EP3305439B1 - Mélange de poudres pour métallurgie des poudres à base de fer, procédé de fabrication de ce mélange de poudres, et corps fritté fabriqué à l'aide de mélange de poudres - Google Patents
Mélange de poudres pour métallurgie des poudres à base de fer, procédé de fabrication de ce mélange de poudres, et corps fritté fabriqué à l'aide de mélange de poudres Download PDFInfo
- Publication number
- EP3305439B1 EP3305439B1 EP16799745.1A EP16799745A EP3305439B1 EP 3305439 B1 EP3305439 B1 EP 3305439B1 EP 16799745 A EP16799745 A EP 16799745A EP 3305439 B1 EP3305439 B1 EP 3305439B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- powder
- iron
- sintered body
- calcium sulfate
- mixed powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 187
- 229910052742 iron Inorganic materials 0.000 title claims description 91
- 239000011812 mixed powder Substances 0.000 title claims description 71
- 238000004663 powder metallurgy Methods 0.000 title claims description 66
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 201
- 239000000843 powder Substances 0.000 claims description 137
- 229910052925 anhydrite Inorganic materials 0.000 claims description 104
- 239000002245 particle Substances 0.000 claims description 41
- 238000005245 sintering Methods 0.000 claims description 33
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 27
- 239000000314 lubricant Substances 0.000 claims description 22
- 229910052602 gypsum Inorganic materials 0.000 claims description 15
- 150000004683 dihydrates Chemical class 0.000 claims description 11
- 239000010440 gypsum Substances 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- 229910018125 Al-Si Inorganic materials 0.000 claims description 8
- 229910018520 Al—Si Inorganic materials 0.000 claims description 8
- 229910019064 Mg-Si Inorganic materials 0.000 claims description 8
- 229910019406 Mg—Si Inorganic materials 0.000 claims description 8
- 239000011230 binding agent Substances 0.000 claims description 8
- 239000000470 constituent Substances 0.000 claims description 7
- 238000009826 distribution Methods 0.000 claims description 4
- JGIATAMCQXIDNZ-UHFFFAOYSA-N calcium sulfide Chemical compound [Ca]=S JGIATAMCQXIDNZ-UHFFFAOYSA-N 0.000 description 48
- 238000005520 cutting process Methods 0.000 description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 239000000956 alloy Substances 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 239000011195 cermet Substances 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- 239000012080 ambient air Substances 0.000 description 8
- 229910052681 coesite Inorganic materials 0.000 description 8
- 229910052593 corundum Inorganic materials 0.000 description 8
- 229910052906 cristobalite Inorganic materials 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 229910052682 stishovite Inorganic materials 0.000 description 8
- 229910052905 tridymite Inorganic materials 0.000 description 8
- 229910001845 yogo sapphire Inorganic materials 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000011575 calcium Substances 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- 229910014458 Ca-Si Inorganic materials 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- -1 binary oxides Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 101000623895 Bos taurus Mucin-15 Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- LBJNMUFDOHXDFG-UHFFFAOYSA-N copper;hydrate Chemical compound O.[Cu].[Cu] LBJNMUFDOHXDFG-UHFFFAOYSA-N 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- KCAMXZBMXVIIQN-UHFFFAOYSA-N octan-3-yl 2-methylprop-2-enoate Chemical compound CCCCCC(CC)OC(=O)C(C)=C KCAMXZBMXVIIQN-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229940037312 stearamide Drugs 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/052—Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0207—Using a mixture of prealloyed powders or a master alloy
- C22C33/0221—Using a mixture of prealloyed powders or a master alloy comprising S or a sulfur compound
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0207—Using a mixture of prealloyed powders or a master alloy
- C22C33/0228—Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/35—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/25—Oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/35—Complex boride, carbide, carbonitride, nitride, oxide or oxynitride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/45—Others, including non-metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/05—Submicron size particles
- B22F2304/058—Particle size above 300 nm up to 1 micrometer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/10—Micron size particles, i.e. above 1 micrometer up to 500 micrometer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Definitions
- the present invention relates to a mixed powder for iron-based powder metallurgy and a sintered body prepared by using the same, and more particularly to a mixed powder for iron-based powder metallurgy containing calcium sulfate anhydrite II at a specific ratio and a sintered body prepared by using the same.
- Powder metallurgy is widely used as a method for industrial production of various kinds of mechanical parts.
- a procedure for the iron-based powder metallurgy is such that, first, a mixed powder is prepared by mixing an iron-based powder with a powder for alloy such as a copper (Cu) powder or a nickel (Ni) powder, a graphite powder, and a lubricant. Next, this mixed powder is put into a mold to perform press-molding, and the resultant is sintered to prepare a sintered body. Finally, this sintered body is subjected to cutting such as drilling process or turning on a lathe, so as to be prepared into a mechanical part having a desired shape.
- a mixed powder is prepared by mixing an iron-based powder with a powder for alloy such as a copper (Cu) powder or a nickel (Ni) powder, a graphite powder, and a lubricant.
- this mixed powder is put into a mold to perform press-molding, and the resultant is sintered to prepare
- An ideal for powder metallurgy is such that the sintered body is processed to be made usable as a mechanical part without performing cutting on the sintered body.
- the aforesaid sintering may generate non-uniform contraction of the raw material powder.
- the dimension precision required in the mechanical parts is increasing, and the shapes of the parts are becoming more complex. For this reason, it is becoming essential to perform cutting on the sintered body. From such a technical background, machinability is imparted to the sintered body so that the sintered body can be smoothly processed.
- MnS manganese sulfide
- Addition of the manganese sulfide powder is effective for cutting at a comparatively low speed, such as drilling.
- addition of a manganese sulfide powder is not necessarily effective for cutting at a high speed that is performed in recent years, and raises problems such as generation of contamination on the sintered body and decrease in the mechanical strength.
- Patent Literature 1 Japanese Examined Patent Application Publication No. S52-16684 discloses a method of imparting machinability other than the aforesaid addition of manganese sulfide.
- Patent Literature 1 discloses a sintered steel in which 0.1 to 1.0% of calcium sulfide (CaS), 0.1 to 2% of carbon (C), and 0.5 to 5.0% of copper (Cu) are incorporated into an iron-based raw material powder obtained by allowing a needed amount of carbon and copper to be contained in an iron powder.
- CaS calcium sulfide
- C carbon
- Cu copper
- Patent Literature 1 discloses an iron-based powder for powder metallurgy.
- Non-Patent Literature 1 discloses effects of metal sulfate on dimensional change
- the present invention has been made in view of the aforementioned problems, and an object thereof is to provide a mixed powder for iron-based powder metallurgy capable of preparing a sintered body having a stable product quality and performance.
- a mixed powder for iron-based powder metallurgy of the present invention comprises an iron-based powder at a weight ratio of 60 wt% or more, where wt% is relative to the total weight of the constituent components of the mixed powder for iron-based powder metallurgy other than the lubricants, a powder containing calcium sulfate anhydrite II such that a weight ratio of CaS after sintering is 0.01 wt% or more to 0.1 wt% or less, and one or more ternary oxides selected from the group consisting of Ca-Al-Si oxides and Ca-Mg-Si oxides, wherein the weight ratio of calcium sulfate anhydrite II in the powder containing calcium sulfate anhydrite is at least 70 wt%.
- a method for producing a mixed powder for iron-based powder metallurgy of the present invention comprises:
- the present inventor has made investigations on why the sintered body disclosed in Patent Literature 1 undergoes decrease in the product quality and performance with lapse of time. Then, the present inventors have found out that, when the sintered body contains calcium sulfide and hemihydrate gypsum (hereafter, these two components will be referred to as "CaS components"), the product quality and performance of the sintered body decreases. In other words, the present inventors have found out that, when the CaS components absorb moisture in ambient air, the CaS components are changed into calcium sulfate dihydrate (CaSO 4 ⁇ 2H 2 O), or the CaS components are aggregated by a hardening reaction to form coarse grains of 63 ⁇ m or greater.
- CaS components calcium sulfide and hemihydrate gypsum
- the present inventor has completed the present invention shown below by further making eager studies on the crystal structure of calcium sulfate having a low moisture absorptivity based on the above findings.
- a mixed powder for iron-based powder metallurgy capable of preparing a sintered body having a stable product quality and performance
- ternary oxides are added to enhance machinability of the sintered body.
- a mixed powder for iron-based powder metallurgy of the present invention is a mixed powder obtained by mixing an iron-based powder with a powder containing calcium sulfate anhydrite II (which may hereafter be referred to also as "II type CaSO 4 powder").
- Various kinds of additives such as binary oxides, powders for alloy, graphite powders, lubricants, and binders may be appropriately added into this mixed powder.
- the mixed powder may contain a slight amount of inevitable impurities during the process of producing the mixed powder for iron-based powder metallurgy.
- the mixed powder for iron-based powder metallurgy of the present invention may be put into a mold or the like to be molded and thereafter sintered to give a sintered body.
- the sintered body thus prepared may be subjected to cutting process, so as to be made usable in various kinds of mechanical parts. The use and the production method of this sintered body will be described later.
- the iron-based powder is a main constituent component constituting the mixed powder for iron-based powder metallurgy, and is contained at a weight ratio of 60 wt% or more relative to the total amount of the mixed powder for iron-based powder metallurgy.
- wt% of the iron-based powder as used herein refers to the occupied ratio relative to the total weight of the constituent components of the mixed powder for iron-based powder metallurgy other than the lubricants.
- the definition refers to the occupied weight ratio relative to the total weight of the constituent components of the mixed powder for iron-based powder metallurgy other than the lubricants.
- the above iron-based powder usable in the present invention may be, for example, a pure iron powder such as an atomized iron powder or a reduced iron powder, a partially diffused alloyed steel powder, a completely alloyed steel powder, a hybrid steel powder obtained by partially diffusing alloy components into a completely alloyed steel powder, or the like.
- a volume-average particle size of the iron-based powder is preferably 50 ⁇ m or more, more preferably 70 ⁇ m or more. When the volume-average particle size of the iron-based powder is 50 ⁇ m or more, the handling property is excellent. Further, the volume-average particle size of the iron-based powder is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less. When the volume-average particle size of the iron-based powder is 200 ⁇ m or less, a precision shape can be readily molded, and also a sufficient strength can be obtained.
- the mixed powder for iron-based powder metallurgy of the present invention is characterized by comprising a powder containing calcium sulfate anhydrite II (II type CaSO 4 powder).
- the present invention overturns a conventional technical common sense (for example, of Patent Literature 1) that mere addition of a component that becomes calcium sulfide (CaS) after sintering can enhance the machinability of the sintered body.
- dihydrate gypsum (CaSO 4 ⁇ 2H 2 O), calcium sulfate anhydrite III (III type CaSO 4 ), hemihydrate gypsum (CaSO 4 ⁇ 1/2H 2 O), and the like may in some cases absorb moisture with lapse of time, thereby decreasing the machinability of the sintered body.
- calcium sulfate anhydrite II has low moisture absorptivity and does not absorb moisture in ambient air, so that the mass of calcium sulfate anhydrite II does not increase even when the calcium sulfate anhydrite II is stored for a certain period of time in a state of being contained in the mixed powder for iron-based powder metallurgy.
- calcium sulfate anhydrite II can enhance the machinability of the sintered body by being changed into CaS after sintering.
- a mixed powder for iron-based powder metallurgy containing II type CaSO 4 powder can enhance various performances of the sintered body stably as compared with dihydrate gypsum (CaSO 4 ⁇ 2H 2 O), calcium sulfate anhydrite III (III type CaSO 4 ), and hemihydrate gypsum (CaSO 4 ⁇ 1/2H 2 O).
- the II type CaSO 4 powder contains calcium sulfate anhydrite II as a major component; however, the II type CaSO 4 powder may contain dihydrate gypsum (CaSO 4 ⁇ 2H 2 O), calcium sulfate anhydrite III (III type CaSO 4 ), hemihydrate gypsum (CaSO 4 ⁇ 1/2H 2 O), and the like.
- dihydrate gypsum CaSO 4 ⁇ 2H 2 O
- calcium sulfate anhydrite III III type CaSO 4
- hemihydrate gypsum CaSO 4 ⁇ 1/2H 2 O
- the weight ratio of calcium sulfate anhydrite II is 70 wt% or more, preferably 80 wt% or more, and it is particularly preferable that the II type CaSO 4 powder is made of calcium sulfate anhydrite II alone. Further, the surface of the II type CaSO 4 powder may be covered with a lubricant or a binder described later.
- the mixed powder for iron-based powder metallurgy contains a II type CaSO 4 powder such that a weight ratio of CaS after sintering is 0.01 wt% or more to 0.1 wt% or less.
- the II type CaSO 4 powder is preferably such that a weight ratio of CaS after sintering is 0.02 wt% or more, more preferably such that a weight ratio of CaS after sintering is 0.03 wt% or more.
- a sintered body containing CaS at such a weight ratio is excellent particularly in machinability.
- the II type CaSO 4 powder is contained more preferably so that a weight ratio of CaS after sintering is 0.09 wt% or less, still more preferably so that a weight ratio of CaS after sintering is 0.08 wt% or less. Incorporation of CaS at such a weight ratio can enhance the strength of the sintered body.
- weight ratio of CaS after sintering refers to the weight ratio occupied by CaS in the sintered body obtained by sintering the mixed powder for iron-based powder metallurgy.
- the weight ratio of CaS contained in the sintered body after sintering can be adjusted by the weight ratio of II type CaSO 4 powder contained before the sintering.
- the weight ratio of CaS contained in the sintered body is calculated by collecting a sample piece through processing the sintered body with a drill or the like and converting the weight of Ca, which is obtained by performing quantitative analysis of the weight of Ca contained in the sample piece, into the weight of CaS. Such conversion is carried out by dividing with the atomic weight of Ca (40.078) and multiplying with the molecular weight of CaS (72.143). Little amount of Ca disappears by reacting during the sintering, so that the weight of Ca does not change between before and after the sintering, and Ca and S are bonded at a ratio of 1 : 1.
- the volume-average particle size of the II type CaSO 4 powder is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and still more preferably 1 ⁇ m or more. Further, the volume-average particle size of the II type CaSO 4 powder is preferably 60 ⁇ m or less, more preferably 30 ⁇ m or less, and still more preferably 20 ⁇ m or less.
- a II type CaSO 4 powder having such a volume-average particle size can be obtained, for example, by heating hemihydrate gypsum to 350°C or higher and 900°C or lower, holding the heated hemihydrate gypsum for 1 hour or more to 10 hours or less, and crushing and classifying the resultant.
- the above volume-average particle size is a value of the particle size D 50 at an accumulated value of 50% in the particle size distribution obtained by using a laser diffraction particle size distribution measurement device (Microtrac "MODEL9320-X100” manufactured by Nikkiso Co., Ltd.).
- the volume-average particle size of the II type CaSO 4 powder is R ( ⁇ m) and the weight ratio of CaS contained in the sintered body after the sintering is W (wt%)
- a lower limit of R 1/3 /W is 15 or more, more preferably 20 or more, and still more preferably 25 or more.
- an upper limit of R 1/3 /W is preferably 400 or less, more preferably 340 or less, and still more preferably 270 or less.
- Such a definition is based on an experience of the present inventors that the relationship between the volume-average particle size, which is proportional to the cubic root of the volume ratio, and the weight ratio is correlated to various properties of the sintered body. When such a numerical value range is satisfied, a sintered body that is good in all of radial crushing strength, machinability, and chip controllability can be obtained.
- Ternary oxides are added in order to improve the machinability when the sintered body is used for a long period of time in a cutting process. Addition of the ternary oxides in combination with addition of the II type CaSO 4 powder can considerably enhance the machinability of the sintered body.
- the ternary oxide means a composite oxide of three types of elements. Specifically, the ternary oxide is a Ca-Al-Si oxide, or a Ca-Mg-Si oxide.
- the Ca-Al-Si oxide may be, for example, 2CaO ⁇ Al 2 O 3 ⁇ SiO 2 or the like.
- the Ca-Mg-Si oxide may be, for example, 2CaO ⁇ MgO ⁇ 2SiO 2 or the like.
- 2CaO ⁇ Al 2 O 3 ⁇ SiO 2 it is preferable to add 2CaO ⁇ Al 2 O 3 ⁇ SiO 2 .
- the aforementioned 2CaO ⁇ Al 2 O 3 ⁇ SiO 2 reacts with TiO 2 contained in the cutting tool or in the coating formed on the cutting tool to form a protection coating film on the surface of the cutting tool, whereby the wear resistance of the cutting tool can be considerably increased.
- a shape of the ternary oxide is not particularly limited; however, the ternary oxide preferably has a spherical shape or a crushed spherical shape, that is, a shape that is round as a whole.
- a lower limit of the volume-average particle size of the ternary oxide is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and still more preferably 1 ⁇ m or more. There is a tendency such that, according as the volume-average particle size is smaller, the machinability of the sintered body can be improved by a smaller amount of addition. Further, an upper limit of the volume-average particle size of the ternary oxide is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, and still more preferably 9 ⁇ m or less. When the volume-average particle size is too large, it is difficult to improve the machinability of the sintered body.
- the volume-average particle size of the ternary oxide is a value obtained by a measurement method similar to the above-described method for measuring the volume-average particle size of the II type CaSO 4 powder.
- a lower limit of the content of the ternary oxide is preferably 0.01 wt% or more, more preferably 0.03 wt% or more, and still more preferably 0.05 wt% or more. Further, an upper limit of the content of the ternary oxide is preferably 0.25 wt% or less, more preferably 0.2 wt% or less, and still more preferably 0.15 wt% or less.
- a sintered body can be obtained that has an excellent machinability even in a cutting process of a long period of time while suppressing the costs.
- Use of the ternary oxides in combination with II type CaSO 4 powder can improve the machinability in a cutting process of a long period of time even when the amount of addition of the ternary oxide is small.
- the weight ratio of the ternary oxides and CaS after the sintering is preferably 1 : 9 to 9 : 1, more preferably 3 : 7 to 9 : 1, and still more preferably 4 : 6 to 7 : 3.
- the two components are contained at such a weight ratio, the machinability of the sintered body can be considerably improved.
- Binary oxides may be added in order to improve the machinability at an initial stage of cutting when the sintered body is used in a cutting process.
- the binary oxide means a composite oxide of two types of elements.
- the binary oxide is preferably a composite oxide of two types of elements selected from the group consisting of Ca, Mg, Al, Si, Co, Ni, Ti, Mn, Fe, and Zn, and is more preferably a Ca-Al oxide, a Ca-Si oxide, or the like.
- the Ca-Al oxide may be, for example, CaO ⁇ Al 2 O 3 , 12CaO ⁇ 7Al 2 O 3 , or the like.
- the Ca-Si oxide may be, for example, 2CaO ⁇ SiO 2 or the like.
- the shape and the volume-average particle size of the binary oxide as well as the method of measurement and the weight ratio thereof are preferably similar to those of the ternary oxide described above.
- the mixed powder for iron-based powder metallurgy of the present invention preferably contains both of binary oxides and ternary oxides in a sum weight of 0.02 wt% or more to 0.3 wt% or less.
- the sum weight of the binary oxides and ternary oxides is preferably 0.05 wt% or more, more preferably 0.1 wt% or more.
- the weight ratio of the binary oxides and ternary oxides is preferably as small as possible.
- the sum weight of the binary oxides and ternary oxides is preferably 0.25 wt% or less, more preferably 0.2 wt% or less. When the sum weight of the oxides is 0.25 wt% or less, the radial crushing strength of the sintered body can be sufficiently ensured.
- the weight ratio of the binary oxides and CaS after the sintering is preferably 1 : 9 to 9 : 1, more preferably 3 : 6 to 9 : 1, and still more preferably 4 : 6 to 7 : 3.
- a sintered body having an excellent machinability at an initial stage of cutting can be prepared.
- a powder for alloy is added for the purpose of promoting bonding between the iron-based powders and enhancing the strength of the sintered body after the sintering.
- Such a powder for alloy is contained preferably at a ratio of 0.1 wt% or more to 10 wt% or less relative to the whole of the mixed powder for iron-based powder metallurgy.
- the ratio is 0.1 wt% or more, the strength of the sintered body can be enhanced.
- the ratio is 10 wt% or less, the dimension precision of the sintered body at the time of sintering can be ensured.
- the powder for alloy may be, for example, a non-ferrous metal power such as copper (Cu) powder, nickel (Ni) powder, Mo powder, Cr powder, V powder, Si powder, or Mn powder, a copper suboxide powder, or the like. These may be used either alone as one kind or in combination of two or more kinds.
- a non-ferrous metal power such as copper (Cu) powder, nickel (Ni) powder, Mo powder, Cr powder, V powder, Si powder, or Mn powder, a copper suboxide powder, or the like.
- a lubricant is added into the mixed powder for iron-based powder metallurgy so that the molded body obtained by compressing the mixed powder for iron-based powder metallurgy in a mold can be readily taken out from the mold.
- the withdrawing pressure at the time of taking the molded body out from the mold can be reduced, so that cracking of the molded body and damage of the mold can be prevented.
- the lubricant may be added into the mixed powder for iron-based powder metallurgy or may be applied on the surface of the mold.
- the lubricant When the lubricant is added into the mixed powder for iron-based powder metallurgy, the lubricant is contained preferably at a ratio of 0.01 mass% or more to 1.5 mass% or less, more preferably at a ratio of 0.1 mass% or more to 1.2 mass% or less, and still more preferably at a ratio of 0.2 mass% or more to 1.0 mass% or less, relative to the weight of the mixed powder for iron-based powder metallurgy.
- the content of the lubricant is 0.01 mass% or more, the effect of reducing the withdrawing pressure of the mold can be readily obtained.
- the content of the lubricant When the content of the lubricant is 1.5 mass% or less, a sintered body having a high density can be readily obtained, and a sintered body having a high strength can be obtained.
- the lubricant that can be put to use may be one or more selected from the group consisting of metal soap (lithium stearate, calcium stearate, zinc stearate, or the like), stearamide, fatty acid amide, amide wax, hydrocarbon-based wax, and cross-linked alkyl (meth)acrylate resin.
- metal soap lithium stearate, calcium stearate, zinc stearate, or the like
- stearamide fatty acid amide
- amide wax hydrocarbon-based wax
- cross-linked alkyl (meth)acrylate resin it is preferable to use an amide-based lubricant from the viewpoint of having a good performance of allowing the powder for alloy, graphite powder, or the like to adhere onto the iron-based powder surface and being capable of readily reducing the segregation of the iron-based mixed powder.
- a binder is added for the purpose of allowing the powder for alloy, graphite powder, or the like to adhere onto the iron-based powder surface.
- the binder that is put to use may be a butene-based polymer, a methacrylate-based polymer, or the like.
- the butene-based polymer it is preferable to use a 1-butene homopolymer made of butene alone or a copolymer of butene and alkene.
- the alkene is preferably a lower alkene, and is preferably ethylene or propylene.
- methacrylate-based polymer it is possible to use one or more selected from the group consisting of methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, ethylhexyl methacrylate, lauryl methacrylate, methyl acrylate, and ethyl acrylate.
- the binder is contained preferably at a ratio of 0.01 mass% or more to 0.5 mass% or less, more preferably at a ratio of 0.05 mass% or more to 0.4 mass% or less, and still more preferably at a ratio of 0.1 mass% or more to 0.3 mass% or less, relative to the weight of the mixed powder for iron-based powder metallurgy.
- a II type CaSO 4 powder contained in the mixed powder for iron-based powder metallurgy is prepared first.
- the II type CaSO 4 powder is preferably obtained by heating a hemihydrate gypsum or dihydrate gypsum having a volume-average particle size of 0.1 ⁇ m or more to 60 ⁇ m or less, to a temperature of 300°C or higher to 900°C or lower.
- the volume-average particle size of the hemihydrate gypsum or dihydrate gypsum that is put to use is preferably equivalent to or slightly smaller than the volume-average particle size of the II type CaSO 4 powder in consideration of aggregation at the time of heating.
- a lower limit of the heating temperature is 300°C or higher, preferably 350°C or higher, more preferably 400°C or higher.
- an upper limit of the heating temperature is 900°C or lower, preferably 800°C or lower, more preferably 700°C or lower, and still more preferably 500°C or lower.
- the heating temperature is 900°C or lower, it is possible to obtain a II type CaSO 4 powder having a particle size of 100 ⁇ m or less, which is general as a powder to be mixed into the iron-based powder.
- the heating temperature is 700°C or lower, aggregation of the hemihydrate gypsum or dihydrate gypsum is less likely to occur, so that the II type CaSO 4 powder can be obtained while maintaining the volume-average particle size of the hemihydrate gypsum or dihydrate gypsum.
- the heating temperature is high, a strong and firm aggregation occurs, so that it is preferable to perform a grinding step.
- the heating temperature is 300°C or higher, moisture of the hemihydrate gypsum or dihydrate gypsum can be dehydrated to form the II type CaSO 4 powder.
- the heating temperature is low, it is not preferable because calcium sulfate anhydrite III may be formed instead of calcium sulfate anhydrite II.
- the heating time is preferably such that the time for dehydrating the hemihydrate gypsum or dihydrate gypsum into the II type calcium sulfate can be ensured, and is preferably one hour or more to eight hours or less.
- the heating time is preferably two hours or more, more preferably three hours or more.
- the mixed powder for iron-based powder metallurgy of the present invention can be prepared by mixing the iron-based powder with the II type CaSO 4 powder prepared in the above with use of, for example, a mechanical agitation mixer.
- a mechanical agitation mixer In addition to these powders, one or more ternary oxides selected from the group consisting of Ca-Al-Si oxides and Ca-Mg-Si oxides are added.
- various kinds of additives such as a powder for alloy, a graphite powder, a lubricant, a binary oxide, and a binder may be suitably added.
- the mechanical agitation mixer may be, for example, a high-speed mixer, a Nauta Mixer, a V-type mixer, a double-cone blender, or the like.
- the order of mixing these powders is not particularly limited.
- the mixing temperature is not particularly limited; however, the mixing temperature is preferably 150°C or lower in view of suppressing oxidation of the iron-based powder in the
- a pressure of 300 MPa or higher to 1200 MPa or lower is applied to produce a pressed-powder molded body.
- the molding temperature during this time is preferably 25°C or higher to 150°C or lower.
- the pressed-powder molded body prepared in the above is sintered by an ordinary sintering method to obtain a sintered body.
- the sintering conditions may be a non-oxidizing atmosphere or a reducing atmosphere.
- the above pressed-powder molded body is preferably sintered at a temperature of 1000°C or higher to 1300°C or lower for 5 minutes or more to 60 minutes or less in an atmosphere such as a nitrogen atmosphere, a mixed atmosphere of nitrogen and hydrogen, or a hydrocarbon atmosphere.
- the sintered body thus prepared can be used as a mechanical part of an automobile, an agricultural instrument, a power tool, a home electrical appliance, or the like by being processed with various kinds of tools such as a cutting tool in accordance with the needs.
- the cutting tool for processing the sintered body may be, for example, a drill, an end mill, a cutting tool for milling, a cutting tool for turning on a lathe, a reamer, a tap, or the like.
- a sintered body having a stable product quality and performance can be prepared.
- the calcium sulfate anhydrite II contained in the mixed powder for iron-based powder metallurgy of the above embodiment has low moisture absorptivity and does not absorb moisture in ambient air, so that the mass of a powder containing calcium sulfate anhydrite II does not increase even when the powder is stored for a certain period of time in ambient air.
- the II type CaSO 4 powder has a volume-average particle size of 0.1 ⁇ m or more to 60 ⁇ m or less, the machinability of the sintered body can be enhanced.
- the volume-average particle size of the II type CaSO 4 powder is R ⁇ m and the weight ratio of CaS contained in the sintered body after the sintering is W wt%, it is satisfied that R 1/3 /W is 15 or more to 400 or less, so that a sintered body that is good in all of radial crushing strength, machinability, and chip controllability can be obtained.
- the mixed powder for iron-based powder metallurgy of the above-described embodiment further contains one or more ternary oxides selected from the group consisting of Ca-Al-Si oxides and Ca-Mg-Si oxides, so that the machinability in a cutting process for a long period of time can be improved.
- the weight ratio of the ternary oxides and CaS after the sintering is 3 : 7 to 9 : 1, so that the machinability in a cutting process for a long period of time can be improved.
- a commercially available powder of hemihydrate gypsum was classified with a sieve into -63/+45 ⁇ m (volume-average particle size of 54 ⁇ m).
- the classified hemihydrate gypsum was heated at 350°C for five hours in an ambient air heating furnace to obtain an calcium sulfate anhydrite II powder (II type CaSO 4 powder).
- This II type CaSO 4 powder was classified with a sieve into -63/+45 ⁇ m (volume-average particle size of 54 ⁇ m).
- the yield of the obtained II type CaSO 4 powder was 100%. This yield is a value of percentage relative to the weight of the II type CaSO 4 powder after the heating and represents the weight obtained by subtracting the weight of the II type CaSO 4 powder that was removed by the classification, from the weight of the II type CaSO 4 powder after the heating.
- a pure iron powder (trade name: ATOMEL 300M (manufactured by Kobe Steel, Ltd.) was mixed with 2 wt% of copper powder (trade name: CuATW-250 (manufactured by Fukuda Metal Foil & Powder Co., Ltd.)), 0.8 wt% of graphite powder (trade name: CPB (manufactured by Nippon Graphite Industries Co., Ltd.)), 0.75 wt% of an amide-based lubricant (ACRAWAX C (manufactured by Lonza Ltd.)), and the II type CaSO 4 powder prepared in the above, so as to prepare a mixed powder for iron-based powder metallurgy.
- copper powder trade name: CuATW-250 (manufactured by Fukuda Metal Foil & Powder Co., Ltd.)
- CPB manufactured by Nippon Graphite Industries Co., Ltd.
- ACRAWAX C manufactured by Lonza Ltd.
- the graphite powder was added at an amount such that the amount of carbon after the sintering would be 0.75 wt%.
- the II type CaSO 4 powder was added at an amount such that the weight of CaS after the sintering would be 0.5 wt%.
- sintered body immediately after a sintered body prepared by using the mixed powder for iron-based powder metallurgy which was in a state immediately after the preparation
- sintered body after 10 days a sintered body prepared by using the mixed powder for iron-based powder metallurgy that had been stored in ambient air for ten days after the preparation
- a procedure of producing the sintered body immediately after is as follows. First, the mixed powder for iron-based powder metallurgy which was in a state of immediately after the preparation was put into a mold, and a test piece was molded so as to have a ring shape with an outer diameter of 64 mm, an inner diameter of 24 mm, and a thickness of 20 mm and to have a molding density of 7.00 g/cm 3 . Next, this test piece having a ring shape was sintered at 1130°C for 30 minutes in a 10 vol% H 2 -N 2 atmosphere, so as to prepare a sintered body. On the other hand, the sintered body after 10 days was prepared in the same manner as the sintered body immediately after except that the mixed powder for iron-based powder metallurgy was left to stand in ambient air for ten days after the preparation, and thereafter put into a mold.
- the molded body density and the sintered body density of the sintered body immediately after and the sintered body after 10 days of each Reference Example and each Comparative Example were values as determined by making measurements in accordance with Japan Powder Metallurgy Association Standard (JPMA M 01). Further, the radial crushing strength was a value as determined by making measurements on each sintered body of each Reference Example and each Comparative Example in accordance with JIS Z 2507-2000. The higher the radial crushing strength is, the less likely the sintered body is broken, so that the sintered body has a higher strength.
- the sintered body prepared in each Reference Example and each Comparative Example was turned on a lathe for 1150 m by using a cermet tip (ISO type number: SNGN120408 non-breaker) under conditions with a circumferential speed of 160 m/min, a cutting rate of 0.5 mm/pass, and a feed rate of 0.1 mm/rev, and with a dry type.
- the tool wear amount ( ⁇ m) of the cutting tool after the sintered body was turned on the lathe was measured with a tool microscope. The results thereof are shown in the section of "tool wear amount" in Table 1. The smaller the value of the tool wear amount is, the more excellent the machinability of the sintered body is.
- the degree of deterioration in various performances of the sintered body after 10 days of Reference Example 8 from the sintered body immediately after of Reference Example 8 is greater than that of the Reference Examples 1 to 7. This seems to be due to the fact that, because the temperature of heating the hemihydrate gypsum of Reference Example 8 was lower than that of Reference Examples 1 to 7, part of the hemihydrate gypsum was changed into III type calcium sulfate or remained, as it was, as the hemihydrate gypsum instead of being changed into II type calcium sulfate, these components exhibited the moisture absorptivity.
- the stability of various performances of the sintered body obtained in Reference Example 8 is outstandingly excellent as compared with those of Comparative Examples 1 to 3. For this reason, it has been made clear that the effect of enhancing the stability of the sintered body can be obtained even if the whole of the hemihydrate gypsum is not turned into II type calcium sulfate, as shown in Reference Example 8.
- the temperature of heating the hemihydrate gypsum is preferably set to be 350°C or higher to 600°C or lower.
- a sintered body was prepared in the same manner as in Reference Example 1 except that the volume-average particle size of the II type CaSO 4 powder and the weight ratio of CaS after the sintering were changed as shown in the sections of "volume-average particle size" and "CaS weight ratio” in Table 2, and each evaluation item was evaluated by a method similar to that of Reference Example 1. The results are shown in Table 2. Adjustment of the volume-average particle size of the II type CaSO 4 powder used in each Example was made by performing various grinding and classifying treatments on the heated II type CaSO 4 powder.
- the "chip controllability" in Table 2 is a result obtained by evaluating the outer appearance of the chips, which are generated by turning the sintered body on the lathe with use of the cermet tip, in accordance with the following evaluation criterion.
- the frequency of cleaning the chip hopper of the cutting machine can be suppressed to be low.
- the chips are extended long in a coil form as shown in FIG. 2 , so that the labor of cleaning may become cumbersome, or the frequency of cleaning the chip hopper may increase, thereby leading to lower production efficiency.
- automatic operation for a long period of time can not be carried out even if the tool wear amount can be reduced. This does not lead to power saving or increase in efficiency.
- Examples 30 to 34 a sintered body was prepared in the same manner as in Reference Example 26 except that a part of the II type CaSO 4 powder was changed to 2CaO ⁇ Al2O 3 ⁇ SiO 2 or 2CaO ⁇ MgO ⁇ 2SiO 2 , as shown in Table 3.
- Reference Examples 35 and 36 a sintered body was prepared in the same manner as in Reference Example 26 except that the whole amount of the II type CaSO 4 powder was changed to 2CaO ⁇ Al 2 O 3 ⁇ SiO 2 or 2CaO ⁇ MgO ⁇ 2SiO 2 .
- FIGS. 3 to 8 show observation images of a worn part of a tool rake face after the sintered bodies prepared in Reference Example 26 and Examples 30, 32 to 34, and Reference Example 35, respectively, were turned on a lathe with a cermet tip. The observation images were obtained with an optical microscope. Referring to FIGS.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
Claims (6)
- Mélange de poudres pour métallurgie de poudres à base de fer, qui comprend une poudre à base de fer à un rapport pondéral de 60% en poids ou plus, où le % en poids est calculé par rapport au poids total des composants constituants de la poudre mixte pour métallurgie de poudre à base de fer autres que les lubrifiants, une poudre contenant du sulfate de calcium anhydrite II de sorte que le rapport pondéral du CaS après frittage se situe de 0,01% en poids ou plus à 0,1% en poids ou moins, et un ou plusieurs oxydes ternaires choisis parmi le groupe consistant en les oxydes de Ca-Al-Si et les oxydes de Ca-Mg-Si, dans lequel le rapport pondéral du sulfate de calcium anhydrite II dans la poudre contenant le sulfate de calcium anhydrite est d'au moins 70% en poids.
- Mélange de poudres pour métallurgie de poudres à base de fer selon la revendication 1, dans lequel la poudre contenant le sulfate de calcium anhydrite II a une taille des particules moyenne en volume de 0,1 µm ou plus à 60 µm ou moins, dans lequel la taille des particules moyenne en volume est une valeur de la taille des particules D50 à une valeur cumulée de 50% de la distribution de tailles des particules obtenue en utilisant un dispositif de mesure de la distribution de la taille des particules par diffraction laser.
- Mélange de poudres pour métallurgie de poudres à base de fer selon la revendication 1 ou 2, dans lequel le rapport pondéral des oxydes ternaires et du CaS après frittage se situe dans l'intervalle allant de 3:7 à 9:1.
- Mélange de poudres pour métallurgie de poudres à base de fer selon la revendication 1, dans lequel lorsque la poudre contenant le sulfate de calcium anhydrite II a une taille des particules moyenne en volume de R µm et le rapport pondéral du CaS présent dans un corps fritté après le frittage est W % en poids, la condition R1/3/W se situe dans l'intervalle allant de 15 ou plus à 400 ou moins est satisfaite.
- Mélange de poudres pour métallurgie de poudres à base de fer selon la revendication 1, dans lequel la poudre contenant le sulfate de calcium anhydrite II est revêtue d'un lubrifiant ou d'un liant.
- Procédé de production d'un mélange de poudres pour métallurgie de poudres à base de fer, comprenant :la préparation d'une poudre contenant le sulfate de calcium anhydrite II par chauffage d'une poudre contenant du gypse dihydraté ou du gypse hémihydraté à une température de 300°C ou pus à 900°C ou moins; etle mélangeage de la poudre contenant le sulfate de calcium anhydrite II avec une poudre à base de fer et un ou plusieurs plusieurs oxydes ternaires choisis parmi le groupe consistant en les oxydes de Ca-Al-Si et les oxydes de Ca-Mg-Si, dans lequel le mélange de poudre comprend une poudre à base de fer à un rapport pondéral de 60% en poids ou plus, où le % en poids est calculé par rapport au poids total des composants constituants de la poudre mixte pour métallurgie de poudre à base de fer autres que les lubrifiants,et le rapport pondéral du sulfate de calcium anhydrite II dans la poudre contenant le sulfate de calcium anhydrite II est d'au moins 70% en poids.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015107557A JP6480266B2 (ja) | 2015-05-27 | 2015-05-27 | 鉄基粉末冶金用混合粉及びその製造方法、並びに、焼結体 |
PCT/JP2016/063168 WO2016190037A1 (fr) | 2015-05-27 | 2016-04-27 | Mélange de poudres pour métallurgie des poudres à base de fer, procédé de fabrication de ce mélange de poudres, et corps fritté fabriqué à l'aide de mélange de poudres |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3305439A1 EP3305439A1 (fr) | 2018-04-11 |
EP3305439A4 EP3305439A4 (fr) | 2018-05-30 |
EP3305439B1 true EP3305439B1 (fr) | 2021-05-26 |
Family
ID=57393994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16799745.1A Active EP3305439B1 (fr) | 2015-05-27 | 2016-04-27 | Mélange de poudres pour métallurgie des poudres à base de fer, procédé de fabrication de ce mélange de poudres, et corps fritté fabriqué à l'aide de mélange de poudres |
Country Status (6)
Country | Link |
---|---|
US (1) | US20180104739A1 (fr) |
EP (1) | EP3305439B1 (fr) |
JP (1) | JP6480266B2 (fr) |
KR (1) | KR102113996B1 (fr) |
CN (1) | CN107614159A (fr) |
WO (1) | WO2016190037A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6480264B2 (ja) * | 2015-05-27 | 2019-03-06 | 株式会社神戸製鋼所 | 鉄基粉末冶金用混合粉及び焼結体 |
JP6634365B2 (ja) | 2016-12-02 | 2020-01-22 | 株式会社神戸製鋼所 | 鉄基粉末冶金用混合粉末および焼結体の製造方法 |
JP6853440B2 (ja) * | 2019-03-11 | 2021-03-31 | 三菱マテリアル株式会社 | 金属銅及び酸化銅含有粉、金属銅及び酸化銅含有粉の製造方法、及び、スパッタリングターゲット材、スパッタリングターゲット材の製造方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5216684B2 (fr) * | 1973-02-22 | 1977-05-11 | ||
JPS5120761A (fr) * | 1974-08-14 | 1976-02-19 | Nippon Steel Corp | |
JPS5840283B2 (ja) * | 1975-07-29 | 1983-09-05 | 昭和電線電纜株式会社 | タイネツタイホウシヤセンケ−ブル |
JPS5312912A (en) * | 1976-07-21 | 1978-02-06 | Nippon Toki Kk | Glass sintered ceramics using gypsum |
JPS60145353A (ja) * | 1983-12-30 | 1985-07-31 | Dowa Teppun Kogyo Kk | 快削性の優れた鉄基焼結体の製造法 |
JPH0711007B2 (ja) * | 1988-04-05 | 1995-02-08 | 川崎製鉄株式会社 | 焼結後の被削性と機械的性質に優れる、粉末冶金用鉄基混合粉 |
JP3469347B2 (ja) * | 1995-03-24 | 2003-11-25 | トヨタ自動車株式会社 | 被削性に優れた焼結材料及びその製造方法 |
JP3449110B2 (ja) * | 1996-04-17 | 2003-09-22 | 株式会社神戸製鋼所 | 粉末冶金用鉄系混合粉末およびこれを用いた焼結体の製法 |
US6648941B2 (en) * | 2001-05-17 | 2003-11-18 | Kawasaki Steel Corporation | Iron-based mixed powder for powder metallurgy and iron-based sintered compact |
JP4620485B2 (ja) * | 2005-02-17 | 2011-01-26 | 住友大阪セメント株式会社 | 無水石膏の製造方法およびその製造設備 |
US7556791B2 (en) * | 2006-12-20 | 2009-07-07 | United States Gypsum Company | Gypsum anhydrite fillers and process for making same |
CN101328943A (zh) * | 2008-07-18 | 2008-12-24 | 璧山县三泰粉末冶金有限公司 | 摩托车离合器铁基摩擦片、制备工艺及其对偶片 |
JP2010236061A (ja) * | 2009-03-31 | 2010-10-21 | Jfe Steel Corp | 切削性に優れる焼結部材用の鉄基混合粉末 |
JP5874700B2 (ja) * | 2012-09-27 | 2016-03-02 | Jfeスチール株式会社 | 粉末冶金用鉄基混合粉 |
CN105377477B (zh) * | 2013-07-18 | 2017-11-24 | 杰富意钢铁株式会社 | 粉末冶金用混合粉及其制造方法、以及铁基粉末制烧结体的制造方法 |
CN104550923A (zh) * | 2014-12-25 | 2015-04-29 | 铜陵市经纬流体科技有限公司 | 一种高温环境阀门用铁基粉末冶金材料及其制备方法 |
JP6480264B2 (ja) * | 2015-05-27 | 2019-03-06 | 株式会社神戸製鋼所 | 鉄基粉末冶金用混合粉及び焼結体 |
JP6480265B2 (ja) * | 2015-05-27 | 2019-03-06 | 株式会社神戸製鋼所 | 鉄基粉末冶金用混合粉及びその製造方法並びに焼結体及びその製造方法 |
-
2015
- 2015-05-27 JP JP2015107557A patent/JP6480266B2/ja active Active
-
2016
- 2016-04-27 WO PCT/JP2016/063168 patent/WO2016190037A1/fr active Application Filing
- 2016-04-27 EP EP16799745.1A patent/EP3305439B1/fr active Active
- 2016-04-27 US US15/572,725 patent/US20180104739A1/en not_active Abandoned
- 2016-04-27 KR KR1020177036350A patent/KR102113996B1/ko active IP Right Grant
- 2016-04-27 CN CN201680029965.0A patent/CN107614159A/zh active Pending
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2016190037A1 (fr) | 2016-12-01 |
EP3305439A4 (fr) | 2018-05-30 |
JP6480266B2 (ja) | 2019-03-06 |
KR102113996B1 (ko) | 2020-05-22 |
US20180104739A1 (en) | 2018-04-19 |
CN107614159A (zh) | 2018-01-19 |
EP3305439A1 (fr) | 2018-04-11 |
KR20180008730A (ko) | 2018-01-24 |
JP2016222945A (ja) | 2016-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5504278B2 (ja) | 拡散合金化された鉄又は鉄基粉末を製造する方法、拡散合金化粉末、該拡散合金化粉末を含む組成物、及び該組成物から製造した成形され、焼結された部品 | |
EP3305440B1 (fr) | Mélange de poudres pour métallurgie des poudres à base de fer, corps fritté fabriqué à l'aide de celui-ci | |
TW200936780A (en) | Iron-containing mixed powder for powder metallurgy and sintered iron powder compact | |
EP3305439B1 (fr) | Mélange de poudres pour métallurgie des poudres à base de fer, procédé de fabrication de ce mélange de poudres, et corps fritté fabriqué à l'aide de mélange de poudres | |
JP3449110B2 (ja) | 粉末冶金用鉄系混合粉末およびこれを用いた焼結体の製法 | |
JP2010189769A (ja) | 高圧での成形による鉄系構成部品の製造方法 | |
JP5504963B2 (ja) | 粉末冶金用混合粉および切削性に優れた金属粉末製焼結体 | |
EP3321000B1 (fr) | Mélange de poudres pour métallurgie des poudres à base de fer, et procédé de fabrication de ce mélange de poudres | |
JP2011179031A (ja) | 粉末冶金用混合粉および切削性に優れた金属粉末製焼結体 | |
JPWO2019111834A1 (ja) | 部分拡散合金鋼粉 | |
WO2018100955A1 (fr) | Mélange de poudres pour la métallurgie des poudres à base de fer et procédé permettant de fabriquer un compact fritté à l'aide de ce dernier | |
JP5504863B2 (ja) | 粉末冶金用混合粉および切削性に優れた金属粉末製焼結体 | |
CN111344090B (zh) | 粉末冶金用混合粉 | |
WO2019146310A1 (fr) | Poudre mélangée de métallurgie des poudres | |
JPH10287901A (ja) | ステンレス焼結体の製造方法 | |
JP2004083948A (ja) | 切削性に優れた鉄基焼結合金およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171103 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 33/02 20060101AFI20180418BHEP Ipc: C22C 1/05 20060101ALI20180418BHEP |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20180426 |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191030 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602016058502 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B22F0001000000 Ipc: C22C0033020000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B22F 1/00 20060101ALI20201106BHEP Ipc: C22C 33/02 20060101AFI20201106BHEP Ipc: C22C 1/05 20060101ALI20201106BHEP |
|
INTG | Intention to grant announced |
Effective date: 20201214 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016058502 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1396290 Country of ref document: AT Kind code of ref document: T Effective date: 20210615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1396290 Country of ref document: AT Kind code of ref document: T Effective date: 20210526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210826 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210827 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210926 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210927 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210826 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016058502 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210926 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602016058502 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220427 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220427 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220427 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221103 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220427 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20230310 Year of fee payment: 8 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |