EP3301365B1 - Procédé de commande d'un allumage d'un système de chauffage, unité de commande et système de chauffage - Google Patents

Procédé de commande d'un allumage d'un système de chauffage, unité de commande et système de chauffage Download PDF

Info

Publication number
EP3301365B1
EP3301365B1 EP17187737.6A EP17187737A EP3301365B1 EP 3301365 B1 EP3301365 B1 EP 3301365B1 EP 17187737 A EP17187737 A EP 17187737A EP 3301365 B1 EP3301365 B1 EP 3301365B1
Authority
EP
European Patent Office
Prior art keywords
value
parameter
fluid supply
ignition
heating system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17187737.6A
Other languages
German (de)
English (en)
Other versions
EP3301365A1 (fr
Inventor
Lean Smith
Danny Leerkes
Bram JASPERS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3301365A1 publication Critical patent/EP3301365A1/fr
Application granted granted Critical
Publication of EP3301365B1 publication Critical patent/EP3301365B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/10Analysing fuel properties, e.g. density, calorific
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/18Applying test signals, e.g. periodic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed

Definitions

  • the invention relates to a method for controlling an ignition operation of a heating system.
  • the invention also relates to a control unit designed to carry out the method according to the present invention and a heating system with the control unit according to the present invention.
  • EP2706300 describes a method for controlling an ignition operation of a heating system.
  • the present invention provides a method for controlling an ignition operation of a heating system according to claim 1.
  • heating system means at least one device for generating thermal energy, in particular a heater or heating burner, in particular for use in heating a building and/or for generating hot water, preferably by burning a gaseous or liquid fuel.
  • a heating system can also consist of several such devices for generating thermal energy as well as other devices that support the heating operation, such as hot water and fuel storage tanks.
  • Ignition operation is understood to mean an operating phase of the heating system in which the fuel is ignited.
  • a fuel-air mixture is preferably ignited in a burner.
  • a fuel supply and, if necessary, an air supply are controlled or regulated in the ignition mode.
  • Ignition operation is an essential operating phase of a heating system switch-on process. The ignition operation is advantageously ended as soon as the heating system can be operated as desired, in particular in a controlled operation.
  • an “operating parameter” should be understood to mean a parameter which is correlated with a quality of a fuel used in the heating system and/or is correlated with a power demand on the heating system.
  • the operating value can directly or indirectly from a parameter describing the quality of the fuel and/or from a directly or indirectly depend on the parameters describing the performance requirement.
  • the operating parameter can be correlated with the calorific value and/or gross calorific value of a fuel.
  • a determined density of the fuel can be an operating parameter.
  • a specific operating parameter for example an ionization current, and/or a time development of the operating parameter under specific, predetermined conditions, is or are an operating parameter.
  • an “operating parameter” can be understood in particular as a parameter which is correlated in particular with the fuel type, in particular an actual fuel type that is currently being used and/or is being supplied to a burner unit of the heating system.
  • a “fuel type” is to be understood in particular as meaning a type and/or a composition of the fuel.
  • the fuel type can particularly preferably correspond to a gas family, such as a second gas family, in particular natural gas, and/or a third gas family, in particular liquid gas.
  • the fuel type can also correspond in particular to fuels from the same gas family and/or fuels within a gas family, such as fuels from different origins and/or different batches, which can at least partially differ in composition.
  • the operating parameter can also be related to a power demand on the heating system.
  • the heating system can be started with a power request, for example with a power request to supply hot water at a temperature of 45°C.
  • the power requirement can follow, for example, from a user input or from a schedule, for example for a heating schedule.
  • the operating parameter or the power requirement can have the value of a burner power parameter and/or be correlated with the burner power parameter.
  • “Burner power parameter” is to be understood in particular as a parameter which is correlated with the power, in particular a heating power, of the heating system.
  • the output, in particular heating output, of the heating system can advantageously be determined, in particular by the control and/or regulating unit of the heating system, at least on the basis of the burner output parameter.
  • the burner output parameter corresponds to at least one or exactly one measured value representing the output or can be unambiguously assigned to such a measured value.
  • a measured value can be, for example, a temperature, an air flow rate, a fan control signal or a fan speed.
  • the method according to the main claim has the advantage that the ignition operation can be carried out quickly and safely. Ignitions that are too early or too late are avoided by directly or indirectly taking into account the quality of the fuel and/or the power requirement. Operational safety and operational comfort are increased.
  • the operating parameter is determined in a previous heating operation, which has the advantage that conditions present in an operation taking place before the ignition operation can be detected in this way. This enables a particularly precise adjustment of the ignition operation to the relevant influencing variables. In particular, properties of the fuel currently used in the heating system can be determined in this way.
  • the method is intended to be executed repeatedly.
  • a "previous heating operation” is to be understood as an operating phase of the heating system, in particular an operating phase in which a heating output is provided are in time before the ignition operation.
  • a "previous ignition operation” is an ignition operation from a previous iteration of the method, preferably from the last iteration of the method.
  • a previous characteristic value is to be understood as meaning a characteristic value that was recorded or determined before the ignition operation, preferably in a previous ignition operation.
  • a first burner performance parameter is determined as a function of the operating parameter, the performance requirement can be met particularly quickly in this way. This further increases operating comfort and ease of use.
  • the method is further improved if, during ignition operation, the first burner power parameter is largely the same as a starting power, the starting power being selected from a starting power range, in particular a starting power interval, so that the starting power is as close as possible to a power requirement or the power requirement.
  • the starting power range can be selected so that ignition operation is particularly quiet and safe.
  • a fluid supply parameter is first brought to a starting value and then increased, preferably linearly with a gradient value, until an ignition value of the fluid supply parameter is reached at which a flame in the heating system ignites, this has the advantage that ignition is particularly quiet and reliable is possible.
  • the starting value is preferably selected below the ignition value, ie in such a way that an ignitable fuel-air mixture is not yet present with the fluid supply parameter as the starting value.
  • the ignition value is achieved by increasing the fluid supply parameter. This has the advantage that a loud ignition is avoided. Loud firing occurs when the starting value exceeds the firing value.
  • a "fluid supply parameter" is to be understood in particular as a scalar parameter which is correlated in particular with at least one fluid supplied, in particular to a burner unit of the heating system, in particular a combustion air flow, a fuel flow and/or a mixture flow, in particular of combustion air and the fuel .
  • a volume flow and/or a mass flow of the at least one fluid can advantageously be inferred, in particular by a control and/or regulating unit of the heating system, at least on the basis of the fluid supply parameter, and/or the volume flow and/or the mass flow of the at least one fluid can be determined.
  • An example of a fluid supply parameter is the specification of an opening width of a fuel valve.
  • the method is further improved if the operating parameter is determined as a function of a or the start value of the fluid supply parameter during ignition operation and/or as a function of a previous start value in a previous ignition operation. If the starting value is determined, for example, in a control process, in particular for approximating the starting value to the ignition value, the quality of the fuel can be determined as a function of the starting value.
  • a starting value or the starting value is determined as a function of a previous ignition value of a fluid supply parameter in a previous ignition operation, the starting value can be approximated to the starting value in a particularly simple manner. In this way, the ignition operation can be shortened. The operating comfort or ease of use is increased in this way.
  • combustion parameter is to be understood in particular as a scalar parameter which is correlated in particular with a combustion, in particular of the mixture, in particular of the combustion air and the fuel.
  • An example of a combustion parameter is an ionization current, which is measured on a flame of the heating system.
  • the presence and/or quality of combustion can be determined and/or the presence and/or quality of combustion can be determined, in particular by the control and/or regulating unit of the heating system, at least on the basis of the combustion parameter.
