DE102014209527A1 - Verfahren zum Verbrennen einer Legierung eines elektropositiven Metalls - Google Patents

Verfahren zum Verbrennen einer Legierung eines elektropositiven Metalls Download PDF

Info

Publication number
DE102014209527A1
DE102014209527A1 DE102014209527.1A DE102014209527A DE102014209527A1 DE 102014209527 A1 DE102014209527 A1 DE 102014209527A1 DE 102014209527 A DE102014209527 A DE 102014209527A DE 102014209527 A1 DE102014209527 A1 DE 102014209527A1
Authority
DE
Germany
Prior art keywords
alloy
combustion
electropositive metal
fuel gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102014209527.1A
Other languages
English (en)
Inventor
Helmut Eckert
Renate Elena Kellermann
Günter Schmid
Dan Taroata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE102014209527.1A priority Critical patent/DE102014209527A1/de
Priority to RU2016149760A priority patent/RU2656217C1/ru
Priority to EP15722971.7A priority patent/EP3146265A1/de
Priority to CN201580039610.5A priority patent/CN107046808A/zh
Priority to PCT/EP2015/059728 priority patent/WO2015176944A1/de
Priority to KR1020167035537A priority patent/KR20170007453A/ko
Priority to US15/311,229 priority patent/US20170089569A1/en
Priority to KR1020187023780A priority patent/KR20180095137A/ko
Publication of DE102014209527A1 publication Critical patent/DE102014209527A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B90/00Combustion methods not related to a particular type of apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/006Flameless combustion stabilised within a bed of porous heat-resistant material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B2900/00Special features of, or arrangements for combustion apparatus using solid fuels; Combustion processes therefor
    • F23B2900/00003Combustion devices specially adapted for burning metal fuels, e.g. Al or Mg
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Verbrennen einer Legierung eines elektropositiven Metalls, wobei das elektropositive Metall ausgewählt ist aus Alkali-, Erdalkalimetallen, Aluminium und Zink, sowie Mischungen derselben, mit einem Brenngas, wobei die Legierung des elektropositiven Metalls mindestens zwei elektropositive Metalle umfasst, bei dem die Legierung des elektropositiven Metalls mit dem Brenngas verbrannt wird, und eine Vorrichtung zur Durchführung des Verfahrens.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Verbrennen einer Legierung eines elektropositiven Metalls, wobei das elektropositive Metall ausgewählt ist aus Alkali-, Erdalkalimetallen, Aluminium und Zink, sowie Mischungen derselben, mit einem Brenngas, wobei die Legierung des elektropositiven Metalls mindestens zwei elektropositive Metalle umfasst, bei dem die Legierung des elektropositiven Metalls mit dem Brenngas verbrannt wird, und eine Vorrichtung zur Durchführung des Verfahrens.
  • Fossile Brennstoffe liefern jährlich zehntausende Terawattstunden an elektrischer, thermischer und mechanischer Energie. Das Endprodukt der Verbrennung, Kohlendioxid (CO2), wird jedoch zunehmend zu einem Umwelt- und Klimaproblem.
  • Im Laufe der Jahre ist eine Vielzahl von Energieerzeugungseinrichtungen vorgeschlagen worden, die mit bei der Oxidation von metallischem Lithium erzeugter Wärme arbeiten (z.B. US-PS 33 28 957 ). In einem solchen System werden Wasser und Lithium miteinander unter Erzeugung von Lithiumhydroxid, Wasserstoff und Dampf umgesetzt. An anderer Stelle im System wird der durch die Reaktion zwischen Lithium und Wasser erzeugte Wasserstoff mit Sauerstoff unter Bildung von zusätzlichem Dampf kombiniert. Der Dampf wird dann zum Antrieb einer Turbine oder dergleichen genutzt, so dass man eine Energieerzeugungsquelle erhält. Lithium kann auch zusätzlich zur Gewinnung von Grundstoffen eingesetzt werden. Beispiele sind die Umsetzung mit Stickstoff zu Lithiumnitrid und nachfolgender Hydrolyse zu Ammoniak oder mit Kohlendioxid zu Lithiumoxid und Kohlenmonoxid. Das feste finale Endprodukt der Umsetzung des Lithiums ist jeweils, gegebenenfalls nach Hydrolyse, wie bei Nitrid, das Oxid oder Carbonat, das dann wieder mittels Elektrolyse zu Lithiummetall reduziert werden kann. Damit ist ein Kreislauf etabliert, in dem durch Windkraft, Photovoltaik oder andere regenerative Energiequellen überschüssiger Strom produziert, gespeichert und zur gewünschten Zeit in Strom zurück gewandelt werden kann oder aber chemische Grundstoffe gewonnen werden können.
  • Wie sich ein vollständiger Energiekreislauf mit elektropositiven Metallen darstellen lässt wird in DE 10 2008 031 437 A1 und DE 10 2010 041 033 A1 aufgezeigt. Als Fallbeispiel dient hier konkret Lithium sowohl als Energieträger als auch als Energiespeicher, wobei auch andere elektropositive Metalle wie Natrium, Kalium oder Magnesium, Calcium, Barium oder Aluminium und Zink verwendet werden können.
  • Da bei der Verbrennung von Lithium, je nach Temperatur und Brenngas, feste oder flüssige Rückstände entstehen können, ist darauf besondere Rücksicht zu nehmen. Zudem können je nach Aufbau und Betrieb eines Ofens für die Verbrennung von Lithiummetall (z.B. flüssig) in unterschiedlicher Atmosphäre und unter Druck Abgase und Feststoffe/flüssige Stoffe als Verbrennungsprodukte entstehen. Diese festen bzw. flüssigen Stoffe müssen von den Abgasen möglichst vollständig getrennt werden.
  • Eine weitgehend vollständige Trennung der flüssigen und festen Verbrennungsrückstände von dem Abgasstrom ist dabei wichtig, um in den nachfolgenden Vorrichtungen keine Oberflächenbelegungen oder Verstopfungen zu erzeugen. Insbesondere ist es sehr anspruchsvoll, den Abgasstrom direkt auf eine Gasturbine zu leiten, da dann sichergestellt werden muss, dass alle Partikel aus dem Abgasstrom vollständig entfernt worden sind. Solche Partikel beschädigen langfristig die Flügel der Gasturbine und führen zum Ausfall der Anlage.
  • Weiterhin beschreiben die DE 10 2014 203 039.0 den Einsatz von Alkalimetallen als Energiespeicher und deren Nutzung in einem Kraftwerksbetrieb und die DE 10 2014 203 039.0 einen Aufbau – Zyklonbrenner – zur Verbrennung von Lithium in CO2- bzw. N2-haltigen Atmosphären und gleichzeitiger Trennung der festen und gasförmigen Reaktionsprodukte über den Zyklon.
  • Ein Problem hierbei sind die hohen Temperaturen bei der Verbrennung des elektropositiven Metalls sowie die Exothermie der Reaktion, die zu hohen Anforderungen an die Verbrennungsvorrichtung und der Steuerung der Reaktion führen.
  • Es ist somit eine Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung bereitzustellen, bei denen eine Verbrennung von elektropositiven Metallen bei niedrigeren Temperaturen durchgeführt werden kann. Es ist eine weitere Aufgabe der vorliegenden Erfindung, ein Verfahren bereitzustellen, bei denen eine effektive Verbrennung von elektropositiven Metallen unter Vermeidung von exzessivem Kühlen zum Schutz der Anlage und somit unter einer Verminderung von Wärmeverlusten durchgeführt werden kann. Es ist darüber hinaus eine Aufgabe der vorliegenden Erfindung, ein Verfahren bereitzustellen, bei dem die Ausgangsstoffe der Verbrennung der elektropositiven Metalle einfach und auf energetisch verbesserte Weise gewonnen werden können. Zudem ist es eine weitere Aufgabe der Erfindung, ein Verfahren bereitzustellen, bei dem die zur Aktivierung der Verbrennungsreaktion benötigte Energie herabgesetzt werden kann. Zudem ist es eine Aufgabe der vorliegenden Erfindung, ein Verfahren bereitzustellen, bei dem ein flüssiger Abtransport von Verbrennungsprodukten der Verbrennung bei möglichst niedriger Temperatur vonstattengehen kann, denn je länger diese flüssig bleiben, desto tiefer kann die Temperatur bei der Verbrennung sein, was auch die Anlage schont.
  • Es wurde nunmehr herausgefunden, dass durch den Einsatz von Legierungen von elektropositiven Metallen, wobei das elektropositive Metall ausgewählt ist aus Alkali-, Erdalkalimetallen, Aluminium und Zink, sowie Mischungen derselben und wobei die Legierung des elektropositiven Metalls mindestens zwei elektropositive Metalle umfasst, eine Herabsetzung der Reaktionstemperatur bei der Verbrennung ermöglicht wird, die exotherme Verbrennungsreaktion besser beherrschbar wird und die Anlage effektiver gesteuert werden kann. Weiterhin kann die Abtrennung der bei der Reaktion entstehenden Gase (beispielsweise CO bei der Verbrennung in CO2) von dem Salzgemisch (beispielsweise Carbonate bei der Verbrennung in CO2) über den Einsatz eines Zyklons und dem flüssigen Abzug der Salzschmelze auf einfache und effektive Weise erfolgen. Zudem können die Legierungen gewöhnlich leichter bereitgestellt werden als die reinen elektropositiven Metalle, da auch die Elektrolyse von Salzgemischen verschiedener elektropositiver Metalle einfacher und weniger energieintensiv betrieben werden kann als die Elektrolyse von Salzen nur eines elektropositiven Metalls.
  • Die vorliegende Erfindung betrifft somit ein Verfahren und einen Aufbau zur Verbrennung, ggf. unter Druck, von Legierungen, umfassend Alkali- und/oder Erdalkalimetalle, Aluminium und/oder Zink, in unterschiedlichen Reaktionsgasatmosphären wie Kohlendioxid, Stickstoff, Wasserdampf, Sauerstoff, Luft, etc.
  • Gemäß einem Aspekt betrifft die vorliegende Erfindung ein Verfahren zum Verbrennen einer Legierung eines elektropositiven Metalls, wobei das elektropositive Metall ausgewählt ist aus Alkali-, Erdalkalimetallen, Aluminium und Zink, sowie Mischungen derselben, mit einem Brenngas, wobei die Legierung des elektropositiven Metalls mindestens zwei elektropositive Metalle umfasst, bei dem die Legierung des elektropositiven Metalls mit dem Brenngas verbrannt wird.
  • Gemäß einem weiteren Aspekt betrifft die vorliegende Erfindung eine Vorrichtung zur Verbrennung einer Legierung eines elektropositiven Metalls, wobei das elektropositive Metall ausgewählt ist aus Alkali-, Erdalkalimetallen, Aluminium und Zink, sowie Mischungen derselben und die Legierung des elektropositiven Metalls mindestens zwei elektropositive Metalle aufweist, umfassend
    einen Porenbrenner oder eine Einrichtung zum Verdüsen der Legierung des elektropositiven Metalls,
    eine Zuführeinrichtung für die Legierung des elektropositiven Metalls, bevorzugt als Flüssigkeit, zum Inneren des Porenbrenners oder zur Einrichtung zum Verdüsen der Legierung, die dazu ausgebildet ist, dem Porenbrenner oder der Einrichtung zum Verdüsen der Legierung die Legierung des elektropositiven Metalls, bevorzugt als Flüssigkeit, zuzuführen,
    eine Zuführeinrichtung für ein Brenngas, die dazu ausgebildet, Brenngas zuzuführen, und
    optional eine Heizvorrichtung zum Bereitstellen der Legierung des elektropositiven Metalls als Flüssigkeit, die dazu ausgebildet ist, die Legierung des elektropositiven Metalls zu verflüssigen.
  • Weitere Aspekte der vorliegenden Erfindung sind den abhängigen Ansprüchen und der detaillierten Beschreibung sowie den Zeichnungen zu entnehmen.
  • Die beiliegenden Zeichnungen sollen Ausführungsformen der vorliegenden Erfindung veranschaulichen und ein weiteres Verständnis dieser vermitteln. Im Zusammenhang mit der Beschreibung dienen sie der Erklärung von Konzepten und Prinzipien der Erfindung. Andere Ausführungsformen und viele der genannten Vorteile ergeben sich im Hinblick auf die Zeichnungen. Die Elemente der Zeichnungen sind nicht notwendigerweise maßstabsgetreu zueinander dargestellt. Gleiche, funktionsgleiche und gleich wirkende Elemente, Merkmale und Komponenten sind in den Figuren der Zeichnungen, sofern nichts anderes ausgeführt ist, jeweils mit denselben Bezugszeichen versehen.
  • 1 zeigt schematisch eine beispielhafte Anordnung für eine erfindungsgemäße Vorrichtung.
  • 2 zeigt schematisch eine Detailansicht in einer weiteren beispielhaften Anordnung für eine erfindungsgemäße Vorrichtung.
  • 3 zeigt schematisch eine weitere Detailansicht in einer zusätzlichen beispielhaften Anordnung für eine erfindungsgemäße Vorrichtung.
  • 4 stellt schematisch einen beispielhaften Querschnitt durch eine beispielhafte erfindungsgemäße Vorrichtung im Bereich der Zuführeinrichtung des Trägergases zum Reaktor.
  • 5 zeigt schematisch eine weitere mögliche Anordnung für eine erfindungsgemäße Vorrichtung.
  • 6 stellt schematisch noch eine weitere mögliche Anordnung für eine erfindungsgemäße Vorrichtung dar.
  • 7 zeigt ein Schema für eine beispielhafte Reaktion von einer Legierung eines elektropositiven Metalls gemäß der Erfindung und Kohlendioxid zu Carbonat, die gemäß dem erfindungsgemäßen Verfahren durchgeführt werden kann.
  • 8 zeigt ein Schema für eine weitere beispielhafte Reaktion von einer Legierung eines elektropositiven Metalls gemäß der Erfindung und Stickstoff zu Nitrid und weiteren Folgeprodukten, die gemäß dem erfindungsgemäßen Verfahren durchgeführt werden kann.
  • Die vorliegende Erfindung betrifft in einem ersten Aspekt ein Verfahren zum Verbrennen einer Legierung eines elektropositiven Metalls, wobei das elektropositive Metall ausgewählt ist aus Alkali-, Erdalkalimetallen, Aluminium und Zink, sowie Mischungen solcher Legierungen, mit einem Brenngas, wobei die Legierung des elektropositiven Metalls mindestens zwei elektropositive Metalle umfasst, bei dem die Legierung des elektropositiven Metalls mit dem Brenngas verbrannt wird.
  • Das elektropositive Metall in der Legierung L ist gemäß bestimmten Ausführungsformen ausgewählt aus Alkalimetallen, bevorzugt Li, Na, K, Rb und Cs, Erdalkalimetallen, bevorzugt Mg, Ca, Sr und Ba, Al und Zn, sowie Gemischen und/oder Legierungen derselben. In bevorzugten Ausführungsformen ist das elektropositive Metall in der Legierung ausgewählt aus Li, Na, K, Mg, Ca, Al und Zn, und weiter bevorzugt umfasst die Legierung mindestens zwei elektropositive Metalle, die ausgewählt sind aus Li, Na, K, Ca und Mg, wobei die Legierung gemäß bestimmten Ausführungsformen besonders bevorzugt zumindest Lithium oder Magnesium umfasst. Es können jedoch beliebige der genannten Metalle kombiniert werden. Die Legierung ist darüber hinaus nicht besonders beschränkt und kann beispielsweise als Feststoff oder Flüssigkeit vorliegen. Bevorzugt ist die Legierung bei der Verbrennung jedoch flüssig, da auf diese Weise ein einfacher Transport der Legierung stattfinden kann.
