EP3296629A1 - Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser - Google Patents

Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser Download PDF

Info

Publication number
EP3296629A1
EP3296629A1 EP16189245.0A EP16189245A EP3296629A1 EP 3296629 A1 EP3296629 A1 EP 3296629A1 EP 16189245 A EP16189245 A EP 16189245A EP 3296629 A1 EP3296629 A1 EP 3296629A1
Authority
EP
European Patent Office
Prior art keywords
combustion
water
hydrogen
metal oxide
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16189245.0A
Other languages
German (de)
English (en)
French (fr)
Inventor
Janet-Susan Schulze
Dieter Schulze
Renate Hamel von der Lieth
Original Assignee
SCHULZE JANET SUSAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SCHULZE JANET SUSAN filed Critical SCHULZE JANET SUSAN
Priority to EP16189245.0A priority Critical patent/EP3296629A1/de
Priority to EP17787099.5A priority patent/EP3513121B1/de
Priority to PCT/DE2017/100779 priority patent/WO2018050166A1/de
Priority to EA201990733A priority patent/EA036734B1/ru
Publication of EP3296629A1 publication Critical patent/EP3296629A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • F23C13/08Apparatus in which combustion takes place in the presence of catalytic material characterised by the catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • F23C13/06Apparatus in which combustion takes place in the presence of catalytic material in which non-catalytic combustion takes place in addition to catalytic combustion, e.g. downstream of a catalytic element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/9901Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel

Definitions

  • the invention relates to a method for the conversion of hydrogen and atmospheric oxygen to water or HHO gas to water in a combustion furnace, wherein the combustion chamber is surrounded by a cooling jacket in which a heat transfer fluid is circulated. Furthermore, the invention relates to a combustion furnace for converting hydrogen and oxygen to water or HHO gas to water with a combustion chamber with at least one gas supply line with outlet nozzle, through which the gas to be combusted is supplied, and a cooling jacket enclosing the combustion chamber with a circulating heat transfer fluid therein ,
  • HHO gas means a mixture of hydrogen and oxygen in the atomic ratio twice H to once O, as it arises as a reaction product in the electrolysis of water.
  • Hydrogen (H 2 ) was and is mainly used in the chemical and petroleum industry for the reduction of chemical compounds, for the hydrogenation of unsaturated hydrocarbons, for the production of high-quality gasoline and others.
  • H 2 incinerators from the company Xerion Advanced Heating GmbH, which contain graphite elements in the reactor chamber, which serve to heat the combustion reaction electronically. These furnaces are used for the production of special steels and ceramics as well as for research purposes, whereby the service lives of the graphite electrodes are very limited by burnup reactions.
  • thermolysis of the water (H 2 O) is achieved by injecting water (H 2 O) under pressure onto a hollow body that has been heated to about 2000 - 3000 ° C by previous chemical reactions.
  • the object of the invention is to implement hydrogen (H 2 ) and atmospheric oxygen (O 2 ) or HHO gas without using a fluidized bed process at atmospheric pressure with efficiencies of heat recovery> 95% to water (H 2 O).
  • the object is according to the device in a combustion furnace with a combustion chamber with at least one gas supply line with Outlet nozzle, through which the gas to be burned is supplied, achieved in that metal oxide-containing earths are arranged as a catalyst in the combustion chamber. Since, as already explained above, the max. Reaction temperature of up to 2600 ° C only in the range of the catalyst (metal oxide containing earths) occurs, this combustion reaction can be carried out in a combustion furnace, for example made of stainless steel, suitable for hydrogen embrittlement, for example, the material no. 1.4438 317 L or other suitable steels be performed.
  • the enclosing cooling jacket usually provided in such combustion chambers is kept at a temperature substantially below the melting temperature of the steel material, for example 1400 ° C., by the heat transfer medium circulating therein.
  • ceramic components which have a higher temperature resistance can also be contained in the incinerator.
  • the gas to be burned, at least hydrogen and oxygen in the mixture are injected and ignited via a gas supply line with outlet nozzle in the combustion chamber of the incinerator.
  • the metal-oxide-containing earths are preferably pulverulent and / or coarse-grained (coarsely crystalline).
  • the effective surface area of the catalyst which comes into contact with the combustion gases is correspondingly large.
  • the influence of the catalyst on the combustion reaction can be controlled.
  • the combustion temperature in a range of preferably 1800 ° C to max. Be controlled 2600 ° C.
  • the control of the position of the outlet nozzle (combustion nozzle in the combustion chamber) by an outwardly reaching mechanism, with the efficiency of the reaction heat and the heat transfer to the cooling jacket can be optimized.
  • the metal oxide-containing earths are mixed with water in a mass ratio of up to 33% of the metal oxide-containing earth mass, in order to further improve the catalytic effect of the metal oxide-containing earths.
  • the metal-oxide-containing earths are arranged on a solid, combustion-temperature-resistant baseplate in the center of the incinerator, the metal-oxide-containing earths acting as catalyst can be provided in the center of the incinerator, without directly influencing the furnace's outer walls and thus possibly resulting thermal overloading could.
  • water is injected during combustion in the incinerator.
  • distilled, deionized water or seawater is used.
  • a portion of the resulting reaction water is returned to the incinerator during combustion. It has been found that with a throughput of combustion gas of 1000 to 5000 l / h, a water injection of up to 1.5 l / h is particularly preferred.
  • combustion chamber at a gas flow rate of 1000 to 5000 l / h, a volume of 4 to 25 I, preferably 6 to 12 I and more preferably 8 I, is provided for the preferred gas flow from a volume ideal combustion chamber.
  • the combustion chamber may be cubic or spherical.
  • a particularly preferred combustion chamber has internal dimensions of 200 ⁇ 200 ⁇ 200 mm 3 , ie 8 I in cubic form.
  • the heat energy yield is controlled to significantly exceed the energy of the hydrogen evolution reaction of HHO gas, thus the combustion process proceeds to increase the likelihood of nuclear fusions within the combustion reaction.
  • the deuterium content is kept substantially stable for a consistently high energy yield.
  • the combustion temperature can be influenced by the water used for injection.
  • the metal-oxide-containing earths in particular when using Al 2 O 3 , give gemstones with a Mohs hardness of 8 to 10, gemstones which can be utilized, for example, for industrial purposes can be produced as a by-product of the combustion reaction.
  • alumina Al 2 O 3 as a catalyst for the best possible implementation of the combustion gases hydrogen and oxygen to water at the combustion temperatures of 1800 ° C to max. 2600 ° C preferred.
  • the catalyst is placed in the combustion chamber of the incinerator on the massive base plate, wherein the catalyst hardly consumed in the continuous operation of the incinerator. With appropriate maintenance intervals of several weeks or months then the catalyst can be supplemented or replaced and the resulting gems are removed.
  • the resulting thermal energy can be generated according to the state of the art in different levels and used directly as such specifically for heating and cooling processes or converted by conventional method via turbine and generator into electricity.
  • the efficiency of combined heat and power would be about 90% without consideration of electrolysis losses that occur in the decomposition of water to hydrogen and oxygen.
  • a combustion furnace 1 is shown schematically.
  • the cubic wall 10 of the incinerator 1 includes a cooling jacket 2 containing a plurality of channels for passage of a heat transfer fluid.
  • the heat transfer fluid is circulated in a circulation system by a pump, not shown here, wherein outside of the incinerator 1, a corresponding heat sink for delivering the thermal energy and further use for heating purposes or to generate electricity is provided.
  • a pump not shown here, wherein outside of the incinerator 1, a corresponding heat sink for delivering the thermal energy and further use for heating purposes or to generate electricity is provided.
  • a gas supply line 3 is arranged with an outlet nozzle 31 within the combustion chamber 11.
  • further gas supply lines for example an air supply line 32 with a corresponding auxiliary nozzle 33, are arranged in the combustion space 11.
  • gas supply line 3 hydrogen and oxygen in mixed form is supplied from the outside and injected under pressure through the outlet nozzle 31 into the combustion chamber 11.
  • injected air via the air supply line 32 and auxiliary nozzle 33 in the combustion chamber.
  • gaseous CO 2 and / or gaseous nitrogen are fed into the combustion chamber 11.
  • the combustion temperature resisting base plate 5 is provided in the center.
  • the base plate 5 is made of ceramic, for example.
  • metal-oxide-containing earths 4 are applied as catalyst.
  • an exhaust gas outlet 6 is provided at a suitable location in the combustion chamber 11, through which the "exhaust gases", essentially consisting of water vapor, can escape.
  • the temperature in the near-flame region rises to about 1000 to 1300 ° C.
  • air supply line 32 are throttled by auxiliary nozzle / valve 33 and exhaust outlet 6 with associated control valve 6 to about 50%, so that the temperature in the combustion chamber to about 1500 ° C increases.
  • the exhaust gas outlet 6 outgoing water vapor is directed to acting as a catalyst 4 alumina Al 2 O 3 by being returned via a corresponding supply line and auxiliary nozzle in the combustion chamber.
  • the temperature of the incinerator 1 is now controlled by circulation of the heat transfer fluid in the cooling jacket 2 so that overheating of the wall 10 of the incinerator 1 is avoided.
  • the temperature in the center of the combustion chamber 11 is now at 1800 ° C to max. Increased to 2600 ° C. At this temperature, the continuous operation takes place. It should be noted that the temperature of 1800 ° C to max. 2600 ° C occurs only in the central region of the combustion chamber 11, namely directly in the region of acting as a catalyst metal oxide earth 4, here aluminum oxide Al 2 O 3 , said catalyst on a temperature-resistant base plate 5, for example made of ceramic, is kept.
  • gem-like crystal structures having a Mohs hardness of about 9.5 have formed on the alumina powder acting as a catalyst. These gems can be used for industrial applications, for example.
  • the heat recovery efficiency was measured relative to the energy used for the water electrolysis to produce the HHO gas. The efficiency was 98%.
  • the temperature of the exhaust gases directly at the exhaust outlet 6 was about 500 ° C. It is therefore to be assumed that the other wall 10 of the combustion chamber 11 temperatures of little more than 1000 ° C reach. In this case, no measured values could be achieved in the tests carried out so far.
  • the exhaust gases contained no nitrogen oxides and no hydrocarbon compounds.
  • the CO and CO 2 values were 0.00 ppm each. The process is therefore characterized by very low pollutant emissions compared to conventional fossil fuel-based energy production processes.
  • the chemical combustion of hydrogen and oxygen in the combustion furnace is controlled so that the heat energy yield exceeds the energy of the water-forming reaction from the gas to be combusted.
  • the desired combustion reaction at temperatures of 1800 ° C to max. 2600 ° C in particular taking into account a possible nuclear fusion over 2000 ° C is to be maintained.
  • the flame geometry is narrowly limited to the center of the combustion chamber 11 in which the alumina serving as a catalyst 4 rests on the ceramic base plate 5, for example.
  • the combustion flame is directed directly to this catalyst and thus at most to the base plate 5.
  • the walls 10 of the combustion chamber 11 are not touched directly by the flame.
  • the wall 10 of the combustion chamber 11 at temperatures ⁇ 1250 ° C in continuous operation.
  • suitable steels are known in the art.
  • stainless steel can be used with the material no. 1.4438 317 L, which has a melting point of over 1400 ° C and is also resistant to hydrogen embrittlement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
EP16189245.0A 2016-09-16 2016-09-16 Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser Withdrawn EP3296629A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16189245.0A EP3296629A1 (de) 2016-09-16 2016-09-16 Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser
EP17787099.5A EP3513121B1 (de) 2016-09-16 2017-09-14 Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser
PCT/DE2017/100779 WO2018050166A1 (de) 2016-09-16 2017-09-14 Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser
EA201990733A EA036734B1 (ru) 2016-09-16 2017-09-14 Способ и печь для преобразования водорода и кислорода воздуха в воду или газа брауна (hho) в воду

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16189245.0A EP3296629A1 (de) 2016-09-16 2016-09-16 Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser

Publications (1)

Publication Number Publication Date
EP3296629A1 true EP3296629A1 (de) 2018-03-21

Family

ID=56979380

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16189245.0A Withdrawn EP3296629A1 (de) 2016-09-16 2016-09-16 Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser
EP17787099.5A Active EP3513121B1 (de) 2016-09-16 2017-09-14 Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17787099.5A Active EP3513121B1 (de) 2016-09-16 2017-09-14 Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser

Country Status (3)

Country Link
EP (2) EP3296629A1 (ru)
EA (1) EA036734B1 (ru)
WO (1) WO2018050166A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115228285A (zh) * 2022-06-21 2022-10-25 鼎佳能源股份有限公司 低温氢气氧化系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5190453A (en) * 1991-03-01 1993-03-02 Rockwell International Corporation Staged combustor
WO1995023942A1 (en) * 1994-03-03 1995-09-08 Pendolo Corporation N.V. A method of and device for producing energy
DE19729607A1 (de) * 1997-07-10 1999-01-14 Andreas P Rosteuscher Wärmekraftmaschine
US6443725B1 (en) * 1999-09-04 2002-09-03 Sang Nam Kim Apparatus for generating energy using cyclic combustion of brown gas
FR2830923A1 (fr) * 2001-10-12 2003-04-18 Alix Dispositif de production d'energie a partir de la decomposition thermique de l'eau et son procede de fonctionnement
US20040013988A1 (en) * 2000-09-28 2004-01-22 Sang-Nam Kim Brown gas combustion apparatus and heating system using the same
WO2005024301A1 (en) * 2003-09-11 2005-03-17 Giacomini S.P.A. Hydrogen burning method and burner, and water heating system using it
DE102006047222A1 (de) 2006-10-03 2008-06-12 Rainer Ebeling Vorrichtung zur gewerblichen Nutzung der Thermolyse von Wasser
EP1970626A1 (en) * 2005-12-14 2008-09-17 Hirota, Osamu Injection flame burner and furnace and method for generating flame
DE202013005411U1 (de) 2013-06-17 2013-09-20 Werner Hamel System von Wasser-Elektrolyse-Vorrichtung und Wasserstoff-Verbrennungsofen zur kohlendioxidfreien Energieerzeugung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322315B1 (ko) * 1998-12-18 2002-06-27 김상남 브라운가스연소용에어제트버너
DE102016001334A1 (de) * 2015-03-18 2016-09-22 Renate Hamel von der Lieth Verfahren und Ofen zur Umsetzung von Wasserstoff mit Luftsauerstoff sowie von HHO-Gas zu Wasser mit Wirkungsgraden der Wärmegewinnung >95%

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5190453A (en) * 1991-03-01 1993-03-02 Rockwell International Corporation Staged combustor
WO1995023942A1 (en) * 1994-03-03 1995-09-08 Pendolo Corporation N.V. A method of and device for producing energy
DE19729607A1 (de) * 1997-07-10 1999-01-14 Andreas P Rosteuscher Wärmekraftmaschine
US6443725B1 (en) * 1999-09-04 2002-09-03 Sang Nam Kim Apparatus for generating energy using cyclic combustion of brown gas
US20040013988A1 (en) * 2000-09-28 2004-01-22 Sang-Nam Kim Brown gas combustion apparatus and heating system using the same
FR2830923A1 (fr) * 2001-10-12 2003-04-18 Alix Dispositif de production d'energie a partir de la decomposition thermique de l'eau et son procede de fonctionnement
WO2005024301A1 (en) * 2003-09-11 2005-03-17 Giacomini S.P.A. Hydrogen burning method and burner, and water heating system using it
EP1970626A1 (en) * 2005-12-14 2008-09-17 Hirota, Osamu Injection flame burner and furnace and method for generating flame
DE102006047222A1 (de) 2006-10-03 2008-06-12 Rainer Ebeling Vorrichtung zur gewerblichen Nutzung der Thermolyse von Wasser
DE202013005411U1 (de) 2013-06-17 2013-09-20 Werner Hamel System von Wasser-Elektrolyse-Vorrichtung und Wasserstoff-Verbrennungsofen zur kohlendioxidfreien Energieerzeugung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115228285A (zh) * 2022-06-21 2022-10-25 鼎佳能源股份有限公司 低温氢气氧化系统

Also Published As

Publication number Publication date
EA201990733A1 (ru) 2019-08-30
EA036734B1 (ru) 2020-12-14
EP3513121A1 (de) 2019-07-24
EP3513121B1 (de) 2022-01-12
WO2018050166A1 (de) 2018-03-22

Similar Documents

Publication Publication Date Title
EP3028990B1 (de) Verfahren zur Herstellung von Wasserstoff als Brennstoff durch Ammoniakspaltung
EP1332789B1 (de) Verfahren zur katalytischen Oxidation eines Gases sowie Rekombinationseinrichtung zur Durchführung des Verfahrens und System mit derartigen Rekombinationseinrichtung
DE102012100468A1 (de) Brennkammer für die emissionsarme Verbrennung von mehreren vorgemischten reformierten Brennstoffen und verwandtes Verfahren
DE102017006067A1 (de) Sauerstoff-Hochofen mit Top Gas Recycling
DE102014203039A1 (de) Verfahren und Vorrichtung zur Trennung von Abgas bei der Verbrennung bestimmter Metalle
EP2690158B1 (de) Mehrstufiges verfahren zur herstellung eines wasserstoffhaltigen gasförmigen brennstoffs und wärmegasgeneratoranlage
EP3212566B1 (de) Verfahren und anlage zur herstellung von synthesegas
DE102013112205A1 (de) Verfahren und Vorrichtung zur Pyrolyse wasserstoffhaltiger Verbindungen
EP3513121B1 (de) Verfahren und verbrennungsofen zur umsetzung von wasserstoff und luftsauerstoff zu wasser oder von hho-gas zu wasser
EP3177871B1 (de) Verbrennung von elektropositivem metall in einer flüssigkeit
DE102016001334A1 (de) Verfahren und Ofen zur Umsetzung von Wasserstoff mit Luftsauerstoff sowie von HHO-Gas zu Wasser mit Wirkungsgraden der Wärmegewinnung >95%
DE4025916A1 (de) Reaktor zur flugstromvergasung
DE1667573B2 (de) Verfahren und vorrichtung zur erzeugung eines wasserstoffreichen gases durch spaltung eines gemisches aus gasfoermigen und/oder fluessigen kohlenwasserstoffen und wasserdampf
DE3941307A1 (de) Verbrennungsverfahren zum einschraenken einer bildung von stickstoffoxiden bei verbrennung und anordnung zum ausfuehren des verfahrens
DE2444333A1 (de) Ofen zum cracken von kohlenwasserstoffen zum herstellen von olefinen
DE102014209527A1 (de) Verfahren zum Verbrennen einer Legierung eines elektropositiven Metalls
EP4139035B1 (de) Reaktor und verfahren zur durchführung einer chemischen reaktion
DE2615265A1 (de) Vorrichtung zur erzeugung einer reduzierenden atmosphaere fuer thermische behandlungsanlagen
DE102014209529A1 (de) Verbrennung von Lithium bei unterschiedlichen Temperaturen, Drücken und Gasüberschüssen mit porösen Rohren als Brenner
EP2703716B1 (de) Erwärmung eines Prozessabgases
DE10012051A1 (de) Verfahren zur Wärmerückgewinnung bei Hochtemperaturprozessen durch Brenngaserzeugung aus Kohlenwasserstoffen und einem Teilstrom heißer Verbrennungsabgase
EP3087324B1 (de) Anordnung und verfahren zur durchführung einer intensivierten verbrennung
DE202013102653U1 (de) Anlassofen
DE102004011047B4 (de) Verfahren zur Durchführung von Gasphasenreaktionen in einem Reaktor
WO2010115561A2 (de) Verfahren und vorrichtung zur spaltung von kohlenwasserstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HAMEL VON DER LIETH, RENATE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHULZE, DIETER

Inventor name: SCHULZE, JANET-SUSAN

Inventor name: HAMEL VON DER LIETH, RENATE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180922