  • the combustion parameter advantageously corresponds to at least one or exactly one measured value that depicts and/or characterizes the combustion, or the combustion parameter can be unambiguously assigned to such a measured value.
  • a measured value that depicts and/or characterizes the combustion are a combustion signal, in particular a light intensity, pollutant emissions, a temperature and/or advantageously an ionization signal.
  • the operating parameter is determined as a function of a time profile of the combustion parameter after a change in the fluid supply parameter and/or a first burner output parameter, the precision of the determination of the quality of the fuel is further increased.
  • the time profile of the combustion parameter can be particularly dependent on the quality of the fuel.
  • the method is further improved when a temporary fluid delivery change over time in the fluid delivery parameter is generated and the Operating parameter is determined as a function of a change in the combustion parameter over time that is correlated with the fluid supply change.
  • a "temporary, temporal fluid supply change" is to be understood as meaning a time-limited variation in the fluid supply parameter, so that it deviates from a largely constant value of the fluid supply parameter before the start of the fluid supply change.
  • the fluid supply parameter is preferably initially increased or decreased over the period of time of the fluid supply change and then regulated to the largely constant value of the fluid supply parameter before the start of the fluid supply change.
  • the fluid supply change is preferably associated with a brief increase in a fluid quantity supplied to the burner unit per unit of time.
  • the duration of the fluid supply change is preferably pulse-like and short compared to the intended time variations of the fluid supply parameter that occur during normal operation of the heating system. It may be possible to determine the calorific value and/or gross calorific value of the fuel from a change in the combustion parameter.
  • a “pulse”, a “pulse-like change” or a “pulse-shaped signal” is understood to mean a time profile of a parameter which is brought from a first value to at least a second value different from the first value within a limited period of time.
  • a “pulse” is also sometimes referred to as a "pulse”, particularly in electrical engineering.
  • the operating parameter is determined as a function of a time profile of the fluid supply parameter, with the heating system being operated in a closed-loop mode after a previous ignition operation.
  • "Closed-loop mode" is to be understood as a control process in which a first operating parameter, which is preferably an actuating signal to a component of the heating system corresponds, for example, to regulate a fuel supply, is set in such a way that a second operating parameter largely assumes the value of a setpoint operating parameter.
  • the first operating parameter is preferably adapted iteratively.
  • the first operating parameter is particularly preferably set as a function of a deviation of the second operating parameter from the setpoint operating parameter.
  • the heating system is preferably operated in a closed-loop mode when a burner output parameter is largely constant or changes sufficiently slowly or slightly.
  • “Operating parameters” are parameters that are used by a control unit of the heating system to control and/or monitor and/or regulate and/or calibrate processes running in the heating system. Examples of “operating parameters” are the fan speed, an ionization current on a flame of the heating system or a desired opening width of a fuel control valve.
  • the closed-loop mode is advantageously operated after the previous ignition operation.
  • the fluid delivery parameter can be set directly or indirectly.
  • An operating parameter can be derived from this, from which particularly precise information about the quality of the fuel can be derived.
  • the fluid supply parameter is set to a previous ignition value in a previous ignition operation, then regulated to a control value in closed-loop mode and the operating parameter is determined from a comparison between the previous ignition value and the control value, in particular by a size comparison, this is a particularly simple one and robust method to determine the operating characteristic.
  • the operating parameter is dependent on a time profile of a second burner output parameter with a largely constant first burner output parameter and after a change in the fluid supply parameter determined, this has the advantage that the operating parameter can be determined particularly easily and cheaply.
  • Means for determining a first burner output parameter and/or a second burner output parameter are usually present in heaters and do not have to be retrofitted.
  • the first burner output parameter is a detected blower speed, which is kept constant by a control circuit by setting the second burner output parameter and the operating characteristic is determined as a function of a burner output parameter change in the second burner output parameter, the burner output parameter change being correlated with a temporary fluid supply change
  • the determination of an operating characteristic is which is correlated with a density of the fuel.
  • the fluid supply parameter is a valve control signal for a fuel valve and/or one or the combustion parameter is an ionization current and/or one or the second burner performance parameter is a fan speed
  • the method is particularly reliable.
  • a particularly stable closed-loop mode is possible.
  • efficient ignition operation is possible.
  • the fluid supply parameter is a valve control signal for a fuel valve, this has the additional advantage that a particularly reliable and precise setting of a fluid supply or a fuel/air ratio is possible in this way.
  • combustion parameter is an ionization current
  • this has the advantage that the ionization current has a functional connection to the fuel-air ratio that can be evaluated particularly favorably. This allows precise and reliable regulation and/or control of the heating system with regard to combustion quality and emissions.
  • An "ionization current" is determined by an ionization current measurement on a flame of the heating system.
  • a fan speed is a particularly easily detectable and reliable measure of the performance of the heating system.
  • control unit for a heating system which control unit is set up to carry out the method according to the present invention, has the advantage that the heating system can be operated reliably even under changing internal and/or external conditions. This makes it possible to operate the heating system largely without user intervention. This increases the ease of use as well as the availability and reliability of the heating system.
  • a heating system with a control unit according to the present invention with at least one fuel valve for a fuel, with an ionization probe on a flame and with a fan with variable fan speed has the advantage that convenient, safe and low-maintenance operation of the heating system is made possible.
  • a heater 10 is shown schematically, which is arranged on a memory 12 in the embodiment.
  • the heater 10 has a housing 14 which accommodates different components depending on the degree of equipment.
  • the essential components are a heat cell 16, a control unit 18, one or more pumps 20 and piping 22, cables or bus lines 24 and holding means 26 in the heater 10.
  • the number and complexity of the individual components also depends on the equipment level of the heater 10.
  • the heat cell 16 has a burner 28, a heat exchanger 30, a blower 32, a metering device 34 and an air supply system 36, an exhaust system 38 and, when the heat cell 16 is in operation, a flame 40.
  • An ionization probe 42 projects into the flame 40 .
  • the dosing device 34 is designed as a fuel valve 44 .
  • a fan speed 54 of the fan 32 is variably adjustable.
  • the heater 10 and the memory 12 together form a heating system 46.
  • the control unit 18 has a data memory 48, a computing unit 50 and a communication interface 52. The components of the heating system 46 can be controlled via the communication interface 52 .
  • the communication interface 52 allows data to be exchanged with external devices. External devices are, for example, control devices, thermostats and/or devices with computer functionality, for example smartphones.
  • FIG 1 shows a heating system 46 with a control unit 18.
  • the control unit 18 is located outside the housing 14 of the heater 10.
  • the external control unit 18 is designed as a room controller for the heating system 46 in special variants.
  • the control unit 18 is mobile.
  • the external control unit 18 has a communication link to the heater 10 and/or other components of the heating system 46 .
  • the communication connection can be wired and/or wireless, preferably a radio connection, particularly preferably via WLAN, Z-Wave, Bluetooth and/or ZigBee.
  • the control unit 18 can consist of several components exist, especially components that are not physically connected.
  • At least one or more components of the control unit 18 can be present partially or entirely in the form of software that runs on internal or external devices, in particular on mobile computing units, such as smartphones and tablets, or servers, in particular a cloud.
  • the communication connections are then corresponding software interfaces.
  • FIG 2 illustrates a sequence of different operating phases of the heating system 46.
  • An ignition operation 56 is preceded by a shutdown 58 of the burner 28, a closed loop mode 60 and a previous ignition operation 62.
  • the method according to the present invention is used in ignition operation 56 and previous ignition operation 62 .
  • the method or ignition operation 56 is started by detecting a power requirement 64 to the heating system 46 .
  • the power requirement is a desired heating power, which is sent to the heating system 46 by a room controller.
  • the desired heat output is characterized by a number that describes a desired output in kW.
  • the power requirement 64 is determined from this number.
  • a fan speed 54 required for the desired heating output is determined.
  • the control unit 18 has a fan speed characteristic, which assigns the required fan speed 54 to the desired heat output.
  • the power requirement 64 has the value of the required fan speed 54.
  • the values of the fan speed 54 describe the number of revolutions per minute of an impeller of the fan 32.
  • the power requirement 64 is an operating parameter 66.
  • the fan speed characteristic is determined in the laboratory, with the technical properties of the heating system 46 are taken into account.
  • the heating output is set using a first burner output parameter 68 of a second burner output parameter 70 .
  • the first combustor output parameter 68 is a sensed fan speed 54 of the fan 32.
  • the fan 32 includes a Hall effect sensor that senses the number of revolutions per minute of the impeller of the fan 32.
  • the first burner output parameter 68 is determined from a signal from the Hall probe.
  • the second burner performance parameter 70 is a fan control signal 71.
  • the fan control signal 71 is a PWM signal which is sent from the control unit 18 to the fan 32.
  • the second burner power parameter 70 corresponds to a power made available to the blower 32 .
  • a desired fan speed 54 is set by a control circuit in which the second burner output parameter 70 is varied in such a way that the first burner output parameter 68 assumes the value of the desired fan speed 54 .
  • Starting power range 72 is a set of possible starting powers 74 at which particularly advantageous ignition operation 56 is possible.
  • a quiet and safe ignition operation 56 is possible with a starting power 74 in the starting power range 72 .
  • the takeoff power 74 is selected from the takeoff power range 72 to be as close to the power requirement 64 as possible.
  • the starting power range 72 is a starting power interval 76 .
  • the starting power interval 76 has a minimum starting power 78 and a maximum starting power 80 . If the power requirement 64 is within the starting power interval 76, the power requirement 64 is selected as the starting power 74. In ignition mode 56 is the desired fan speed 54 or the first burner power parameter 68 is set to the power requirement 64 as quickly as possible.
  • the power requirement 64 is greater than the maximum starting power 80, the maximum starting power 80 is selected as the starting power 74. If the power requirement 64 is less than the minimum starting power 78, the minimum starting power 78 is selected as the starting power 74.
  • the desired fan speed 54 or the first burner power parameter 68 is set to the power requirement 64 as quickly as possible. After the fuel/air mixture has been ignited, the desired fan speed 54 or the first burner power parameter 68 is modulated to the power requirement 64 . The desired blower speed 54 or the first burner power parameter 68 is changed from the starting power 74 to the power requirement 64 in such a way that the heating system 46 can be operated quietly and safely.
  • figure 3 12 illustrates a time course of the first burner output parameter 68 for three different ignition modes 56a, 56b, 56c, each with different output requirements 64.
  • a first abscissa axis 82 shows a time.
  • the first abscissa axis 82 is interrupted at two points and shows periods of time in which an ignition operation 56a, 56c or 56c is carried out.
  • the first burner power parameter 68 is shown on a first ordinate axis 84 .
  • the power requirement 64 is starting power interval 76.
  • ignition mode 56b the power requirement 64 is above the maximum starting power 80.
  • the first burner power parameter 68 is initially increased to the maximum starting power 80 as quickly as possible.
  • the first burner output parameter 68 is kept constant until ignition has taken place.
  • ignition is detected using the ionization probe 42 (see below).
  • the first burner performance parameter 68 with a linear Ramp set to power demand 64 value.
  • the heating system 46 is operated in the closed-loop mode 60 (see below) in order to minimize the emissions produced during combustion.
  • the first burner power parameter 68 is therefore increased at such a rate that a stable closed-loop mode 60 is possible.
  • the power requirement 64 is below the minimum starting power 78.
  • the first burner power parameter 68 is initially increased to the minimum starting power 78 as quickly as possible. After ignition, the first burner output parameter 68 is reduced to the value of the output request 64 with a linear ramp.
  • the starting power range 72 is a starting power interval 76.
  • the starting power range 72 is a set of discrete power points and/or at least one power interval.
  • the starting power range 72 has a first starting power and a second starting power.
  • the selection of the starting power range 72 is based on the technical properties of the heating system 46 and is selected in such a way that the heating system 46 can always be operated as desired.
  • the starting power range 72 is selected in such a way that the heating system 46 can be operated with quiet and safe ignition operation 56 .
  • the starting power range 72 is advantageously established in laboratory tests and stored in the control unit 18 . It is also conceivable that the starting power range 72 is updated while the heating system 46 is in operation. For example, the ignition mode can be 56 calibrated in a particular phase of operation, and the take-off power range 72 updated if necessary.
  • figure 4 shows the time profile of a valve control signal 86.
  • a second abscissa axis 88 depicts a time.
  • a second ordinate axis 90 shows the valve control signal 86 and an ionization current 92.
  • the valve control signal 86 is a control signal which is sent to the fuel valve 44 and describes a desired opening width of the fuel valve 44 .
  • the valve control signal 86 can be characterized by an indication of the desired opening width of the fuel valve 44 .
  • the desired opening width of fuel valve 44 is described in the exemplary embodiment with a percentage between 0% and 100%, with an opening width of 0% corresponding to a completely closed fuel valve 44 and an opening width of 100% corresponding to a completely open fuel valve 44.
  • increase or decrease the valve control signal 86 it is meant that the valve control signal 86 is changed to increase or decrease the desired fuel valve 44 opening compared to a last desired fuel valve 44 opening.
  • the valve control signal 86 is a fluid supply parameter 94.
  • the ionization current 92 is an electrical current measured by the ionization probe 42 on the flame 40 of the burner 28 .
  • the ionization current 92 is a combustion parameter 96.
  • the detected ionization current 92 is received by the control unit 18.
  • the ionization current 92 largely continuously recorded.
  • the ionization current 92 is stored at least in sections as a function of time in the control unit 18 .
  • the fluid supply parameter 94 is brought to a starting value 98 as quickly as possible.
  • the starting value is 98 30%.
  • the start value 98 is determined during start-up or during a first ignition operation 56 depending on the first burner power parameter 68 or depending on the starting power 74 .
  • a starting value characteristic curve is stored in the control unit 18 and assigns the starting value 98 to the first burner output parameter 68 .
  • the starting value 98 is selected in such a way that a non-ignitable fuel/air mixture is produced given the burner output parameters 68 that are present.
  • the initial value characteristic was determined empirically in laboratory tests. In the case of later ignition operations 56, the starting value 98 is determined on the basis of previous ignition operations 62 (see below).
  • the fluid supply parameter 94 is then increased linearly with a slope value 100.
  • the slope value 100 is 15% per second.
  • Gradient value 100 is determined as a function of operating characteristic 66 , operating characteristic 66 being recorded before ignition operation 56 .
  • the operating characteristic 66 is determined as a function of the first burner power parameter 68 or as a function of the starting power 74.
  • a first gradient value characteristic curve is stored in the control unit 18 and assigns the gradient value 100 to the first burner output parameter 68 .
  • the gradient value 100 is selected in such a way that the fuel-air mixture does not ignite too quickly under typical internal and external conditions.
  • the first gradient value characteristic was determined empirically in laboratory tests.
  • the slope value 100 is determined on the basis of a previous heating operation 102.
  • a previous heating operation 102 may include a previous ignition operation 62 and/or a closed loop mode 60 and/or a Shutdown 58 include (see figure 2 ).
  • a slope value 100 determined from the first slope value characteristic curve is smaller.
  • the linear increase in the fluid supply parameter 94 is stopped at an ignition value 104 .
  • the control unit 18 checks the course of the combustion parameter 96 over time. As soon as the fuel-air mixture ignites, an ionization current 92 is present. figure 4 shows the course over time of the ionization current 92 or the combustion parameter 96. Before the ignition, the ionization current 92 has the value 0; there is no ionization current 92 present. During ignition, the ionization current 92 increases rapidly and reaches a maximum at a first point in time 106 . Subsequently, the ionization current 92 falls and stabilizes at a certain value.
  • the control unit determines the maximum of the ionization current 92 or the first point in time 106. As soon as the first point in time 106 is present, the linear increase in the fluid supply parameter 94 is stopped. The value of the fluid supply parameter 94 present at the first point in time is the ignition value 104. The fluid supply parameter 94 is then kept largely constant at the ignition value 104. In the exemplary embodiment, the ignition value 104 is 60%. The ignition value 104 generally depends on the external and internal conditions of the heating system. In particular, the ignition value 104 can depend on a quality of a fuel used in the heating system 46 and/or on the power requirement 64 or the first burner power parameter 68 .
  • start value 98 is determined as a function of a previous ignition value 108 .
  • the previous ignition value 108 is determined in the previous ignition mode 62 .
  • figure 5 shows the fluid supply parameter 94 and the combustion parameter 96 over time during a previous ignition operation 62 and an ignition operation 56.
  • the previous ignition value 108 has a previous starting value 110 compared. If an amount of a difference between the previous ignition value 108 and the previous starting value 110 deviates too much from a safety distance 112, the starting value 98 ignition operation 56 is changed.
  • the safety distance 112 is a known value stored in the control unit 18 which depends on the first burner output parameter 68 .
  • the safety distance 112 as a function of the first burner performance parameter 68 was determined empirically in laboratory tests. The safety distance 112 ensures quiet and safe ignition. In figure five, the safety margin 112 is 10%. If the absolute value of the difference between the previous ignition value 108 and the previous start value 110 differs from the safety distance 112 by more than 4%, the start value 98 is changed in comparison to the previous start value 110 in the ignition operation 56 . If the absolute value of the difference between the previous ignition value 108 and the previous start value 110 is greater than the safety margin 112 , the start value 98 is determined from the sum of the previous start value 110 and a change step 114 .
  • the start value 98 is determined by the change step 114 being subtracted from the previous start value 110 .
  • changing step 114 depends on first burner output parameter 68 .
  • the change step 114 is 5%. In this way, when the method is repeated, the start value 98 is set iteratively in such a way that a distance between the start value 98 and the ignition value 104 largely equals the safety distance 112 .
  • a first time interval 116 between a second point in time 118 and a third point in time 120 is compared with a desired ignition duration 122 stored in control unit 18 .
  • the desired ignition duration 122 is 2 seconds.
  • the desired ignition duration is 122 between 0.1 seconds and 10 seconds, preferably between 1 second and 5 seconds.
  • the ignition duration 112 depends on the first burner power parameter 68 . The ignition duration 112 is determined empirically in such a way that rapid, quiet and reliable ignition is ensured. If first time interval 116 is shorter than ignition duration 112 by at least one predefined threshold, start value 98 is determined by subtracting a change step 114 from previous start value 110 .
  • the start value 98 is determined by adding the change step 114 to the previous start value 110. In this way, the starting value 98 is set iteratively in such a way that the first time interval 116 largely corresponds to the desired ignition duration 122 .
  • figure 6 shows a time development of the start value 98 in three different operating phases 124a, 124b and 124c.
  • a time is plotted on a third abscissa axis 126 .
  • the starting value 98 is shown on a third ordinate axis 127 .
  • the heating system 46 is operated with a constant first operating parameter 68 of 3000.
  • the heating system 46 was operated several times in the ignition mode 56.
  • the heating system 46 was operated with a different fuel. Otherwise, there are largely constant internal and external conditions in each operating phase in the individual ignition operation 56 .
  • the start value 98 determined as a function of the previous ignition value 108 stabilizes at a fixed value.
  • the fuel is a burner test gas G25.
  • a first starting value 98a is 43%.
  • the fuel is a burner test gas G271.
  • the burner test gas G271 is leaner than the burner test gas G25.
  • Burner test gas G271 has a lower calorific value than burner test gas G25.
  • a second starting value 98b is 48%.
  • the fuel is a burner test gas G21.
  • the burner test gas G21 is richer than the burner test gas G25.
  • the burner test gas G21 has a higher calorific value than the burner test gas G25.
  • a third starting value 98c is 38%.
  • a start value 98 determined using the previous ignition value 108 depends on the quality of the fuel. In the exemplary embodiment, the greater the starting value 98, the lower the calorific value of the fuel.
  • the starting value 98 can be used as the operating parameter 66. It is conceivable that a difference from the previous ignition value 108 and the previous starting value 110 is used as the operating characteristic 66, in particular taking into account the safety distance 112. It is also conceivable that a first time interval 116 is used as the operating characteristic 66, in particular taking into account the desired ignition duration 112.
  • the gradient value 100 is selected as a function of the starting value 98.
  • the seed value 98 is compared to the previous seed value 110.
  • the difference between the starting value 98 and the previous starting value 110 is an operating parameter 66 .
  • a linear relationship is stored in the control unit 18, which assigns the amount of the difference between the previous starting value 110 and the starting value 98 to a change in slope value. If the absolute value of the difference between the previous starting value 110 and the starting value 98 is 0, a slope value change of 0 is assigned. If the absolute value of the difference between the previous starting value 110 and the starting value 98 is 1%, then a gradient value change of 0.5% per second is assigned.
  • the slope value 100 is determined by adding the slope value change to a previous slope value 128. If the start value 98 is less than the previous start value 110, the slope value 100 is determined by subtracting the slope value change from the previous slope value 128.
  • any other functional relationship is used, which assigns the slope value change to the difference between the previous starting value 110 and the starting value 98 .
  • the type of functional relationship depends on the technical properties of the heating system 46.
  • the functional relationship is preferably determined empirically in laboratory tests.
  • a second gradient value characteristic is stored in the control unit 18 .
  • the second gradient value characteristic assigns the gradient value 100 to the start value 110 .
  • the second slope value characteristic is preferably determined empirically in laboratory tests.
  • figure 7 shows the time profile of valve control signal 86 for three different ignition operations 56d, 56e and 56f.
  • the fuel is the burner test gas G25.
  • the slope value 100 is 7.5% per second.
  • the fuel is burner test gas G271.
  • the slope value 100 is 10% per second.
  • the fuel is the burner test gas G21.
  • the slope value 100 is 5% per second.
  • the operating parameter 66 is determined as a function of a time profile of the fluid supply parameter 94 .
  • the fluid supply parameter 94 is initially set to a previous ignition value 108 in a previous ignition operation 102 set.
  • the heating system 46 is then operated in a closed-loop mode 60 .
  • the fluid supply parameter 94 is regulated to a control value 130.
  • the operating characteristic 66 is determined by subtracting the previous firing value 108 from the control value 130 .
  • the fan speed 54 or the first burner output parameter 68 is kept largely constant.
  • the valve control signal 86 is set in such a way that the ionization current 92 largely assumes the value of a target ionization.
  • the detected ionization current 92 is compared continuously to the target ionization.
  • the current ionization current 92 is compared to the target ionization at time intervals, preferably periodically.
  • the time intervals are preferably short compared to time scales typical for regulation and/or control of the heating system 46, for example between 10 ms and 10,000 ms, in particular between 100 ms and 1000 ms.
  • the target ionization depends on the fan speed 54 .
  • the required target ionization is determined as a function of fan speed 54 by a target ionization characteristic stored in control unit 18 .
  • the target ionization characteristic is determined by laboratory tests and adapted to the requirements of the heating system 46. It is conceivable that the target ionization characteristic or the target ionization is determined by special methods during operation of the heating system 46, in particular by methods for calibrating the heating system 46.
  • the target ionization is a target combustion parameter.
  • valve control signal 86 is increased in the exemplary embodiment. If the current ionization current 92 is greater than the target ionization, the valve control signal 86 is lowered. In the exemplary embodiment, the valve control signal 86 becomes all the stronger increased or decreased, the greater the deviation of the current ionization current 92 from the target ionization. A linear relationship is stored in the control unit 18, which assigns a change in the valve control signal 86 to a difference in the ionization current 92 from the target ionization.
  • the ionization threshold is a value stored in the control unit 18 to take into account measurement inaccuracies or signal noise of the detected ionization current 92 .
  • the ionization threshold depends on the first burner output parameter 68 .
  • the relationship stored in control unit 18 between the difference between ionization current 92 and target ionization and the change in valve control signal 86 has the form of any monotonically increasing function, in particular linear and/or quadratic and/or exponential and/or a power function.
  • the fluid supply parameter 94 is changed and/or increased or decreased the more, the greater the deviation of the currently detected combustion parameter 96 from the target combustion parameter.
  • a change in the valve control signal 86 changes a fuel-air ratio in a fuel-air mixture supplied to the burner 28 .
  • the sensed ionization current 92 changes as a function of the change in the valve control signal 86. In this way, the valve control signal 86 can be iteratively changed so that the sensed ionization current 92 closely equals the target ionization.
  • the set valve control signal 86 in which the detected ionization current 96 largely equals the setpoint ionization, is detected by the control unit 18 as a control value 130.
  • figure 8 illustrates the most preferred embodiment.
  • FIG. 12 shows the course over time of the ionization current 92 and of the valve control signal 86.
  • a previous ignition operation 62 takes place.
  • the closed-loop mode 60 is started from a fourth point in time 132 .
  • the valve control signal is regulated down from the previous ignition value 108 to the regulation value 130 . If the control value 130 is lower than the previous ignition value 108, this indicates that the fuel has a higher calorific value than assumed. If the control value 130 is lower than the previous firing value 108, this indicates that the previous slope value 128 is too high. If the control value 130 is higher than the previous ignition value 108, this indicates that the fuel has a lower calorific value than assumed. If the control value 130 is higher than the previous firing value 108, this indicates that the previous slope 128 is too low.
  • operating parameter 66 is determined as the difference between previous ignition value 108 and control value 130 .
  • the control unit checks whether the absolute value of the operating characteristic 66 is greater than a characteristic value threshold.
  • the characteristic value threshold is a characteristic value that is stored in the control unit 18 and depends on the first burner output parameter 68 . Measurement inaccuracies or measurement errors and usual fluctuations in the valve control signal 86 are taken into account with the aid of the characteristic value threshold. If the operating characteristic 66 does not exceed the characteristic threshold, the previous gradient value 128 is used as the gradient value 100 . If the operating characteristic 66 exceeds the characteristic threshold, the previous gradient value 128 is recalculated.
  • the gradient value 100 is selected by the control unit 18 using an analytical calculation method in such a way that the fluid supply parameter 86, starting from the starting value 98, after the desired ignition duration 122 assumes the control value 130 (see FIG figure 8 ). In this way, a slope value 100 that is smaller than the previous one is determined Gradient value 128 if control value 130 is less than previous ignition value 108. If control value 130 is greater than previous ignition value 108, a gradient value 100 is determined that is greater than previous gradient value 128.
  • a relationship is stored in the control unit 18 which assigns the gradient value 100 or the gradient value change to the operating characteristic value 66 .
  • a linear relationship is conceivable, which assigns a gradient value change to the operating characteristic value 66 .
  • Operating parameter 66 can be calculated by subtracting previous ignition value 108 from control value 130 . If the operating parameter 66 is 0, a gradient value change of 0 is assigned to it. If the operating parameter 66 is 1%, then a gradient value change of 0.5% per second is assigned. The greater the operating parameter 66, the greater the change in slope value.
  • the slope value 100 is determined by adding the slope value change to the previous slope value 128 .
  • any other functional relationships between the operating characteristic value 66 and the gradient value 100 can be used. The type of functional relationship depends on the technical properties of the heating system 46.
  • a temporary fluid supply change 134 over time is generated in the fluid supply parameter 94 in the previous heating operation 102, and the operating parameter 66 is generated as a function of a change associated with the fluid supply change 134 correlated temporal combustion parameter change 136 of the combustion parameter 96 is determined.
  • These variants are preferably carried out with a largely constant first burner output parameter 68 .
  • figure 9 13 illustrates a fluid delivery change 134 of the valve control signal 86 and a combustion characteristic change 136 of the ionization current 92 during a closed loop mode 60.
  • the largely constant valve control signal 86 is increased by a pulse height 138 as quickly as possible and after a pulse width 140 as quickly as possible again reduced to an initial value of the valve control signal 86.
  • the pulse height 138 is selected depending on the first burner output parameter 68 . In figure 9 the pulse height is 138 5%. Depending on the first burner output parameter 68, the pulse height 138 can assume values between 0.5% and 20%.
  • the pulse width is 140 in figure 9 40ms. In alternative embodiments, the pulse width 140 has values between 1 ms and 2000 ms, in particular between 10 ms and 200 ms, preferably 100 ms.
  • the fluid delivery change 134 results in the combustion characteristic change 136 .
  • the change in combustion parameter 136 is correlated with a calorific value of the fuel. The greater the calorific value of the fuel, the smaller a first signal height 142 or first signal area 144 of the change in combustion parameter 136. The greater the calorific value of the fuel, the lower slope value 100 should be.
  • the operating parameter 66 is a first signal level 142 and/or a first signal area 144 of the combustion parameter change 136. In this way, the gradient value 100 can be adapted to the calorific value of the fuel.
  • the control unit 18 has a relationship which gives the operating characteristic value 66 the gradient value 100 or the Assigns slope value change.
  • the slope value 100 or slope value change is preferably the smaller the larger the operating parameter 66 is.
  • the combustion characteristic change 136 also depends on the magnitude of the fluid delivery change 134 .
  • the operating characteristic 66 is the first signal level 142 divided by the pulse level 138.
  • the operating characteristic 66 is the first signal area 144 divided by a pulse area 146.
  • the control unit 18 has different sets of operating parameters, which are each provided for operation with one type of fuel. If the heating system 46 is operated with a specific set of operating parameters and a fluid supply parameter 94 and/or a first burner output parameter 68 is varied, the combustion parameter 96 will behave differently depending on whether the set of operating parameters matches the fuel used. From the behavior of the combustion parameter 96, conclusions can be drawn about the type of fuel used. The type of fuel can be determined quickly and reliably in this way, particularly when there are two different types of fuel.
  • the operating parameter 66 can be a slope value 100, which is stored in the control unit 18 as a function of the type of fuel.
  • the first burner output parameter 68 is kept constant in a previous heating operation 102 .
  • a transient fluid delivery change 134 is generated and a burner performance parameter change 148 is sensed.
  • the first burner power parameter is 68 the detected fan speed 54 and the second burner power parameter 70 a PWM signal, which is sent from the control unit 18 to the fan 32.
  • the second burner power parameter 70 corresponds to the power made available to the blower 32 .
  • the fluid supply change 134 briefly increases a proportion of fuel in a fuel-air mixture transported by the blower 32 . If the mass density of the fuel is greater than the mass density of air, the mass flow through the blower 32 increases for a short time.
  • FIG. 14 shows a fluid supply change 134 and a positive burner output parameter change 148.
  • a fourth abscissa axis 154 shows a time.
  • the valve control signal 86 and the second burner output parameter 70 are shown on a fourth ordinate axis 156 .
  • the mass flow through the blower 32 drops briefly.
  • the blower 32 requires less power for a short time.
  • the second burner power parameter 70 drops briefly. This results in a negative second signal level 150 of the burner power parameter change 148 .
  • the second signal level 150 or a second signal area 152 are correlated with the mass density of the fuel.
  • the mass density of the fuel allows conclusions to be drawn about a type of fuel and/or a calorific value of the fuel.
  • the operating parameter 66 is a second signal height 150 and/or a second signal area 152 of the burner performance parameter change 148.
  • the slope value 100 can affect the mass density and/or indirectly or be adjusted directly to the calorific value of the fuel.
  • the control unit 18 has a relationship which assigns the gradient value 100 or the gradient value change to the operating characteristic value 66 .
  • the slope value 100 or slope value change is preferably the smaller the larger the operating parameter 66 is.
  • the burner power parameter change 148 also depends on the magnitude of the fluid supply change 134 .
  • the operating characteristic 66 is the second signal level 150 divided by the pulse level 138.
  • the operating characteristic 66 is the second signal area 152 divided by a pulse area 146.
  • slope value 100 is set as a function of operating characteristic value 66 .
  • the starting value 98 is selected as a function of the operating parameter 66 .
  • the slope value 100 is a function of an operating characteristic value 66, which is determined from a difference between a previous ignition value 108 and a control value 130 (see figure 8 ), determined, it is conceivable that the start value 98 also depends on the Operating parameter 66 depends. For example, a change in starting value 98 compared to a previous starting value 110 may be proportional to operating characteristic 66 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Claims (17)

  1. Procédé de commande d'un processus d'allumage (56) d'un système de chauffage (46), dans lequel une grandeur caractéristique de fonctionnement (66) détectée avant le processus d'allumage (56) est prise en compte,
    caractérisé en ce que la grandeur caractéristique de fonctionnement (66) est déterminée dans un processus de chauffage antérieur (102), la grandeur caractéristique de fonctionnement (66) étant adaptée pour déterminer une qualité d'un combustible utilisé dans le système de chauffage (46), en particulier une valeur calorifique du combustible et/ou un type de combustible du combustible, et/ou la grandeur caractéristique de fonctionnement (66) étant adaptée pour déterminer une demande de puissance (64) pour le système de chauffage (46).
  2. Procédé selon la revendication 1, caractérisé en ce que dans le processus d'allumage (56), un premier paramètre de puissance de brûleur (68) est déterminé en fonction de la grandeur caractéristique de fonctionnement (66) .
  3. Procédé selon la revendication 2, caractérisé en ce que dans le processus d'allumage (56), le premier paramètre de puissance de brûleur (68) est largement égal à une puissance de démarrage (74), la puissance de démarrage (74) étant sélectionnée dans une plage de puissance de démarrage (72), en particulier un intervalle de puissance de démarrage (76), de telle sorte que la puissance de démarrage est aussi proche que possible d'une ou de la demande de puissance (64).
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que dans le processus d'allumage (56), une grandeur caractéristique d'arrivée de fluide (94) est d'abord amenée à une valeur de démarrage (98) et est ensuite augmentée, de préférence de façon linéaire avec une valeur d'augmentation (100), jusqu'à ce qu'une valeur d'allumage (104) de la grandeur caractéristique d'arrivée de fluide (94) à laquelle une flamme (40) s'allume dans le système de chauffage (46) soit atteinte.
  5. Procédé selon la revendication 4, caractérisé en ce que la valeur d'augmentation (100) et/ou la valeur de démarrage (98) dépend(ent) de la grandeur caractéristique de fonctionnement (66).
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la grandeur caractéristique de fonctionnement (66) est déterminée en fonction d'une ou de la valeur de démarrage (98) de la grandeur caractéristique d'arrivée de fluide (94) dans le processus d'allumage (56) et/ou en fonction d'une valeur de démarrage précédente (98) dans un processus d'allumage précédent (62).
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une ou la valeur de démarrage (98) est déterminée en fonction d'une valeur d'allumage précédente (108) d'une ou de la grandeur caractéristique d'arrivée de fluide (94) dans un ou le processus d'allumage précédent (62).
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la grandeur caractéristique de fonctionnement (66) est déterminée en fonction d'une grandeur caractéristique de combustion (96), par exemple d'un courant d'ionisation (92).
  9. Procédé selon la revendication 8, caractérisé en ce que la grandeur caractéristique de fonctionnement (66) est déterminée en fonction d'une courbe de temps de la grandeur caractéristique de combustion (96) après une variation de la grandeur caractéristique d'arrivée de fluide (94) et/ou d'un premier paramètre de puissance de brûleur (68).
  10. Procédé selon la revendication 9, caractérisé en ce qu'une variation d'arrivée de fluide (134) temporelle provisoire de la grandeur caractéristique d'arrivée de fluide (94) est générée, et la grandeur caractéristique de fonctionnement (66) est déterminée en fonction d'une variation de grandeur caractéristique de combustion (136) de la grandeur caractéristique de combustion (96), corrélée dans le temps avec la variation d'arrivée de fluide (134).
  11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la grandeur caractéristique de fonctionnement (66) est déterminée en fonction d'une courbe de temps de la grandeur caractéristique d'arrivée de fluide (94), le système de chauffage (46) ayant fonctionné en boucle fermée (60) après un processus d'allumage précédent (62).
  12. Procédé selon la revendication 11, caractérisé en ce que la grandeur caractéristique d'arrivée de fluide est réglée sur une valeur d'allumage précédente (108) dans un processus d'allumage précédent (62), est ensuite réglée sur une valeur de régulation (130) en boucle fermée (60), et la grandeur caractéristique de fonctionnement (66) est déterminée à partir d'une comparaison entre la valeur d'allumage précédente (108) et la valeur de régulation (130), en particulier à partir d'une comparaison de grandeurs.
  13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la grandeur caractéristique de fonctionnement (66) est déterminée en fonction d'une courbe de temps d'un deuxième paramètre de puissance de brûleur (70) avec un premier paramètre de puissance de brûleur (68) largement constant et après une variation de la grandeur caractéristique d'arrivée de fluide (94).
  14. Procédé selon la revendication 13, caractérisé en ce que le premier paramètre de puissance de brûleur (68) est une vitesse de rotation de soufflante détectée (54) qui est maintenue constante par une boucle d'asservissement par un réglage du deuxième paramètre de puissance de brûleur (70), et la grandeur caractéristique de fonctionnement (66) est déterminée en fonction d'une variation de paramètre de puissance de brûleur (148) du deuxième paramètre de puissance de brûleur (70), la variation de paramètre de puissance de brûleur (148) étant corrélée avec une variation d'arrivée de fluide provisoire (134).
  15. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une ou la grandeur caractéristique d'arrivée de fluide (94) est un signal de commande de soupape (86) pour une soupape de combustible (44), et/ou une ou la grandeur caractéristique de combustion (96) est un courant d'ionisation (92), et/ou un ou le deuxième paramètre de puissance de brûleur (70) est un signal de commande de soufflante (71).
  16. Unité de commande (18) pour un système de chauffage (46), l'unité de commande (18) étant aménagée pour permettre l'exécution d'un procédé selon l'une quelconque des revendications précédentes.
  17. Système de chauffage (46) comprenant une unité de commande (18) selon la revendication 16, comprenant au moins une soupape de combustible (44) pour un combustible, une sonde d'ionisation (42) au niveau d'une flamme (40) et une vitesse de rotation de soufflante (54) variable par une soufflante (32).
EP17187737.6A 2016-09-02 2017-08-24 Procédé de commande d'un allumage d'un système de chauffage, unité de commande et système de chauffage Active EP3301365B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102016216625 2016-09-02
DE102016216613 2016-09-02
DE102016216630 2016-09-02
DE102017204025.4A DE102017204025A1 (de) 2016-09-02 2017-03-10 Verfahren zum Steuern eines Zündbetriebs eines Heizsystems sowie eine Steuereinheit und ein Heizsystem

Publications (2)

Publication Number Publication Date
EP3301365A1 EP3301365A1 (fr) 2018-04-04
EP3301365B1 true EP3301365B1 (fr) 2022-01-19

Family

ID=61197833

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17187737.6A Active EP3301365B1 (fr) 2016-09-02 2017-08-24 Procédé de commande d'un allumage d'un système de chauffage, unité de commande et système de chauffage

Country Status (2)

Country Link
EP (1) EP3301365B1 (fr)
DE (6) DE102017204001A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018105185A1 (de) * 2018-03-07 2019-09-12 Ebm-Papst Landshut Gmbh Verfahren zur Brenngasartenerkennung bei einem brenngasbetriebenen Heizgerät
DE102019204513A1 (de) * 2019-03-29 2020-10-01 Robert Bosch Gmbh Verfahren zur Einstellung und Regelung eines Brennstoff-Luft-Verhältnisses in einem Heizsystem sowie eine Steuereinheit und ein Heizsystem
DE102019131310A1 (de) * 2019-11-20 2021-05-20 Vaillant Gmbh Heizgerät mit Notbetriebsregelung
DE102021104191A1 (de) 2021-02-23 2022-08-25 Vaillant Gmbh Verfahren zum Betreiben eines Heizgerätes mit elektronischem Gas-Luftverbund
DE102021123070A1 (de) * 2021-09-07 2023-03-09 Vaillant Gmbh Verfahren und Anordnung zur Erkennung des Zündens von Flammen in einem Verbrennungsraum eines Heizgerätes, Computerprogrammprodukt und Verwendung
DE102021127953A1 (de) * 2021-10-27 2023-04-27 Vaillant Gmbh Verfahren zur Inbetriebnahme eines Heizgerätes, Computerprogrammprodukt, Regel- und Steuergerät, und ein Heizgerät
DE102022125189A1 (de) 2022-09-29 2024-04-04 Vaillant Gmbh Verfahren zur Inbetriebnahme eines Heizgerätes, Regel- und Steuergerät, Heizgerät und Computerprogramm
DE102022130039A1 (de) 2022-11-14 2024-05-16 Vaillant Gmbh Verfahren zur Inbetriebnahme eines Heizgerätes, Regel- und Steuergerät, Heizgerät und Computerprogramm

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU710622B2 (en) 1995-11-13 1999-09-23 Gas Research Institute, Inc. Flame ionization control apparatus and method
DE10003819C1 (de) 2000-01-28 2001-05-17 Honeywell Bv Verfahren zum Betreiben eines Gasbrenners
DE10057233C2 (de) 2000-11-18 2003-04-10 Buderus Heiztechnik Gmbh Gasbrenner für ein Heizgerät
DE102004055716C5 (de) 2004-06-23 2010-02-11 Ebm-Papst Landshut Gmbh Verfahren zur Regelung einer Feuerungseinrichtung und Feuerungseinrichtung (Elektronischer Verbund I)
AT505244B1 (de) 2007-06-11 2009-08-15 Vaillant Austria Gmbh Verfahren zur überprüfung des ionisationselektrodensignals bei brennern
JP5107063B2 (ja) * 2008-01-08 2012-12-26 アズビル株式会社 流量制御装置
US9097185B2 (en) 2009-05-26 2015-08-04 Alstom Technology Ltd Stabilizing a gas turbine engine via incremental tuning
DE102010026389B4 (de) 2010-07-07 2012-08-09 Robert Bosch Gmbh Verfahren zur Regelung einer Verbrennung bei einem Gas- oder Ölbrenner
ES2441226T3 (es) 2010-12-16 2014-02-03 Siemens Aktiengesellschaft Dispositivo de regulación para una instalación de quemador
DE102010055567B4 (de) 2010-12-21 2012-08-02 Robert Bosch Gmbh Verfahren zur Stabilisierung eines Betriebsverhaltens eines Gasgebläsebrenners
DE102011079325B4 (de) 2011-07-18 2017-01-26 Viessmann Werke Gmbh & Co Kg Verfahren zur Luftzahlregelung eines Brenners
DE102011111453A1 (de) 2011-08-30 2013-02-28 Robert Bosch Gmbh Verfahren zur Luftzahleinstellung bei einem Heizgerät
US20140342257A1 (en) 2012-01-23 2014-11-20 Jx Nippon Oil & Energy Corporation Fuel supply system, fuel cell system, and method for running each
DE102012108268A1 (de) * 2012-09-05 2014-03-06 Ebm-Papst Landshut Gmbh Verfahren zur Erkennung der Gasfamilie sowie Gasbrennvorrichtung
DE102012023606B4 (de) 2012-12-04 2019-02-21 Robert Bosch Gmbh Verfahren zur Verbrennungsregelung bei einem Gas-oder Ölbrenner
DE102013214610A1 (de) * 2013-07-26 2015-01-29 E.On New Build & Technology Gmbh Verfahren und Vorrichtung zur Bestimmung von Kennwerten von Brenngasen
DE102013014379A1 (de) 2013-08-30 2015-03-05 Kübler Gmbh Verfahren zur Bestimmung des Wartungszustands einer Heizungsanlage
DE102015210583A1 (de) 2015-05-27 2016-12-01 Robert Bosch Gmbh Heizgerätevorrichtung und Verfahren zum Betrieb einer Heizgerätevorrichtung
ITUB20152534A1 (it) 2015-07-28 2017-01-28 Sit Spa Metodo per il monitoraggio e controllo della combustione in apparecchi bruciatori a gas combustibile e sistema di controllo della combustione operante in accordo con tale metodo
DE102015116458A1 (de) 2015-09-29 2017-03-30 Viessmann Werke Gmbh & Co Kg Verfahren zur Unterscheidung zweier für einen Verbrennungsprozess vorgesehener Brenngase mit unterschiedlich hohen Energiegehalten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102017204025A1 (de) 2018-03-08
DE102017204001A1 (de) 2018-03-08
DE102017204021A1 (de) 2018-03-08
DE102017204017A1 (de) 2018-03-08
DE102017204009A1 (de) 2018-03-08
EP3301365A1 (fr) 2018-04-04
DE102017204030A1 (de) 2018-03-08

Similar Documents

Publication Publication Date Title
EP3301365B1 (fr) Procédé de commande d'un allumage d'un système de chauffage, unité de commande et système de chauffage
EP2005066B1 (fr) Procédé pour mettre en marche un système de chauffage dans des conditions générales inconnues
DE102010055567B4 (de) Verfahren zur Stabilisierung eines Betriebsverhaltens eines Gasgebläsebrenners
EP2116771B1 (fr) Démarrage et fonctionnement à coefficient d'air optimisé d'un brûleur
EP3690318B1 (fr) Procédé de régulation d'un mélange air-gaz de combustion dans un appareil de chauffage
EP3290797B1 (fr) Procédé de détection d'un état de vieillissement d'un système de chauffage ainsi qu'une unité de commande et système de chauffage
EP1717514B1 (fr) Brûleur à gaz et méthodes pour le démarrage et le fonctionnement de ce brûleur
EP3029375B1 (fr) Dispositif d'appareil de chauffage et procédé de fonctionnement d'un dispositif d'appareil de chauffage
EP2706300B1 (fr) Procédé de détection de la famille de gaz et dispositif destiné à brûler des gaz
EP3290796B1 (fr) Procédé de commande d'un rapport air-combustible dans un système de chauffage et unité de commande et système de chauffage
EP3290800B1 (fr) Procédé d'actualisation d'une caractéristique dans un système de chauffage ainsi que unité de commande et système de chauffage
DE102011111453A1 (de) Verfahren zur Luftzahleinstellung bei einem Heizgerät
EP3290798B1 (fr) Procédé de réglage et de commande d'un rapport air-combustible dans un système de chauffage ainsi qu'unité de commande et système de chauffage
EP1923634A1 (fr) Réglage du mélange air / gaz combustible sur la température de flamme ou de brûleur d'un appareil de chauffage
AT505064B1 (de) Regelung des brenngas-luft-gemisches über die brenner- oder flammentemperatur eines heizgerätes
DE102017204012A1 (de) Verfahren zur Kontrolle eines Brennstoff-Luft-Verhältnisses in einem Heizsystem sowie eine Steuereinheit und ein Heizsystem
EP3715716B1 (fr) Procédé de réglage et de commande d'un rapport air-combustible dans un système de chauffage ainsi qu'unité de commande et système de chauffage
EP3290801B1 (fr) Procédé de commande d'un rapport air-combustible dans un système de chauffage et unité de commande et système de chauffage
EP3339735B1 (fr) Procédé de commande d'un rapport air-combustible dans un système de chauffage, unité de commande et système de chauffage
DE102017204003A1 (de) Verfahren zur Einstellung und Regelung eines Brennstoff-Luft-Verhältnisses in einem Heizsystem sowie eine Steuereinheit und ein Heizsystem
EP4357671A1 (fr) Procédé de mise en service d'un appareil de chauffage, programme informatique, appareil de commande et de régulation et appareil de chauffage
EP4372277A1 (fr) Procédé de mise en service d'un appareil de chauffage, appareil de chauffage et programme informatique
DE102017204014A1 (de) Verfahren zur Bestimmung einer Brennstofftypengröße in einem Heizsystem
EP1777466B1 (fr) Méthode pour ajuster la charge partielle des installations de chauffage
EP4345378A1 (fr) Procédé de mise en service d'un appareil de chauffage, appareil de commande et de régulation, appareil de chauffage et programme informatique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181004

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

17Q First examination report despatched

Effective date: 20200414

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210830

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017012463

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1464006

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220519

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220419

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017012463

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

26N No opposition filed

Effective date: 20221020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220824

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230823

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1464006

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220824

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230823

Year of fee payment: 7

Ref country code: FR

Payment date: 20230821

Year of fee payment: 7

Ref country code: BE

Payment date: 20230822

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231025

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220119