  • Als Brenngas kommen gemäß bestimmten Ausführungsformen solche Gase in Frage, welche mit der genannten Legierung L in einer exothermen Reaktion reagieren können, wobei diese nicht besonders beschränkt sind. Beispielhaft kann das Brenngas Luft, Sauerstoff, Kohlendioxid, Wasserstoff, Wasserdampf, Stickoxide NOx wie Distickstoffmonoxid, Stickstoff, Schwefeldioxid, oder Gemische derselben umfassen. Das Verfahren kann also auch zur Entschwefelung bzw. NOx Entfernung verwendet werden. Je nach Brenngas können hierbei mit den verschiedenen Legierungen L verschiedene Produkte erhalten werden, die als Feststoff, Flüssigkeit sowie auch gasförmig anfallen können.
  • So kann beispielsweise bei einer Reaktion von Legierung L, beispielsweise einer Legierung von Lithium und Magnesium, mit Stickstoff unter anderem Metallnitrid, wie ein Gemisch aus Lithiumnitrid und Magnesiumnitrid, entstehen, welches dann später zu Ammoniak weiterreagieren gelassen werden kann, wohingegen bei einer Umsetzung von Legierung L, z.B. Lithium und Natrium, mit Kohlendioxid beispielsweise Metallcarbonat, z.B. ein Gemisch aus Lithiumcarbonat und Natriumcarbonat, Kohlenmonoxid, Metalloxid, z.B. Lithiumoxid und Natriumoxid, oder auch Metallcarbid, z.B. Lithiumcarbid und Natriumcarbid, sowie auch Gemische davon entstehen können, wobei aus dem Kohlenmonoxid höherwertige, beispielsweise auch längerkettige, kohlenstoffhaltige Produkte wie Methan, Ethan, etc. bis hin zu Benzin, Diesel, aber auch Methanol, etc. gewonnen werden können, beispielsweise in einem Fischer-Tropsch-Verfahren, während aus Metallcarbid, z.B. Lithiumcarbid und Natriumcarbid, beispielsweise Acetylen gewonnen werden kann. Weiterhin kann beispielsweise auch mit Distickstoffmonoxid als Brenngas z.B. Metallnitrid entstehen. Analog ergibt sich mit einer Legierung aus Lithium und Kalium beim Verbrennen beispielsweise ein Salzgemisch der entsprechenden Lithium- und Kaliumsalze, und mit einer Legierung aus Natrium und Kalium beim Verbrennen beispielsweise ein Salzgemisch der entsprechenden Natrium- und Kaliumsalze. Entsprechende Reaktionen können auch mit Legierungen mit 3 und mehr Metallen, z.B. Lithium, Natrium und Kalium, durchgeführt werden. Ebenso sind auch Legierungen beispielsweise aus Magnesium und Calcium bzw. Magnesium und Zink, oder aus Magnesium und Aluminium, etc. denkbar. Bevorzugt für eine Umsetzung zu Nitrid sind beispielsweise Li/Mg bzw. jegliches Gemisch der Erdalkalimetalle, insbesondere Mg/Ca, wobei Be beispielsweise schlechter funktioniert. Für die Verbrennung mit CO2 eignen sich beispielsweise Na/K, Na/Li/K, Li/K, Li/Na, Li/Mg, die oberen Legierungen. Auch Legierungen mit Barium können beispielsweise einfach gewonnen und verwendet werden, da Schwerspat in der Natur sehr häufig vorkommt. Analoge Reaktionen können sich auch für die anderen genannten Metalle in den Legierungen ergeben.
  • Eine Beispielreaktion für Na/K Legierungen ist: 2Na/K + 4CO2 → Na2CO3/K2CO3 + 2CO ΔHReaktion = –454 kJ/mol
  • Durch die Verwendung von Legierungen kann durch die niedrigere Schmelztemperatur des Salzgemisches im Vergleich zur Schmelztemperatur der einzelnen Alkali- und Erdalkalimetallcarbonate eine flexible Flammtemperatureinstellung ermöglicht werden, bei gleichzeitiger Gewährleistung eines flüssigen Abzugs des Salzgemisches.
  • Beispielsweise liegt die adiabate Flammtemperatur der stöchiometrischen Verbrennungsreaktion bei der Verbrennung von Lithium in Kohlendioxid oder Stickstoff Atmosphäre im Bereich von > 2000 K.
  • Weitere Enthalpien von Reaktionen einzelner elektropositiver Metalle mit verschiedenen Brenngasen angegeben, aus denen die Exothermie der Reaktionen hervorgeht. Tabelle 1: Bildungsenthalpien bei der Reaktion einzelner elektropositiver Metalle
    Reaktionsenthalpie kJ/mol Enthalpie kJ/Mol Enthalpie kJ/g Verbindung
    Verbrennungsgleichungen
    6Li + N2 → 2Li3N –414 –69 –10 Li
    2Li + 2CO2 → Li2CO3 + CO –539 –270 –39 Li
    2Li + 2H2O → 2LiOH + H2 –404 –202 –29 Li
    4Li + O2 → 2Li2O –1196 –299 –43 Li
    2Na + 4CO2 → Na2CO3 + 2CO –454 –227 –10 Na
    Mg + 2CO2 → MgCO3 + CO –435,2 –435,2 –18 Mg
    Ca + 2CO2 → CaCO3 + CO –529,93 –529,93 –13 Ca
    2K + 2CO2 → K2CO3 + CO –474 –237 –6 K
    Unterstützende Wechselwirkungen
    Li3N + 3H2O → 3LiOH + NH3 –444 –444 –26 NH3
    Li2O + CO2 → Li2CO3 –224 –224 –5 CO2
  • Bei der exothermen Reaktion wird Wärme frei, auf vergleichbarem thermischem Niveau wie bei der Verbrennung von Kohlenstoff-basierten Energieträgern an Luft. Aus diesen Gründen ist eine einfachere Kontrolle der Verbrennungsreaktion vorteilhaft.
  • Auch ist nicht ausgeschlossen, dass neben den beiden elektropositiven Metallen, ausgewählt aus Alkali-, Erdalkalimetallen, Aluminium und Zink, sowie Mischungen derselben, noch weitere Komponenten in der Legierung L enthalten sind, beispielsweise weitere Metalle. Solche weiteren Komponenten sind gemäß bestimmten Ausführungsformen in Summe in einer Menge von weniger als 50 Gew.%, bevorzugt weniger als 25 Gew.%, weiter bevorzugt weniger als 10 Gew.% und noch weiter bevorzugt weniger als 5 Gew.%, bezogen auf die Legierung, enthalten.
  • Gemäß bestimmten Ausführungsformen enthält die Legierung jedoch nur Metalle, die ausgewählt sind aus Alkali-, Erdalkalimetallen, Aluminium und Zink, sowie Mischungen derselben, wobei jedoch unvermeidbare Verunreinigungen ebenfalls enthalten sein können, beispielsweise in einer Menge von weniger als 1 Gew.%, bezogen auf die Legierung.
  • Die Mengenverhältnisse der elektropositiven Metalle und gegebenenfalls weiteren Komponenten in der Legierung L sind erfindungsgemäß nicht besonders beschränkt. Gemäß bestimmten Ausführungsformen werden die Legierungsbestandteile jedoch so eingestellt, dass sich für die Legierung annähernd ein Minimum des Schmelzpunktes – also ein eutektisches Gemisch der Metalle – und/oder ein Minimum des Schmelzpunktes der entsprechenden Salze ergibt, wobei Temperaturabweichungen im Schmelzpunkt der Legierung bzw. des Salzgemisches von maximal +200°C in Bezug auf das Temperaturminimum möglich sind. Bevorzugt ergibt sich für die Legierung ein Minimum des Schmelzpunktes (eutektisches Gemisch) und/oder ein Minimum des Schmelzpunktes der entsprechenden Salze (eutektisches Gemisch/Eutektikum). Die entsprechenden Schmelzpunkte der Legierungen bzw. der bei der Verbrennung entstehenden Salze können geeignet aus bekannten Phasendiagrammen entnommen werden oder auf einfache Weise errechnet werden. So ergeben sich beispielsweise für eine Legierung aus Natrium und Kalium bei der Verbrennung mit Kohlendioxid als Salze Natriumcarbonat und Kaliumcarbonat, für die sich ein Schmelzpunktminimum von 709°C bei einem molaren Verhältnis Natriumsalz zu Gemisch von 0,59 ergibt. Für Lithium und Natrium ergibt sich für die Carbonate ein Wert von 498°C bei einem molaren Verhältnis Natriumsalz zu Gemisch von 0,49. Für Lithium und Kalium ergibt sich für die Carbonate sogar zweimal ein Schmelzpunktminimum von 503°C bei einem molaren Verhältnis Lithiumsalz zu Gemisch von 0,416 und 0,61, wobei die Schmelztemperatur zwischen diesen Werten nur minimal erhöht ist und dementsprechende Legierungen auch umfasst sind. Gemäß bestimmten Ausführungsformen wird der Anteil der elektropositiven Metalle und weiteren Komponenten in der Legierung so gewählt, dass sich ein Schmelzpunkt der entstehenden Salze ergibt, der niedriger ist als der niedrigste Schmelzpunkt der jeweils einzelnen Salze, also beispielsweise der für das System Lithiumcarbonat/Kaliumcarbonat niedriger ist als der Schmelzpunkt von Lithiumcarbonat, da Kaliumcarbonat einen höheren Schmelzpunkt hat.
  • Gemäß bestimmten Ausführungsformen wird die Legierung des elektropositiven Metalls als Flüssigkeit verbrannt. Auf diese Weise kann die Legierung einfach transportiert werden und die Reaktion der Legierung mit dem Brenngas leichter lokalisiert werden. Gemäß bestimmten Ausführungsformen findet die Verbrennung weiterhin bei einer Temperatur statt, die über dem Schmelzpunkt der bei der Reaktion der Legierung des elektropositiven Metalls und des Brenngases entstehenden Salze liegt. Durch diese Ausgestaltung entstehen bei der Verbrennung der Legierung flüssige Reaktionsprodukte, die im Gegensatz zu staubartigen bzw. pulverförmigen Reaktionsprodukten leichter von den entstehenden gasförmigen Reaktionsprodukten abgetrennt werden können. Zudem kann hierbei die Verbrennungsreaktion leichter kontrolliert werden, da die Reaktionsprodukte mit dem höchsten Schmelzpunkt, d.h. die Salze, flüssig vorliegen und ebenso wie die weiteren gasförmigen und ggf. flüssigen Reaktionsprodukte oder unverbrauchten Edukte wie z.B. flüssige Legierung L bzw. flüssiges Metall leicht vom Reaktionsort entfernt werden können. Dies ist insbesondere dort vorteilhaft, wo die Verbrennung am Austrittsort der Legierung aus einer Zuführeinrichtung stattfindet, beispielsweise bei einer Verdüsung oder einer Verbrennung unter Verwendung eines Porenbrenners.
  • Eine Verdüsung der Legierung kann hierbei auf geeignete Weise erfolgen und ist nicht besonders beschränkt. Ebenso ist die Art der Düse nicht besonders beschränkt und kann Einstoff- wie auch Zweistoffdüsen umfassen. Gemäß bestimmten Ausführungsformen wird die Legierung L des elektropositiven Metalls, bevorzugt als Flüssigkeit, verdüst und mit dem Brenngas verbrannt. Es ist aber auch eine Verdüsung von Legierungspartikeln möglich. Eine effizientere Verdüsung kann jedoch durch Verwendung der Legierung L als Flüssigkeit erzielt werden, wobei auch gegebenenfalls durch die Temperatur eine Selbstzündung der Verbrennungsreaktion möglich sein kann, so dass keine Zündquelle erforderlich ist.
  • Gemäß bestimmten Ausführungsformen wird die Legierung des elektropositiven Metalls als Flüssigkeit in einen Porenbrenner geleitet und mit Hilfe des Porenbrenners verbrannt, wobei das Brenngas gegebenenfalls auf die Außenflächen des Porenbrenners geleitet und mit der Legierung des elektropositiven Metalls verbrannt wird. Eine innere Mischung wie in einem klassischen Porenbrenner findet jedoch gemäß bestimmten Ausführungsformen nicht statt, um eine Verstopfung der Poren durch feste Reaktionsprodukte zu Vermeiden. Gemäß bestimmten Ausführungsformen ist der Porenbrenner somit ein Porenbrenner ohne Innenmischung. Die Poren dienen bei der Verwendung des Porenbrenners gemäß bestimmten Ausführungsformen einzig zur Oberflächenvergrößerung der Legierung L. Bei kontinuierlicher Zufuhr der Legierung L des elektropositiven Metalls kann jedoch eine Reaktion mit dem Brenngas am Ausgang der Poren nahe der Oberfläche des Porenbrenners stattfinden, soweit gewährleistet werden kann, dass entstehende Reaktionsprodukte durch nachgeförderte Legierung L aus dem Porenbrenner gefördert werden. Gemäß bestimmten Ausführungsformen findet die Verbrennungsreaktion jedoch außerhalb der Poren des Porenbrenners statt, beispielsweise auf der Oberfläche des Porenbrenners oder sogar nach Austritt der Legierung L aus dem Porenbrenner, also nur auf der Oberfläche der austretenden Legierung L.
  • Gemäß bestimmten Ausführungsformen ist zusätzlich noch ein Reaktor/Brennraum erforderlich, in dem die Verbrennung der Legierung L mit dem Brenngas vonstattengehen kann, beispielsweise bei einer Verdüsung oder einer Verbrennung unter Zuhilfenahme eines Porenbrenners. Auch hier ist der Reaktor/Brennraum nicht besonders beschränkt solange darin die Verbrennung stattfinden kann.
  • Bei der Verwendung des Porenbrenners ergibt sich weiterhin der Vorteil, dass sich die Verbrennung am Porenbrenner lokalisieren lässt, wobei auch die Verbrennungsprodukte am oder nahe dem Porenbrenner anfallen. Während beispielsweise bei einer Verdüsung die Reaktionsprodukte im gesamten Reaktor anfallen und feste und flüssige Reaktionsprodukte aufwändig wieder von gasförmigen Reaktionsprodukten getrennt werden müssen, sind bei der Verbrennung mit dem Porenbrenner insbesondere feste und flüssige Reaktionsprodukte in der Nähe des Porenbrenners lokalisiert, wodurch eine Trennung dieser von gasförmigen Verbrennungsprodukten erleichtert wird. Auf diese Weise kann auch die gesamte Verbrennungsvorrichtung kompakter gestaltet werden und die Verbrennung schonender für die Vorrichtung durch Lokalisierung des Verbrennungsprozesses gestaltet werden.
  • Der Porenbrenner ist in seiner Form nicht besonders beschränkt und umfasst gemäß bestimmten Ausführungsformen ein poröses Rohr als Brenner. Gemäß bestimmten Ausführungsformen umfasst der Porenbrenner ein poröses Rohr, dem an mindestens einer Öffnung die Legierung L zugeführt werden kann. Bevorzugt wird die Legierung L nur durch eine Öffnung des Rohres zugeführt und das andere Ende des Rohres ist verschlossen oder besteht ebenfalls aus dem Material des porösen Rohres. Das poröse Rohr kann hierbei beispielsweise ein poröses Metallrohr, beispielsweise aus Eisen, Chrom, Nickel, Niob, Tantal, Molybdän, Wolfram, Zirkalloy und Legierungen dieser Metalle, sowie Stähle wie Edelstahl und Chrom-Nickel-Stahl, sein. Bevorzugt besteht der Porenbrenner aus einem Material, das ausgewählt ist aus der Gruppe, bestehend aus Eisen, Chrom, Nickel, Niob, Tantal, Molybdän, Wolfram, Zirkalloy und Legierungen dieser Metalle, sowie Stähle wie Edelstahl und Chrom-Nickel-Stahl. Geeignet sind beispielsweise austenitische Chrom-Nickel-Stähle, welche beispielsweise sehr resistent gegen Abtragung durch Natrium bei hoher Temperatur sind, doch auch Werkstoffe mit 32% Nickel und 20% Chrom, wie AC 66, Incoloy 800 oder Pyrotherm G 20132 Nb, zeigen noch ein relativ günstiges Korrosionsverhalten. Die weiteren Bestandteile des Porenbrenners sind nicht weiter beschränkt und können die Zuführeinrichtung für das Metall M sowie ggf. eine Zündquelle, etc. umfassen.
  • Gemäß bestimmten Ausführungsformen wird dem Porenbrenner die Legierung L als Flüssigkeit im Inneren des Porenbrenners zugeführt. Dies führt zu einer besseren Verteilung der Legierung L im Porenbrenner und einem gleichmäßigeren Austritt der Legierung aus den Poren des porösen Rohres, so dass eine gleichmäßigere Reaktion zwischen Legierung L und Brenngas stattfinden kann. Die Verbrennung von Legierung L und Brenngas kann beispielsweise über die Porengröße der Poren des Rohres, der verwendeten Legierung L, deren Dichte – die mit der Temperatur der Legierung L zusammenhängen kann, dem Druck, mit dem die Legierung L in den Porenbrenner eingebracht wird, dem Druck bzw. der Auftrag-/ bzw. Zufuhrgeschwindigkeit des Brenngases, etc. geeignet gesteuert werden. die Legierung L, beispielsweise umfassend Lithium und Natrium, wird gemäß bestimmten Ausführungsformen demnach flüssig eingesetzt, also beispielsweise oberhalb des Schmelzpunktes der Legierung. Die flüssige Legierung L kann hierbei in das poröse Rohr eingepresst werden, beispielsweise auch unter Zuhilfenahme eines weiteren, unter Druck stehenden Gases, welches nicht beschränkt ist, so lange es nicht mit der Legierung L reagiert, beispielsweise ein inertes Gas. Die flüssige Legierung L tritt dann durch die Poren des Rohres hindurch an die Oberfläche und verbrennt mit dem Gas zu dem jeweiligen Reaktionsprodukt bzw. den jeweiligen Reaktionsprodukten.
  • Gemäß bestimmten Ausführungsformen wird das Brenngas auf die Außenflächen des Porenbrenners geleitet und mit der Legierung L verbrannt. Hierdurch kann ein Verstopfen der Poren des porösen Rohres vermindert bzw. vermieden werden, so dass eine Reinigung des Porenbrenners verhindert bzw. auch eine Abnutzung vermindert werden kann.
  • Durch die Verbrennung der Legierung L auf der Oberfläche des porösen Rohrs ist die Tendenz zum Übertritt von kleinen Partikeln in den Gasraum/Reaktionsraum verringert, so dass bestenfalls größere Tropfen von Reaktionsprodukten entstehen, die aber einfach von gasförmigen Reaktionsprodukten abgetrennt werden können, beispielsweise durch einen Zyklon zur Abscheidung an die Reaktorwand gebracht werden können. Der Hauptteil der Verbrennungsprodukte kann beispielsweise flüssig abgeschieden werden. Hierbei kann die Reaktorwand gekühlt werden, beispielsweise mit Wärmetauschern, wobei diese auch mit Turbinen und Generatoren verbunden werden können.
  • Gemäß bestimmten Ausführungsformen erfolgt die Verbrennung bei einer Temperatur, die über dem Schmelzpunkt der bei der Reaktion von Legierung L und Brenngas entstehenden Salze liegt. Die bei der Verbrennung von Legierung L und Brenngas entstehenden Salze können hierbei einen Schmelzpunkt haben, der über dem Schmelzpunkt der Legierung L liegt, so dass eine Zufuhr von flüssiger Legierung L bei erhöhter Temperatur erforderlich sein kann. Durch die Verbrennung bei einer Temperatur über dem Schmelzpunkt der entstehenden Salze kann weiterhin eine Verunreinigung bzw. Belegung des Porenbrenners bzw. einer Düse durch die entstehenden Salze vermieden werden, so dass der Porenbrenner bzw. die Düse besser gegen Verunreinigungen, beispielsweise auch der Poren, geschützt werden kann. Dies ermöglicht einen besseren Betrieb und eine verringerte Reinigung der Vorrichtung wie auch längere Benutzungszeiten ohne Reinigung. Auch können flüssige Reaktionsprodukte am Brenner einfach abtropfen. Insbesondere bei solchen Verfahren bei Temperaturen oberhalb des Schmelzpunktes der entstehenden Salze sind Materialien des Brenners bzw. der Düse bevorzugt, die den Temperaturen standhalten können, wie beispielsweise Eisen, Chrom, Nickel Niob, Tantal, Molybdän, Wolfram, Zirkalloy und Legierungen dieser Metalle, sowie Stähle wie Edelstahl und Chrom-Nickel-Stahl.
  • Die Verbrennungstemperatur ist also bevorzugt höher als der Schmelzpunkt des jeweiligen Reaktionsprodukts bzw. der jeweiligen Reaktionsprodukte, damit die Poren des Porenbrenners bzw. die Düse nicht verstopfen und ein Abtransport der Reaktionsprodukte möglich ist. Weiterhin kann auch je nach Reaktionsprodukt eine gewisse Vermischung zwischen der flüssigen Legierung L und dem Reaktionsprodukt stattfinden, so dass die Verbrennung nicht nur lokal bei der Porenöffnung bzw. dem Düsenaustritt, sondern über die gesamte Oberfläche des Rohres bzw. der Düse verteilt stattfinden kann. Dies kann beispielsweise über die Zufuhrgeschwindigkeit der Legierung L gesteuert werden.
  • Durch Zuführung der Legierung L als Legierung von mindestens zwei elektropositiven Metallen kann eine Schmelzpunkterniedrigung der Legierung im Vergleich zu den jeweiligen Metallen wie der entstehenden Metallsalze erreicht werden, so dass das Verfahren bei niedrigeren Temperaturen und somit schonender für die Vorrichtung durchgeführt werden kann und der Einsatz von hochfeuerfesten Materialien in der Vorrichtung vermindert bzw. vermieden werden kann.
  • Die bei der Reaktion entstehenden gasförmigen Produkte (beispielsweise CO bei der Verbrennung in CO2) können von den festen bzw. flüssigen Verbrennungsprodukten getrennt und weiter verwertet werden. Im Verbrennungsprozess ist es bevorzugt, dass die Salze, die bei der exothermen Reaktion entstehen flüssig abgezogen werden können und das Abgas (zusammengesetzt aus gasförmigen Reaktionsprodukten und eventuell überschüssig eingeführtem Reaktionsgas) frei von festen Partikeln über eine Expanderturbine unter Druck geführt werden kann. Durch den geeigneten Einsatz von Alkali- und/oder Erdalkalimetall-Legierungen bzw. Legierungen von Al und/oder Zink kann bei Einstellung über die Luftzahl (Stöchiometrie der Reaktion) eine niedrigere Verbrennungstemperatur sichergestellt werden. Wegen der niedrigen Schmelztemperatur eines Salzgemisches kann ein flüssiger Abzug der Produkte leichter gewährleistet werden. Damit kann der Einsatz teurer Brennermaterialien vermieden werden. Zudem ist eine potentiell höhere Dynamik des Verbrennungsprozesses möglich, bei unterschiedlichen Temperaturen in Abhängigkeit der Stöchiometrie (Luftzahl) der Verbrennungsreaktion, bei gleichzeitiger Gewährleistung eines flüssigen Abzugs des entstehenden Salzgemisches.
  • Weiterhin kann gemäß bestimmten Ausführungsformen die Verbrennung mit einem gewissen Überschuss an Brenngas erfolgen, beispielsweise in einem molaren Verhältnis von Brenngas zu Metall M von 1,01:1 und mehr, bevorzugt 1,05:1 und mehr, weiter bevorzugt 5:1 und mehr, noch weiter bevorzugt 10:1 und mehr, beispielsweise auch 100:1 und mehr, um die Abgastemperatur in einem bestimmten Temperaturbereich zu stabilisieren. Das Brenngas kann hierbei auch zur Wärmeabfuhr auf den Expandierteil einer Turbine, etc. dienen.
  • Bei dem Verfahren kann zudem eine Trennung von Abgas von festen und/oder flüssigen Reaktionsprodukten bei der Verbrennung der Legierung L mit einem Brenngas erfolgen, wobei gemäß bestimmten Ausführungsformen in einem Reaktionsschritt das Brenngas mit der Legierung L verbrannt wird und Abgas sowie weitere feste und/oder flüssige Reaktionsprodukte entstehen, und in einem Trennungsschritt das Abgas von den festen und/oder flüssigen Reaktionsprodukten abgetrennt wird. Hierbei kann im Trennungsschritt zusätzlich ein Trägergas zugegeben werden und das Trägergas als Gemisch mit dem Abgas abgeführt werden. Das Trägergas kann hierbei auch dem Abgas entsprechen, so dass also beispielsweise bei der Verbrennung ein Abgas entsteht, das dem zugeführten Trägergas entspricht, oder auch dem Brenngas entsprechen. Bei dem erfindungsgemäßen Verfahren können also gemäß bestimmten Ausführungsformen die Reaktionsprodukte nach der Verbrennung getrennt werden.
  • Das Trägergas ist erfindungsgemäß nicht besonders beschränkt, und kann dem Brenngas entsprechen, aber auch verschieden von diesem sein. Als Trägergas kommen beispielsweise Luft, Kohlenmonoxid, Kohlendioxid, Sauerstoff, Methan, Wasserstoff, Wasserdampf, Stickstoff, Distickstoffmonoxid, Gemische von zwei oder mehreren dieser Gase, etc. zur Anwendung. Hierbei können verschiedene Gase, wie beispielsweise Methan, zum Wärmetransport dienen und die Reaktionswärme der Reaktion von Metall M mit dem Brenngas aus dem Reaktor abführen. Die verschiedenen Trägergase können beispielsweise an die Reaktion des Brenngases mit der Legierung L geeignet angepasst werden, um hierbei ggf. Synergieeffekte zu erzielen. Das Gas, das optional beim Zuführen der Legierung L verwendet wird, kann ebenfalls dem Trägergas entsprechen.
  • Für eine Verbrennung von Kohlendioxid mit Legierung L, beispielsweise aus Lithium und Natrium, bei der Kohlenmonoxid entstehen kann, kann als Trägergas beispielsweise Kohlenmonoxid verwendet und gegebenenfalls im Kreis gefahren, also nach dem Abführen wieder, zumindest teilweise, als Trägergas zurückgeführt werden. Hierbei wird das Trägergas an das Abgas angepasst, so dass ggf. ein Teil des Trägergases als Wertprodukt entnommen werden kann, beispielsweise für eine folgende Fischer-Tropsch-Synthese, während es durch die Verbrennung von Kohlendioxid mit Legierung L wieder generiert wird, so dass in der Bilanz Kohlendioxid zumindest teilweise zu Kohlenmonoxid umgesetzt wird, bevorzugt zu 90 Vol.% oder mehr, weiter bevorzugt 95 Vol.% oder mehr, noch weiter bevorzugt 99 Vol.% oder mehr und insbesondere bevorzugt zu 100 Vol.%, bezogen auf das eingesetzte Kohlendioxid, und als Wertprodukt entnommen wird. Je mehr Kohlenmonoxid erzeugt wird, umso sauberer ist das abgeführte Kohlenmonoxid.
  • Bei einer Verbrennung von Stickstoff mit Legierung L, beispielsweise aus Lithium und Magnesium, kann als Trägergas beispielsweise Stickstoff dienen, so dass im Abgas nicht reagierter Stickstoff aus der Verbrennung als „Abgas“ neben dem Trägergas Stickstoff vorliegen kann, wodurch eine Gastrennung, so gewünscht, einfacher durchgeführt werden kann und gemäß bestimmten Ausführungsformen, bei entsprechender, bevorzugt quantitativer Verbrennung von Legierung L und Stickstoff unter Verwendung geeigneter, leicht ermittelbarer Parameter, auch nicht erforderlich sein kann. Es kann beispielsweise Ammoniak aus dem entstehenden Nitrid leicht durch Auswaschen bzw. Abkühlen entfernt werden.
  • Gemäß bestimmten Ausführungsformen kann zumindest ein Teil des Abgases dem Trägergas entsprechen. Beispielsweise kann das Abgas zu mindestens 10 Vol.%, bevorzugt 50 Vol.% oder mehr, weiter bevorzugt 60 Vol.% oder mehr, noch weiter bevorzugt 70 Vol.% oder mehr, und noch mehr bevorzugt 80 Vol.% oder mehr, bezogen auf das Gesamtvolumen des Abgases, dem Trägergas entsprechen. Gemäß bestimmten Ausführungsformen kann das Brenngas zu 90 Vol.% oder mehr, bezogen auf das Gesamtvolumen des Abgases, dem Trägergas entsprechen, und kann in manchen Fällen sogar zu 100 Vol.% dem Trägergas entsprechen.
  • Gemäß bestimmten Ausführungsformen kann in dem erfindungsgemäßen Verfahren das Gemisch aus Abgas und Trägergas zumindest teilweise wieder dem Trennungsschritt als Trägergas und/oder dem Verbrennungsschritt als Brenngas zugeführt werden. Eine Rückführung des Gemisches aus Abgas und Trägergas kann beispielsweise in einem Umfang von 10 Vol.% oder mehr, bevorzugt 50 Vol.% oder mehr, weiter bevorzugt 60 Vol.% oder mehr, noch weiter bevorzugt 70 Vol.% oder mehr, und noch mehr bevorzugt 80 Vol.% oder mehr, bezogen auf das Gesamtvolumen aus Trägergas und Abgas, erfolgen. Gemäß bestimmten Ausführungsformen kann eine Rückführung des Gemisches aus Abgas und Trägergas zu 90 Vol.% oder mehr, bezogen auf das Gesamtvolumen aus Trägergas und Abgas, erfolgen. Gemäß erfindungsgemäß bevorzugten Ausführungsformen kann eine Reaktion zwischen Brenngas und Legierung Lauf eine solche Weise erfolgen, dass als Abgas das Trägergas entsteht, z.B. mit Kohlendioxid als Brenngas und Kohlenmonoxid als Trägergas, so dass dann das Gemisch aus Trägergas und Abgas im Wesentlichen, bevorzugt zu 90 Vol.% und mehr, weiter bevorzugt zu 95 Vol.% und mehr, noch weiter bevorzugt zu 99 Vol.% und mehr und besonders bevorzugt zu 100 Vol.%, bezogen auf das Gemisch aus Abgas und Trägergas, aus dem Trägergas besteht. Hierbei kann dann das Trägergas kontinuierlich im Kreis gefahren werden und in einer solchen Menge entnommen werden, wie es durch die Verbrennung von Legierung L und Brenngas nachgebildet wird. Im Vergleich zu einer reinen Kreisführung des Trägergases, bei der ggf. eine Trennung von Trägergas und Abgas erfolgt, kann hierbei beispielsweise ein Wertprodukt erhalten werden, beispielsweise Kohlenmonoxid, welches kontinuierlich entnommen werden kann.
  • Gemäß bestimmten Ausführungsformen erfolgt der Trennungsschritt in einem erfindungsgemäßen Verfahren in einem Zyklon bzw. einem Zyklonreaktor. Der Zyklonreaktor ist hierbei in seinem Aufbau nicht besonders beschränkt und kann beispielsweise eine Form haben, wie sie gewöhnliche Zyklonreaktoren aufweisen.
  • Beispielsweise kann ein Zyklonreaktor einen Reaktionsbereich, an dem die Zuführeinrichtungen für das Brenngas, Legierung L und das Trägergas (welche ggf. auch zuvor vereint werden können und dann gemeinsam dem Reaktionsbereich zugeführt werden können) angebracht werden können, beispielsweise in Form eines rotationssymmetrischen Oberteils,
    einen Separationsbereich, der beispielsweise konisch ausgestaltet ist,
    und eine Entspannungskammer, an der eine Abführvorrichtung für feste und/oder flüssige Reaktionsprodukte der Verbrennung von Metall M mit dem Brenngas, beispielsweise in Form einer Zellenradschleuse, sowie eine Abführeinrichtung für das Gemisch aus Abgas und Trägergas, was sich nach der Durchmischung der beiden Gase nach dem Verbrennen des Metalls M im Brenngas ergibt, angebracht werden können, umfassen.
  • Solche Vorrichtungskomponenten sind beispielsweise üblicherweise in Zyklonabscheidern vorhanden. Ein erfindungsgemäß verwendeter Zyklonreaktor kann aber auch anders aufgebaut sein und ggf. auch weitere Bereiche umfassen. Beispielsweise können einzelne Bereiche (z.B. Reaktionsbereich, Separationsbereich, Entspannungskammer) auch in einem Bauteil eines beispielhaften Zyklonreaktors zusammengefasst sein und/oder sich über mehrere Bauteile eines Zyklonreaktors erstrecken. Hierbei kann beispielsweise die Zugabe von Trägergas auch in einem Bereich erfolgen, in dem die Reaktion der Legierung L und des Brenngases fortgeschritten oder auch schon abgeschlossen ist.
  • Durch den Zyklon werden die Reaktionsprodukte weitgehend im Zentrum des Reaktors, beispielsweise eines Ofenraums gehalten. Ein Vorteil der Verwendung eines Porenbrenners ist, dass durch die Verbrennung an der Oberfläche des porösen Rohrs keine kleinen Partikeln entstehen wie beim Verdüsen, so dass das Abgas frei von festen oder flüssigen Partikeln ist, so dass auch eine Gasturbine bzw. eine Expanderturbine einfach im Abgasstrom nachgeschaltet werden können. Durch geeignete Zufuhr von Trägergas kann jedoch auch eine effiziente Trennung von Abgas von festen und flüssigen Reaktionsprodukten erzielt werden bei einer Verdüsung der Legierung L. Unter diesen Umständen ist es mit diesem Verbrennungskonzept möglich, den Abgasstrom nach dem Verbrennen der Legierung L und der Trennung der Reaktionsprodukte direkt in eine Gasturbine einzuleiten.
  • Die Abgastemperatur kann gemäß bestimmten Ausführungsformen in den unterschiedlichen Verbrennungsprozessen durch den Gasüberschuss gesteuert werden, so dass sie höher als die Schmelztemperatur der Reaktionsprodukte bzw. deren Mischung ist.
  • Gemäß bestimmten Ausführungsformen umfasst der Zyklonreaktor zudem ein Gitter, durch das die festen und/oder flüssigen Reaktionsprodukte bei der Verbrennung der Legierung L mit dem Brenngas abgeführt werden können. Ein solches Gitter kann ein nachträgliches Aufwirbeln von festen und/oder flüssigen Reaktionsprodukten im Zyklonreaktor zusätzlich verhindern.
  • Die Reaktionsprodukte der Verbrennung können zur Erzeugung von Energie, bevorzugt unter Verwendung mindestens einer Expanderturbine und/oder mindestens einer Gasturbine, beispielsweise einer Dampfturbine, und/oder mindestens eines Wärmetauschers und/oder mindestens eines Boilers, verwendet werden, wobei hier gemäß bestimmten Ausführungsformen sowohl die entstehenden festen und/oder flüssigen Reaktionsprodukte, beispielsweise unter Verwendung eines Wärmetauschers am Reaktor, oder auch die gasförmigen Reaktionsprodukte verwendet werden können. Die bei der Verbrennung frei werdende thermischer Energie kann also (beispielsweise über eine Expanderturbine und/oder Dampfturbine) in elektrischer Energie umgewandelt werden. Die frei werdende thermische Energie kann beispielsweise über einen Wärmetauscher und anschließender Dampfturbine rückverstromt werden. Höhere Effizienzen sind beispielsweise durch den Einsatz von Gasturbinen in Kombination mit Dampfturbinen erreichbar. Dafür ist gemäß bestimmten Ausführungsformen zu gewährleistet, dass das Abgas nach der Metallverbrennung partikelfrei ist, da diese Partikel sonst die Turbine langfristig beschädigen können.
  • Bei Verwendung eines Zyklonreaktors mit Trägergaszufuhr kann das Gemisch aus Abgas und Trägergas gemäß bestimmten Ausführungsformen, beispielsweise im Reaktor und/oder bei und/oder nach der Abführung aus dem Reaktor, zur Erwärmung eines Boilers oder zur Wärmeübertragung in einem Wärmetauscher oder einer Turbine, beispielsweise einer Gasturbine oder einer Expanderturbine, verwendet werden.
  • Weiterhin kann das Gemisch aus dem Trägergas und dem Abgas gemäß bestimmten Ausführungsformen nach der Verbrennung unter erhöhtem Druck stehen, beispielsweise mehr als 1 bar, wenigstens 2 bar, wenigstens 5 bar oder wenigstens 20 bar.
  • Darüber hinaus wird gemäß einem weiteren Aspekt der Erfindung eine Vorrichtung zur Verbrennung einer Legierung L eines elektropositiven Metalls offenbart, wobei das elektropositive Metall ausgewählt ist aus Alkali-, Erdalkalimetallen, Aluminium und Zink, sowie Mischungen derselben und die Legierung L des elektropositiven Metalls mindestens zwei elektropositive Metalle aufweist, umfassend
    einen Porenbrenner oder eine Einrichtung zum Verdüsen der Legierung L des elektropositiven Metalls,
    eine Zuführeinrichtung für die Legierung L des elektropositiven Metalls, bevorzugt als Flüssigkeit, zum Inneren des Porenbrenners oder zur Einrichtung zum Verdüsen der Legierung L, die dazu ausgebildet ist, dem Porenbrenner oder der Einrichtung zum Verdüsen der Legierung L die Legierung L des elektropositiven Metalls, bevorzugt als Flüssigkeit, zuzuführen,
    eine Zuführeinrichtung für ein Brenngas, die dazu ausgebildet, Brenngas zuzuführen, und
    optional eine Heizvorrichtung zum Bereitstellen der Legierung L des elektropositiven Metalls als Flüssigkeit, die dazu ausgebildet ist, die Legierung L des elektropositiven Metalls zu verflüssigen.
  • Die Einrichtung zum Verdüsen der Legierung L ist hierbei nicht besonders beschränkt und kann beispielsweise eine Einstoffdüse oder eine Zweistoffdüse umfassen. Der Porenbrenner kann wie oben beschrieben ausgestaltet sein. Als Zuführeinrichtung für Legierung L können beispielsweise Rohre oder Schläuche, oder aber Förderbänder, dienen, die beheizt sein können, welche geeignet, beispielsweise anhand des Aggregatszustands der Legierung L, bestimmt werden können. Gegebenenfalls kann an die Zuführeinrichtung für die Legierung L auch eine weitere Zuführeinrichtung für ein Gas, optional mit einer Steuereinrichtung wie einem Ventil, angebracht werden, mit dem die Zufuhr der Legierung L geregelt werden kann. Ebenso kann die Zuführeinrichtung für das Brenngas als Rohr oder Schlauch, etc., das oder der gegebenenfalls beheizt sein kann, ausgebildet sein, wobei die Zuführeinrichtung geeignet anhand des Zustand des Gases, das ggf. auch unter Druck stehen kann, bestimmt werden kann. Auch können mehrere Zuführeinrichtungen für Legierung L oder Brenngas vorgesehen sein.
  • Gemäß bestimmten Ausführungsformen ist die Zuführeinrichtung für das Brenngas derart angeordnet, dass sie das Brenngas, zumindest teilweise und bevorzugt vollständig, auf die Oberfläche des Porenbrenners bzw. an den Ausgang der Düse leitet. Hierdurch wird eine verbesserte Reaktion zwischen Legierung L und Brenngas erreicht.
  • Zudem ist der Porenbrenner gemäß bevorzugten Ausführungsformen derart angeordnet, dass entstehende Reaktionsprodukte der Verbrennung und optional die nicht reagierte Legierung L durch Gravitation von der Oberfläche des Porenbrenners abgetrennt werden können, beispielsweise indem der Porenbrenner im Reaktor senkrecht zur Erdoberfläche hin weisend angebracht wird. Bei senkrechter Anordnung der porösen Brennrohre im Ofenraum kann das entstehende flüssige Reaktionsprodukt das Rohr hinab laufen und dann nach unten in den Ofensumpf tropfen. Auf diesem Weg wird auch die eventuell gelöste Legierung L, beispielsweise aus Lithium und Natrium, die nicht zuvor am Porenbrenner reagiert ist, verbrennen, und die Reaktionswärme wird an das vorbeiströmende Brenn- und Trägergas abgegeben.
  • Gemäß bestimmten Ausführungsformen besteht der Porenbrenner bzw. die Düse aus einem Material, das ausgewählt ist aus der Gruppe, bestehend aus Eisen, Chrom, Nickel Niob, Tantal, Molybdän, Wolfram, Zirkalloy und Legierungen dieser Metalle, sowie Stähle wie Edelstahl und Chrom-Nickel-Stahl. Geeignet sind beispielsweise austenitische Chrom-Nickel-Stähle, welche beispielsweise sehr resistent gegen Abtragung durch Natrium bei hoher Temperatur sind, doch auch Werkstoffe mit 32% Nickel und 20% Chrom, wie AC 66, Incoloy 800 oder Pyrotherm G 20132 Nb, zeigen noch ein relativ günstiges Korrosionsverhalten. Diese Materialien sind bevorzugt für einen Einsatz bei höheren Temperaturen, bei denen die Reaktion mit flüssiger Legierung L und ggf. mit entstehenden flüssigen Metallsalzen einfacher vonstattengehen kann.
  • In bestimmten Ausführungsformen kann die erfindungsgemäße Vorrichtung weiter eine Trenneinrichtung der Produkte der Verbrennung der Legierung L aufweisen, die dazu ausgebildet ist, die Verbrennungsprodukte der Legierung L und des Brenngases zu trennen, wobei die Trenneinrichtung bevorzugt ein Zyklonreaktor ist.
  • Die Trenneinrichtung kann hierbei zur Trennung von Abgas bei der Verbrennung der Legierung L mit einem Brenngas dienen, und kann umfassen:
    • – einen Reaktor, in dem der Porenbrenner bzw. die Einrichtung zum Verdüsen vorgesehen ist und die Zuführeinrichtung für Legierung L angebracht bzw. vorgesehen ist, und zu dem die Zufuhr des Brenngases erfolgt, an dem oder in dem also die Zuführeinrichtung für das Brenngas angebracht bzw. vorgesehen ist;
    • – eine Zuführeinrichtung für Trägergas, die dazu ausgebildet ist, dem Reaktor Trägergas zuzuführen.
    • – eine Abführeinrichtung für ein Gemisch aus Abgas sowie Trägergas, die dazu ausgebildet ist, ein Gemisch aus dem Abgas der Verbrennung von Legierung L mit dem Brenngas und dem Trägergas abzuführen; und
    • – eine Abführeinrichtung für feste und/oder flüssige Reaktionsprodukte der Verbrennung von Legierung L mit dem Brenngas, die dazu ausgebildet ist, feste und/oder flüssige Reaktionsprodukte der Verbrennung von Legierung L mit dem Brenngas abzuführen.
  • Die Zuführeinrichtung für Trägergas ist ebenfalls nicht besonders beschränkt und umfasst beispielsweise Rohre, Schläuche, etc., wobei die Zuführeinrichtung für Trägergas geeignet anhand des Zustands des Trägergases, das ggf. auch unter Druck stehen kann, bestimmt werden kann.
  • Ebenso wenig ist der Reaktor besonders beschränkt, insofern in ihm die Verbrennung des Brenngases mit der Legierung L vonstattengehen kann. Gemäß bestimmten Ausführungsformen kann der Reaktor ein Zyklonreaktor sein, wie er beispielhaft in 1 und in Detailansicht in einer weiteren Ausführungsform in 2 dargestellt ist.
  • Der Zyklonreaktor kann gemäß bestimmten Ausführungsformen einen Reaktionsbereich, an dem die Zuführeinrichtungen für das Brenngas, Legierung L und das Trägergas sowie der Porenbrenner angebracht werden können, beispielsweise in Form eines rotationssymmetrischen Oberteils,
    einen Separationsbereich, der beispielsweise konisch ausgestaltet ist,
    und eine Entspannungskammer, an der eine Abführvorrichtung für feste und/oder flüssige Reaktionsprodukte der Verbrennung von Legierung L mit dem Brenngas, beispielsweise in Form einer Zellenradschleuse, sowie eine Abführeinrichtung für das Gemisch aus Abgas und Trägergas, was sich nach der Durchmischung der beiden Gase nach dem Verbrennen der Legierung L im Brenngas ergibt, angebracht werden können, umfassen.
  • Solche Vorrichtungskomponenten sind beispielsweise üblicherweise in Zyklonabscheidern vorhanden. Ein erfindungsgemäß verwendeter Zyklon-Reaktor kann aber auch anders aufgebaut sein und ggf. auch weitere Bereiche umfassen. Beispielsweise können einzelne Bereiche (z.B. Reaktionsbereich, Separationsbereich, Entspannungskammer) auch in einem Bauteil eines beispielhaften Zyklonreaktors zusammengefasst sein und/oder sich über mehrere Bauteile eines Zyklonreaktors erstrecken.
  • Ein beispielhafter Zyklonreaktor ist in 1 dargestellt. Der in 1 dargestellte Zyklonreaktor 6 umfasst einen Reaktionsbereich 20a, einen Separationsbereich 20b, der sowohl zusammen mit dem Reaktionsbereich 20a im oberen Bauteil 6a als auch zusammen mit der Entspannungskammer 20c im unteren Bauteil 6b liegt, sowie eine Entspannungskammer 20c. Zum Zyklonreaktor führen im oberen Teil eine Zuführeinrichtung 1 für Brenngas, beispielsweise in Form eines ggf. beheizten Rohrs oder eines Schlauchs, und eine Zuführeinrichtung 2 für Legierung L, beispielsweise in Form eines ggf. beheizten Rohrs oder eines Schlauchs, wobei die Zufuhr der Legierung L zum Porenbrenner 3 erfolgt. Die Zufuhr der Legierung L erfolgt gemäß 1 unter Zuhilfenahme eines Gases in einer Zuführeinrichtung 2‘ für Gas, beispielsweise einem Rohr oder Schlauch, dessen Zufuhr mit einem Ventil 2‘‘ gesteuert werden kann. Die Legierung L und das Brenngas werden dem Reaktionsbereich 20a zugeführt. Durch die Zuführeinrichtung 4 wird das Trägergas einem Bereich 4‘ zur Gasverteilung zugeführt, aus dem dann das Trägergas über Düsen 5, mit welchen ein Zyklon ausgebildet werden kann, dem Separationsbereich 20b zugeführt wird. Eine Detailansicht einer solchen Zuführeinrichtung 4 mit einem Bereich 4‘ zur Gasverteilung und einer Düse 5 ist im Querschnitt beispielhaft in 4 (Darstellung ohne Porenbrenner 3) angegeben, jedoch können auch mehr Düsen 5 vorhanden sein, beispielsweise in einem geeigneten Abstand rings um die Innenwand des Bereichs 4‘, um einen geeigneten Zyklon zu erzeugen. Aus dem unteren Bauteil 6b, welches die Entspannungskammer 20c umfasst, werden feste und/oder flüssige Reaktionsprodukte über die Abführeinrichtung 7 für feste und/oder flüssige Reaktionsprodukte der Verbrennung von Legierung L mit dem Brenngas abgeführt, während das Gemisch aus Abgas und Trägergas über die Abführeinrichtung 8 für das Gemisch aus Abgas und Trägergas abgeführt wird.
  • Gegebenenfalls kann in einer erfindungsgemäßen Vorrichtung eine Zündvorrichtung, beispielsweise eine elektrische Zündvorrichtung oder ein Plasmabogen, erforderlich sein, wobei dies von der Art und dem Zustand der Legierung L, beispielsweise deren Temperatur und/oder Aggregatszustand, der Beschaffenheit des Brenngases, beispielsweise dessen Druck und/oder Temperatur, sowie der Anordnung von Komponenten in der Vorrichtung, wie beispielsweise der Art und Beschaffenheit der Zuführeinrichtungen, abhängen kann.
  • Um konstruktiv sowohl eine hohe Abgastemperatur von beispielsweise mehr als 200°C, beispielsweise auch 400°C oder mehr und in bestimmten Ausführungsformen 500°C oder mehr, als auch einen erhöhten (z.B. 5 bar oder mehr) oder hohen (20 bar oder mehr) Betriebsdruck zu erreichen, kann das innere Material des Reaktors aus hochwarmfesten Legierungen bestehen, beispielsweise den oben genannten und im Extremfall auch aus dem Material Haynes 214. Um dieses Material, das lediglich der hohen Temperatur standhalten soll, kann dann eine thermische Isolierung angeordnet sein, die ausreichend wenig Wärme hindurch lässt, so dass außen eine Stahlwand, die zusätzlich auch luft- oder wassergekühlt sein kann, die Druckbelastung aufnimmt. Das Abgas kann dann dem weiteren Prozessschritt mit dem erhöhten oder hohen Betriebsdruck zugeführt werden.
  • Darüber hinaus kann der Reaktor, beispielsweise ein Zyklonreaktor, auch Heiz- und/oder Kühlvorrichtungen umfassen, welche an dem Reaktionsbereich, dem Separationsbereich und/oder der Entspannungskammer sowie aber auch an den verschiedenen Zuführ- und/oder Abführvorrichtungen, ggf. dem Brenner, und/oder ggf. der Zündvorrichtung vorhanden sein können. Darüber hinaus können weitere Komponenten wie Pumpen zum Erzeugen eines Drucks oder eines Vakuums, etc. in einer erfindungsgemäßen Vorrichtung vorhanden sein.
  • In Ausführungsformen, in denen der Reaktor als Zyklonreaktor ausgebildet ist, kann der Zyklonreaktor ein Gitter umfassen, das derart ausgebildet ist, dass die festen und/oder flüssigen Reaktionsprodukte bei der Verbrennung der Legierung L mit dem Brenngas durch das Gitter abgeführt werden können. Darüber hinaus kann ein solches Gitter aber auch in anderen Reaktoren, welche in der erfindungsgemäßen Vorrichtung vorgesehen sein können, vorhanden sein. Durch die Verwendung des Gitters im Reaktor bzw. Zyklonreaktor kann eine bessere Trennung der festen und/oder flüssigen Reaktionsprodukte bei der Verbrennung der Legierung L mit dem Brenngas von dem Gemisch aus Abgas und Trägergas erzielt werden. Ein solches Gitter ist beispielhaft in 2 dargestellt, gemäß der sich das Gitter 6‘ beispielhaft im Zyklonreaktor 6, der in 1 dargestellt ist, im unteren Bauteil 6b oberhalb der Abführeinrichtung 7 und unterhalb der Abführeinrichtung 8 befindet. Durch das Gitter, bevorzugt mit genügend großem Abstand zur Reaktorwand, kann eine sichere Abscheidung von festen und flüssigen Reaktionsprodukten oder deren Gemisch sichergestellt werden. Dadurch werden die schon abgeschiedenen festen oder flüssigen Verbrennungsprodukte auch nicht mehr vom Zyklon aufgewirbelt.
  • Die Geometrie der Zuführeinrichtungen für das Trägergas ist nicht besonders beschränkt, sofern das Trägergas mit dem Abgas aus der Verbrennung von Legierung L und Brenngas vermischt werden kann. Bevorzugt entsteht hierbei ein Zyklon, z.B. mit der in 1 dargestellten Vorrichtung. Ein Zyklon kann aber auch durch andere Anordnungen der Zuführeinrichtungen zueinander erzeugt werden. So ist es beispielsweise nicht ausgeschlossen, dass die Zuführeinrichtung des Trägergases auch oben am Reaktor in der Nähe der Zuführeinrichtungen für Legierung L und Brennstoff vorhanden ist. Entsprechend geeignete Geometrien der Einspritzung können leicht auf geeignete Weise bestimmt werden, beispielsweise anhand von Strömungssimulationen.
  • Auch sind die Abführeinrichtungen nicht besonders beschränkt, wobei beispielsweise die Abführeinrichtung für das Gemisch aus Abgas und Trägergas als Rohr ausgebildet sein kann, während die Abführeinrichtung für die festen und/oder flüssigen Reaktionsprodukte der Verbrennung von Metall M mit dem Brenngas beispielsweise als Zellenradschleuse und/oder als Rohr mit einem Siphon ausgestaltet sein kann. Hier können auch verschiedene Ventile, wie Druckventile, und/oder weitere Regler vorgesehen sein. Eine in 3 dargestellte, beispielhafte Abführeinrichtung 7, beispielsweise des in 1 dargestellten Zyklonreaktors 6, kann hierbei einen Siphon 9, ein Ventil 10 zur Entgasung und einen Druckregler 11 umfassen, ist jedoch nicht auf eine solche beschränkt. Ein solcher Siphon an der Abführeinrichtung für die festen und/oder flüssigen Reaktionsprodukte der Verbrennung von Legierung L mit dem Brenngas, ggf. in Verbindung mit einem für den jeweiligen Betriebsdruck geeigneten Vordruckregler, kann beispielsweise verwendet werden, um einen erhöhten oder hohen Betriebsdruck zu ermöglichen.
  • Die Abführeinrichtung für das Gemisch aus Abgas und Trägergas kann gemäß bestimmten Ausführungsformen auch eine Trennvorrichtung für das Abgas und das Trägergas und/oder einzelne Komponenten des Abgases enthalten.
  • Gemäß bestimmten Ausführungsformen kann die Abführeinrichtung für ein Gemisch aus Abgas sowie Trägergas derart mit der Zuführeinrichtung für Trägergas und/oder der Zuführeinrichtung für Brenngas verbunden sein, dass das Gemisch aus Abgas und Trägergas zumindest teilweise dem Reaktor als Trägergas und/oder dem Brenner als Brenngas zugeführt wird. Der Anteil des rückgeführten Gases kann hierbei 10 Vol.% oder mehr, bevorzugt 50 Vol.% oder mehr, weiter bevorzugt 60 Vol.% oder mehr, noch weiter bevorzugt 70 Vol.% oder mehr, und noch mehr bevorzugt 80 Vol.% oder mehr, bezogen auf das Gesamtvolumen aus Trägergas und Abgas, betragen. Gemäß bestimmten Ausführungsformen kann eine Rückführung des Gemisches aus Abgas und Trägergas zu 90 Vol.% oder mehr, bezogen auf das Gesamtvolumen aus Trägergas und Abgas, erfolgen.
  • Gemäß bestimmten Ausführungsformen kann eine erfindungsgemäße Vorrichtung zudem weiter mindestens einen Boiler und/oder mindestens einen Wärmetauscher und/oder mindestens eine Gasturbine und/oder mindestens eine Expanderturbine umfassen, der oder die sich im Reaktor und/oder der Abführeinrichtung für das Gemisch aus Abgas sowie Trägergas befindet. Somit können beispielsweise in der Vorrichtung von 1, welche einen Zyklonreaktor 6 umfasst, im Reaktor 6, in der Abführeinrichtung 8 und/oder in einer Einrichtung, die sich an die Abführeinrichtung 8 anschließt, ein oder mehrere Wärmetauscher und/oder Boiler und/oder Gasturbinen und/oder Expanderturbinen vorgesehen sein, welche nicht dargestellt sind.
  • Auch kann ein Wärmeaustausch am Zyklonreaktor 6 selbst stattfinden, beispielsweise an den Außenwänden im Reaktionsbereich 20a und/oder dem Separationsbereich 20b, aber ggf. auch im Bereich der Entspannungskammer 20c, wobei die entsprechenden Wärmetauscher dann auch mit Turbinen zur Stromerzeugung in Generatoren verbunden sein können.
  • Die Abgase können somit, als Gemisch mit Trägergas, einer weiteren Verwendung z.B. Aufheizen eines Boilers zur Dampferzeugung, Wärmeabgabe in einem Wärmetauscher, Betrieb einer Turbine, usw. zugeführt werden.
  • Falls kein geeigneter Wärmetauscher gefunden werden kann, durch den dann z.B. Luft mit entsprechendem Druck erwärmt wird und als Ersatz für das Abgas in die Gasturbine geleitet wird, ist es möglich, beispielsweise einen Boiler zu verwenden. Der Weg unter Verwendung eines Boilers kann gemäß bestimmten Ausführungsformen aussichtsreicher sein und ist auch technisch einfacher, da er bei geringeren Temperaturen und nur erhöhtem Druck realisierbar sein kann.
  • Mit Hilfe eines oder mehrerer Wärmetauscher und/oder eines oder mehrerer Boiler kann dann im Anschluss elektrische Energie erzeugt werden, beispielsweise durch Verwendung einer Dampfturbine und eines Generators. Es ist aber auch möglich, dass das Gemisch aus Abgas und Trägergas direkt auf eine Turbine, beispielsweise eine Gasturbine bzw. Expanderturbine, geleitet wird, um so direkt Strom zu erzeugen. Dies setzt jedoch eine sehr gute Abtrennung von Feststoffen und/oder flüssigen Reaktionsprodukten der Verbrennung von Legierung L und Brenngas voraus, wie sie erfindungsgemäß bereitgestellt werden kann, insbesondere unter Verwendung eines Gitters im Reaktor. Die Auswahl, ob ein Boiler oder ein Wärmetauscher verwendet wird, kann beispielsweise davon abhängen, ob feste oder flüssige Reaktionsprodukte gebildet werden, kann aber auch anlagentechnisch bedingt sein. Bei flüssigen Reaktionsprodukten, z.B. flüssigem Li2CO3 und Na2CO3, kann beispielsweise die Reaktorwand als Wärmetauscher fungieren, während bei entstehenden festen Reaktionsprodukten spezielle Wärmetauscher erforderlich sein können. Bei einer entsprechenden Trennung des Gemisches von Abgas und Trägergas von den festen und/oder flüssigen Reaktionsprodukten ist auch ggf. ein direktes Leiten des Gemisches aus Abgas und Trägergas auf eine Turbine möglich, so dass hier dann auch keine Wärmetauscher und/oder Boiler im Abgasstrom erforderlich sein können.
  • Gemäß gestimmten Ausführungsformen kann eine erfindungsgemäße Vorrichtung eine Entnahmevorrichtung in der Abführeinrichtung für das Gemisch aus Abgas sowie Trägergas umfassen, welche dazu ausgebildet ist, bei einer Rückführung des Gemisches aus Abgas und Trägergas zur Zuführeinrichtung für Trägergas und/oder der Zuführeinrichtung für Brenngas durch Verbindung der Abführeinrichtung für das Gemisch aus Abgas sowie Trägergas mit der Zuführeinrichtung für Trägergas und/oder der Zuführeinrichtung für Brenngas einen Teil des Gemisches aus Abgas und Trägergas zu entnehmen. Ein solcher Teil kann beispielsweise mehr als 1 Vol.%, bevorzugt 5 Vol.% und mehr und weiter bevorzugt 10 Vol.% oder mehr, bezogen auf das Gesamtvolumen des Gemisches aus Abgas und Trägergas, betragen. Weiterhin können gemäß bestimmten Ausführungsformen maximal 50 Vol.%, bevorzugt 40 Vol.% oder weniger, weiter bevorzugt 30 Vol.% oder weniger, besonders bevorzugt 20 Vol.% oder weniger, bezogen auf das Gesamtvolumen des Gemisches aus Abgas und Trägergas, aus dem rückgeführten Gemisch aus Abgas und Trägergas entnommen werden. Das entnommene Gas kann dann beispielsweise als Wertprodukt für weitere Reaktionen zur Verfügung stehen, so z.B. wenn Kohlenmonoxid ausgeschleust wird und anschließend in einem Fischer-Tropsch-Verfahren zu höherwertigen Kohlenwasserstoffen umgesetzt wird.
  • Auch können die abgeführten Feststoffe weiter zu Wertstoffen umgesetzt werden. So kann beispielsweise aus einer Verbrennung mit Stickstoff hergestelltes Metallnitrid durch Hydrolyse mit Wasser zu Ammoniak und Lauge umgesetzt werden, wobei die entstandene Lauge dann auch als Fänger für Kohlendioxid und/oder Schwefeldioxid dienen kann.
  • Die obigen Ausführungsformen, Ausgestaltungen und Weiterbildungen lassen sich, sofern sinnvoll, beliebig miteinander kombinieren. Weitere mögliche Ausgestaltungen, Weiterbildungen und Implementierungen der Erfindung umfassen auch nicht explizit genannte Kombinationen von zuvor oder im Folgenden bezüglich der Ausführungsbeispiele beschriebenen Merkmalen der Erfindung. Insbesondere wird der Fachmann auch Einzelaspekte als Verbesserungen oder Ergänzungen zu der jeweiligen Grundform der vorliegenden Erfindung hinzufügen.
  • Im Folgenden wird die Erfindung nunmehr anhand beispielhafter Ausführungsformen dargestellt, die die Erfindung in keiner Weise beschränken.
  • Gemäß einer beispielhaften Ausführungsform wird die Legierung L, beispielsweise aus Lithium und Natrium, flüssig eingesetzt, also oberhalb des Schmelzpunktes der Legierung. Die flüssige Legierung L, z.B. aus Lithium und Natrium, kann in einen Porenbrenner eingebracht werden und reagiert dann unmittelbar, gegebenenfalls nach Zündung zum Starten der Reaktion, mit dem jeweiligen Brenngas, z.B. Luft, Sauerstoff, Kohlendioxid, Schwefeldioxid, Wasserstoff, Wasserdampf, Stickoxide NOx wie Distickstoffmonoxid, oder Stickstoff. Die Verbrennung der Legierung L kann in der in 1 dargestellten Vorrichtung erfolgen, beispielsweise mit einer mehr als stöchiometrischen Menge des Brenngases, um nicht allzu hohe Abgastemperaturen zu erzeugen. Das Brenngas kann aber auch in stöchiometrischer oder unterstöchiometrischer Menge im Vergleich zum Metall M zugesetzt werden. Nach der Verbrennung wird ein Trägergas (z.B. Stickstoff, Luft, Kohlenmonoxid, Kohlendioxid und Ammoniak), das auch dem Brenngas entsprechen kann, zur Verdünnung zugesetzt, um die Temperatur zu vermindern und um einen Zyklon zur Abscheidung der festen oder flüssigen Reaktionsprodukte zu erzeugen. Der heiße Abgasstrom kann dann zur Erwärmung eines Boilers zur Wärmeübertragung in einem Wärmetauscher oder ähnlichem eingesetzt werden.
  • Gemäß einer zweiten beispielhaften Ausführungsform kann als Brenngas Kohlendioxid und als Trägergas Kohlenmonoxid in der in 1 dargestellten Vorrichtung verwendet werden. Als Legierung L wird beispielsweise eine von Lithium und Natrium, z.B. flüssig, eingesetzt. Die flüssige Legierung wird in den Porenbrenner 3 eingebracht und reagiert dann unmittelbar mit dem Brenngas. Eventuell sind eine elektrische Zündung oder ein zusätzlicher Zündbrenner erforderlich. In einer Abwandlung hiervon kann beispielsweise auch eine Reaktion mit einer Legierung aus Natrium und Kalium gemäß diesem Beispiel erfolgen, wobei die Legierung aus Natrium und Kalium bei Raumtemperatur als Flüssigkeit vorliegen kann.
  • Die Verbrennung der Legierung L erfolgt am Porenbrenner 3, bevorzugt mit der stöchiometrisch erforderlichen Menge an Kohlendioxid, wobei auch ein leicht über- oder unterstöchiometrisches Verhältnis (z.B. 0,95:1 bis 1:0,95 für das Verhältnis CO2:Legierung L) gewählt werden kann. Bei einer Verwendung eines sehr hohen Unterschusses an Kohlendioxid kann beispielsweise Carbid als Salz entstehen, aus dem dann Acetylen gewonnen werden kann.
  • Im zweiten Schritt erfolgt im mittleren Teil des Reaktors/Ofens 6 im Bereich 4‘ die Mischung der Verbrennungsprodukte mit dem Trägergas Kohlenmonoxid, das durch Düsen 5 in den Reaktor 6 eingeblasen wird. Dadurch entsteht ein Zyklon, der dazu führt, dass die festen und/oder flüssigen Reaktionsprodukte an die Reaktorwand gewirbelt werden und sich dort vornehmlich abscheiden. Bevorzugt wird ein Überschuss an Trägergas verwendet, um einen ausreichenden Abtransport der durch die Verbrennung entstehenden Wärme zu gewährleisten. Hierdurch kann die Temperatur im Reaktor 6 geeignet eingestellt werden.
  • Für die Verbrennung in reinem Kohlendioxid hat das entstehende Lithiumcarbonat-Natriumcarbonat-Gemisch im Falle einer eutektischen Mischung einen Schmelzpunkt von 498°C. Wird die Verbrennungstemperatur der Reaktionsprodukte mittels Zumischung von Trägergas und/oder Brenngas durch die Zuführeinrichtungen 1,5 über mindestens 498°C gehalten, so kann man von flüssigen Reaktionsprodukten für die Verbrennung ausgehen. Die Zuführeinrichtungen können hier bei der stark exothermen Reaktion zum Kühlen verwendet werden, damit sich die Anlage nicht zu stark aufheizt, wobei die untere Temperaturgrenze der Schmelzpunkt der entstehenden Salzmischung sein kann. Wird der Zyklon zudem mit anderen Gasen als Kohlendioxid wie z.B. Luft oder weiteren Gasen betrieben, können in den Reaktionsprodukten auch beispielsweise die Oxide von Lithium und Natrium als Gemisch entstehen. Nach Abscheidung der flüssigen und festen Reaktionsprodukte, welche durch ein Gitter 6‘ verbessert werden kann, wird das Gemisch aus Abgas und Trägergas zum Beispiel in einen Boiler geleitet und zur Verdampfung von Wasser genutzt, um dann eine Dampfturbine mit nachgeschaltetem Generator anzutreiben oder andere technische Vorrichtungen (z B Wärmetauscher) zu betreiben. Das nach diesem Prozess abgekühlte Gemisch aus Abgas und Trägergas kann dann beispielsweise wieder als Trägergas zum Erzeugen des Zyklons im Ofen benutzt werden. Damit wird die Restwärme des Abgases nach dem Verdampfungsprozess im Boiler genutzt, und es muss nur die stöchiometrisch notwendige Menge an Kohlendioxid für die Verbrennung mit Li/Na durch Abgasreinigung z.B. von Kohlekraftwerken gewonnen werden.
  • Die Verbrennung kann gemäß bestimmten Ausführungsformen mit einem gewissen Überschuss an Brenngas erfolgen, beispielsweise in einem molaren Verhältnis von Brenngas zu Legierung L von mehr als 1,01:1, bevorzugt mehr als 1,05:1, weiter bevorzugt 5:1 und mehr, noch weiter bevorzugt 10:1 und mehr, beispielsweise auch 100:1 und mehr, um die Abgastemperatur in einem bestimmten Temperaturbereich zu stabilisieren, und es kann neben der Brenngaszugabe und der Einströmung der Legierung L in einer Anordnung von Düsen mittels eines Zyklons weiteres Brenn- oder Trägergas zur Wärmeaufnahme zugegeben werden, wie in 1 und 4 dargestellt. Die Abgastemperatur kann gemäß bestimmten Ausführungsformen in den unterschiedlichen Verbrennungsprozessen durch den Gasüberschuss gesteuert werden, so dass sie höher als die Schmelztemperatur der Reaktionsprodukte bzw. deren Mischung sein kann.
  • Mit einer Rezirkulierung des durch den nachfolgenden Prozessschritt abgekühlten Abgases lässt sich Kohlenmonoxid im Abgas anreichern. Es ist dabei gemäß bestimmten Ausführungsformen möglich, dem Abgas einen Anteil zu entnehmen, und damit ein Gasgemisch von Kohlenmonoxid und Kohlendioxid zu erhalten, das einen signifikant höheren Anteil an Kohlenmonoxid besitzt. Durch eine nachfolgende Gastrennung kann das Kohlenmonoxid vom Kohlendioxid gereinigt werden, und das Kohlendioxid kann im Kreislauf oder im Brenner weiterverwendet werden.
  • Durch Rückführung des Produktgases CO kann im Ofen die Verbrennungstemperatur weiter gesenkt werden. Eine Absenkung der Verbrennungstemperatur wäre auch durch einen Überschuss von CO2 möglich. Allerdings müsste dieser ca. 16-mal höher als die stöchiometrische Menge sein, so dass das Produktgas CO in dem CO2-Überschuss stark verdünnt vorliegen würde. Deshalb ist es gemäß bestimmten Ausführungsformen sinnvoll, einen Teil des Produktgases CO in den Brenner zurückzuführen und als thermischen Ballast zur Senkung der Temperatur zu verwenden. Bevorzugt wird hierbei eine bestimmte Reaktionstemperatur durch Rückführung einer konstanten Menge an Gemisch aus Abgas und Trägergas als Trägergas eingestellt. In diesem Fall entsteht kein C0/CO2-Gemisch, das aufwändig getrennt werden muss. Das Produktgas besteht zum größten Teil aus CO und nur aus kleinen Verunreinigungen durch CO2. Im stationären Zustand wird der Großteil des CO im Kreis geführt und gerade so viel CO aus dem Kreislauf abgeführt, wie durch die Reaktion von CO2 und Li/Na – wie auch generell mit elektropositiven Metalllegierung – nachgebildet wird. Beispielsweise kann sich ein solcher Kreislauf ergeben, wenn CO in einem Verhältnis von 90 Vol.% oder mehr, bezogen auf das Gemisch aus Abgas und Trägergas, als Trägergas eingesetzt wird. Eine geeignete Menge an Kohlendioxid kann somit stetig dem Verbrennungsprozess zugeführt werden, wohingegen eine entsprechende Menge Kohlenmonoxid als Wertprodukt ständig dem Kreislauf entnommen werden kann.
  • Eine entsprechende Reaktionsführung ist auch beispielhaft in 5 dargestellt. Aus einem Abgas 100, beispielsweise aus einem Verbrennungskraftwerk wie einem Kohlekraftwerk, wird in einer CO2-Abtrennung 101 Kohlendioxid abgetrennt und dann in Schritt 102 mit der Legierung verbrannt, wobei CO als Trägergas verwendet wird. Es entsteht das Carbonatsalzgemisch 103, und ein Gemisch aus Abgas und Trägergas umfassend CO2 und CO kann, ggf. nach einer Trennung 104, über einen Boiler 105 geleitet werden, mit dessen Hilfe eine Dampfturbine 106 und somit ein Generator 107 betrieben werden. Es erfolgt eine Abgasrückführung 108 als Trägergas, wobei CO im Schritt 109 ausgeschleust werden kann.
  • Gemäß einer dritten beispielhaften Ausführungsform können als Brenngas und als Trägergas Stickstoff in der in 1 dargestellten Vorrichtung verwendet werden. Als Legierung L wird beispielsweise eine aus Lithium und Magnesium, z.B. flüssig, eingesetzt. Die Legierung L wird dem Porenbrenner 3 zugeführt und reagiert dann unmittelbar mit dem Brenngas. Eventuell sind eine elektrische Zündung oder ein zusätzlicher Zündbrenner erforderlich.
  • Die Verbrennung der Legierung L erfolgt am Porenbrenner 3 mit der stöchiometrisch erforderlichen Menge an Stickstoff, wobei auch ein leicht über- oder unterstöchiometrisches Verhältnis (z.B. 0,95:1 bis 1:0,95 für das Verhältnis N2:Legierung L) gewählt werden kann.
  • Im zweiten Schritt erfolgt im mittleren Teil des Reaktors 6 die Mischung der Verbrennungsprodukte mit dem Trägergas, beispielsweise Stickstoff, das durch die Düsen 5 in den Reaktor 6 eingeblasen wird. Dadurch entsteht ein Zyklon, der dazu führt, dass die festen und flüssigen Reaktionsprodukte an die Reaktorwand gewirbelt werden und sich dort vornehmlich abscheiden. Die Zuführeinrichtungen können hier bei der stark exothermen Reaktion zum Kühlen verwendet werden, damit sich die Anlage nicht zu stark aufheizt, wobei die untere Temperaturgrenze der Schmelzpunkt des entstehenden Salzgemisches sein kann. Wird der Zyklon mit anderen Gasen als Stickstoff wie z.B. Luft oder Kohlendioxid oder weiteren Gasen betrieben, kann in den Reaktionsprodukten auch Oxid oder Carbonat entstehen. Nach Abscheidung der flüssigen und/oder festen Reaktionsprodukte, welche durch ein Gitter 6‘ verbessert werden kann, wird das Abgas zum Beispiel in einen Boiler geleitet und zur Verdampfung von Wasser genutzt, um dann eine Turbine mit nachgeschaltetem Generator anzutreiben oder andere technische Vorrichtungen (z.B. Wärmetauscher) zu betreiben. Das nach diesem Prozess abgekühlte Abgas kann beispielsweise wieder zum Erzeugen des Zyklons im Reaktor 6 benutzt werden. Damit wird die Restwärme des Abgases nach dem Verdampfungsprozess im Boiler genutzt, und es muss nur die stöchiometrisch notwendige Menge an Stickstoff für die Verbrennung, beispielsweise durch Luftzerlegung, gewonnen werden.
  • Die Verbrennung kann gemäß bestimmten Ausführungsformen mit einem gewissen Überschuss an Brenngas erfolgen, beispielsweise in einem molaren Verhältnis von Brenngas zu Legierung L von mehr als 1,01:1, bevorzugt mehr als 1,05:1, weiter bevorzugt 5:1 und mehr, noch weiter bevorzugt 10:1 und mehr, beispielsweise auch 100:1 und mehr, um die Abgastemperatur in einem bestimmten Temperaturbereich zu stabilisieren, und es kann neben der Brenngaszugabe und der Einströmung der Legierung L in einer Anordnung von Düsen mittels eines Zyklons weiteres Brenn- oder Trägergas zur Wärmeaufnahme zugegeben werden, wie in 1 und 4 dargestellt.
  • Eine entsprechende Reaktionsführung ist auch beispielhaft in 6 dargestellt. Aus der Luft 200 wird in einer Luftzerlegung 201 Stickstoff abgetrennt und dann in Schritt 202 mit der Legierung L verbrannt, wobei Stickstoff, beispielsweise ebenfalls aus der Luftzerlegung 201, als Trägergas verwendet wird. Es entsteht ein Nitridsalzgemisch von Lithium- und Magnesiumnitrid 203, und das Gemisch aus Abgas und Trägergas umfassend N2 204 kann über einen Boiler 205 geleitet werden, mit dessen Hilfe eine Dampfturbine 206 und somit ein Generator 207 betrieben werden. Es erfolgt eine Abgasrückführung 208 als Trägergas. Aus dem Nitridsalzgemisch 203 kann durch Hydrolyse 209 Ammoniak 210 gewonnen werden, wobei Hydroxid 211 entsteht, welches mit Kohlendioxid zu Carbonat 212 umgesetzt werden kann.
  • Gemäß einer vierten beispielhaften Ausführungsform kann es auch möglich sein, z.B. bei der Verwendung von Luft als Brenngas, zwei Reaktoren, z.B. zwei Zyklonreaktoren, hintereinander zu verwenden, wobei im ersten Zyklonreaktor mit der Legierung und dem Sauerstoff aus der Luft ein Metalloxidgemisch hergestellt werden kann und das Abgas vornehmlich Stickstoff enthält, und dieses Abgas dann in einem zweiten Zyklonreaktor als Brenngas mit Legierung L zu Metallnitrid reagieren kann. Hierbei kann beispielsweise Stickstoff als Trägergas fungieren, dass auch aus dem ersten Abgas gewonnen werden kann, oder das erste Abgas selbst, wenn es beispielsweise im Kreis geführt wird.
  • Eine fünfte beispielhafte Ausführungsform ist in 5 dargestellt, bei der der Reaktor dem in 1 dargestellten Reaktor ähnelt. Die Legierung L, beispielsweise Na/K, wird dem Zyklonreaktor 6 (6a, 6b) über den Porenbrenner 3, ggf. bei Raumtemperatur flüssig, zugeführt, und das Brenngas, beispielsweise Kohlendioxid, über die Zuführeinrichtung 1. Besonders vorteilhaft ist die Injektion des Brennstoffs im Zyklonreaktor 6 (6a, 6b) an Stellen mit hoher Gasgeschwindigkeit, damit die flüssigen Metalltropfen vom Porenbrenner 3 leicht abgerissen werden. Über die Stöchiometrie der Reaktion kann die Abgastemperatur eingestellt werden. Diese sollte vorteilhaft so gewählt werden, dass das entstehende Salzgemisch flüssig bleibt. Dabei kann die Schmelztemperatur des Salzgemisches auf ca. 700°C gesenkt werden, im Vergleich zu 900 °C für Kaliumcarbonat und 858 °C für Natriumcarbonat. Nach der Verbrennung werden die Reaktionsprodukte durch den Zyklon getrennt und die Salzprodukte der Legierung L, beispielsweise als Flüssigkeit, am Reaktorausgang entnommen und in einem Behälter 15 für feste und flüssige Reaktionsprodukte gesammelt. Über einen Wärmetauscher 12 kann thermische Energie aus diesen Reaktionsprodukten am unteren Ende des Reaktors, beispielsweise an der Reaktorwand, wo eine Salzschmelze abfließt, gewonnen werden, die dann über eine Dampfturbine 13 und einen Generator 14 in elektrische Energie umgewandelt werden kann. Das unter Druck abgeführte, heiße und partikelfreie Gas kann so mit hoher Effizienz in Strom umgewandelt werden. Das Abgas wird über die Abführeinrichtung 8 zu einer Expanderturbine 16 geleitet, aus der wiederum mit dem Generator 14‘ Strom gewonnen werden kann. Bei einem Überschuss von CO2 in dem Reaktionsgas kann das Abgas nach Austritt aus der Expanderturbine 16 dem Zyklonreaktor 6 als Reaktionsgas rückgeführt werden und so die CO Konzentration im Abgas erhöht werden. Es findet also über eine Rückführungseinrichtung 18 eine Rückführung von Abgas statt, das als Trägergas wiederum im Zyklonreaktor 6 (6a, 6b) verwendet werden kann. Zudem kann über eine Entnahme Abgas entnommen und einer Abgastrennung 17 zugeführt werden, beispielsweise bei Verwendung von CO2 als Brenn- und CO als Trägergas und Produkt der Verbrennung.
  • Eine sechste beispielhafte Ausführungsform ist in 6 dargestellt, wobei anstelle eines Porenbrenners 3 eine Verdüsung der Legierung L am Ende der Zuführeinrichtung 2 stattfindet und im Reaktionsraum 30 dann die Reaktion mit dem Brenngas aus den Zuführungseinrichtungen 1 stattfindet. Danach werden die entstehenden Reaktionsprodukte in den Zyklonreaktor 6 (6a, 6b) überführt. Obgleich in 6 der Reaktionsraum 30 seitlich angebracht ist, kann er auch auf andere Weise, beispielsweise oben, am Zyklonreaktor angebracht sein, solange die Reaktionsprodukte der Zyklontrennung unterworfen werden.
  • Die Erfindung beschreibt den geeigneten Einsatz von Legierungen von elektropositiven Metallen als stoffliche Energiespeicher, welche elektrochemisch unter Nutzung von regenerativer, elektrischer Energie (Überproduktion) hergestellt werden können (Ladeprozess). Die Entladung des Energiespeichers kann als Verbrennungsprozess in Kohlendioxid, Stickstoff, Sauerstoff, Luft, Atmosphäre, etc. realisiert werden.
  • Durch die vorliegende Erfindung kann gemäß bestimmten Ausführungsformen die Trennung der gasförmigen Reaktionsprodukte von den bei der Reaktion entstehenden Salzen über den Einsatz eines Zyklons und dem flüssigen Abzug des Salzgemisches sichergestellt werden. Zudem kann durch den Einsatz von Legierungen L von elektropositiven Metallen und der niedrigeren Schmelztemperatur der entstehenden Salzgemische bei der Verbrennung im Vergleich zu den einzelnen Metallverbindungen die Verbrennungsreaktion auch bei niedrigeren Temperaturen eingestellt werden und damit der Einsatz teurer Materialien für den Brennraum vermieden werden, bei gleichzeitiger Sicherstellung eines flüssigen Abzugs des Salzgemisches. Die Rückverstromung der bei der Verbrennung frei werdenden thermischen Energie kann beispielsweise sowohl durch die Verwendung einer Expanderturbine für die ggf. unter Druck und Temperatur abgeführten Gase, als auch über Wärmetauscher an der Reaktorwand und anschließen einer Dampfturbine erfolgen.
  • Durch die Konstruktion der erfindungsgemäßen Vorrichtung, insbesondere durch die Verwendung von porösen Brennrohren, gelingt es, die festen bzw. flüssigen Reaktionsprodukte oder deren Gemische einfach von den entstehenden Abgasen zu trennen, und damit die Abgase einer Verwendung in beispielsweise einer Gasturbine bzw. einer Expanderturbine, einem Wärmetauscher, oder einem Boiler zuzuführen. Auf diese Weise kann zudem auch die gesamte Verbrennungsvorrichtung kompakter gestaltet werden und die Verbrennung schonender für die Vorrichtung durch Lokalisierung des Verbrennungsprozesses gestaltet werden.
  • Weiterhin kann die Vorrichtung, beispielsweise ein Reaktor wie ein Ofen, mit erhöhtem Betriebsdruck gefahren werden, und so kann der Verbrennungs- und Abscheideprozess den jeweiligen Bedingungen des nachfolgenden Schrittes angepasst werden. Die Möglichkeit der Unterscheidung von Brenngas und Trägergas zur Etablierung eines Zyklons ermöglicht in bestimmten Ausführungsformen die Rückführung von Abgasen nach der Wärmeabgabe. Eine Rezirkulierung ist mit dieser Konstruktion leicht möglich. Auch sind Gasgemische als Brenn- und Trägergas möglich. Durch Rückführung des Abgases nach dem oder den Prozessschritten kann Energie und Material eingespart werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 3328957 [0003]
    • DE 102008031437 A1 [0004]
    • DE 102010041033 A1 [0004]
    • DE 102014203039 [0007, 0007]

Claims (13)

  1. Verfahren zum Verbrennen einer Legierung eines elektropositiven Metalls, wobei das elektropositive Metall ausgewählt ist aus Alkali-, Erdalkalimetallen, Aluminium und Zink, sowie Mischungen derselben, mit einem Brenngas, wobei die Legierung des elektropositiven Metalls mindestens zwei elektropositive Metalle umfasst, bei dem die Legierung des elektropositiven Metalls mit dem Brenngas verbrannt wird.
  2. Verfahren gemäß Anspruch 1, bei dem die Legierung des elektropositiven Metalls als Flüssigkeit verbrannt wird.
  3. Verfahren gemäß Anspruch 1 oder 2, wobei die Verbrennung bei einer Temperatur stattfindet, die über dem Schmelzpunkt der bei der Reaktion der Legierung des elektropositiven Metalls und des Brenngases entstehenden Salze liegt.
  4. Verfahren gemäß einem der Ansprüche 1 bis 3, wobei die Legierung des elektropositiven Metalls als Flüssigkeit in einen Porenbrenner geleitet und mit Hilfe des Porenbrenners verbrannt wird, wobei das Brenngas gegebenenfalls auf die Außenflächen des Porenbrenners geleitet und mit der Legierung des elektropositiven Metalls verbrannt wird.
  5. Verfahren gemäß einem der Ansprüche 1 bis 3, wobei die Legierung des elektropositiven Metalls, bevorzugt als Flüssigkeit, verdüst und mit dem Brenngas verbrannt wird.
  6. Verfahren gemäß einem der vorigen Ansprüche, wobei die Reaktionsprodukte nach der Verbrennung, bevorzugt mit Hilfe eines Zyklons, getrennt werden.
  7. Verfahren gemäß einem der vorigen Ansprüche, wobei die Reaktionsprodukte der Verbrennung zur Erzeugung von Energie, bevorzugt unter Verwendung mindestens einer Expanderturbine und/oder mindestens einer Dampfturbine und/oder mindestens eines Wärmetauschers und/oder mindestens eines Boilers, verwendet werden.
  8. Vorrichtung zur Verbrennung einer Legierung eines elektropositiven Metalls, wobei das elektropositive Metall ausgewählt ist aus Alkali-, Erdalkalimetallen, Aluminium und Zink, sowie Mischungen derselben und die Legierung des elektropositiven Metalls mindestens zwei elektropositive Metalle aufweist, umfassend einen Porenbrenner oder eine Einrichtung zum Verdüsen der Legierung des elektropositiven Metalls, eine Zuführeinrichtung für die Legierung des elektropositiven Metalls, bevorzugt als Flüssigkeit, zum Inneren des Porenbrenners oder zur Einrichtung zum Verdüsen der Legierung, die dazu ausgebildet ist, dem Porenbrenner oder der Einrichtung zum Verdüsen der Legierung die Legierung des elektropositiven Metalls, bevorzugt als Flüssigkeit, zuzuführen, eine Zuführeinrichtung für ein Brenngas, die dazu ausgebildet, Brenngas zuzuführen, und optional eine Heizvorrichtung zum Bereitstellen der Legierung des elektropositiven Metalls als Flüssigkeit, die dazu ausgebildet ist, die Legierung des elektropositiven Metalls zu verflüssigen.
  9. Vorrichtung gemäß Anspruch 8, die einen Porenbrenner umfasst, wobei die Zuführeinrichtung für das Brenngas derart angeordnet ist, dass sie das Brenngas, zumindest teilweise, auf die Oberfläche des Porenbrenners leitet.
  10. Vorrichtung gemäß Anspruch 9, wobei der Porenbrenner derart angeordnet ist, dass entstehende Reaktionsprodukte der Verbrennung und optional das elektropositive Metall durch Gravitation von der Oberfläche des Porenbrenners abgetrennt werden können.
  11. Vorrichtung gemäß einem der Ansprüche 8 bis 10, wobei der Porenbrenner oder die Einrichtung zum Verdüsen der Legierung des elektropositiven Metalls aus einem Material bestehen, das ausgewählt ist aus der Gruppe, bestehend aus Eisen, Chrom, Nickel Niob, Tantal, Molybdän, Wolfram, Zirkalloy und Legierungen dieser Metalle, sowie Stähle wie Edelstahl und Chrom-Nickel-Stahl.
  12. Vorrichtung gemäß einem der Ansprüche 8 bis 11, weiter umfassend eine Trenneinrichtung der Produkte der Verbrennung des elektropositiven Metalls, bevorzugt ein Zyklon, wobei der Zyklon weiter bevorzugt ein Lochblech aufweisen kann.
  13. Vorrichtung gemäß einem der Ansprüche 8 bis 12, weiter umfassend mindestens eine Expanderturbine und/oder mindestens eine Dampfturbine und/oder mindestens einen Wärmetauscher und/oder mindestens einen Boiler.
DE102014209527.1A 2014-05-20 2014-05-20 Verfahren zum Verbrennen einer Legierung eines elektropositiven Metalls Withdrawn DE102014209527A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE102014209527.1A DE102014209527A1 (de) 2014-05-20 2014-05-20 Verfahren zum Verbrennen einer Legierung eines elektropositiven Metalls
RU2016149760A RU2656217C1 (ru) 2014-05-20 2015-05-04 Способ и устройство для сжигания сплава электроположительного металла
EP15722971.7A EP3146265A1 (de) 2014-05-20 2015-05-04 Verfahren zum verbrennen einer legierung eines elektropositiven metalls
CN201580039610.5A CN107046808A (zh) 2014-05-20 2015-05-04 用于燃烧正电性金属的合金的方法
PCT/EP2015/059728 WO2015176944A1 (de) 2014-05-20 2015-05-04 Verfahren zum verbrennen einer legierung eines elektropositiven metalls
KR1020167035537A KR20170007453A (ko) 2014-05-20 2015-05-04 양전성 금속의 합금의 연소를 위한 방법
US15/311,229 US20170089569A1 (en) 2014-05-20 2015-05-04 Method For The Combustion Of An Alloy Of An Electropositive Metal
KR1020187023780A KR20180095137A (ko) 2014-05-20 2015-05-04 양전성 금속의 합금의 연소를 위한 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014209527.1A DE102014209527A1 (de) 2014-05-20 2014-05-20 Verfahren zum Verbrennen einer Legierung eines elektropositiven Metalls

Publications (1)

Publication Number Publication Date
DE102014209527A1 true DE102014209527A1 (de) 2015-11-26

Family

ID=53181263

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014209527.1A Withdrawn DE102014209527A1 (de) 2014-05-20 2014-05-20 Verfahren zum Verbrennen einer Legierung eines elektropositiven Metalls

Country Status (7)

Country Link
US (1) US20170089569A1 (de)
EP (1) EP3146265A1 (de)
KR (2) KR20170007453A (de)
CN (1) CN107046808A (de)
DE (1) DE102014209527A1 (de)
RU (1) RU2656217C1 (de)
WO (1) WO2015176944A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020002242A1 (de) 2018-06-25 2020-01-02 Siemens Aktiengesellschaft Hochstromtaugliches verfahren zur herstellung von ammoniak

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014209529A1 (de) * 2014-05-20 2015-11-26 Siemens Aktiengesellschaft Verbrennung von Lithium bei unterschiedlichen Temperaturen, Drücken und Gasüberschüssen mit porösen Rohren als Brenner
FI129619B (en) * 2019-01-22 2022-05-31 Varo Teollisuuspalvelut Oy FIREPLACE BOTTOM PROTECTION IN SODY BOILERS

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3328957A (en) 1966-01-03 1967-07-04 Curtiss Wright Corp Ratio control for closed cycle propulsion systems
US3911288A (en) * 1972-10-27 1975-10-07 Stephen F Skala Energy transport system and method
GB1491680A (en) * 1975-01-21 1977-11-09 Barnard R Solar energy conversion using electrolysis
DE102008031437A1 (de) 2008-07-04 2010-01-07 Siemens Aktiengesellschaft Mobiler Energieträger und Energiespeicher
DE102010041033A1 (de) 2010-09-20 2012-03-22 Siemens Aktiengesellschaft Stoffverwertung mit elektropositivem Metall
DE102014203039A1 (de) 2014-02-19 2015-08-20 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Trennung von Abgas bei der Verbrennung bestimmter Metalle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3525223A (en) * 1967-04-01 1970-08-25 Licentia Gmbh Thermodynamic rocket process using alkali metal fuels in a two phase flow
GB1541456A (en) * 1977-04-14 1979-02-28 Barnard R M Energy conversion systems using a recoverable fuel
RU2182163C2 (ru) * 1995-06-07 2002-05-10 Уильям К. Орр Состав топлива
US7674947B2 (en) * 2004-12-13 2010-03-09 James A Barends Recirculating combustion system
CN101929676B (zh) * 2010-08-05 2012-07-25 西安交通大学 一种催化多孔介质燃烧器
US8728425B2 (en) * 2012-04-17 2014-05-20 Siemens Aktiengesellschaft Method and an apparatus for performing an energy efficient desulphurization and decarbonisation of a flue gas
CN202808565U (zh) * 2012-09-13 2013-03-20 陕西科技大学 一种玻璃窑炉烤窑用燃烧器
EP2912375A1 (de) * 2012-10-25 2015-09-02 European Space Agency Metallverbrennendes fahrzeugmotorsystem
DE102013224709A1 (de) * 2013-12-03 2015-06-03 Siemens Aktiengesellschaft Prozessanlage zur kontinuierlichen Verbrennung eines elektropositiven Metalls

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3328957A (en) 1966-01-03 1967-07-04 Curtiss Wright Corp Ratio control for closed cycle propulsion systems
US3911288A (en) * 1972-10-27 1975-10-07 Stephen F Skala Energy transport system and method
GB1491680A (en) * 1975-01-21 1977-11-09 Barnard R Solar energy conversion using electrolysis
DE102008031437A1 (de) 2008-07-04 2010-01-07 Siemens Aktiengesellschaft Mobiler Energieträger und Energiespeicher
DE102010041033A1 (de) 2010-09-20 2012-03-22 Siemens Aktiengesellschaft Stoffverwertung mit elektropositivem Metall
DE102014203039A1 (de) 2014-02-19 2015-08-20 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Trennung von Abgas bei der Verbrennung bestimmter Metalle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020002242A1 (de) 2018-06-25 2020-01-02 Siemens Aktiengesellschaft Hochstromtaugliches verfahren zur herstellung von ammoniak
DE102018210304A1 (de) 2018-06-25 2020-01-02 Siemens Aktiengesellschaft Hochstromtaugliches Verfahren zur Herstellung von Ammoniak

Also Published As

Publication number Publication date
RU2656217C1 (ru) 2018-06-01
EP3146265A1 (de) 2017-03-29
KR20180095137A (ko) 2018-08-24
KR20170007453A (ko) 2017-01-18
US20170089569A1 (en) 2017-03-30
CN107046808A (zh) 2017-08-15
WO2015176944A1 (de) 2015-11-26

Similar Documents

Publication Publication Date Title
DE102014203039A1 (de) Verfahren und Vorrichtung zur Trennung von Abgas bei der Verbrennung bestimmter Metalle
EP2501786B1 (de) Thermisch-chemische verwertung von kohlenstoffhaltigen materialien, insbesondere zur emissionsfreien erzeugung von energie
EP3177871B1 (de) Verbrennung von elektropositivem metall in einer flüssigkeit
DE112008001122T5 (de) Einrichtung zur Gaserzeugung
EP3008218A1 (de) Hochofen und verfahren zum betrieb eines hochofens
DE102010019330A1 (de) Verfahren zur Umwandlung von Carbonaten in Oxide
EP2360230A1 (de) Verfahren und Vorrichtung zur Verwertung von Emissionen eines Kraftwerks
DE102014219274A1 (de) Kraftwerk zur Herstellung von Energie und Ammoniak
DE19634857C2 (de) Verfahren und Vorrichtung zur Herstellung von Synthesegas sowie Verwendung des erzeugten Gasgemisches
DE102014219276A1 (de) Gas und Dampfkraftwerksanlage (GUD) auf der Basis von elektropositiven Metallen mit optional angeschlossenem Fischer-Tropsch Prozess
EP3212566B1 (de) Verfahren und anlage zur herstellung von synthesegas
DE102014209527A1 (de) Verfahren zum Verbrennen einer Legierung eines elektropositiven Metalls
DE102013010855B4 (de) Verfahren zum Betreiben von Verbrennungsprozesse ausführenden und Kohlenstoffdioxid emittierenden Industrieanlagen sowie Industrieanlage insbesondere zur Durchführung des Verfahrens
DE102009049914B4 (de) Kohlekraftwerks-Kombiprozess mit integrierter Methanolherstellung
DE102014209529A1 (de) Verbrennung von Lithium bei unterschiedlichen Temperaturen, Drücken und Gasüberschüssen mit porösen Rohren als Brenner
EP3736347A1 (de) Nutzung von sauerstoff aus wasserelektrolyse bei der eisen- und/oder stahlerzeugung
EP2360231A1 (de) Verfahren und Vorrichtung zur Verwertung von Emissionen einer industriellen Anlage
EP2659185A2 (de) Verfahren zur behandlung eines kohlendioxidhaltigen abgases
DE102016208938A1 (de) Verfahren und Anlage zur Erzeugung eines Kohlenwasserstoffs
DE2652302C3 (de) Verfahren zur Gewinnung von Zink und Methanol
DE914848C (de) Verfahren zur Herstellung von Schwefelkohlenstoff
WO2023155975A1 (de) Verfahren und vorrichtung zur gewinnung von kohlenmonoxid aus atmosphärischem kohlendioxid mit einem feststoff-plasma-reaktor
DE102021000090A1 (de) System zur produktion von calciumoxid cao und/oder co2 aus calciumcarbonat cacos in einer wasserstoff atmosphäre mit einem wasserstoffkreislauf und zugehöriges verfahren zur calciumoxid und/oder co2 herstellung
DE102021005175A1 (de) Methanol synthesesystem welches wasserstoff zusammen mit calciumcarbonat caco3 zu methanol umwandelt und zugehöriges verfahren zur methanol synthese
DE102022119806A1 (de) Verfahren und System zur Natriumcarbonatherstellung

Legal Events

Date Code Title Description
R163 Identified publications notified
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee