | PROCEDURE AND EQUIPMENT FOR REGULATING THE BEAM CURRENT IN TECHNICAL CHARGE CARRIER BLAST DEVICES | |
DE19839160B4 (en) | Method and circuit for regulating a gas burner | |
DE19632983C2 (en) | Control device for a gas burner | |
DE1638020B2 (en) | CONTROL DEVICE FOR A MAINS-COMMISSIONED MULTI-PHASE INACTIVE CONVERTER | |
DE2645223C3 (en) | Procedure for regulating the welding arc | |
DE3635128A1 (en) | METHOD AND DEVICE FOR DETECTING OIL IN AEROSOL DISTRIBUTION IN AN AIRFLOW | |
DE60014980T2 (en) | Flame monitoring in a burner | |
DE19847365A1 (en) | Workpiece machining monitoring method using machining beam from laser machining head, involves monitoring signal from LC generator in which capacitance is formed between workpiece and machining head | |
DE102015222263B3 (en) | METHOD AND DEVICE FOR FLAME SIGNAL DETECTION | |
EP0100787B1 (en) | Process and device for optimal stud welding using tip starting | |
DE10220773A1 (en) | Gas burner regulation method in which a signal from an ionization sensor is subject to spectral frequency analysis to set a fuel-air ratio for regulation of the burner | |
DE102005024763B3 (en) | Heating device, has combustion chamber with ionization electrode for detecting ionization signals and evaluation unit coupled with fuel valve for controlling of fuel valve in dependence of evaluated time process of alternating voltage | |
DE1962708C3 (en) | Ignition and safety device for gas burners |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210719 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20230215 |