EP3302851B1 - Angusssystem für eine druckgiessform - Google Patents

Angusssystem für eine druckgiessform Download PDF

Info

Publication number
EP3302851B1
EP3302851B1 EP16727989.2A EP16727989A EP3302851B1 EP 3302851 B1 EP3302851 B1 EP 3302851B1 EP 16727989 A EP16727989 A EP 16727989A EP 3302851 B1 EP3302851 B1 EP 3302851B1
Authority
EP
European Patent Office
Prior art keywords
sprue
runner
runner channel
region
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16727989.2A
Other languages
English (en)
French (fr)
Other versions
EP3302851A1 (de
Inventor
Marc Nowak
Norbert Erhard
Ronny Aspacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oskar Frech GmbH and Co KG
Original Assignee
Oskar Frech GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56116413&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3302851(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Oskar Frech GmbH and Co KG filed Critical Oskar Frech GmbH and Co KG
Publication of EP3302851A1 publication Critical patent/EP3302851A1/de
Application granted granted Critical
Publication of EP3302851B1 publication Critical patent/EP3302851B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2272Sprue channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/082Sprues, pouring cups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/2038Heating, cooling or lubricating the injection unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2272Sprue channels
    • B22D17/2281Sprue channels closure devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2218Cooling or heating equipment for dies

Definitions

  • the invention relates to a gating system for a die casting mold, wherein the gating system includes at least one runner channel which extends from an inlet-side gate opening to an outlet-side gate opening, which extends into a mold cavity formed between a fixed mold half and a movable mold half of the die casting mold or into one of these upstream gate area opens.
  • this can be a so-called hot runner gating system.
  • the sprue mouth opening on the inlet side can in particular be designed in such a way that a mouthpiece nozzle or the like of an upstream part of the casting system can be placed on it.
  • hot runner gating system with the designation Frech-G collectlauf-System or Frech-Gating-System (FGS) for die-casting molds on the market, as is also the case, for example, in the journal article L. H. Kallien and C. Böhnlein, Druckguss, G foolerei 96, 07/2009, pp. 18-26.
  • hot runner gating systems generally have the advantage that the proportion of melted material that falls on the so-called sprue or gate or the sprue/gate area upstream of the mold cavity and has to be separated from the cast product can be significantly reduced.
  • the proportion of air in the casting system can be kept low, which enables the casting of parts with correspondingly low porosity, and the thermal balance is improved because the heat losses up to the cavity in the mold are lower and the melt is therefore not overheated as much to compensate for the losses got to.
  • Machine productivity increases because the sprue is significantly smaller and less massive.
  • Melt material located between the constriction and the slug is held there because the slug is stuck until in a next casting cycle the slug is advanced by pressing melt material and, depending on the casting volume, remains in the runner channel section or liquefies and is pressed into the mold cavity.
  • a sprue bushing having a molten metal passageway inserted into and supported on a tool part for use on a hot chamber metal die casting machine.
  • the sprue bush is designed in particular for use on a zinc die-casting machine.
  • the through-channel is connected on the one hand to a metal feed device and on the other hand to a cavity of the tool and is cylindrical over its main course from the feed opening to just before the opening to the cavity, with a constriction and then a conical widening to open into the has cavity.
  • the sprue bushing has electrical heating over almost the entire length of the cylindrical channel formation and a cooling zone in the area of the constriction.
  • the cooling zone is formed by an air gap introduced into the sprue bush.
  • the electrical heating of the cylindrical channel formation ends at a distance in front of a conically narrowing entry area of the constriction.
  • U.S. 6,745,821 B1 discloses a hot runner gating system of the type mentioned at the outset, which includes two sprue inserts lying face to face against one another, one of which is arranged on the fixed mold half and the other on the movable mold half, and which leave between them a region of the runner channel that is bent by 90°, this area functioning as a separation point area, in which the solidification point of the melted material occurs through appropriate adjustment of the temperature of the sprue inserts is at the end of a respective casting process.
  • a cooling channel structure is integrated in the sprue insert of the movable mold half.
  • a heating device is assigned to a section of the runner channel that is connected in a straight line upstream of the 90° bend. From the 90° bend, the runner channel continues in a straight line to the sprue mouth on the exit side.
  • the invention is based on the technical problem of providing a gating system of the type mentioned at the outset, which is also suitable for relatively high die-casting temperatures in terms of process reliability and can be implemented as a hot-runner gating system if required.
  • the runner channel has a geometrically and/or thermally defined separation point area, which is formed upstream of the sprue mouth and downstream of the sprue mouth opening in the direction of flow of the melt material to be cast.
  • This means that the separation point area has a certain, predetermined distance both from the exit-side sprue opening and from the entry-side sprue opening of the runner channel.
  • the separation point area is that area of the runner channel which is designed as a target point for separating or tearing off the solidified or partially solidified melt material on the mold side from the still liquid or even less solidified melt material in the runner channel when the mold is opened.
  • This separation can be an actual tearing off of solid-solid phases of the melt material or melting or pulling off, in which the solid part of the melt material separates from the liquid phase by the melt carried along on its surface solidifying and the liquid part in the runner channel surface tension remains.
  • This predetermined separation point is defined geometrically, ie by appropriate geometric configuration of the course of the runner channel, and/or thermally, ie by corresponding thermal configuration of the course of the runner channel.
  • the defined determination of the area of the separation point ensures that the solidified or partially solidified melt is reproducibly separated precisely at this point and not accidentally somewhere or at changing points of the runner channel.
  • the gating system according to the invention does not require a mechanical closure system.
  • the design of the temperature profile along the runner which includes the thermal definition of the interface region, can also be designed to form a temperature transient section of the runner from an upstream heated region to a cooled, contouring part of the mold. This can counteract undesirable oxide formation and fire hazards, particularly in the case of highly reactive or oxidizing melts.
  • the runner channel has an S-shaped course with a bend or kink in the area of the separation point.
  • This geometric measure is suitable for supporting the functionally reliable separation of the melted material precisely in the separation point area defined for this purpose.
  • a region of the movable mold half opposite the sprue opening of the runner channel has a cooling channel structure.
  • This thermal measure can be used to support the solidification or partial solidification of the melt material in the runner channel downstream of the area of the separation point.
  • a heating device is assigned to a runner channel section between the area of the separation point and the sprue mouth on the exit side. This allows the exit-side part of the runner channel if required, actively heat in a controlled manner. This represents an advantageous geometric-thermal measure for defining the area of the separation point at this point.
  • the heating device can be, for example, a known electric or inductive heating device which is arranged in the runner channel itself or at a sufficiently small radial distance outside the same.
  • a heating device is assigned to a runner channel section which adjoins the area of the separation point upstream and tapers conically towards the area of the separation point.
  • the section of the runner channel which is designed as a conical constriction and which adjoins the area of the separation point upstream can be actively heated in a controlled manner if required.
  • the heating device can be, for example, a known electric or inductive heating device which is arranged in the runner channel itself or at a sufficiently small radial distance outside of it.
  • the runner channel has a constriction in the area of the separation point, from which its flow cross section increases downstream and/or upstream.
  • This geometric measure supports the reliable separation of the melt material in the area of the separation point.
  • the runner channel can, for example, be configured in such a way that its flow cross-section widens from the area of the separation point to the sprue mouth, i.e. the flow cross-section no longer decreases from the area of the separation point to the sprue mouth, but increases steadily or at most remains constant in sections.
  • This geometric measure of the runner design can facilitate the extraction of the solidified or heavily partially solidified melt material from the section of the runner channel from the separation point area to the sprue mouth on the outlet side and thus also the separation of this part of the melt material from the melt material upstream of the separation point area.
  • the runner channel can have a funnel-shaped widening course from the constriction to the spout mouth.
  • the distance of the separation point region from the sprue opening of the runner channel on the exit side is preferably very small and in particular significantly smaller than from that on the entry side Sprue mouth opening of the runner, in the present case these mentioned distances are to be understood in relation to the length of the flow path of the melt material conveyed in the runner.
  • This takes into account the goal of minimizing the proportion of melt that solidifies as a sprue on the cast part and is removed from the mold with it.
  • the system can be built so compactly that there is hardly any solidified runner or sprue on the cast part.
  • the separation point area is at a distance between 0.3 times and 3 times the diameter of the runner channel in the separation point area and is therefore correspondingly close in front of the sprue mouth.
  • a cooling channel structure is assigned to a runner channel section between the area of the separation point and the sprue opening on the outlet side.
  • the runner channel runs in an area adjoining the separation point area upstream at an angle of between 0° and 45°, in particular between 3° and 20°, to the normal direction of a parting plane between the fixed and movable mold halves, specifically increasing in the direction of the separation point area .
  • This course of the runner channel which rises in the flow direction of the melt in this section, can contribute to avoiding an undesired escape of melt material from the runner channel when the mold is opened after the melt material has been separated in the area of the separation point.
  • the aforesaid rising course of the runner channel also occurs when the mold halves are arranged with the parting plane lying vertically.
  • the gating system is configured as a hot-runner gating system and comprises, in a manner known per se, a melt distribution block which has the sprue mouth opening on the inlet side, and a sprue block which adjoins the melt distribution block in the direction of flow and has the sprue mouth on the outlet side.
  • the separation point area is formed in the section of the runner channel which runs in the sprue block. The separation point area is consequently located at a relatively small distance in front of the parting plane of the fixed and movable mold halves close to the gate.
  • the gating system is configured as a hot-runner gating system, and the at least one runner channel comprises at least two runner channels that are parallel in terms of flow, with temperature control means being provided which are used independently for the controllable or adjustable temperature of the melt material in the separation point areas of the runner channels are set up from one another to a predeterminable desired temperature between 0.9 times and 1.1 times, in particular between 0.98 times and 1.02 times, a melt material liquidus temperature.
  • the melt material in the area of the separation points of each runner can be kept at a desired temperature in a very advantageous manner, which lies in the associated solidification temperature interval. Due to the individual melt material temperature control in each of the separation point areas, any differences in the geometry of the runner channels and different temperature influences can be specifically taken into account for each individual runner channel or separation point area, so that in each of the separation point areas that are spatially separated from one another but are fluidically connected via the runner channels optimal temperature for separating the melted material can be set.
  • the temperature control means comprise a temperature control unit or temperature control unit and, for the respective runner channel, a temperature sensor system between the area of the separation point and the sprue mouth on the outlet side and/or the heating device between the area of the separation point and the sprue mouth on the outlet side and/or the heating device in the runner channel section adjoining the area of the separation point upstream and /or the cooling channel structure in the area of the movable mold half opposite the sprue opening and/or the cooling duct structure between the area of the separation point and the sprue opening on the exit side.
  • the runner channel section which adjoins the area of the separation point upstream and tapers conically towards the area of the separation point merges at an associated transition point into a cylindrical casting plunger section of constant diameter which adjoins upstream.
  • the axial length of the runner channel section that tapers conically towards the separation point area is smaller than the axial length of the runner channel section between the separation point area and the gate on the outlet side, i.e. smaller than the distance of the separation point area from the gate on the outlet side. This measure can further optimize the course of the runner channel and the separation or tearing off of the melt in the runner channel in the area of the separation points.
  • the area of the movable mold half which is opposite the sprue opening has a recess or is flat. Both variants can advantageously support the melt tear-off behavior depending on the other system conditions.
  • the runner channel section located between the area of the separation point and the sprue opening on the outlet side branches into a plurality of channel branches that are parallel in terms of flow. These lead to associated gate openings on the exit side and from there to associated gate areas or gate cavities. This can be advantageous for corresponding configurations of the mold to be cast and thus the mold halves used for this purpose.
  • a in 1 shown part of a die-casting mold which is particularly suitable for the die-casting of salts and metals, e.g. magnesium, aluminum, zinc, tin, lead and brass, contains in a conventional manner a fixed mold half 1 and one opposite this, perpendicular to a parting plane 2 Movable mold half 3.
  • the fixed mold half 1 is clamped in a conventional manner on a fixed platen of a die casting machine and the movable mold half 3 is held on a clamping plate of the machine that is movable relative to the fixed clamping plate, for which purpose a preferably hydraulic drive is assigned to the movable clamping plate.
  • the two mold halves 1, 3 abut against each other when the mold is closed.
  • the movable mold half 3 is retracted in the normal direction of the parting plane 2, ie perpendicular to it.
  • the die is of any conventional construction known per se to those skilled in the art.
  • the die-casting mold also includes a gating system, a part of which is of interest in the present part in the part-cut area of 1 can be seen.
  • the gating system is also of one of the configurations known per se to a person skilled in the art.
  • the gating system comprises a melt distribution block 4 and a gating block 5 adjoining this in the direction of flow.
  • the gating system is preferably of a hot-runner type in which at least the melt distribution block 4 is actively heated, for example by means of an electrical or inductive heating device or by means of a Heating fluid, which is passed through a heating channel structure of the melt distribution block 4, as is known per se.
  • the melt distribution block 4 and the sprue block 5 are built into or attached to the fixed mold half 1 .
  • the sprue system has at least one runner channel 6, which extends from a sprue mouth opening, not shown, on the inlet side to a sprue mouth 7 on the outlet side. With its sprue opening 7, the runner channel 6 opens into a gate area 8 formed between the fixed mold half 1 and the movable mold half 3, i.e. a gate cavity, which in turn, as usual, opens into a mold cavity (not shown) which defines the volume and the contour of the pouring product reflects.
  • the runner channel 6 runs from the sprue mouth opening on the inlet side, first in the melt distribution block 4 and then in the sprue block 5, which extends to the mold parting plane 2 and forms the sprue mouth 7 of the runner channel 6 there.
  • the sprue mouth opening on the inlet side forms the inlet for the melt into the melt distribution block 4, to which an upstream mouthpiece nozzle can usually be applied, which represents the outlet-side end of an upstream casting chamber or a riser leading out of a melt reservoir.
  • the die casting mold can have several such melt distribution blocks and/or several such sprue blocks and thus also several such runner channels, e.g. realized by a branching runner channel structure, depending on the requirement and application.
  • the mold may then be fed with a multi-distributed sprue block system from a casting vessel, e.g., via a pouring system tip nozzle attached to the sprue block system.
  • the runner channel 6 has an at least geometrically defined separation point region 9 upstream of the sprue mouth 7 and downstream of the sprue mouth opening (not shown).
  • the geometric definition of the separation point area 9 includes the formation of a bend 9a or buckling of the runner channel 6, in that a lower channel wall part first bends upwards and then horizontally or slightly downwards, while correspondingly an upper channel wall part first bends upwards runs, in order to then run again with a lower upward component up to the sprue opening 7 .
  • this provides an approximately S-shaped profile of the runner channel 6 , as can be seen from a dashed center line 6 c , which approximately reproduces the center line of the cross-sectional profile of the runner channel 6 .
  • the geometric definition of the separation point area can include a less pronounced curvature and/or a cross-sectional narrowing of the runner channel instead of such a bend/buckling; in particular, the bend does not have to be sharp-edged as in the example shown.
  • the separation point area 9 is located inside the sprue block 5, wherein in the separation point area 9 an upstream adjoining section 6a of the runner channel 6 merges into a downstream section subsequent G manwinkanalabimposing 6b passes.
  • the downstream runner section 6b ends in the sprue opening 7 of the runner 6 on the exit side, ie its flow path length defines a predetermined distance which the separation point region 9 maintains from the sprue opening 7 . In the example shown, this distance is much smaller than the remaining, upstream length of the runner channel 6 and, in particular, also smaller than the remaining length of the runner channel in the sprue block 5.
  • the downstream end section 6b of the runner channel 6, which adjoins the separation point region 9 has a funnel-shaped, ie like a hollow cone, widening in the direction of the sprue mouth 7.
  • the separation point region 9 defines the target point for the separation or tearing off of the solidified or partially solidified melt material when the mold is opened after a casting process.
  • the melt material present in the downstream end section 6b of the runner channel 6 behind the separation area 9 remains on the cast product or the solidified melt material of the sprue or gating area 8, while the melt material remains in the runner channel 6 upstream of the separation area 9.
  • the course of the runner end section 6b which widens in the shape of a funnel, makes it easier for the residual melted material there to escape from the runner channel 6.
  • the separation point area 9 can also be thermally defined, i.e. the temperature profile along the runner channel 6 can be influenced by active cooling and/or heating temperature control measures in such a way that the precise separation of the melt material in the separation point area 9 is supported, which is otherwise due to the geometric definition is provided by means of the bend/buckle 9a.
  • the sprue block 5 can form an area that is transient in terms of temperature between the heated melt distribution block 4 on the one hand and the cooled mold cavity or gate cavity 8, which is not, or at most, upstream of the separation point area 9 actively heated and not or only in the area downstream of the separation point area 9 is actively cooled.
  • FIGS 1 and 2 show a further exemplary embodiment of the invention, again only schematically with its components of interest here, the remaining structure of the die casting mold being that according to FIGS 1 and 2 and can correspond to the explanations given above.
  • the same reference numerals are chosen, so that in this respect in addition to the above explanations on the 1 and 2 can be referred.
  • the gating system includes a runner channel 6' having a parting area 9' which is geometrically defined by a throat 9'a of the runner channel 6'. From this constriction 9', the channel cross-section widens both in the runner channel section 6'a adjoining upstream and in the runner channel section 6'b adjoining downstream, in each case in the shape of a funnel or hollow cone.
  • a distance A maintained by the separation point region 9' from the sprue opening 7' is also much smaller than the remaining, upstream length of the runner channel 6' and in particular also smaller than the remaining runner channel length in an associated runner block 5'. Specifically, in advantageous embodiments, this distance A is between 0.3 times and 3 times a diameter D of the runner channel 6' in the area of the separation point 9'.
  • the separation point area 9' is thermally defined in that the runner channel section 6'b downstream of the separation point area 9' remains unheated, while a heating device 10 is assigned to the runner channel section 6'a that follows the separation point area 9' upstream, with which the melt material is heated in This runner channel section 6'a can be actively heated up to before the separation point area 9', for example in the direction of melt flow following a likewise actively heated melt distribution block.
  • the heating device 10 can be of any type known per se to those skilled in the art, for example in the form of an electric or inductive heating device, which can be arranged in the runner channel 6' itself or, as shown, in a region of the sprue block 5' surrounding it with a small radial distance can.
  • heating by a heating fluid is possible, for which purpose a region radially surrounding the relevant runner channel section 6'a is provided with a corresponding fluid channel structure.
  • the heating of the melt in the runner channel section 6'a adjoining the separation point area 9' upstream while at the same time there is no heating of the runner channel section 6'b downstream of the separation point area 9' can support the reliable, process-reliable separation of the melt material in the separation point area 9' configured for this purpose in conjunction with the geometric constriction design and guarantee.
  • the gating system according to 3 a cooling channel structure 11 in a region 17 of the movable mold half 3' opposite the sprue mouth 7', this region 17 having a recess in the example shown and being correspondingly deepened.
  • the recess can, for example, be pot-shaped, with various other cross-sectional shapes being possible in addition to a round cross-sectional shape, for example oval or star-shaped.
  • This cooling channel structure 11 can be used to actively cool the melt material in the sprue/gate area 8' leading to a mold cavity 12 and in particular in the part of the gate area 8' directly adjoining the sprue mouth 7' of the runner channel 6'.
  • an active cooling device in the form of a cooling channel structure 13 and an active heating device 14 are assigned to the runner channel section 6′b between the separation point area 9′ and the sprue opening 7′ on the outlet side.
  • the heating device 14, like the heating device 10, can be of any type known per se to a person skilled in the art, for example an electric or inductive heating device located in said channel section 6'b or, as shown, in an area of the sprue block 5' surrounding it with a small radial distance. or a sprue insert contained in the runner channel 6' can be arranged.
  • heating by means of a heating fluid with a corresponding fluid channel structure is alternatively possible.
  • the cooling channel structure 13 can be fed with the same cooling fluid as the cooling channel structure 11 or alternatively with a different cooling fluid.
  • this pouring channel section 6'b can be replaced by the cooling device 13 are actively cooled, which supports the bonding of the melted material in this section to the melted material adjoining the mold, ie to the sprue of the cast part. This is because the additional cooling promotes the solidification of the melted material in this channel section 6'b.
  • cooling channel structure 11 in the movable mold half 3' is relatively strong in corresponding applications and could cause the melt material to solidify upstream beyond the separation point area 9', this can be counteracted in a corresponding operating mode by activating the heating device 14 and thereby the melt material in the exit-side runner channel section 6'b is kept at a sufficiently high temperature.
  • the cooling device 13 and the heating device 14 of the runner channel section 6'b can be operated in a clocked manner.
  • a type of cycle-synchronous solidification of the melt material can thus be forced, which in turn actively supports the melt separation process in the separation point region 9'.
  • only one heating device without a cooling device or only one cooling device without a heating device is assigned to the runner channel section 6'b.
  • the heating device 10 and/or the cooling channel structure 11 can be omitted.
  • cooling and heating devices 10, 11, 13, 14 mentioned are assigned a control and/or regulation unit which suitably controls the cooling/heating devices 10, 11, 13, 14 mentioned in accordance with the respectively desired operating mode.
  • a control unit 15 is shown as an example, which controls the heating device 10, the cooling channel structure 11, the cooling channel structure 13 and the heating device 14 via corresponding control lines 15a, 15b, 15c, 15d.
  • the gating system also includes, as further in 4 shown, a temperature sensor 16 between the separation point region 9 'and the exit-side sprue mouth 7'.
  • the temperature sensor system 16 is connected to the control unit 15 via an associated sensor line 15e and is designed in such a way that it can inform the control unit 15 about the temperature conditions in at least part of the runner channel 6' and in particular in the environment upstream and downstream of the separation point region 9'.
  • the temperature sensor system 16 can contain one or more temperature sensors arranged one behind the other along the runner channel 6′, especially in the one shown Part of the runner channel 6', which comprises the conically narrowing section 6'b, the separation point area 9' and the section between the separation point area 9' and the sprue opening 7'.
  • the heating device 10, the cooling device 11, the cooling device 13 and the heating device 14 can each be equipped with one or more temperature sensor elements.
  • the gating system therefore has temperature control means that can be set up to a predeterminable setpoint temperature for controllable or adjustable melt material temperature in the separation point area 9' of the runner channel 6', with this setpoint temperature expediently being set to a value between 0.9 times and 1. 1 times the liquidus temperature of the melt material to be cast, preferably at this liquidus temperature or in a narrow range between 0.98 times and 1.02 times the same.
  • a dedicated temperature control for the melted material can be achieved from the separation point area 9' to the sprue opening 7'.
  • the temperature of the melt material in the vicinity of the separation point region 9' can advantageously be kept in the melt solidification temperature interval.
  • the melt temperature in the runner channel 6' in an inflow section upstream of the separation point area 9' can certainly be selected higher in order to provide good flow properties for the melt there and reliable melt guidance, which protects against undesirable melt solidification effects in the runner channel 6' upstream of the separation point area 9'.
  • the heating and cooling devices 10, 11, 13, 14 can thus be switched on and off individually by the control unit 15 depending on the sensed temperature in the outlet-side part of the runner channel 6'.
  • This targeted melt temperature control in the gate area can be used, among other things, to prevent the melt material remaining in the runner channel 6' from cooling down too much or even solidifying when the casting mold is open while the cast part is being removed as a result of heat flow to the cooled components of the die casting mold.
  • control unit 15 can suitably limit the cooling effect of the cooling device 11, 13 in terms of its influence on the melt supplied at a controlled temperature on the outlet-side casting channel section 6'b up to the separation point area 9', while at the same time controlling the casting channel section 6'a adjoining the separation point area 9' upstream can be actively heated by means of the heating device 10 and thus kept at the liquidus temperature.
  • the gating system can be configured as a hot runner gating system with a plurality of fluidically parallel runner channels, which open into the mold cavity with spatially separate sprue openings at different points and each of which has a sprue unit of one of the in the Figures 1 to 4 shown types is assigned.
  • each of the runner channels which are fluidically connected in parallel with one another, can be equipped with a gating unit according to 3 and 4 be equipped, which has the temperature control means explained above.
  • a plurality of decentralized control or regulation units or, alternatively, a common central control or regulation unit can be provided for the cooling and heating devices of the various runner channels.
  • the temperature control means with the cooling and/or heating devices that can be controlled separately for each runner channel in the manner of the cooling and/or heating devices 10, 11, 13, 14 of 4 optimally adjust the melt temperature in the outlet-side section for each runner channel individually, so that the desired separation of the melt material in the separation point area 9′ is reliably effected in each of the runner channels.
  • the associated control/regulation device ensures by appropriate activation of the respective existing cooling/heating devices that the separation of the melt material for each of the several spatially separated sprue mouths of the different runner channels takes place reproducibly at the respective predetermined separation point with reproducible temperature conditions.
  • the sprue openings are thermally coordinated with one another, so that the separation of the melt material does not result in solidified melt material remaining in one of the separation point areas of the various runner channels when the mold is opened. Rather, the temperature conditions for each of the several, spatially separated areas of separation points are adjusted in such a way that the entire solidified melt material is completely pulled out of the sprue mouth at all separation points when the mold is opened. This ensures that during the next casting process, the melt flows into the mold cavity with the same flow distribution via the multiple sprue openings, where it forms the same flow fronts in a reproducible manner.
  • the temperature is controlled by the associated decentralized control/regulating units or alternatively the central Control / regulation unit 15 regulated individually for each of the separation points to the optimal setpoint, which, as mentioned, is approximately at the liquidus temperature of the melt material or in the range of 0.9 times to 1.1 times and preferably 0.98 times to 1.02 times the same.
  • the temperature in the runner channels not only depends on backflows or repercussions of the mold cavity or mold cooling devices for the mold cavity, but also on the diameter and the geometry of the runner channels. Furthermore, melt energies of different mass flows of the melt can have different effects on the temperature balance and thus also on the temperature conditions of the melt material in the respective separation area if it is necessary for flow reasons to fill the mold cavity, the two or more flow-technically parallel runner channels with different geometries, such as different diameters, curvatures, kinks etc.
  • FIGS 5 to 11 illustrate further variants of the embodiments of the 3 and 4 , wherein the same reference numerals are used for identical and functionally equivalent elements and insofar to the above explanations to the 3 and 4 can be referred.
  • these embodiment variants are essentially only referred to as differences compared to the exemplary embodiments of FIG 3 and 4 received.
  • the runner channel section 6'a which tapers conically towards the separating point area 9' and adjoins the separation point area 9' upstream, merges at an associated transition point 18 into a cylindrical runner channel section 6'd of constant diameter, which adjoins upstream.
  • the runner channel section 6'a extends in the axial direction over a length L6a, which is smaller than the distance A of the separation point region 9' from the sprue mouth 7' on the outlet side and is therefore smaller than the axial length of the runner channel section 6'b between the separation point region 9' and the exit-side sprue mouth 7'.
  • the cylindrical runner channel section 6'd has a heating device 10' analogous to the heating device 10 of the conically tapering runner channel section 6'a in the examples in FIG 3 and 4 assigned.
  • the heating device 10' can also be in the area of the conically tapering runner channel section 6'a extend and there the function of the heating device 10 according to the examples of 3 and 4 take over.
  • the runner channel section 6'b between the separation point region 9' and the sprue mouth 7' on the outlet side remains without active cooling and heating, or it has the active cooling device 13 and/or the active heating device 14 in accordance with the example in FIG 4 assigned.
  • the associated cooling channel structure 11 additionally comprises cooling channels directly opposite the sprue opening 7′ on the outlet side.
  • FIG. 7 shows a variant that differs from the embodiment of 6 differs in that an active heating device 10′′ extends both in the cylindrical runner channel section 6′d and in the conically tapering runner channel section 6′a and the function of the above to the exemplary embodiments of FIG Figures 4 and 5 explained heating devices 10 and 10 'takes over. Furthermore, in 7 explicitly the active cooling device 13 and the active heating device 14 for the runner channel section 6'b between the separation point region 9' and the sprue mouth 7' on the outlet side, as shown above for the exemplary embodiment in FIG 4 explained.
  • the Figures 8 and 9 show an embodiment that corresponds to that of 7 is similar, with the difference being that the runner channel section extending from the separation point region 9' to the sprue mouth 7' on the outlet side branches into a plurality of channel branches 6'b1, 6'b2 which are parallel in terms of flow.
  • this runner channel section comprises the two channel branches 6′b1 and 6′b2, in alternative embodiments it can also contain more than two flow-technically parallel channel branches and/or a plurality of channel branches lying one behind the other in the direction of flow.
  • each of the two channel branches 6'b1, 6'b2 forms a runner channel branch that tapers conically from the exit-side sprue orifice 7' to the separation point region 9', and each channel branch 6'b1, 6'b2 is designed as in particular 9 visible, surrounded by several heating elements of the active heating device 14 .
  • the active cooling device 13 contains circular cooling channels, which are arranged radially outside the two runner channel branches 6'b1, 6'b2, surrounding them.
  • the sprue opening 7' on the exit side correspondingly comprises the two exit openings of the runner channel branches 6'b1, 6'b2, and an opposite area 17' modified in this respect, which contains the active cooling channel structure 11 contains, is provided on the mold cavity side with a gate area 8'1 , 8'2 for each of the runner channel branches 6'b1, 6'b2. In this way, melt is conducted into the mold cavity 12 via the runner branches 6'b1, 6'b2 and the gate areas 8'1 , 8'2 at associated different locations.
  • the Figures 10 and 11 illustrate an embodiment similar to that of FIG Figures 8 and 9 with the difference that the two runner branches 6'b1, 6'b2, into which the runner channel section branches between the separation point region 9' and the sprue opening 7' on the outlet side, are realized in a different way.
  • the pouring channel section 6'b is analogous to the embodiment variants of FIG Figures 3 to 7 designed in the shape of a truncated cone.
  • a correspondingly frustoconical extension 19 protrudes from a modified opposite region 17" of the movable mold half 3' into this runner channel section 6'b, which tapers conically in a truncated cone shape from the sprue opening 7' on the exit side to the separation point region 9', which has two axial grooves located opposite one another in the circumferential direction which in this case form the two channel branches 6'b1, 6'b2 and merge into the cut areas 8'1 , 8'2.
  • a cooling channel 11a extends as part of the active cooling device 11 into the area of the extension 19, whereby the cooling effect for the runner branches 6'b1, 6'b2 can be enhanced.
  • the invention provides an advantageous sprue system that enables a defined separation of the melt in the runner channel with a preferably relatively small distance from its sprue mouth on the outlet side into the mold cavity or, as shown, into the upstream sprue/gate cavity At the same time, undesired escape of melt material that is still liquid from the solid mold half when the mold is opened can be avoided without a mechanical locking system being absolutely necessary.
  • the gating system according to the invention is suitable for all applications known for conventional gating systems, and in particular also as a hot-runner gating system for die-casting zinc, aluminum and magnesium in an elevated temperature range of up to approx. 750°C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

  • Die Erfindung bezieht sich auf ein Angusssystem für eine Druckgießform, wobei das Angusssystem wenigstens einen Gießlaufkanal beinhaltet, der sich von einer eintrittsseitigen Angussmundöffnung zu einer austrittsseitigen Angussmündung erstreckt, die in eine zwischen einer festen Formhälfte und einer beweglichen Formhälfte der Druckgießform gebildete Formkavität oder in einen dieser vorgelagerten Anschnittbereich mündet. Insbesondere kann es sich hierbei um ein sogenanntes Heißkanal-Angusssystem handeln. Die eintrittsseitige Angussmundöffnung kann insbesondere so ausgeführt sein, dass sich daran eine Mundstückdüse oder dgl. eines vorgelagerten Gießsystemteils anlegen lässt.
  • Von der Anmelderin befindet sich ein Heißkanal-Angusssystem mit der Bezeichnung Frech-Gießlauf-System bzw. Frech-Gating-System (FGS) für Druckgießformen auf dem Markt, wie es z.B. auch in dem Zeitschriftenaufsatz L. H. Kallien und C. Böhnlein, Druckgießen, Gießerei 96, 07/2009, S. 18-26 erwähnt ist. Heißkanal-Angusssysteme haben allgemein gegenüber anderen konventionellen Angusssystemen den Vorteil, dass der Schmelzematerialanteil deutlich reduziert werden kann, der auf den sogenannten Anguss oder Anschnitt bzw. den der Formkavität vorgelagerten Anguss-/Anschnittbereich entfällt und von dem gegossenen Gießprodukt abgetrennt werden muss. Zudem lässt sich der Luftanteil im Gießsystem gering halten, was das Gießen von Teilen mit entsprechend geringer Porosität ermöglicht, und der Thermohaushalt ist verbessert, weil die Wärmeverluste bis zur Kavität in der Form geringer sind und folglich zur Kompensation der Verluste die Schmelze weniger stark überhitzt werden muss. Die Maschinenproduktivität steigt, da der Anguss deutlich kleiner und weniger massiv ist.
  • In den Patentschriften EP 1 201 335 B1 und EP 1 997 571 B1 der Anmelderin sind Heißkanal-Angusssysteme offenbart, die z.B. von einem Kamm- oder Fächerangusstyp sind oder eigenständig in eine jeweilige Gießform einsetzbare Angussblockeinheiten mit integrierter Schmelzekanalheizung aufweisen.
  • Es ist bekannt, das Austreten von flüssigem Schmelzematerial beim Öffnen der Form durch ein mechanisches Verschlusssystem zu unterbinden. Derartige Verschlusssysteme sind allerdings gerade auch in der Anwendung beim Metalldruckgießen relativ verschleißanfällig und neigen zu Undichtigkeiten. Es wurde daher auch bereits verschiedentlich vorgeschlagen, dieses unerwünschte Austreten von Schmelzematerial durch Bilden eines erstarrten Schmelzematerialpfropfens im Bereich der Angussmundöffnung des Angusssystems bzw. im Bereich einer daran angelegten Mundstückdüse oder eines vorgelagerten Gießkammeraustrittskanals zu verhindern, siehe z.B. die Patentschrift 100 64 300 C1 , die Offenlegungsschrift WO 2007/028265 A2 und die bereits erwähnte Patentschrift EP 1 201 335 B1 .
  • Weiter ist es beispielsweise aus der Offenlegungsschrift US 2007/0131376 A1 bekannt, das Austreten von flüssigem Schmelzematerial beim Öffnen der Form dadurch zu unterbinden, dass in einem Gießlaufkanalabschnitt, der stromaufwärts an eine als austrittsseitige Angussmündung fungierende Engstelle anschließt, mit Abstand zu der Engstelle ein Pfropfen aus erstarrtem Schmelzematerial mittels eines entsprechenden Pfropfenbildungsmechanismus gebildet wird, wobei die Engstelle als geometrisch definierter Trennstellenbereich fungiert, an dem das Schmelzematerial beim Öffnen der Form abreißt. Zwischen der Engstelle und dem Pfropfen befindliches Schmelzematerial wird dort festgehalten, da der Pfropfen festsitzt, bis in einem nächsten Gießzyklus der Pfropfen durch nachdrückendes Schmelzematerial vorbewegt und je nach Gießvolumen nochmals im Gießlaufkanalabschnitt verbleibt oder verflüssigt und in die Formkavität gedrückt wird.
  • In der Patentschrift DE 196 11 267 C1 ist eine in ein Werkzeugteil eingefügte und an diesem gehalterte Angussbuchse mit einem Durchgangskanal für schmelzflüssiges Metall zur Verwendung an einer Warmkammer-Metalldruckgießmaschine offenbart. Die Angussbuchse ist insbesondere auf eine Verwendung an einer Zinkdruckgießmaschine ausgelegt. Der Durchgangskanal steht einerseits mit einer Metallspeisevorrichtung und andererseits mit einer Kavität des Werkzeugs in Verbindung und ist über seinen wesentlichen Verlauf von der Speisemündung bis kurz vor der Mündung zur Kavität zylindrisch ausgebildet, wobei er nachfolgend eine Einschnürung und dieser folgend eine konische Erweiterung zur Einmündung in die Kavität aufweist. Die Angussbuchse weist über nahezu die gesamte Länge der zylindrischen Kanalausbildung eine elektrische Beheizung und im Bereich der Einschnürung eine Kühlzone auf. Die Kühlzone ist durch einen in die Angussbuchse eingebrachten Luftspalt gebildet. Die elektrische Beheizung der zylindrischen Kanalausbildung endet mit einem Abstand vor einem sich konisch verengenden Eintrittsbereich der Einschnürung.
  • In der Patentschrift US 6.745.821 B1 ist ein Heißkanal-Angusssystem der eingangs genannten Art offenbart, das zwei stirnseitig gegeneinander anliegende Angusseinsätze beinhaltet, von denen der eine an der festen Formhälfte und der andere an der beweglichen Formhälfte angeordnet sind und die zwischen sich einen um 90° gebogenen Bereich des Gießlaufkanals belassen, wobei dieser Bereich als Trennstellenbereich fungiert, in dem sich durch entsprechende Einstellung der Temperatur der Angusseinsätze die Erstarrungsstelle des Schmelzematerials am Ende eines jeweiligen Gießvorgangs befindet. Dazu ist in den Angusseinsatz der beweglichen Formhälfte eine Kühlkanalstruktur integriert. Einem stromaufwärts an den 90°-Bogen geradlinig anschließenden Abschnitt des Gießlaufkanals ist eine Heizeinrichtung zugeordnet. Vom 90°-Bogen führt der Gießlaufkanal geradlinig weiter zur austrittsseitigen Angussmündung.
  • In jüngerer Zeit hat sich verstärkt der Bedarf an Druckgießtechniken in einem relativ hohen Temperaturbereich von bis zu ca. 700 °C oder 750 °C ergeben. Mit dieser erhöhten Temperatur erhöht sich auch die Gefahr unerwünschter Oxidbildung, insbesondere in Austrittsöffnungsbereichen des Ausgusssystems, an denen das Schmelzematerial mit Sauerstoff aus der Luft in Kontakt kommen kann. Dies stellt unter anderem auch entsprechende Anforderungen an Angusssysteme, die auf Basis der Heißkanaltechnik arbeiten.
  • Der Erfindung liegt als technisches Problem die Bereitstellung eines Angusssystems der eingangs genannten Art zugrunde, das sich prozesssicher auch für relativ hohe Druckgießtemperaturen eignet und sich bei Bedarf als Heißkanal-Angusssystem realisieren lässt.
  • Die Erfindung löst dieses Problem durch die Bereitstellung eines Angusssystems mit den Merkmalen des Anspruchs 1. Bei diesem Angusssystem weist der Gießlaufkanal einen geometrisch und/oder thermisch definierten Trennstellenbereich auf, der in Strömungsrichtung des zu gießenden Schmelzematerials stromaufwärts der Angussmündung und stromabwärts der Angussmundöffnung ausgebildet ist. Dies bedeutet, dass der Trennstellenbereich jeweils einen gewissen, vorgegebenen Abstand sowohl von der austrittsseitigen Angussmündung als auch von der eintrittsseitigen Angussmundöffnung des Gießlaufkanals besitzt. Unter Trennstellenbereich ist hierbei derjenige Bereich des Gießlaufkanals zu verstehen, welcher als Sollstelle für das Abtrennen bzw. Abreißen des formseitig erstarrten oder teilerstarrten Schmelzematerials vom noch flüssigen oder noch weniger stark erstarrten Schmelzematerial im Gießlaufkanal beim Öffnen der Form ausgebildet ist. Dieses Abtrennen kann ein eigentliches Abreißen von fest-fest-Phasen des Schmelzematerials oder ein Abschmelzen bzw. Abziehen sein, bei dem sich der feste Anteil des Schmelzematerials von der flüssigen Phase trennt, indem auf dessen Oberfläche mitgenommene Schmelze erstarrt und der flüssige Teil im Gießlaufkanal aufgrund Oberflächenspannung verbleibt.
  • Die Festlegung dieser Solltrennstelle erfolgt geometrisch, d.h. durch entsprechende geometrische Gestaltung des Verlaufs des Gießlaufkanals, und/oder thermisch, d.h. durch entsprechende thermische Gestaltung des Verlaufs des Gießlaufkanals. Für den Fachmann heißt dies, dass er den Gießlaufkanal dergestalt entwirft, dass die Metallschmelze stromabwärts des Trennstellenbereichs leichter bzw. schneller erstarrt als stromaufwärts des Trennstellenbereichs, so dass beim Öffnen der Form das bereits erstarrte oder relativ stark teilerstarrte Schmelzematerial stromabwärts des Trennstellenbereichs mit der Öffnungsbewegung der beweglichen Formhälfte als am Gießprodukt anhängender Bestandteil aus dem Gießlaufkanal herausgezogen wird und hierbei vom noch flüssigen oder allenfalls schwächer teilerstarrten Schmelzematerial stromaufwärts des Trennstellenbereichs getrennt bzw. abgerissen wird. Unter Kenntnis dieser Anforderung sind dem Fachmann geeignete geometrische und thermische Maßnahmen zur Realisierung des Trennstellenbereichs geläufig, so dass er geeignete Kanalkonfigurationen gegebenenfalls unter Verwendung einfacher Versuche und/oder rechnerischer Simulationen bereitstellen kann, je nach der sonstigen Konfiguration der Druckgießform und je nach dem verwendeten Schmelzematerial. Als Schmelzematerialien kommen sowohl übliche Salzschmelzen in Betracht als auch übliche Schmelzemetalllegierungen, insbesondere Nichteisenlegierungen auf Basis von Magnesium, Aluminium, Zink, Zinn, Blei oder Messing als jeweiliger Hauptbestandteil.
  • Das definierte Festlegen des Trennstellenbereichs gewährleistet erfindungsgemäß, dass die erstarrte bzw. teilerstarrte Schmelze reproduzierbar genau an dieser Stelle abgetrennt wird und nicht zufällig irgendwo bzw. an wechselnden Stellen des Gießlaufkanals. Das erfindungsgemäße Angusssystem benötigt kein mechanisches Verschlusssystem. Die Auslegung des Temperaturprofils entlang des Gießlaufkanals, welche die thermische Definition des Trennstellenbereichs umfasst, kann zudem so gestaltet sein, dass sie einen temperaturtransienten Abschnitt des Gießlaufkanals von einem vorgelagerten beheizten Bereich zu einem gekühlten, konturgebenden Teil der Gießform bildet. Dies kann unerwünschter Oxidbildung und Brandgefahren insbesondere bei stark reaktionsfreudigen bzw. oxidierenden Schmelzen entgegenwirken.
  • Gemäß einem Aspekt der Erfindung weist dazu der Gießlaufkanal im Trennstellenbereich einen S-förmigen Verlauf mit einer Biegung oder Knickung auf. Diese geometrische Maßnahme ist geeignet, das funktionssichere Abtrennen des Schmelzematerials genau im dazu definierten Trennstellenbereich zu unterstützen.
  • Gemäß einem zusätzlichen oder alternativen Aspekt der Erfindung weist ein der Angussmündung des Gießlaufkanals gegenüberliegender Bereich der beweglichen Formhälfte eine Kühlkanalstruktur auf. Mit dieser thermischen Maßnahme kann das Erstarren bzw. Teilerstarren des Schmelzematerials im Gießlaufkanal stromabwärts des Trennstellenbereichs unterstützt werden.
  • Gemäß einem weiteren zusätzlichen oder alternativen Aspekt der Erfindung ist einem Gießlaufkanalabschnitt zwischen dem Trennstellenbereich und der austrittsseitigen Angussmündung eine Heizeinrichtung zugeordnet. Dadurch lässt sich der austrittsseitige Teil des Gießlaufkanals bei Bedarf kontrolliert aktiv beheizen. Dies stellt eine vorteilhafte geometrisch-thermische Maßnahme für die Definition des Trennstellenbereichs an dieser Stelle dar. Die Heizeinrichtung kann z.B. eine an sich bekannte elektrische oder induktive Heizeinrichtung sein, die im Gießlaufkanal selbst oder in ausreichend geringem radialem Abstand außerhalb desselben angeordnet ist.
  • In einer Weiterbildung der Erfindung ist einem an den Trennstellenbereich stromaufwärts anschließenden, sich zum Trennstellenbereich hin konisch verjüngenden Gießlaufkanalabschnitt eine Heizeinrichtung zugeordnet. Dadurch lässt sich der an den Trennstellenbereich stromaufwärts anschließende, als konische Verengung gestaltete Abschnitt des Gießlaufkanals bei Bedarf kontrolliert aktiv beheizen. Dies stellt eine weitere vorteilhafte geometrisch-thermische Maßnahme für die Definition des Trennstellenbereichs an dieser Stelle dar. Die Heizeinrichtung kann z.B. eine an sich bekannte elektrische oder induktive Heizeinrichtung sein, die im Gießlaufkanal selbst oder in ausreichend geringem radialem Abstand außerhalb desselben angeordnet ist.
  • In einer Weiterbildung der Erfindung weist der Gießlaufkanal im Trennstellenbereich eine Engstelle auf, von der aus sich sein Durchflussquerschnitt stromabwärts und/oder stromaufwärts erhöht. Diese geometrische Maßnahme unterstützt das zuverlässige Abtrennen des Schmelzematerials im Trennstellenbereich. Der Gießlaufkanal kann z.B. so konfiguriert sein, dass sich sein Durchflussquerschnitt vom Trennstellenbereich bis zur Angussmündung aufweitet, d.h. der Durchflussquerschnitt nimmt vom Trennstellenbereich bis zur Angussmündung nicht mehr ab, sondern wird stetig größer oder bleibt allenfalls abschnittweise konstant. Diese geometrische Maßnahme der Gießlaufkanalgestaltung kann das Herausziehen des erstarrten bzw. stark teilerstarrten Schmelzematerials aus dem Abschnitt des Gießlaufkanals vom Trennstellenbereich zur austrittsseitigen Angussmündung und damit auch das Abtrennen dieses Teils des Schmelzematerials vom Schmelzematerial stromaufwärts des Trennstellenbereichs erleichtern. So kann der Gießlaufkanal von der Engstelle bis zur Ausgussmündung z.B. einen sich trichterförmig aufweitenden Verlauf haben.
  • Vorzugsweise ist der Abstand des Trennstellenbereichs von der austrittsseitigen Angussmündung des Gießlaufkanals sehr klein und insbesondere deutlich geringer als von der eintrittsseitigen Angussmundöffnung des Gießlaufkanals, wobei vorliegend diese genannten Abstände bezogen auf die Strömungsweglänge des im Gießlaufkanal geförderten Schmelzematerials zu verstehen sind. Dies trägt dem Ziel Rechnung, den Schmelzeanteil zu minimieren, der als Anguss am gegossenen Teil erstarrt und mit ihm aus der Form genommen wird. Das System lässt sich derart kompakt bauen, dass es am gegossenen Teil kaum noch nennenswerten erstarrten Gießlauf bzw. Anguss gibt. Speziell befindet sich der Trennstellenbereich gemäß einer Weiterbildung der Erfindung in einem Abstand zwischen dem 0,3-fachen und 3-fachen eines Durchmessers des Gießlaufkanals im Trennstellenbereich und somit entsprechend nahe vor der Angussmündung.
  • In einer Weiterbildung der Erfindung ist einem Gießlaufkanalabschnitt zwischen dem Trennstellenbereich und der austrittsseitigen Angussmündung eine Kühlkanalstruktur zugeordnet. Auch damit kann die thermische Definition des Trennstellenbereichs und folglich das zuverlässige Abtrennen des Schmelzematerials in diesem Bereich gezielt weiter verbessert werden.
  • In einer Weiterbildung der Erfindung verläuft der Gießlaufkanal in einem an den Trennstellenbereich stromaufwärts anschließenden Bereich mit einem Winkel zwischen 0° und 45°, insbesondere zwischen 3° und 20°, zur Normalenrichtung einer Trennebene zwischen fester und beweglicher Formhälfte, und zwar in Richtung Trennstellenbereich ansteigend. Dieser in Strömungsrichtung der Schmelze ansteigende Verlauf des Gießlaufkanals in diesem Abschnitt kann dazu beitragen, ein unerwünschtes Austreten von Schmelzematerial aus dem Gießlaufkanal beim Öffnen der Form nach Abtrennen des Schmelzematerials im Trennstellenbereich zu vermeiden. Bei dieser Systemauslegung ergibt sich der besagte ansteigende Verlauf des Gießlaufkanals auch schon dann, wenn die Formhälften mit vertikal liegender Trennebene angeordnet sind.
  • In einer Weiterbildung der Erfindung ist das Angusssystem als Heißkanal-Angusssystem konfiguriert und umfasst in an sich bekannter Weise einen Schmelzeverteilerblock, der eintrittsseitig die Angussmundöffnung aufweist, und einen in Strömungsrichtung an den Schmelzeverteilerblock anschließenden Angussblock, der austrittsseitig die Angussmündung aufweist. Dabei ist der Trennstellenbereich in dem Abschnitt des Gießlaufkanals ausgebildet, der im Angussblock verläuft. Der Trennstellenbereich befindet sich folglich in relativ geringem Abstand anschnittnah vor der Trennebene von fester und beweglicher Formhälfte.
  • In einer Weiterbildung der Erfindung ist das Angusssystem als Heißkanal-Angusssystem konfiguriert, und der wenigstens eine Gießlaufkanal umfasst mindestens zwei strömungstechnisch parallele Gießlaufkanäle, wobei Temperierungsmittel vorgesehen sind, die zur steuer- oder regelbaren Schmelzematerialtemperierung in den Trennstellenbereichen der Gießlaufkanäle unabhängig voneinander auf eine vorgebbare Solltemperatur zwischen dem 0,9-fachen und 1,1-fachen, insbesondere zwischen dem 0,98-fachen und 1,02-fachen, einer Schmelzematerial-Liquidustemperatur eingerichtet sind.
  • Mit diesen Temperierungsmitteln kann in sehr vorteilhafter Weise bei einem derartigen Heißkanal-Angusssystem mit mehreren strömungstechnisch parallelen Gießlaufkanälen das Schmelzematerial im Trennstellenbereich jedes Gießlaufkanals auf einer gewünschten Temperatur gehalten werden, die im zugehörigen Erstarrungstemperaturintervall liegt. Durch die individuelle Schmelzematerialtemperierung in jedem der Trennstellenbereiche kann etwaigen Unterschieden in der Geometrie der Gießlaufkanäle und unterschiedlichen Temperatureinflüssen gezielt für jeden einzelnen Gießlaufkanal bzw. Trennstellenbereich Rechnung getragen werden, so dass in jedem der räumlich voneinander getrennten, jedoch über die Gießlaufkanäle strömungstechnisch in Verbindung stehenden Trennstellenbereich die für das Abtrennen des Schmelzematerials optimale Temperatur eingestellt werden kann.
  • In Ausgestaltung der Erfindung umfassen die Temperierungsmittel eine Temperatursteuereinheit oder Temperaturregeleinheit und für den jeweiligen Gießlaufkanal eine Temperatursensorik zwischen dem Trennstellenbereich und der austrittsseitigen Angussmündung und/oder die Heizeinrichtung zwischen dem Trennstellenbereich und der austrittsseitigen Angussmündung und/oder die Heizeinrichtung im an den Trennstellenbereich stromaufwärts anschließenden Gießlaufkanalabschnitt und/oder die Kühlkanalstruktur im der Angussmündung gegenüberliegender Bereich der beweglichen Formhälfte und/oder die Kühlkanalstruktur zwischen dem Trennstellenbereich und der austrittsseitigen Angussmündung. Dies stellt vorteilhafte Varianten der Realisierung der Temperierungsmittel dar.
  • In einer Weiterbildung der Erfindung geht der an den Trennstellenbereich stromaufwärts anschließende Gießlaufkanalabschnitt, der sich zum Trennstellenbereich hin konisch verjüngt, an einer zugehörigen Übergangsstelle in einen stromaufwärts anschließenden zylindrischen Gießkolbenabschnitt konstanten Durchmessers über. Dabei ist die axiale Länge des sich zum Trennstellenbereich hin konisch verjüngenden Gießlaufkanalabschnitts kleiner als die axiale Länge des Gießlaufkanalabschnitts zwischen dem Trennstellenbereich und der austrittsseitigen Angussmündung, d.h. kleiner als der Abstand des Trennstellenbereichs von der austrittsseitigen Angussmündung. Diese Maßnahme kann den Gießlaufkanalverlauf und das Abtrennen bzw. Abreißen der Schmelze im Gießlaufkanal im Trennstellenbereich weiter optimieren.
  • In einer Weiterbildung der Erfindung weist der Bereich der beweglichen Formhälfte, welcher der Angussmündung gegenüberliegt, eine Ausnehmung auf oder ist eben ausgebildet. Beide Ausführungsvarianten können das Schmelzeabreißverhalten je nach den sonstigen Systemgegebenheiten vorteilhaft unterstützen.
  • In einer Weiterbildung der Erfindung verzweigt sich der sich zwischen dem Trennstellenbereich und der austrittsseitigen Angussmündung befindliche Gießlaufkanalabschnitt in mehrere strömungstechnisch parallele Kanalzweige. Diese führen zu zugehörigen austrittsseitigen Angussmündungsstellen und von dort in zugehörige Anschnittbereiche bzw. Anschnittkavitäten. Dies kann für entsprechende Gestaltungen der zu gießenden Form und damit der hierfür eingesetzten Formhälften von Vorteil sein.
  • Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben. Hierbei zeigen:
  • Fig. 1
    eine schematische, teilweise geschnittene Seitenansicht eines vorliegend interessierenden Teils einer Druckgießform,
    Fig. 2
    eine Detailansicht aus Fig. 1 mit einem Gießlaufkanal mit einem Trennstellenbereich, der eine Biegung/Knickung beinhaltet,
    Fig. 3
    eine schematische Schnittansicht eines vorliegend interessierenden Teils einer weiteren Druckgießform mit einem Gießlaufkanal mit geometrisch und thermisch definiertem Trennstellenbereich,
    Fig. 4
    eine Ansicht entsprechend Fig. 3 für eine Variante mit zusätzlicher Kühl- und Heizmöglichkeit eines austrittsseitigen Gießlaufkanalabschnitts,
    Fig. 5
    eine Ansicht entsprechend Fig. 4 für eine Variante mit zylindrischem Gießlaufkanalabschnitt konstanten Durchmessers,
    Fig. 6
    eine Ansicht entsprechend Fig. 5 für eine Variante mit flacher Gestaltung des einer Angussmündung des Gießlaufkanals gegenüberliegenden Bereichs einer beweglichen Formhälfte,
    Fig. 7
    eine Ansicht entsprechend Fig. 6 für eine Variante mit einer modifizierten Heiz-/Kühlanordnung,
    Fig. 8
    eine Ansicht entsprechend Fig. 7 für eine Variante mit sich verzweigendem Gießlaufkanalabschnitt zwischen Trennstellenbereich und austrittsseitiger Angussmündung,
    Fig. 9
    eine Schnittansicht längs einer Linie IX-IX von Fig. 8,
    Fig. 10
    eine Ansicht entsprechend Fig. 8 für eine weitere Variante mit sich verzweigendem Gießlaufkanalabschnitt zwischen Trennstellenbereich und austrittsseitiger Angussmündung und
    Fig. 11
    eine Schnittansicht längs einer Linie XI-XI von Fig. 10.
  • Ein in Fig. 1 gezeigter Teil einer Druckgießform, wie sie sich insbesondere für das Druckgießen von Salzen und Metallen, z.B. Magnesium, Aluminium Zink, Zinn, Blei und Messing, eignet, beinhaltet in an sich üblicher Weise eine feste Formhälfte 1 und eine gegenüber dieser senkrecht zu einer Trennebene 2 bewegliche Formhälfte 3. Dazu sind z.B. in einer üblichen Weise die feste Formhälfte 1 an einer festen Aufspannplatte einer Druckgießmaschine aufgespannt und die bewegliche Formhälfte 3 an einer gegenüber der festen Aufspannplatte beweglichen Aufspannplatte der Maschine gehalten, wozu der beweglichen Aufspannplatte ein vorzugsweise hydraulischer Antrieb zugeordnet ist. In der Trennebene 2 stoßen die beiden Formhälften 1, 3 bei geschlossener Form gegeneinander an, zum Öffnen der Form wird die bewegliche Formhälfte 3 in Normalenrichtung der Trennebene 2, d.h. senkrecht zu dieser, zurückgefahren. Soweit nachfolgend nichts anderes gesagt, ist die Druckgießform von irgendeinem beliebigen herkömmlichen Aufbau, wie dem Fachmann an sich bekannt. Die Druckgießform beinhaltet des Weiteren ein Angusssystem, von dem ein vorliegend interessierender Teil im teilgeschnittenen Bereich von Fig. 1 zu erkennen ist. Im Übrigen ist das Angusssystem ebenfalls von einer der dem Fachmann an sich bekannten Konfigurationen.
  • Wie aus Fig. 1 und der zugehörigen Detailansicht von Fig. 2 zu erkennen, umfasst das Angusssystem einen Schmelzeverteilerblock 4 und einen an diesen in Strömungsrichtung anschließenden Angussblock 5. Das Angusssystem ist vorzugsweise von einem Heißkanal-Typ, bei dem mindestens der Schmelzeverteilerblock 4 aktiv beheizt wird, zum Beispiel mittels einer elektrischen oder induktiven Heizeinrichtung oder mittels eines Heizfluids, das durch eine Heizkanalstruktur des Schmelzeverteilerblocks 4 geleitet wird, wie an sich bekannt. Der Schmelzeverteilerblock 4 und der Angussblock 5 sind in die feste Formhälfte 1 eingebaut bzw. an dieser befestigt.
  • Das Angusssystem besitzt wenigstens einen Gießlaufkanal 6, der sich von einer eintrittsseitigen, nicht gezeigten Angussmundöffnung zu einer austrittsseitigen Angussmündung 7 erstreckt. Mit seiner Angussmündung 7 mündet der Gießlaufkanal 6 in einen zwischen der festen Formhälfte 1 und der beweglichen Formhälfte 3 gebildeten Anschnittbereich 8, d.h. eine Anschnittkavität, der dann seinerseits, wie üblich, in eine nicht gezeigte Formkavität mündet, welche das Volumen und die Kontur des zu gießenden Produkts widerspiegelt.
  • Der Gießlaufkanal 6 verläuft von der eintrittsseitigen Angussmundöffnung zunächst im Schmelzeverteilerblock 4 und anschließend im Angussblock 5, der bis zur Formtrennebene 2 reicht und dort die Angussmündung 7 des Gießlaufkanals 6 ausbildet. Die nicht gezeigte, eintrittsseitige Angussmundöffnung bildet den Eintritt für die Schmelze in den Schmelzeverteilerblock 4, an den in üblicherweise eine vorgelagerte Mundstückdüse angelegt werden kann, die das austrittsseitige Ende einer vorgelagerten Gießkammer bzw. einer aus einem Schmelzereservoir abführenden Steigleitung darstellt. Es versteht sich, dass die Druckgießform je nach Bedarf und Anwendungsfall mehrere derartige Schmelzeverteilerblöcke und/oder mehrere derartige Angussblöcke und somit auch mehrere derartige Gießlaufkanäle, z.B. realisiert durch eine sich verzweigende Gießlaufkanalstruktur, aufweisen kann. Die Gießform lässt sich dann mit einem mehrfach verteilten Angussblocksystem von einem Gießbehälter speisen, z.B. über eine an das Angussblocksystem angelegte Mundstückdüse des Gießsystems.
  • Wie insbesondere aus Fig. 2 ersichtlich, weist der Gießlaufkanal 6 stromaufwärts der Angussmündung 7 und stromabwärts der nicht gezeigten Angussmundöffnung einen zumindest geometrisch definierten Trennstellenbereich 9 auf. Die geometrische Definition des Trennstellenbereichs 9 beinhaltet die Bildung einer Biegung 9a bzw. Knickung des Gießlaufkanals 6, indem ein unterer Kanalwandteil zuerst nach oben abbiegt und dann in die Horizontale bzw. leicht nach unten verlaufend abknickt, während korrespondierend dazu ein oberer Kanalwandteil zunächst nach oben abgebogen verläuft, um dann wieder mit geringerer Aufwärtskomponente bis zur Angussmündung 7 zu verlaufen. Insgesamt ist dadurch ein etwa S-förmiger Verlauf des Gießlaufkanals 6 bereitgestellt, wie dies an einer gestrichelten Mittellinie 6c deutlich wird, die ungefähr die Mittellinie des Querschnittsverlaufs des Gießlaufkanals 6 wiedergibt. In alternativen Realisierungen kann die geometrische Definition des Trennstellenbereichs statt einer solchen Biegung/Knickung eine weniger starke Krümmung und/oder eine Querschnittsverjüngung des Gießlaufkanals beinhalten, insbesondere braucht der Knick nicht wie im gezeigten Beispiel scharfkantig realisiert sein.
  • Der Trennstellenbereich 9 befindet sich im Inneren des Angussblocks 5, wobei im Trennstellenbereich 9 ein stromaufwärts anschließender Abschnitt 6a des Gießlaufkanals 6 in einen stromabwärts anschließenden Gießlaufkanalabschnitt 6b übergeht. Der stromabwärtige Gießlaufkanalabschnitt 6b endet in der austrittsseitigen Angussmündung 7 des Gießlaufkanals 6, d.h. seine Strömungsweglänge definiert einen vorgegebenen Abstand, den der Trennstellenbereich 9 von der Angussmündung 7 einhält. Dieser Abstand ist im gezeigten Beispiel viel geringer als die restliche, stromaufwärtige Länge des Gießlaufkanals 6 und insbesondere auch kleiner als die restliche Gießlaufkanallänge im Angussblock 5. Im gezeigten Beispiel besitzt der stromabwärtige Endabschnitt 6b des Gießlaufkanals 6, der an den Trennstellenbereich 9 anschließt, eine sich trichterförmig, d.h. hohlkegelartig, in Richtung der Angussmündung 7 aufweitende Form.
  • Der Trennstellenbereich 9 definiert, wie oben erläutert, die Sollstelle für das Abtrennen bzw. Abreißen des erstarrten bzw. teilerstarrten Schmelzematerials beim Öffnen der Form nach einem Gießvorgang. Somit verbleibt das im stromabwärtigen Endabschnitt 6b des Gießlaufkanals 6 hinter dem Trennstellenbereich 9 vorliegende Schmelzematerial am Gießprodukt bzw. dem erstarrten Schmelzematerial des Anguss- bzw. Anschnittbereichs 8, während das Schmelzematerial stromaufwärts des Trennstellenbereichs 9 im Gießlaufkanal 6 verbleibt. Der sich trichterförmig aufweitende Verlauf des Gießlaufkanal-Endabschnitts 6b erleichtert das Herausgelangen des dortigen Schmelzematerialrestes aus dem Gießlaufkanal 6.
  • Wie weiter insbesondere aus Fig. 2 ersichtlich, besitzt der Gießlaufkanal 6 in seinem stromaufwärts an den Trennstellenbereich 9 angrenzenden Abschnitt 6a einen in Schmelzeflussrichtung ansteigenden Verlauf bezogen auf die in vertikaler Lage gezeigte Formtrennebene 2. Dabei nimmt der Gießlaufkanalverlauf in diesem Abschnitt 6a einen Winkel α zwischen ca. 0° und ca. 45°, vorzugsweise zwischen ca. 3° und ca. 20°, zur Normalenrichtung der Trennebene 2 ein. Dies trägt dazu bei, ein unerwünschtes Auslaufen von etwa noch flüssigem bzw. zähflüssigem Schmelzematerial aus dem Gießlaufkanal 6 beim Öffnen der Form zu vermeiden. Außerdem kann vorgesehen sein, dass die feste Formhälfte 1 und mithin die Trennebene 2 gegenüber der Vertikalen geneigt angeordnet ist, so dass der Gießlaufkanal 6 um ein entsprechendes zusätzliches Maß in Schmelzeflussrichtung ansteigt.
  • Bei Bedarf kann der Trennstellenbereich 9 zusätzlich thermisch definiert sein, d.h. das Temperaturprofil entlang des Gießlaufkanals 6 kann durch aktive kühlende und/oder heizende Temperierungsmaßnahmen dahingehend beeinflusst werden, dass das punktgenaue Abtrennen des Schmelzematerials im Trennstellenbereich 9 unterstützt wird, das im Übrigen durch die geometrische Festlegung mittels der Biegung/Knickung 9a bereitgestellt wird. Als eine thermische Maßnahme kann der Angussblock 5 einen bezüglich der Temperatur transienten Bereich zwischen dem beheizten Schmelzeverteilerblock 4 einerseits und der gekühlten Formkavität bzw. Anschnittkavität 8 bilden, der nicht oder höchstens stromaufwärts des Trennstellenbereichs 9 aktiv beheizt und nicht oder nur im Bereich stromabwärts des Trennstellenbereichs 9 aktiv gekühlt wird. Alternativ kann vorgesehen sein, den Gießlaufkanalabschnitt im Angussblock 5 gemäß einem vorgebbaren Temperaturprofil zu beheizen, wobei die Temperatur im Angussblock niedriger gehalten wird als im Schmelzeverteilerblock und/oder in Schmelzeflussrichtung graduell abnehmend eingestellt wird.
  • Fig. 3 zeigt ein weiteres Ausführungsbeispiel der Erfindung, wiederum nur schematisch mit seinen vorliegend interessierenden Komponenten, wobei der übrige Aufbau der Druckgießform demjenigen gemäß den Fig. 1 und 2 und den dazu oben gegebenen Erläuterungen entsprechen kann. Zum leichteren Verständnis sind in Fig. 3 für funktionell äquivalente, nicht zwingend identische Elemente zifferngleiche Bezugszeichen gewählt, so dass insoweit ergänzend auf die obigen Erläuterungen zu den Fig. 1 und 2 verwiesen werden kann.
  • Bei der Druckgießform von Fig. 3 beinhaltet das Angusssystem einen Gießlaufkanal 6' mit einem Trennstellenbereich 9', der geometrisch durch eine Engstelle 9'a des Gießlaufkanals 6' definiert ist. Von dieser Engstelle 9' aus erweitert sich der Kanalquerschnitt sowohl im stromaufwärts anschließenden Gießlaufkanalabschnitt 6'a als auch im stromabwärts anschließenden Gießlaufkanalabschnitt 6'b jeweils trichter- bzw. hohlkegelförmig. Wie oben zum Ausführungsbeispiel der Fig. 1 und 2 erwähnt, ist auch hier ein Abstand A, den der Trennstellenbereich 9' von der Angussmündung 7' einhält, viel geringer als die restliche, stromaufwärtige Länge des Gießlaufkanals 6' und insbesondere auch kleiner als die restliche Gießlaufkanallänge in einem zugehörigen Angussblock 5'. Speziell beträgt dieser Abstand A in vorteilhaften Ausführungsformen zwischen dem 0,3-fachen und 3-fachen eines Durchmessers D des Gießlaufkanals 6' im Trennstellenbereich 9'.
  • Zusätzlich ist der Trennstellenbereich 9' thermisch dadurch definiert, dass der an den Trennstellenbereich 9' stromabwärts anschließende Gießlaufkanalabschnitt 6'b unbeheizt bleibt, während dem stromaufwärts an den Trennstellenbereich 9' anschließenden Gießlaufkanalabschnitt 6'a eine Heizeinrichtung 10 zugeordnet ist, mit der das Schmelzematerial in diesem Gießlaufkanalabschnitt 6'a bis vor den Trennstellenbereich 9' aktiv beheizt werden kann, zum Beispiel in Schmelzeströmungsrichtung anschließend an einen ebenfalls aktiv beheizten Schmelzeverteilerblock. Die Heizeinrichtung 10 kann von irgendeinem dem Fachmann hierfür an sich bekannten Typ sein, zum Beispiel in Form einer elektrischen oder induktiven Heizeinrichtung, die sich im Gießlaufkanal 6' selbst oder wie gezeigt in einem diesen mit geringem radialem Abstand umgebenden Bereich des Angussblocks 5' angeordnet sein kann. Alternativ ist eine Beheizung durch ein Heizfluid möglich, wozu dann ein den betreffenden Gießlaufkanalabschnitt 6'a radial umgebender Bereich mit einer entsprechenden Fluidkanalstruktur versehen ist. Das Beheizen der Schmelze im an den Trennstellenbereich 9' stromaufwärts anschließenden Gießlaufkanalabschnitt 6'a bei gleichzeitig fehlender Beheizung des Gießlaufkanalabschnitts 6'b stromabwärts des Trennstellenbereichs 9' kann das zuverlässige, prozesssichere Abtrennen des Schmelzematerials im dazu konfigurierten Trennstellenbereich 9' im Zusammenspiel mit der geometrischen Engstellengestaltung unterstützen und gewährleisten.
  • Als weitere thermische Maßnahme beinhaltet das Angusssystem gemäß Fig. 3 eine Kühlkanalstruktur 11 in einem der Angussmündung 7' gegenüberliegenden Bereich 17 der beweglichen Formhälfte 3', wobei dieser Bereich 17 im gezeigten Beispiel eine Ausnehmung aufweist und entsprechend vertieft ist. Die Ausnehmung kann z.B. topfförmig sein, wobei außer einer runden Querschnittform verschiedene andere Querschnittformen möglich sind, z.B. oval oder sternförmig. Mittels dieser Kühlkanalstruktur 11 kann das Schmelzematerial im zu einer Formkavität 12 führenden Anguss-/Anschnittbereich 8' und insbesondere im direkt an die Angussmündung 7' des Gießlaufkanals 6' angrenzenden Teil des Anschnittbereichs 8' aktiv gekühlt werden. Dies unterstützt die Abkühlung und damit die Erstarrung bzw. Teilerstarrung des Schmelzematerials im endseitigen Gießlaufkanalabschnitt 6'b stromabwärts des Trennstellenbereichs 9', während gleichzeitig das Schmelzematerial im stromaufwärts an den Trennstellenbereich 9' angrenzenden Gießlaufkanalabschnitt 6'a durch die Heizeinrichtung 10 an einer Erstarrung gehindert werden kann. Dadurch reißt das Schmelzematerial beim Öffnen der Form zuverlässig am Trennstellenbereich 9' ab.
  • Bei einer in Fig. 4 gezeigten Ausführungsvariante sind zusätzlich zum Ausführungsbeispiel von Fig. 3 dem Gießlaufkanalabschnitt 6'b zwischen Trennstellenbereich 9' und austrittsseitiger Angussmündung 7' eine aktive Kühleinrichtung in Form einer Kühlkanalstruktur 13 und eine aktive Heizeinrichtung 14 zugeordnet. Die Heizeinrichtung 14 kann wie die Heizeinrichtung 10 von irgendeinem dem Fachmann hierfür an sich bekannten Typ sein, beispielsweise eine elektrische oder induktive Heizeinrichtung, die sich im besagten Kanalabschnitt 6'b oder wie gezeigt in einem diesen mit geringem radialem Abstand umgebenden Bereich des Angussblocks 5' bzw. eines den Gießlaufkanal 6' enthaltenen Angusseinsatzes angeordnet sein kann. Auch hier ist alternativ eine Beheizung durch ein Heizfluid mit entsprechender Fluidkanalstruktur möglich. Die Kühlkanalstruktur 13 kann mit dem gleichen Kühlfluid wie die Kühlkanalstruktur 11 oder alternativ mit einem anderen Kühlfluid gespeist werden.
  • Mittels der aktiven Kühleinrichtung 13 und der aktiven Heizeinrichtung 14 im Abschnitt zwischen Trennstellenbereich 9' und Angussmündung 7' lässt sich in entsprechenden Anwendungsfällen die thermische Definition des Trennstellenbereichs 9' weiter verbessern. Beispielsweise kann in einer entsprechenden Betriebsart dieser Gießlaufkanalabschnitt 6'b durch die Kühleinrichtung 13 aktiv gekühlt werden, was das Anbinden des Schmelzematerials in diesem Abschnitt an das formseitig anschließende Schmelzematerial, d.h. an den Anguss des gegossenen Teils, unterstützt. Denn das zusätzliche Kühlen fördert in diesem Kanalabschnitt 6'b das Erstarren des Schmelzematerials.
  • Falls die von der Kühlkanalstruktur 11 in der beweglichen Formhälfte 3' bereitgestellte Kühlwirkung in entsprechenden Anwendungsfällen relativ stark ist und eine Erstarrung des Schmelzematerials stromaufwärts über den Trennstellenbereich 9' hinaus verursachen könnte, kann dem in einer entsprechenden Betriebsart dadurch entgegengewirkt werden, dass die Heizeinrichtung 14 aktiviert und dadurch das Schmelzematerial im austrittseitigen Gießlaufkanalabschnitt 6'b auf ausreichend hoher Temperatur gehalten wird.
  • In einer weiteren möglichen Betriebsart können die Kühleinrichtung 13 und die Heizeinrichtung 14 des Gießlaufkanalabschnitts 6'b getaktet betrieben werden. Damit lässt sich eine Art zyklussynchrone Erstarrung des Schmelzematerials forcieren, was wiederum den Schmelzetrennvorgang im Trennstellenbereich 9' aktiv unterstützt.
  • In weiteren, nicht gezeigten Ausführungsvarianten ist dem Gießlaufkanalabschnitt 6'b nur eine Heizeinrichtung ohne Kühleinrichtung oder nur eine Kühleinrichtung ohne Heizeinrichtung zugeordnet. Zudem kann in weiteren modifizierten Ausführungsformen die Heizeinrichtung 10 und/oder die Kühlkanalstruktur 11 entfallen.
  • Es versteht sich, dass allen erwähnten Kühl- und Heizeinrichtungen 10, 11, 13, 14 eine Steuerungs- und/oder Regelungseinheit zugeordnet ist, welche die genannten Kühl-/Heizeinrichtungen 10, 11, 13, 14 entsprechend der jeweils gewünschten Betriebsart geeignet ansteuert.
  • Exemplarisch ist hierzu in Fig. 4 als Beispiel eine Regelungseinheit 15 dargestellt, die über entsprechende Steuerleitungen 15a, 15b, 15c, 15d die Heizeinrichtung 10, die Kühlkanalstruktur 11, die Kühlkanalstruktur 13 und die Heizeinrichtung 14 ansteuert. In entsprechenden Ausführungsformen beinhaltet das Angusssystem zudem, wie weiter in Fig. 4 gezeigt, eine Temperatursensorik 16 zwischen dem Trennstellenbereich 9' und der austrittsseitigen Angussmündung 7'. Die Temperatursensorik 16 ist über eine zugehörige Sensorleitung 15e an die Regelungseinheit 15 angeschlossen und so ausgelegt, dass sie die Regelungseinheit 15 über die Temperaturverhältnisse in mindestens einem Teil des Gießlaufkanals 6' und insbesondere in der Umgebung stromaufwärts und stromabwärts des Trennstellenbereichs 9' informieren kann. Je nach Systemauslegung kann die Temperatursensorik 16 hierzu einen oder mehrere, längs des Gießlaufkanals 6' hintereinander angeordnete Temperatursensoren beinhalten, speziell im gezeigten Teil des Gießlaufkanals 6', der den sich konisch verengenden Abschnitt 6'b, den Trennstellenbereich 9' und den Abschnitt zwischen Trennstellenbereich 9' und Angussmündung 7' umfasst. Beispielsweise können die Heizeinrichtung 10, die Kühleinrichtung 11, die Kühleinrichtung 13 und die Heizeinrichtung 14 jeweils mit einem oder mehreren Temperatursensorelementen ausgestattet sein.
  • Damit verfügt das Angusssystem in dieser Realisierung über Temperierungsmittel, die zur steuer- oder regelbaren Schmelzematerialtemperierung im Trennstellenbereich 9' des Gießlaufkanals 6' auf eine vorgebbare Solltemperatur eingerichtet werden können, wobei diese Solltemperatur zweckmäßigerweise auf einen Wert zwischen dem 0,9-fachen und 1,1-fachen der Liquidustemperatur des zu gießenden Schmelzematerials, vorzugsweise auf diese Liquidustemperatur oder in einem engen Bereich zwischen dem 0,98-fachen und dem 1,02-fachen derselben vorgegeben wird.
  • Mit diesen Temperierungsmitteln lässt sich eine dezidierte Temperaturführung für das Schmelzematerial vom Trennstellenbereich 9' bis zur Angussmündung 7' erzielen. Auf diese Weise kann die Temperatur des Schmelzematerials in der Umgebung des Trennstellenbereichs 9' vorteilhaft im Schmelzeerstarrungstemperaturintervall gehalten werden. Dabei kann die Schmelzetemperatur im Gießlaufkanal 6' in einem Zulaufabschnitt stromaufwärts des Trennstellenbereichs 9' durchaus höher gewählt werden, um dort gute Fließeigenschaften für die Schmelze und eine sichere Schmelzeführung bereitzustellen, was vor unerwünschten Schmelzeerstarrungseffekten im Gießlaufkanal 6' stromaufwärts des Trennstellenbereichs 9' schützt.
  • Die Zu- und Abschaltung der Heiz- und Kühleinrichtungen 10, 11, 13, 14 kann somit individuell durch die Regelungseinheit 15 abhängig von der sensierten Temperatur im austrittsseitigen Teil des Gießlaufkanals 6' erfolgen. Durch diese gezielte Schmelzetemperaturführung im Anschnittbereich kann u.a. verhindert werden, dass bei geöffneter Gießform während der Entnahme des gegossenen Teils das im Gießlaufkanal 6' verbleibende Schmelzematerial in Folge eines Wärmestromabflusses zu den gekühlten Komponenten der Druckgießform zu stark abkühlt oder gar erstarrt. Hierzu kann die Regelungseinheit 15 die Kühlwirkung der Kühleinrichtung 11, 13 in deren Einfluss auf die temperiert zugeführte Schmelze auf den austrittsseitigen Gießkanalabschnitt 6'b bis zum Trennstellenbereich 9' geeignet begrenzen, während sie gleichzeitig den an den Trennstellenbereich 9' stromaufwärts anschließenden Gießlaufkanalabschnitt 6'a mittels der Heizeinrichtung 10 aktiv beheizen und damit auf Liquidustemperatur temperiert halten kann.
  • In entsprechenden Ausführungsformen der Erfindung kann das Angusssystem als Heißkanal-Angusssystem mit mehreren strömungstechnisch parallelen Gießlaufkanälen konfiguriert sein, die mit räumlich getrennten Angussmündungen an verschiedenen Stellen in die Formkavität einmünden und denen jeweils eine Angusseinheit eines der in den Fig. 1 bis 4 gezeigten Typen zugeordnet ist. Insbesondere kann jeder der strömungstechnisch parallel miteinander in Verbindung stehenden Gießlaufkanäle mit einer Angusseinheit gemäß den Fig. 3 und 4 ausgerüstet sein, die über die oben erläuterten Temperierungsmittel verfügt. Dabei können dezentral mehrere Steuer- oder Regeleinheiten oder alternativ eine gemeinsame zentrale Steuer- oder Regeleinheit für die Kühl- und Heizeinrichtungen der verschiedenen Gießlaufkanäle vorgesehen sein. Bei dieser mehrkanaligen Systemauslegung lässt sich durch die Temperierungsmittel mit den individuell für jeden Gießlaufkanal getrennt ansteuerbaren Kühl- und/oder Heizeinrichtungen nach Art der Kühl- und/oder Heizeinrichtungen 10, 11, 13, 14 von Fig. 4 die Schmelzetemperatur im austrittsseitigen Abschnitt für jeden Gießlaufkanal einzeln optimal einstellen, so dass das gewünschte Abtrennen des Schmelzematerials im Trennstellenbereich 9' prozesssicher in jedem der Gießlaufkanäle bewirkt wird.
  • Dazu wird von der zugehörigen Steuer-/Regelungseinrichtung durch entsprechende Ansteuerung der jeweils vorhandenen Kühl-/Heizeinrichtungen dafür gesorgt, dass das Trennen des Schmelzematerials für jede der mehreren räumlich getrennten Angussmündungen der verschiedenen Gießlaufkanäle reproduzierbar an der jeweiligen Solltrennstelle mit reproduzierbaren Temperaturbedingungen erfolgt. Zudem sind die Angussmündungen untereinander thermisch abgestimmt, so dass das Trennen des Schmelzematerials nicht dazu führt, dass in einem der Trennstellenbereiche der verschiedenen Gießlaufkanäle erstarrtes Schmelzematerial beim Öffnen der Form zurückbleibt. Vielmehr werden die Temperaturverhältnisse für jeden der mehreren, räumlich getrennten Trennstellenbereiche derart eingestellt, dass an allen Trennstellen beim Öffnen der Gießform das gesamte erstarrte Schmelzematerial vollständig aus der Angussmündung herausgezogen wird. Dadurch wird sichergestellt, dass beim nächsten Gießvorgang die Schmelze in gleicher Strömungsverteilung über die mehreren Angussmündungen in die Formkavität fließt und dort reproduzierbar die gleichen Fließfronten ausprägt.
  • Dazu wird die Temperatur mittels der Kühl- und/oder Heizeinrichtungen 10, 11, 13, 14, die jeder Trennstelle 9' der in diesem Fall mehreren strömungstechnisch parallelen Gießlaufkanäle 6' zugeordnet sind, von den zugehörigen dezentralen Steuer-/Regeleinheiten oder alternativ der zentralen Steuer-/Regeleinheit 15 individuell für jede der Trennstellen auf den optimalen Sollwert einreguliert, der wie erwähnt etwa bei der Liquidustemperatur des Schmelzematerials bzw. im Bereich des 0,9-fachen bis 1,1-fachen und vorzugsweise des 0,98-fachen bis 1,02-fachen derselben liegt.
  • Dabei wird auch berücksichtigt, dass die Temperatur in den Gießlaufkanälen nicht nur von Rückflüssen bzw. Rückwirkungen der Formkavität oder von Formkühlungseinrichtungen für die Formkavität abhängig ist, sondern auch vom Durchmesser und der Geometrie der Gießlaufkanäle. Des Weiteren können sich Schmelzeenergien unterschiedlicher Masseströme der Schmelze unterschiedlich auf den Temperaturhaushalt und damit auch auf die Temperaturverhältnisse des Schmelzematerials im jeweiligen Trennstellenbereich auswirken, wenn es aus fließtechnischen Gründen zum Füllen der Formkavität notwendig ist, die zwei oder mehr strömungstechnisch parallelen Gießlaufkanäle mit unterschiedlicher Geometrie, wie verschiedene Durchmesser, Krümmungen, Knicken etc., auszuführen. Auch derartige Effekte können durch das erfindungsgemäße Angusssystem in der Systemauslegung mit den erläuterten Temperierungsmitteln kompensierend berücksichtigt werden, so dass auch in solchen Systemrealisierungen die Schmelzetemperatur in jedem Trennstellenbereich der mehreren Gießlaufkanäle durch die individuell zugeordneten und ansteuerbaren Kühl-/Heizeinrichtungen auf den optimalen Sollwert eingestellt bzw. auf diesem gehalten werden kann.
  • Es versteht sich, dass die erwähnten aktiven Kühlungs- und/oder Beheizungsmaßnahmen des Schmelzematerials in der Anguss-/Anschnittkavität und insbesondere nahe der Angussmündung des Gießlaufkanals, wie sie vorstehend zu den Beispielen von Fig. 3 und 4 erläutert wurden, auch beim Angusssystem der Fig. 1 und 2 vorgesehen werden können.
  • Die Fig. 5 bis 11 veranschaulichen weitere Ausführungsvarianten zu den Ausführungsbeispielen der Fig. 3 und 4, wobei für identische und funktionell äquivalente Elemente gleiche Bezugszeichen verwendet sind und insoweit auf die obigen Erläuterungen zu den Fig. 3 und 4 verwiesen werden kann. Im Folgenden wird daher zu diesen Ausführungsvarianten im Wesentlichen nur auf die Unterschiede gegenüber den Ausführungsbeispielen der Fig. 3 und 4 eingegangen.
  • Beim Ausführungsbeispiel von Fig. 5 geht der an den Trennstellenbereich 9' stromaufwärts anschließende, sich zum Trennstellenbereich 9' hin konisch verjüngende Gießlaufkanalabschnitt 6'a an einer zugehörigen Übergangsstelle 18 in einen stromaufwärts anschließenden zylindrischen Gießlaufkanalabschnitt 6'd konstanten Durchmessers über. Dabei erstreckt sich der Gießlaufkanalabschnitt 6'a in axialer Richtung über eine Länge L6a, die kleiner als der Abstand A des Trennstellenbereichs 9' von der austrittsseitigen Angussmündung 7' und damit kleiner als die axiale Länge des Gießlaufkanalabschnitts 6'b zwischen dem Trennstellenbereich 9' und der austrittsseitigen Angussmündung 7' ist. Zur aktiven Beheizung ist dem zylindrischen Gießlaufkanalabschnitt 6'd eine Heizeinrichtung 10' analog zur Heizeinrichtung 10 des sich konisch verjüngenden Gießlaufkanalabschnitts 6'a in den Beispielen der Fig. 3 und 4 zugeordnet. Optional kann sich die Heizeinrichtung 10' zusätzlich im Bereich des sich konisch verjüngenden Gießlaufkanalabschnitts 6'a erstrecken und dort die Funktion der Heizeinrichtung 10 gemäß den Beispielen der Fig. 3 und 4 übernehmen. In entsprechenden alternativen Realisierungen bleibt der Gießlaufkanalabschnitt 6'b zwischen Trennstellenbereich 9' und austrittsseitiger Angussmündung 7' ohne aktive Kühlung und Beheizung, oder es ist ihm die aktive Kühleinrichtung 13 und/oder die aktive Heizeinrichtung 14 entsprechend dem Beispiel von Fig. 4 zugeordnet.
  • Fig. 6 zeigt eine Ausführungsvariante, die sich von derjenigen der Fig. 5 darin unterscheidet, dass der der austrittsseitigen Angussmündung 7' gegenüberliegende Bereich der beweglichen Formhälfte 3' als ein ebener Bereich 17' statt der topfförmigen Vertiefung des Bereichs 17 von Fig. 5 ausgebildet ist. Die zugehörige Kühlkanalstruktur 11 umfasst in diesem Fall zusätzlich Kühlkanäle direkt gegenüberliegend zu der austrittsseitigen Angussmündung 7'.
  • Fig. 7 zeigt eine Ausführungsvariante, die sich vom Ausführungsbeispiel der Fig. 6 darin unterscheidet, dass sich eine aktive Heizeinrichtung 10" sowohl im zylindrischen Gießlaufkanalabschnitt 6'd als auch im sich konisch verjüngenden Gießlaufkanalabschnitt 6'a erstreckt und die Funktion der oben zu den Ausführungsbeispielen der Fig. 4 und 5 erläuterten Heizeinrichtungen 10 und 10' übernimmt. Des Weiteren sind in Fig. 7 explizit die aktive Kühleinrichtung 13 und die aktive Heizeinrichtung 14 für den Gießlaufkanalabschnitt 6'b zwischen Trennstellenbereich 9' und austrittsseitiger Angussmündung 7' gezeigt, wie oben zum Ausführungsbeispiel der Fig. 4 erläutert.
  • Die Fig. 8 und 9 zeigen ein Ausführungsbeispiel, das demjenigen von Fig. 7 ähnlich ist, wobei sich im Unterschied zu diesem der sich vom Trennstellenbereich 9' zur austrittsseitigen Angussmündung 7' erstreckende Gießlaufkanalabschnitt in mehrere strömungstechnisch parallele Kanalzweige 6'b1, 6'b2 verzweigt. Im gezeigten Beispiel umfasst dieser Gießlaufkanalabschnitt die zwei Kanalzweige 6'b1 und 6'b2, in alternativen Ausführungen kann er auch mehr als zwei strömungstechnisch parallele Kanalzweige und/oder eine Mehrzahl von in Strömungsrichtung hintereinanderliegenden Kanalverzweigungen beinhalten.
  • Im Ausführungsbeispiel der Fig. 8 und 9 bildet jeder der beiden Kanalzweige 6'b1, 6'b2 einen sich von der austrittsseitigen Angussmündung 7' zum Trennstellenbereich 9' hin konisch verjüngenden Gießlaufkanalzweig, und jeder Kanalzweig 6'b1, 6'b2 ist, wie insbesondere aus Fig. 9 ersichtlich, von mehreren Heizelementen der aktiven Heizeinrichtung 14 umgeben. Die aktive Kühleinrichtung 13 beinhaltet kreisförmige Kühlkanäle, welche radial außerhalb der beiden Gießlaufkanalzweige 6'b1, 6'b2 diese umgebend angeordnet sind. Die austrittsseitige Angussmündung 7' umfasst entsprechend die beiden Austrittsöffnungen der Gießlaufkanalzweige 6'b1, 6'b2, und ein insoweit modifizierter gegenüberliegender Bereich 17', der die aktive Kühlkanalstruktur 11 enthält, ist formhohlraumseitig entsprechend mit je einem Anschnittbereich 8'1, 8'2 für jeden der Gießlaufkanalzweige 6'b1, 6'b2 versehen. Auf diese Weise wird Schmelze über die Gießlaufkanalzweige 6'b1, 6'b2 und die Anschnittbereiche 8'1, 8'2 an zugehörigen verschiedenen Stellen in den Formhohlraum 12 geleitet.
  • Die Fig. 10 und 11 veranschaulichen ein Ausführungsbeispiel ähnlich demjenigen der Fig. 8 und 9 mit dem Unterschied, dass die beiden Gießlaufkanalzweige 6'b1, 6'b2, in die sich der Gießlaufkanalabschnitt zwischen Trennstellenbereich 9' und austrittsseitiger Angussmündung 7' verzweigt, auf andere Weise realisiert sind. Speziell ist dazu der Gießlaufkanalabschnitt 6'b analog zu den Ausführungsvarianten der Fig. 3 bis 7 kegelstumpfförmig ausgebildet. In diesen sich kegelstumpfförmig konisch von der austrittsseitigen Angussmündung 7' zum Trennstellenbereich 9' hin verjüngenden Gießlaufkanalabschnitt 6'b ragt ein korrespondierend kegelstumpfförmiger Fortsatz 19 von einem insoweit modifizierten gegenüberliegenden Bereich 17" der beweglichen Formhälfte 3' hinein, der mit zwei sich in Umfangsrichtung gegenüberliegenden Axialnuten versehen ist, welche in diesem Fall die beiden Kanalzweige 6'b1, 6'b2 bilden und in die Anschnittbereiche 8'1, 8'2 übergehen. Ein Kühlkanal 11a erstreckt sich im gezeigten Beispiel als Teil der aktiven Kühleinrichtung 11 in den Bereich des Fortsatzes 19 hinein, wodurch die Kühlwirkung für die Gießlaufkanalzweige 6'b1, 6'b2 verstärkt werden kann.
  • Wie die gezeigten und oben erläuterten Ausführungsbeispiele deutlich machen, stellt die Erfindung ein vorteilhaftes Angusssystem zur Verfügung, das ein definiertes Abtrennen der Schmelze im Gießlaufkanal mit vorzugsweise relativ geringem Abstand von dessen austrittsseitiger Angussmündung in die Formkavität oder wie gezeigt in die vorgelagerte Anguss-/Anschnittkavität ermöglicht, wobei sich gleichzeitig ein unerwünschtes Austreten von noch flüssigem Schmelzematerial aus der festen Formhälfte beim Öffnen der Form vermeiden lässt, ohne dass dazu ein mechanisches Verschlusssystem zwingend notwendig ist. Das erfindungsgemäße Angusssystem eignet sich für alle Anwendungen, wie sie für herkömmliche Angusssysteme bekannt sind, und insbesondere auch als Heißkanal-Angusssystem zum Druckgießen von Zink, Aluminium und Magnesium in einem erhöhten Temperaturbereich von bis ca. 750 °C.

Claims (12)

  1. Angusssystem, insbesondere Heißkanal-Angusssystem, für eine Druckgießform, mit
    - wenigstens einem Gießlaufkanal (6, 6'), der sich von einer eintrittsseitigen Angussmundöffnung zu einer austrittsseitigen Angussmündung (7, 7') erstreckt, die in eine zwischen einer festen Formhälfte (1, 1') und einer beweglichen Formhälfte (3, 3') gebildete Formkavität (12) der Druckgießform oder in einen dieser vorgelagerten Anschnittbereich (8, 8') mündet und einen Trennstellenbereich (9, 9') stromaufwärts der Angussmündung (7, 7') und stromabwärts der Angussmundöffnung aufweist, der geometrisch und/oder thermisch definiert ist und als Sollstelle für das Abtrennen formseitig erstarrten oder teilerstarrten Schmelzematerials von noch flüssigem oder weniger stark erstarrtem Schmelzematerial im Gießlaufkanal beim Öffnen der Druckgießform fungiert,
    - wobei der Gießlaufkanal im Trennstellenbereich einen S-förmigen Verlauf mit einer Biegung oder Knickung (9a) aufweist und/oder
    - wobei einem Gießlaufkanalabschnitt (6'b) zwischen dem Trennstellenbereich und der austrittsseitigen Angussmündung eine Heizeinrichtung (14) zugeordnet ist und/oder
    - wobei ein der Angussmündung gegenüberliegender Bereich (17, 17') der beweglichen Formhälfte eine Kühlkanalstruktur (11) aufweist.
  2. Angusssystem nach Anspruch 1, weiter dadurch gekennzeichnet, dass einem an den Trennstellenbereich stromaufwärts anschließenden, sich zum Trennstellenbereich hin konisch verjüngenden Gießlaufkanalabschnitt (6'a) eine Heizeinrichtung (10) zugeordnet ist.
  3. Angusssystem nach Anspruch 1 oder 2, weiter dadurch gekennzeichnet, dass der Gießlaufkanal im Trennstellenbereich eine Engstelle (9'a) aufweist, von der aus sich sein Durchflussquerschnitt stromabwärts und/oder stromaufwärts erhöht.
  4. Angusssystem nach einem der Ansprüche 1 bis 3, weiter dadurch gekennzeichnet, dass sich der Trennstellenbereich in einem Abstand (A) zwischen dem 0,3-fachen und 3-fachen eines Durchmessers (D) des Gießlaufkanals im Trennstellenbereich vor der Angussmündung befindet.
  5. Angusssystem nach einem der Ansprüche 1 bis 4, weiter dadurch gekennzeichnet, dass einem Gießlaufkanalabschnitt (6'b) zwischen dem Trennstellenbereich und der austrittsseitigen Angussmündung eine Kühlkanalstruktur (13) zugeordnet ist.
  6. Angusssystem nach einem der Ansprüche 1 bis 5, weiter dadurch gekennzeichnet, dass der Gießlaufkanal in einem an den Trennstellenbereich stromaufwärts anschließenden Bereich mit einem Winkel (α) größer als 0° und kleiner oder gleich 45°, insbesondere zwischen 3° und 20°, zur Normalenrichtung einer Trennebene (2) zwischen fester und beweglicher Formhälfte in Richtung Trennstellenbereich ansteigend verläuft.
  7. Angusssystem nach einem der Ansprüche 1 bis 6, weiter dadurch gekennzeichnet, dass es als Heißkanal-Angusssystem konfiguriert ist und einen Schmelzeverteilerblock (4), der eintrittsseitig die Angussmundöffnung aufweist, und einen an den Schmelzeverteilerblock in Strömungsrichtung anschließenden Angussblock (5, 5') umfasst, der austrittsseitig die Angussmündung aufweist, wobei sich der Trennstellenbereich in einem im Angussblock verlaufenden Abschnitt des Gießlaufkanals befindet.
  8. Angusssystem nach einem der Ansprüche 1 bis 7, weiter dadurch gekennzeichnet, dass es als Heißkanal-Angusssystem konfiguriert ist und der wenigstens eine Gießlaufkanal mindestens zwei strömungstechnisch parallele Gießlaufkanäle (6, 6') umfasst und Temperierungsmittel vorgesehen sind, die zur steuer- oder regelbaren Schmelzematerialtemperierung in den Trennstellenbereichen der Gießlaufkanäle unabhängig voneinander auf eine vorgebbare Solltemperatur zwischen dem 0,9-fachen und 1,1-fachen, insbesondere zwischen dem 0,98-fachen und 1,02-fachen einer Schmelzematerial-Liquidustemperatur eingerichtet sind.
  9. Angusssystem nach Anspruch 8, weiter dadurch gekennzeichnet, dass die Temperierungsmittel eine Temperatursteuereinheit oder Temperaturregeleinheit und für den jeweiligen Gießlaufkanal eine Temperatursensorik zwischen dem Trennstellenbereich und der austrittsseitigen Angussmündung und/oder die Heizeinrichtung (14) zwischen dem Trennstellenbereich und der austrittsseitigen Angussmündung und/oder die Heizeinrichtung (10) im an den Trennstellenbereich stromaufwärts anschließenden Gießlaufkanalabschnitt (6'a) und/oder die Kühlkanalstruktur (11) im der Angussmündung gegenüberliegender Bereich der beweglichen Formhälfte und/oder die Kühlkanalstruktur (13) zwischen dem Trennstellenbereich und der austrittsseitigen Angussmündung umfassen.
  10. Angusssystem nach einem der Ansprüche 1 bis 9, weiter dadurch gekennzeichnet, dass der an den Trennstellenbereich stromaufwärts anschließende, sich zum Trennstellenbereich hin konisch verjüngende Gießlaufkanalabschnitt an einer zugehörigen Übergangsstelle (18) in einen stromaufwärts anschließenden zylindrischen Gießlaufkanalabschnitt (6'd) konstanten Durchmessers übergeht und seine axiale Länge (L6a) kleiner als diejenige des Gießlaufkanalabschnitts zwischen dem Trennstellenbereich und der austrittsseitigen Angussmündung ist.
  11. Angusssystem nach einem der Ansprüche 1 bis 10, weiter dadurch gekennzeichnet, dass der der Angussmündung gegenüberliegende Bereich (17, 17') der beweglichen Formhälfte eine Ausnehmung aufweist oder eben ausgebildet ist.
  12. Angusssystem nach einem der Ansprüche 1 bis 11, weiter dadurch gekennzeichnet, dass sich der vom Trennstellenbereich zur austrittsseitigen Angussmündung erstreckende Gießlaufkanalabschnitt in mehrere strömungstechnisch parallele Kanalzweige (6'b1, 6'b2) verzweigt.
EP16727989.2A 2015-06-05 2016-06-02 Angusssystem für eine druckgiessform Active EP3302851B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015210403.6A DE102015210403A1 (de) 2015-06-05 2015-06-05 Angusssystem für eine Druckgießform
PCT/EP2016/062563 WO2016193397A1 (de) 2015-06-05 2016-06-02 Angusssystem für eine druckgiessform

Publications (2)

Publication Number Publication Date
EP3302851A1 EP3302851A1 (de) 2018-04-11
EP3302851B1 true EP3302851B1 (de) 2022-08-03

Family

ID=56116413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16727989.2A Active EP3302851B1 (de) 2015-06-05 2016-06-02 Angusssystem für eine druckgiessform

Country Status (10)

Country Link
US (1) US20180169747A1 (de)
EP (1) EP3302851B1 (de)
JP (1) JP6791884B2 (de)
CN (1) CN107848026A (de)
DE (1) DE102015210403A1 (de)
ES (1) ES2929397T3 (de)
HK (1) HK1245717A1 (de)
PL (1) PL3302851T3 (de)
PT (1) PT3302851T (de)
WO (1) WO2016193397A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE542689C2 (en) * 2018-03-28 2020-06-30 Flexiject Ab Method & tool for injection moulding
US10682695B2 (en) * 2018-05-07 2020-06-16 GM Global Technology Operations LLC Method for the semi-permanent mold casting process
CN110695335A (zh) * 2019-10-24 2020-01-17 上海五腾金属制品有限公司 一种实现镁合金射出成型的装置及方法
DE102020108022A1 (de) 2020-03-24 2021-09-30 Bayerische Motoren Werke Aktiengesellschaft Dreiplattendruckgusswerkzeug mit einem Angusssystem und verbesserter Angussabtrennung sowie Verfahren zum Druckgießen
CN111413082B (zh) * 2020-04-26 2021-10-29 宁波大榭开发区天正模具有限公司 用于检测压铸模具推杆使用寿命的装置
CN114653922A (zh) * 2021-04-08 2022-06-24 上海胜桀精密机械科技有限公司 一种压铸用水冷浇口套
CN113295293B (zh) * 2021-04-12 2022-06-21 芜湖泓鹄材料技术有限公司 通过检测铁水动态变化设计浇注系统内浇口位置的方法
CN113426985B (zh) * 2021-07-15 2024-06-21 灏昕汽车零部件制造无锡有限公司 一种提高压铸件旋铆性能的模具
CN113579223B (zh) * 2021-08-03 2022-12-30 重庆大学 一种基于体系热平衡技术的模具温度控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013071926A2 (de) 2011-11-15 2013-05-23 Ferrofacta Gmbh Druckgussdüse und verfahren zum betrieb einer druckgussdüse
DE10362064B4 (de) 2003-08-16 2014-07-24 gwk Gesellschaft Wärme Kältetechnik mbH Beheizbares Werkzeug

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19611267C1 (de) * 1996-03-22 1997-07-03 Hotset Heizpatronen Zubehoer Vorrichtung an einer Warmkammermetalldruckgußmaschine
CA2221425C (en) * 1997-11-13 2005-07-12 Jobst Ulrich Gellert Side gated injection molding apparatus with actuated manifold
AUPQ290799A0 (en) * 1999-09-16 1999-10-07 Hotflo Diecasting Pty Ltd Hot sprue system for die-casting
JP3499187B2 (ja) * 2000-03-16 2004-02-23 株式会社日本製鋼所 ホットランナ金型及びその成形方法
DE50012864D1 (de) 2000-10-31 2006-07-06 Frech Oskar Gmbh & Co Einrichtung zur Herstellung von Metall-Druckgussteilen, insbesondere aus NE-Metallen
DE10064300C1 (de) * 2000-12-22 2002-04-25 Bosch Gmbh Robert Gießform mit verbessertem Gießlauf
DE10112126B4 (de) * 2001-03-14 2004-03-25 Priamus System Technologies Ag Verfahren zum automatischen Balancieren der volumetrischen Füllung von Kavitäten
DE102005042867A1 (de) 2005-09-08 2007-03-22 Bühler Druckguss AG Druckgiessverfahren
US20070131376A1 (en) * 2005-12-09 2007-06-14 Husky Injection Molding Systems Ltd. Cooling structure of metal-molding system for shot located downstream of blockage
US20070131375A1 (en) * 2005-12-09 2007-06-14 Husky Injection Molding Systems Ltd. Thixo-molding shot located downstream of blockage
DE102006002342A1 (de) * 2006-01-18 2007-07-26 Kompetenzzentrum Neue Materialien Nordbayern Gmbh Werkzeug
EP2295172B1 (de) 2007-05-24 2014-12-31 Oskar Frech GmbH + Co. KG Angussblockeinheit, Angusssystem und Steuerungseinrichtung für eine Druckgiessmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10362064B4 (de) 2003-08-16 2014-07-24 gwk Gesellschaft Wärme Kältetechnik mbH Beheizbares Werkzeug
WO2013071926A2 (de) 2011-11-15 2013-05-23 Ferrofacta Gmbh Druckgussdüse und verfahren zum betrieb einer druckgussdüse
EP2782692B1 (de) 2011-11-15 2015-06-17 Ferrofacta GmbH Druckgussdüse und verfahren zum betrieb einer druckgussdüse sowie heizelement und heizpatrone per se

Also Published As

Publication number Publication date
WO2016193397A1 (de) 2016-12-08
JP6791884B2 (ja) 2020-11-25
PT3302851T (pt) 2022-09-22
US20180169747A1 (en) 2018-06-21
EP3302851A1 (de) 2018-04-11
ES2929397T3 (es) 2022-11-29
PL3302851T3 (pl) 2022-12-19
CN107848026A (zh) 2018-03-27
JP2018516176A (ja) 2018-06-21
DE102015210403A1 (de) 2016-12-08
HK1245717A1 (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
EP3302851B1 (de) Angusssystem für eine druckgiessform
EP2782692B1 (de) Druckgussdüse und verfahren zum betrieb einer druckgussdüse sowie heizelement und heizpatrone per se
DE10080726B4 (de) Form für eine Heißanguß-Spritzmaschine sowie Verfahren zum Herstellen derselben
EP1201335B1 (de) Einrichtung zur Herstellung von Metall-Druckgussteilen, insbesondere aus NE-Metallen
DE69832538T2 (de) Magnesiumdruckguss
EP1997571B1 (de) Angussblockeinheit, Angusssystem und Steuerungseinrichtung für eine Druckgießmaschine
EP0155575B1 (de) Verfahren zur Regelung des Durchflusses einer elektrisch leitenden Flüssigkeit, insbesondere einer Metallschmelze beim Stranggiessen, und eine Vorrichtung zur Durchführung des Verfahrens
EP2640537B1 (de) Druckgussdüse und druckgussverfahren
EP3191287B1 (de) Verfahren und spritzgussdüse zum herstellen von spritzgussteilen aus kunststoff
DE69916707T2 (de) Verfahren und Vorrichtung zum Spritzgiessen halbflüssiger Metalle
EP3423215B1 (de) Druckgussdüsensystem
DE102006002342A1 (de) Werkzeug
DE3044575C2 (de) Verfahren und Stranggießkokille zum kontinuierlichen horizontalen Stranggießen
DE102006002341A1 (de) Spritzgießwerkzeug
DE102015100861B4 (de) Heißkanal für eine Druckgussvorrichtung und Betriebsverfahren dafür
CH638413A5 (de) Vorrichtung zum zuleiten von metallschmelze aus einem ofen in eine kontinuierlich arbeitende stranggiesskokille.
AT515969B1 (de) Vorrichtung und Verfahren zur Erstellung zumindest eines metallischen Bauteils
DE4006842A1 (de) Bandgiessanlage mit oszillierender durchlaufkokille
AT520389B1 (de) Verfahren zum Herstellen von Spritzgussteilen aus Kunststoff
CH718935B1 (de) Verfahren zum kontinuierlichen Stranggiessen und Softwareprodukt zum Durchführen des Verfahrens.
EP0083916A1 (de) Vorrichtung zum Horizontal-Stranggiessen von Metallen und Legierungen, insbesondere von Stählen
DE102021209501B4 (de) Stranggießeinrichtung und Verfahren zum Stranggießen
DE60017077T2 (de) Elektro-Schlacke-Umschmelzsysteme mit Bodenausguss und kontrolliertem Elektrostrompfad
DE102014111032B3 (de) Gießventil und Gießvorrichtung
EP1997572B1 (de) Schmelzentiegel mit Überlauf für eine Giessmaschine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1245717

Country of ref document: HK

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190107

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1508331

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016015133

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3302851

Country of ref document: PT

Date of ref document: 20220922

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20220915

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20220401886

Country of ref document: GR

Effective date: 20221010

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2929397

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20221129

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20220803

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502016015133

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

26 Opposition filed

Opponent name: FERROFACTA GMBH

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230522

Year of fee payment: 8

Ref country code: NO

Payment date: 20230620

Year of fee payment: 8

Ref country code: FR

Payment date: 20230621

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230530

Year of fee payment: 8

Ref country code: SE

Payment date: 20230622

Year of fee payment: 8

Ref country code: PL

Payment date: 20230512

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230619

Year of fee payment: 8

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230630

Year of fee payment: 8

Ref country code: ES

Payment date: 20230719

Year of fee payment: 8

Ref country code: CH

Payment date: 20230702

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230602

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20240617

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240617

Year of fee payment: 9