EP3292228B1 - Stahlflachprodukt und verfahren zu seiner herstellung - Google Patents

Stahlflachprodukt und verfahren zu seiner herstellung Download PDF

Info

Publication number
EP3292228B1
EP3292228B1 EP16723293.3A EP16723293A EP3292228B1 EP 3292228 B1 EP3292228 B1 EP 3292228B1 EP 16723293 A EP16723293 A EP 16723293A EP 3292228 B1 EP3292228 B1 EP 3292228B1
Authority
EP
European Patent Office
Prior art keywords
steel
content
temperature
flat steel
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16723293.3A
Other languages
English (en)
French (fr)
Other versions
EP3292228A1 (de
Inventor
Richard G. Thiessen
Thomas Heller
Karsten MACHALITZA
Roland Sebald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Original Assignee
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG, ThyssenKrupp AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP3292228A1 publication Critical patent/EP3292228A1/de
Application granted granted Critical
Publication of EP3292228B1 publication Critical patent/EP3292228B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • a flat steel product which has a tensile strength R m of at least 1200 MPa and consists of a steel which, in addition to Fe and unavoidable impurities (in% by weight), C: 0.10-0.50%, Si: 0 , 1 - 2.5%, Mn: 1.0 - 3.5%, Al: up to 2.5%, P: up to 0.020%, S: up to 0.003%, N: up to 0.02% , and optionally one or more of the elements "Cr, Mo, V, Ti, Nb, B and Ca" in the following contents: Cr: 0.1-0.5%, Mo: 0.1-0.3%, V : 0.01-0.1%, Ti: 0.001-0.15%, Nb: 0.02-0.05%.
  • Typical tensile strengths Rm of flat steel products according to the invention are 950-1300 MPa with a yield strength which is at least 800 MPa and can reach the respective tensile strength.
  • the elongation A 50 of flat steel products according to the invention is typically 8-20%.
  • a flat steel product according to the invention regularly achieves hole expansion ratios of at least 30% in the hole expansion test according to ISO 16630.
  • the setting of a suitable ratio between the elements which influence the austenite formation and hardenability of the steel and the elements which suppress the carbide formation is of essential importance here.
  • This ratio is set in an alloy according to the invention using the factor ⁇ in which the respective C, Mn, Cr, Al and Si content of the steel is incorporated.
  • the factor ⁇ should not be less than 1.5. Too high a content of silicon or aluminum would have a negative effect on the coatability (silicon) or the castability (aluminum) of the steel. If the carbon, manganese or chromium content is insufficient, the required strength would not be achieved.
  • the values for the factor ⁇ are at least 1.6.
  • Al is added to the steel of a flat steel product according to the invention for deoxidation and for binding any nitrogen that may be present.
  • Al can also be used to suppress cementite.
  • the Al content of a steel intended for a flat steel product according to the invention is therefore limited to 0.01-1.5% by weight. If low austenitizing temperatures are to be guaranteed, it can be expedient to limit the Al content to a maximum of 0.44% by weight, in particular to 0.1% by weight.
  • higher Al contents have a negative effect on castability in steel production. Al contents of at most 1.0% by weight, in particular at most 0.44% by weight, have proven to be favorable for ensuring particularly good castability.
  • Chromium in contents of up to 1.0% by weight can optionally be used as an effective inhibitor of pearlite in the steel provided according to the invention and also contributes to strength. With contents of more than 1.0 wt.% Cr, there is a risk of pronounced grain boundary oxidation. To be able to use the positive effects of Cr are at least 0.05% by weight is required.
  • the presence of Cr in the steel of a flat steel product according to the invention has a particularly favorable effect if at least 0.15% by weight of Cr is present, an optimal effect being achieved with contents of up to 0.8% by weight.
  • the Ti content of the steel of a steel flat product according to the invention is limited to a maximum of 0.2% by weight and its Nb content to a maximum of 0.05% by weight, whereby the presence of micro-alloying elements has proven to be advantageous in order to avoid negative influences, when the sum of the contents of Nb and Ti does not exceed 0.2% by weight.
  • the steels E, F and G therefore did not meet the requirements determined according to the invention by the factor ⁇ for the coordination of the alloying elements essential for austenite formation and hardenability.
  • samples 1 - 7, 11, 12, 16 - 23, 28 - 31, 33 - 35, 39, 40, 43-60 for a holding period t Q of 10-60 s.
  • Samples 1-7, 11, 12, 16, 17, 19-23, 28-31, 33-35, 39, 40, 43-48 were then heated to a treatment temperature T B at a heating rate ⁇ B1 over a heating time t BR heated, on which they have been held for an additional holding period t BI in some attempts.
  • Sample 18 was cooled to the treatment temperature T B analogously. It was then cooled to room temperature at a cooling rate ⁇ B2 .
  • Comparative examples A3 and C19 show that if the cooling speeds ⁇ Q are too low, the desired yield strength is not achieved, which is due to the fact that the formation of ferrite could not be prevented sufficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

  • Die Erfindung betrifft ein Stahlflachprodukt, das eine optimierte Kombination aus Festigkeit und Dehnung besitzt.
  • Ebenso betrifft die Erfindung ein Verfahren zur Herstellung eines solchen Produkts.
  • Wenn hier von Stahlflachprodukten die Rede ist, sind damit Stahlbänder, -bleche oder daraus gewonnene Blechzuschnitte, wie Platinen gemeint.
  • Sofern nicht ausdrücklich anders erwähnt, sind im vorliegenden Text und in den Ansprüchen die Gehalte an bestimmten Legierungselementen jeweils in Gew.-% und die Anteile an bestimmten Gefügebestandteilen in Flächen-% angegeben.
  • Aus der CA 2 734 976 A1 ( WO 2010/029983 A1 ) ist ein Stahl mit guter Zähigkeit und Verformbarkeit bekannt, der eine Zugfestigkeit von mindestens 980 MPa aufweisen soll. Der Stahl enthält dazu neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) 0,17 - 0,73 % C, bis zu 3,0 % Si, 0,5 - 3,0 % Mn, bis zu 0,1 % P, bis zu 0,07 % S, bis zu 3,0 % Al und bis zu 0,010 % N. Dabei soll die Summe der Al- und Si-Gehalte mindestens 0,7 % betragen. Gleichzeitig soll, jeweils in Bezug auf die Gesamtheit aller Mikrostrukturbestandteile, der Martensitanteil im Gefüge des Stahls 10 - 90 %, der Anteil an Restaustenit im Bereich von 5 - 50 % und der Anteil an ferritischem Bainit, der aus "oberem Bainit" stammt, mindestens 5 % betragen. Als "oberer Bainit" wird dabei ein Bainit bezeichnet, in dem feine Karbidkörner gleichmäßig verteilt vorhanden sind, wie sie bei "unterem Bainit" nicht zu finden sind. Höhere Gehalte an oberem Bainit von 17 % und mehr werden als vorteilhaft angesehen, um die angestrebten hohen Restaustenitgehalte im Gefüge zu erzeugen.
  • Aus der EP 2 524 970 A1 ist des Weiteren ein Stahlflachprodukt bekannt, das eine Zugfestigkeit Rm von mindestens 1200 MPa besitzt und aus einem Stahl besteht, der neben Fe und unvermeidbaren Verunreinigungen (in Gew.-%) C: 0,10 - 0,50 %, Si: 0,1 - 2,5 %, Mn: 1,0 - 3,5 %, Al: bis zu 2,5 %, P: bis zu 0,020 %, S: bis zu 0,003 %, N: bis zu 0,02 %, sowie optional eines oder mehrere der Elemente "Cr, Mo, V, Ti, Nb, B und Ca" in folgenden Gehalten: Cr: 0,1 - 0,5 %, Mo: 0,1 - 0,3 %, V: 0,01 - 0,1 %, Ti: 0,001 - 0,15 %, Nb: 0,02 - 0,05 % enthält. Dabei gilt für die Summe Σ(V,Ti, Nb) der Gehalte an V, Ti und Nb gilt Σ(V,Ti,Nb) ≤ 0,2 %, B: 0,0005 - 0,005 %, Ca: bis zu 0,01 %. Gleichzeitig weist das Stahlflachprodukt ein Gefüge mit (in Flächen-%) weniger als 5 % Ferrit, weniger als 10 % Bainit, 5 - 70 % unangelassenem Martensit, 5 - 30 % Restaustenit und 25 - 80 % angelassenem Martensit auf, wobei mindestens 99 % der im angelassenen Martensit enthaltenen Eisenkarbide eine Größe von weniger als 500 nm aufweisen. Aufgrund seines minimierten Anteils an überangelassenen Martensit weist ein solcherart beschaffenes Stahlflachprodukt eine optimierte Verformbarkeit auf.
  • Ebenso ist aus der EP 2 524 970 A1 ein Verfahren zur Herstellung eines Stahlflachprodukts der voranstehend erläuterten Art bekannt. Bei diesem Verfahren wird zunächst ein Stahlflachprodukt mit der voranstehend genannten Zusammensetzung mit einer Erwärmungsgeschwindigkeit θH1, θH2 von mindestens 3 °C/s auf eine oberhalb der A3-Temperatur des Stahls des Stahlflachprodukts liegende und höchstens 960 °C betragende Austenitisierungstemperatur THZ erwärmt. Dort wird das Stahlflachprodukt über eine Austenitisierungsdauer tHZ von 20 - 180 s gehalten, um anschließend auf eine Kühlstopptemperatur abgekühlt zu werden. Diese ist größer als die Martensitstopptemperatur und kleiner als die Martensitstarttemperatur, wobei die Abkühlung mit einer Abkühlungsgeschwindigkeit erfolgt, die mindestens gleich einer in Abhängigkeit von den Legierungsgehalten des Stahls bestimmten Mindestabkühlgeschwindigkeit ist. Dann wird das Stahlflachprodukt für 10 - 60 s auf der Kühlstopptemperatur gehalten, um dann mit einer Erwärmungsgeschwindigkeit von 2 - 80 °C/s auf eine 400 - 500 °C betragende Partitioningtemperatur erwärmt zu werden. Daran kann sich ein isothermes Halten des Stahlflachprodukts bei der Partitioningtemperatur über bis zu 500 s anschließen. Darauf folgend wird das Stahlflachprodukt mit einer 3 - 25 °C/s betragenden Abkühlgeschwindigkeit abgekühlt.
  • Bei dem voranstehend erläuterten bekannten Verfahren wird durch das Erwärmen und das optional zusätzlich durchgeführte Halten bei der Partitioningtemperatur der Restaustenit im Gefüge des Stahlflachprodukts mit Kohlenstoff aus dem übersättigten Martensit angereichert. Dieser Vorgang wird in der Fachsprache auch als "Partitionieren des Kohlenstoffs" oder "Partitioning" bezeichnet. Das Partitioning kann bereits während des Aufheizens als so genanntes "Ramped Partitioning", durch das nach dem Erwärmen durchgeführte Halten bei der Partitioningtemperatur (so genanntes "Isothermes" Partitioning) oder durch eine Kombination von Isothermem und Ramped Partitioning erfolgen. Die beim Ramped Partitioning im Vergleich zum Isothermen Partitioning angestrebte langsamere Erwärmungsgeschwindigkeit erlaubt eine besonders genaue Ansteuerung der jeweils vorgegebenen Partitioningtemperatur bei vermindertem Energieeinsatz. Die in der voranstehend erläuterten Weise beschaffenen und verarbeiteten Stähle zählen zu den so genannten "AHSS-Stählen" (Advanced High Strength Steel).
  • Moderne Varianten dieser Stähle und daraus hergestellte Stahlflachprodukte besitzen eine sehr hohe Festigkeit bei gleichzeitig hoher Dehnung und eignen sich daher besonders für die Herstellung sicherheitsrelevanter Komponenten von Automobilkarosserien, die im Fall eines Crashs Verformungsenergie absorbieren sollen. Allerdings zeigt sich in der Praxis, dass hohe Restaustenitgehalte im Gefüge solcher Stähle zwar deren uniaxiale Dehnung durch den bekannten TRIP-Effekt verbessern können, dass es mit ihnen jedoch nicht zuverlässig gelingt, eine in alle Richtungen gleichermaßen gute Verformbarkeit zu erzielen, wie sie beispielsweise durch ein gutes Lochaufweitungsverhalten gekennzeichnet ist.
  • Aus der JP3374659 B2 und der JP2013 227657 A sind Beispiele von Stahlflachprodukten bekannt, die eine ähnliche Element- und Gefügezusammensetzung, sowie eine Kombination aus hoher Festigkeit und Dehnbarkeit aufweisen.
  • Vor diesem Hintergrund ist die Aufgabe entstanden, ein Stahlflachprodukt zu schaffen, das nicht nur eine optimierte Kombination aus hoher Festigkeit und Dehnung besitzt, sondern bei verbesserten Gebrauchseigenschaften, wie einer guten Schweißeignung, Oberflächenbeschaffenheit und Eignung zur Beschichtung mit einem metallischen Schutzüberzug, auch ein Gefüge aufweist, das eine optimierte Verformbarkeit unabhängig von der Ausrichtung der Verformung gewährleistet.
  • Ebenso sollte ein Verfahren zur Herstellung eines solchen Stahlflachprodukts angegeben werden.
  • In Bezug auf das Stahlflachprodukt hat die Erfindung diese Aufgabe dadurch gelöst, dass ein erfindungsgemäßes Stahlflachprodukt mindestens die in Anspruch 1 angegebenen Merkmale besitzt.
  • In Bezug auf das Verfahren besteht die erfindungsgemäße Lösung der oben genannten Aufgabe darin, dass bei der Herstellung eines erfindungsgemäßen Stahlflachprodukts mindestens die in Anspruch 9 genannten Arbeitsschritte absolviert werden.
  • Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.
  • Ein erfindungsgemäßes Stahlflachprodukt ist durch die in Anspruch 1 enthaltenen Merkmale definiert.
  • Die Erfindung beruht auf der Erkenntnis, dass durch die Wahl einer geeigneten Legierung ein Stahlflachprodukt erhalten werden kann, bei dem durch ein Gefüge, das allenfalls minimale Restaustenitgehalte umfasst und durch einen hohen Anteil an angelassenem Martensit und durch feinstverteilten nichtangelassenem Martensit gekennzeichnet ist, eine hohe Festigkeit mit einer sehr guten Umformbarkeit gepaart ist.
  • Typische Zugfestigkeiten Rm von erfindungsgemäßen Stahlflachprodukten liegen bei 950 - 1300 MPa bei einer Dehngrenze, die mindestens 800 MPa beträgt und bis an die jeweilige Zugfestigkeit reichen kann. Die Dehnung A50 von erfindungsgemäßen Stahlflachprodukten liegt typischerweise bei 8 - 20 %. Gleichzeitig erreicht ein erfindungsgemäßes Stahlflachprodukt im Lochaufweitungsversuch gemäß ISO 16630 regelmäßig Lochaufweitungsverhältnisse von mindestens 30 %.
  • Diese Eigenschaftskombinationen gelingen gemäß der Erfindung durch die exakt bemessene Zugabe von kostengünstigen Legierungsbestandteilen. Diese sind so aufeinander abgestimmt, dass die angestrebten mechanischen Eigenschaften sicher erreicht werden und das erhaltene Stahlflachprodukt gleichzeitig eine gute Schweiß- und Beschichtbarkeit zeigt.
  • Wesentliche Bedeutung hat hier die Einstellung eines geeigneten Verhältnisses zwischen den Elementen, die die Austenitbildung und Härtbarkeit des Stahls beeinflussen, und den Elementen, die die Karbidbildung unterdrücken. Dieses Verhältnis wird bei einer erfindungsgemäßen Legierung anhand des Faktors ψ eingestellt, in den der jeweilige C-, Mn-, Cr-, Al- und Si-Gehalt des Stahls einfließt. Der Faktor ψ soll dabei nicht kleiner als 1,5 sein. Zu hohe Gehalte an Silizium oder Aluminium würden sich negativ auf die Beschichtbarkeit (Silizium) oder auf die Vergießbarkeit (Aluminium) des Stahls auswirken. Bei unzureichenden Gehalten an Kohlenstoff, Mangan oder Chrom würde die geforderte Festigkeit nicht erreicht. Erfindungsgemäß sind die Werte für den Faktor ψ mindestens 1,6. Werte für den Faktor ψ von mindestens 1,6 haben sich als vorteilhaft für das Einstellen eines stabilen Produktionsprozesses erwiesen, wobei sich Werte für den Faktor ψ von mindestens 1,8 als besonders vorteilhaft für die Produktionsstabilität erwiesen haben. Zu viel Kohlenstoff und Mangan können zu einem erhöhten Restaustenitgehalt führen, was wiederum in einer geringeren Umformbarkeit resultieren würde. Dies wird dadurch vermieden, dass als Obergrenze für den Bereich, in dem der ψ-Faktor eines erfindungsgemäßen Stahls liegt, der Wert auf 3,0 gesetzt ist.
  • Kohlenstoff hat im erfindungsgemäßen Stahl mehrere wichtige Funktionen. Zum einen spielt der C-Gehalt eine große Rolle bei der Bildung des Austenits und Einstellung der A3-Temperatur. Ein ausreichender C-Gehalt ermöglicht eine volle Austenitisierung schon bei Temperaturen von weniger als 930 °C. Beim anschließenden Abschrecken wird der Restaustenit durch Kohlenstoff stabilisiert. Diese Stabilisierung kann durch einen zusätzlichen Wärmebehandlungsschritt unterstützt werden, wie ihn die Erfindung beim erfindungsgemäßen Verfahren vorsieht. Auch die Festigkeit des Martensits wird stark vom C-Gehalt des Stahls beeinflusst. Auf der anderen Seite wird die Martensitstarttemperatur mit steigendem C-Gehalt zu immer tieferen Temperaturen verschoben, was zu Herausforderungen bei der Produktion führt. Aus diesen Gründen sieht die Erfindung im Stahl eines erfindungsgemäßen Stahlflachprodukts einen C-Gehalt von 0,05 - 0,2 Gew.-%, insbesondere mindestens 0,065 Gew.-% C, vor, wobei in der Praxis die positive Wirkung von C im erfindungsgemäßen Stahl dann besonders sicher genutzt werden kann, wenn der C-Gehalt 0,07 - 0,19 Gew.-% beträgt.
  • Zur jeweils konkreten Bemessung des jeweiligen C-Gehalts innerhalb der erfindungsgemäß vorgesehenen Grenzen kann auch das so genannte Kohlenstoffäquivalent "CE" herangezogen werden, dessen Wert entscheidend vom C-Gehalt beeinflusst wird. Zur Berechnung des Kohlenstoffäquivalents CE hat die American Welding Society folgende Formel vorgeschlagen: CE = % C + % Si + % Mn / 5 + % Cr + % Mo / 6
    Figure imgb0001
    • mit %C: jeweiliger C-Gehalt des Stahls
    • %Si: jeweiliger Si-Gehalt des Stahls
    • %Mn: jeweiliger Mn-Gehalt des Stahls
    • %Cr: jeweiliger Cr-Gehalt des Stahls
    • %Mo: jeweiliger Mo-Gehalt des Stahls
  • Erfindungsgemäß sollte das Kohlenstoffäquivalent CE höchstens 1,1 Gew.-% betragen, um eine gute Schweißbarkeit zu gewährleisten. Eine besonders gute Schweißeignung lässt sich dabei dadurch gewährleisten, dass der CE-Wert auf höchstens 1,0 Gew.-% beschränkt wird. Allerdings sollte der CE-Wert nicht weniger als 0,254 Gew.-% und insbesondere nicht weniger als 0,29 Gew.-% betragen, um die Wirkung der erfindungsgemäß vorgesehenen, in die Berechnung des Kohlenstoffäquivalents CE einfließenden Legierungselemente zu erhalten.
  • Durch Anwesenheit von Silizium im Stahl eines erfindungsgemäßen Stahlflachprodukts wird die Entstehung von Zementit unterdrückt, durch den Kohlenstoff gebunden würde, der dann nicht mehr für die Stabilisierung des Restaustenits zur Verfügung stehen würde, und durch den die Dehnung verschlechtert würde. Dieselbe Wirkung kann auch durch Zulegieren von Al erreicht werden. Jedoch sollte ein Minimum von 0,2 Gew.-% Si im erfindungsgemäß vorgesehenen Stahl vorhanden sein. Si-Gehalte von mehr als 1,5 Gew.-% würden sich jedoch negativ auf die Oberflächenqualität eines erfindungsgemäßen Stahlflachprodukts auswirken. Daher beträgt bei einem erfindungsgemäßen Stahlflachprodukt der Si-Gehalt 0,2 - 1,5 Gew.-%, wobei sich für die Praxis Si-Gehalte von mindestens 0,25 Gew.-% oder höchstens 0,95 Gew.-% als besonders günstig und von höchstens 0,63 Gew.-% als ganz besonders günstig herausgestellt haben.
  • Aluminium wird bei der Stahlerzeugung zur Desoxidation und zum Abbinden von gegebenenfalls vorhandenem Stickstoff dem Stahl eines erfindungsgemäßen Stahlflachprodukts zugegeben. Al kann zudem auch für die Unterdrückung von Zementit verwendet werden. Allerdings steigt bei Anwesenheit höherer Gehalte an Al auch die Austenitisierungstemperatur. Daher ist der Al-Gehalt eines für ein erfindungsgemäßes Stahlflachprodukt vorgesehenen Stahls auf 0,01 - 1,5 Gew.-% beschränkt. Sollen niedrige Austenitisierungstemperaturen gewährleistet werden, so kann es zweckmäßig sein, den Al-Gehalt auf maximal 0,44 Gew.-%, insbesondere auf 0,1 Gew.-%, zu beschränken. Zudem wirken sich höhere Al-Gehalte negativ auf die Vergießbarkeit bei der Stahlerzeugung aus. Al-Gehalte von höchstens 1,0 Gew.-%, insbesondere höchstens 0,44 Gew.-%, haben sich als günstig zur Gewährleistung einer besonders guten Vergießbarkeit erwiesen. Darüber hinaus kann Aluminium durch Stickstoff zu Aluminiumnitrid abgebunden werden. Im Stahlflachprodukt vorliegende Aluminiumnitridausscheidungen können sich ungünstig auf die Umformbarkeit des Stahlflachprodukts auswirken. So kann es im Hinblick auf eine Optimierung der Umformbarkeit zweckmäßig sein, den Al-Gehalt auf höchstens 1,0 Gew.-%, insbesondere auf höchstens 0,44 Gew.-% zu beschränken.
  • Um jede negative Auswirkung von Si und Al im erfindungsgemäßen Stahlflachprodukt auszuschließen, kann die Summe der Gehalte an Al und Si im Stahl eines erfindungsgemäßen Stahlflachprodukts auf höchstens 1,7 Gew.-% beschränkt werden, wobei sich hier Obergrenzen von höchstens 1,5 Gew.-%, insbesondere höchstens 1,0 Gew.-%, insbesondere im Hinblick auf eine Optimierung der Schweißeignung als besonders günstig herausgestellt haben. Im Hinblick auf eine Optimierung der Umformbarkeit haben sich Obergrenzen für die Summe der Gehalte an Al und Si von höchstens 1,0 Gew.-%, insbesondere höchstens 0,4 Gew.-% ebenfalls als vorteilhaft erwiesen. Im erfindungsgemäßen Stahlflachprodukt werden die Obergrenzen für Si und Al zusätzlich durch den Faktor ψ begrenzt.
  • Mangan ist wichtig für die Härtbarkeit des Stahls eines erfindungsgemäßen Stahlflachprodukts und verhindert zudem die Entstehung von unerwünschtem Perlit während der Abkühlung. Die Anwesenheit von Mn ermöglicht so die Bildung eines für die Entstehung des erfindungsgemäß vorgeschriebenen Gefüges geeigneten Ausgangsgefüges (Martensit und Restaustenit). Eine zu hohe Mn-Konzentration würde sich allerdings negativ auf die Dehnung und die Schweißbarkeit des Stahls auswirken. Daher ist für den Mn-Gehalt erfindungsgemäß ein Bereich von 1,0 - 3,0 Gew.-%, insbesondere mindestens 1,5 Gew.-% oder höchstens 2,4 Gew.-% vorgesehen.
  • Phosphor wirkt sich ungünstig auf die Schweißbarkeit eines erfindungsgemäßen Stahlflachprodukts aus. Der P-Gehalt soll so gering wie möglich sein, jedenfalls 0,02 Gew.-% nicht überschreiten, insbesondere weniger als 0,02 Gew.-% oder weniger als 0,018 Gew.-% betragen.
  • Die Anwesenheit wirksamer Gehalte Schwefel würde im Stahl eines erfindungsgemäßen Stahlflachprodukts zur Bildung von Sulfiden, insbesondere MnS bzw. (Mn,Fe)S führen, welche sich negativ auf die Dehnung auswirken würde. Um dies zu vermeiden, sollte der S-Gehalt des Stahls so gering wie möglich gehalten werden, jedenfalls aber nicht höher als 0,005 Gew.-%, insbesondere weniger als 0,005 Gew.-% oder weniger als 0,003 Gew.-% betragen.
  • Um die Bildung von Nitriden, die schädlich für die Umformbarkeit sein könnten, zu vermeiden, ist der N-Gehalt des Stahls eines erfindungsgemäßen Stahlflachprodukts auf höchstens 0,008 Gew.-% beschränkt. Vorteilhafterweise sollte der N-Gehalt zur Vermeidung jedes negativen Einflusses unterhalb von 0,008 Gew.-% liegen, insbesondere weniger als 0,006 Gew.-% betragen.
  • Chrom in Gehalten von bis zu 1,0 Gew.-% kann im erfindungsgemäß vorgesehenen Stahl optional als effektiver Inhibitor des Perlits genutzt werden und trägt zudem zur Festigkeit bei. Bei Gehalten von mehr als 1,0 Gew.-% Cr besteht die Gefahr von ausgeprägter Korngrenzenoxidation. Um die positive Wirkung von Cr nutzen zu können, sind mindestens 0,05 Gew.-% erforderlich. Besonders günstig wirkt sich die Anwesenheit von Cr im Stahl eines erfindungsgemäßen Stahlflachprodukts aus, wenn mindestens 0,15 Gew.-% Cr vorhanden sind, wobei eine optimale Wirkung bei Gehalten von bis zu 0,8 Gew.-% erreicht wird.
  • Optional kann der Stahl eines erfindungsgemäßen Stahlflachprodukts zusätzlich auch Molybdän in Gehalten von 0,05 - 0,2 Gew.-% enthalten. Mo in diesen Gehalten unterdrückt ebenfalls die Bildung von unerwünschtem Perlit besonders wirksam.
  • Der Stahl eines erfindungsgemäßen Stahlflachprodukts kann des Weiteren optional Gehalte an einem oder mehreren Mikrolegierungselementen enthalten, um die Festigkeit durch die Bildung sehr fein verteilter Karbide zu unterstützen. Als besonders geeignet herausgestellt haben sich hierfür Gehalte an Ti und Nb.
  • Ti-Gehalte von mindestens 0,005 Gew.-% und Nb-Gehalte von mindestens 0,001 Gew.-% führen jeweils alleine oder in Kombination miteinander zum Einfrieren der Korn- und Phasengrenzen während der Wärmebehandlung, die ein erfindungsgemäßes Stahlflachprodukt bei seiner erfindungsgemäßen Herstellung durchläuft. Ti kann darüber hinaus zum Abbinden des im Stahl vorhandenen Stickstoffs genutzt werden, um eine Wirkung anderer Legierungselemente, insbesondere Bor, zu ermöglichen. Dabei haben sich Ti-Gehalte von mindestens 0,02 Gew.-% als besonders vorteilhaft erwiesen. Eine zu hohe Konzentration an Mikrolegierungselementen würde jedoch zu überdimensionierten Karbiden führen, durch die bei hohen Umformgraden Risse initiiert werden könnten. Daher ist der Ti-Gehalt des Stahls eines erfindungsgemäßen Stahlflachprodukts auf maximal 0,2 Gew.-% und sein Nb-Gehalt auf maximal 0,05 Gew.-% beschränkt, wobei es sich zur Vermeidung von negativen Einflüssen der Anwesenheit von Mikrolegierungselementen als vorteilhaft herausgestellt hat, wenn die Summe der Gehalte an Nb und Ti 0,2 Gew.-% nicht übersteigt.
  • Das ebenfalls optional im Stahl eines erfindungsgemäßen Stahlflachprodukts vorhandene Bor segregiert auf die Phasengrenzen und bremst deren Bewegung. Dies führt zu einem feinkörnigen Gefüge, was sich vorteilhaft auf die mechanischen Eigenschaften auswirkt. Damit die Wirkung von B genutzt werden kann, kann dem Stahl, wie voranstehend erwähnt, Ti zulegiert werden. Um die positive Wirkung von B nutzen zu können, muss der erfindungsgemäß vorgesehene Stahl mindestens 0,0001 Gew.-% B enthalten. Bei Gehalten von mehr als 0,005 Gew.-% kann keine Steigerung der positiven Wirkung von B mehr festgestellt werden.
  • Um es gegen korrosive Angriffe zu schützen, kann das erfindungsgemäße Stahlflachprodukt mit einem metallischen Schutzüberzug versehen sein. Dieser kann insbesondere durch Schmelztauchbeschichten aufgebracht sein. Dabei eignen sich für ein erfindungsgemäßes Stahlflachprodukt Beschichtungen auf Zn-Basis.
  • Das erfindungsgemäße Verfahren zum Herstellen eines erfindungsgemäßen Stahlflachproduktes umfasst die im Anspruch 5 definierten Arbeitsschritte.
  • Das Prinzip der erfindungsgemäßen Verfahrensweise ist in dem als Fig. 1 beigefügten Diagramm verdeutlicht.
  • Im Arbeitsschritt a) wird ein Stahlflachprodukt bereitgestellt, das aus einem Stahl mit der voranstehend erläuterten Zusammensetzung besteht. Bei dem bereitgestellten Stahlflachprodukt kann es sich insbesondere um ein kaltgewalztes Stahlflachprodukt handeln. Jedoch ist es auch denkbar, ein warmgewalztes Stahlflachprodukt in erfindungsgemäßer Weise zu verarbeiten.
  • Für das Aufheizen des Stahlflachprodukts auf die Austenitisierungstemperatur THZ (Arbeitsschritt b)) sind prinzipiell zwei unterbrechungsfrei aufeinander folgende Schritte möglich, wobei das Stahlflachprodukt im ersten Schritt mit einer Erwärmungsgeschwindigkeit ΘH1 von 5 - 25 K/s bis zu einer Wendepunkttemperatur TW erwärmt wird, die 200 - 400 °C beträgt. Dabei haben sich Werte für ΘH1 von mindestens 5 K/s als günstig für die Produktivität des Verfahrens erwiesen, während sich eine Aufheizrate ΘH1 von mehr als 25 K/s als sehr energie- und kostenintensiv erwiesen hat. Anschließend wird die Erwärmung im zweiten Schritt mit einer Erwärmungsgeschwindigkeit ΘH2 von 2 - 10 K/s fortgesetzt, bis die Austenitisierungstemperatur THZ erreicht ist. Im zweiten Erwärmungsschritt können die im Stahlflachprodukt vorhandenen Legierungselemente während des Aufheizvorgangs im Stahlflachprodukt diffundieren. Mit zunehmender Aufheizgeschwindigkeit nimmt die für den Diffusionsprozess und damit die für die Homogenisierung der Legierungselementverteilung des Stahlflachprodukts zur Verfügung stehende Zeit ab. Ungleichmäßig verteilte Legierungselemente können zu lokal unterschiedlichen Gefügeumwandlungen führen. Zur Einstellung eines gleichmäßigen Gefüges hat es sich als vorteilhaft erwiesen, die Erwärmungsgeschwindigkeit ΘH2 auf maximal 10 K/s zu begrenzen. Dabei haben sich Werte für die Erwärmungsgeschwindigkeit ΘH2 von weniger als 2 K/s als ungünstig für die Wirtschaftlichkeit des Verfahrens erwiesen. Da sich die für die Erwärmungsgeschwindigkeiten ΘH1, ΘH2 genannten Bereiche überlappen, kann die Erwärmung auf die Austenitisierungstemperatur auch in einem Zuge mit einer 5 - 10 K/s betragenden konstanten Erwärmungsgeschwindigkeit erfolgen. Die Erwärmungsgeschwindigkeiten θH1 und θH2 im Arbeitsschritt b) sind dann gleich.
  • Die Austenitisierungstemperatur THZ muss oberhalb der A3-Temperatur liegen. Die A3-Temperatur ist analysenabhängig und lässt sich mit der folgenden empirischen Gleichung abschätzen (Legierungsgehalte eingesetzt in Gew.-%): A 3 ° C = 910 203 % C 15,2 % Ni + 44,7 % Si + 31,5 % Mo 21,1 % Mn
    Figure imgb0002
    • mit %C: C-Gehalt des Stahls,
    • %Ni: Ni-Gehalt des Stahls,
    • %Si: Si-Gehalt des Stahls,
    • %Mo: Mo-Gehalt des Stahls,
    • %Mn: Mn-Gehalt des Stahls.
  • Die Legierung des erfindungsgemäß ausgewählten Stahls erlaubt es, die Austenitisierungstemperatur THZ auf maximal 950 °C zu beschränken und so die für die Durchführung des erfindungsgemäßen Verfahrens anfallenden Betriebskosten begrenzt zu halten.
  • Um dabei zu verhindern, dass sich große Austenitkörner bilden, was sich nachteilig auf die Umformbarkeit auswirken würde, ist die Austenitisierungsdauer tHZ, über die das Stahlflachprodukt im Arbeitsschritt c) bei der Austenitisierungstemperatur THZ gehalten wird, auf 5 - 15 Sekunden beschränkt, wobei die Austenitisierungsdauer tHZ weniger als 15 s betragen kann, um jedes unerwünschte Kornwachstum zu vermeiden.
  • Im Arbeitsschritt d) folgt eine von der Austenitisierungsdauer tHZ ausgehende kontrollierte und langsame Abkühlung des Stahlflachprodukts. Diese Abkühlung kann sich über 50 - 300 Sekunden erstrecken und muss bei einer Zwischentemperatur TK enden, die nicht tiefer als 680 °C ist, um die unerwünschte Entstehung von Ferrit zu vermeiden. Nach oben ist die Zwischentemperatur TK vorzugsweise auf Temperaturen, welche höchstens A3 betragen, und typischerweise auf 775 °C beschränkt, da bei höheren Zwischentemperaturen TK die für die anschließende Abkühlung benötigte Kühlleistung unverhältnismäßig hoch und damit einhergehend die Wirtschaftlichkeit des Verfahrens in Frage gestellt ist.
  • Nach der langsamen Abkühlung im Arbeitsschritt d) wird das Stahlflachprodukt im Arbeitsschritt e) mit einer hohen Abkühlgeschwindigkeit θQ auf eine analysenabhängige Kühlstopptemperatur TQ abgeschreckt. Die hohe Abkühlrate θQ kann beispielsweise mit einer modernen Gasjetkühlung erreicht werden.
  • Die minimale Abkühlrate θQ, welche notwendig ist, um die ferritische und bainitische Umwandlung zu vermeiden, beträgt mehr als 30 K/s. Die Abkühlrate θQ ist dabei typischerweise anlagenbedingt nach oben hin begrenzt und beträgt typischerweise nicht mehr als 200 K/s. Der Bereich, in dem die Kühlstopptemperatur TQ liegt, ist dabei nach oben durch die Martensitstarttemperatur TMS, und nach unten um eine um 175 °C unterhalb der Martensitstarttemperatur TMS liegende Temperatur begrenzt ((TMS-175°C) < TQ < TMS).
  • Die Martensitstarttemperatur kann mittels der folgenden Gleichung abgeschätzt werden (Legierungsgehalte eingesetzt in Gew.-%): T MS ° C = 539 ° C + 423 % C 30,4 % Mn 7,5 % Si + 30 % Al ° C / Gew . %
    Figure imgb0003
    • mit %C: C-Gehalt des Stahls,
    • %Mn: Mn-Gehalt des Stahls,
    • %Si: Si-Gehalt des Stahls,
    • %Al: Al-Gehalt des Stahls.
  • Im Arbeitsschritt f) wird das Stahlflachprodukt über eine Haltedauer tQ von 10 - 60 Sekunden auf der Kühlstopptemperatur TQ gehalten, um das Gefüge einzustellen. Im Zuge dieses Schritts wird ein martensitisches Gefüge mit bis zu 30 % Restaustenit erhalten. Wie viel Martensit in diesem Schritt erzeugt wird, ist im Wesentlichen davon abhängig, um wie viel die Kühlstopptemperatur unterhalb der Martensitstarttemperatur TMS liegt. Die Haltedauer tQ beträgt mindestens 10 Sekunden, um eine Homogenisierung der Temperatur im Stahlflachprodukt und damit ein gleichmäßiges Gefüge zu gewährleisten. Bei längeren Haltedauern von mehr als 60 Sekunden ist die Homogenisierung der Temperatur abgeschlossen. Die Haltedauer tQ beträgt höchstens 60 Sekunden, um die Produktivität des Verfahrens zu erhöhen.
  • Im Unterschied zum eingangs dargelegten Stand der Technik strebt die Erfindung nicht die Stabilisierung von Restaustenit bis auf Raumtemperatur an. Vielmehr hat die im Arbeitsschritt g) vollzogene Wärmebehandlung des Stahlflachprodukts eine kontrollierte Umverteilung des Kohlenstoffs zum Ziel, dass das Gefüge des nach Abschluss des Verfahrens erhaltenen Stahlflachprodukts im Wesentlichen aus zwei verschiedenen Arten von Martensit besteht, nämlich einem angelassenen Martensit und einem nicht angelassenen Martensit.
  • Erfindungsgemäß umfasst der Arbeitsschritt g) zwei Verfahrensvarianten g.1) und g.2), von denen die erste Variante g.1) zu einem unbeschichteten erfindungsgemäßen Stahlflachprodukt und die zweite Variante g.2) zu einem mit einer Zn-Beschichtung versehenen erfindungsgemäßen Stahlflachprodukt führt.
  • Die Temperaturführung in beiden Varianten g.1), g.2) des Arbeitsschritts g) ist jeweils so gewählt, dass der im Gefüge bis dahin vorhandene Restaustenit mit Kohlenstoff aus dem übersättigten Martensit angereichert ist. Die Bildung von Karbiden und der Zerfall von Restaustenit wird durch die erfindungsgemäße Begrenzung der Gesamtbehandlungsdauer tBT gezielt unterdrückt. Diese beträgt 10 - 1000 Sekunden, um eine ausreichende Umverteilung des Kohlenstoffs zu ermöglichen.
  • Für die erste Verfahrensvariante g.1) umfasst das Behandeln des Stahlflachprodukts im Arbeitsschritt g) ein sich über die Gesamtbehandlungsdauer tBT erstreckendes Halten des Stahlflachprodukts bei einer Behandlungstemperatur TB, die mindestens gleich der Kühlstopptemperatur TQ und nicht höher als 550 °C ist, wobei sich eine Kühlstopptemperatur TQ von maximal 500 °C als besonders günstig erwiesen hat.
  • Dabei kann bei der Variante g.1) die Behandlungstemperatur TB auch höher liegen als die Kühlstopptemperatur TQ. In diesem Fall wird das Stahlflachprodukt ausgehend von der Kühlstopptemperatur TQ auf die jeweilige Behandlungstemperatur TB erwärmt, wobei die Erwärmung mit einer weniger als 80 K/s betragenden Erwärmungsgeschwindigkeit ΘB1 erfolgen sollte.
  • Gemäß der zweiten Alternative des Arbeitsschritts g) wird dagegen das Stahlflachprodukt mit einer Erwärmungsgeschwindigkeit ΘB1 von weniger als 80 K/s auf eine Behandlungstemperatur TB von 400 - 500 °C gebracht, um den Restaustenit mit Kohlenstoff aus dem übersättigten Martensit anzureichern. Die Bildung von Karbiden und der Zerfall von Restaustenit wird durch die erfindungsgemäße Begrenzung der Gesamtbehandlungsdauer tBT gezielt unterdrückt, die sich bei dieser Variante g.2) des Arbeitsschritts g) aus der für die Erwärmung benötigten Erwärmungszeit tBR und der Haltedauer tBI zusammensetzt, über die das Stahlflachprodukt isothermisch bei der Temperatur TB gehalten wird. Bei ausreichend langsamer Erwärmungsgeschwindigkeit ΘB1 kann das isotherme Halten auch entfallen, die Haltedauer tBI also gleich "0" sein.
  • Bei der zweiten Variante g.2) des Arbeitsschritts g) durchläuft das Stahlflachprodukt im Anschluss an die Erwärmung und das optionale Halten bei der Behandlungstemperatur TB eine Schmelztauchbeschichtung, bei der es mit einer Zn-Beschichtung beschichtet wird. Dazu kann die Behandlungstemperatur TB so gewählt werden, dass sie der Eintrittstemperatur entspricht, mit der das Stahlflachprodukt in das jeweilige Schmelzenbad einlaufen Behandlungstemperaturen TB im Bereich von 450 - 500 °C. Dabei enthält das Schmelzenbad typischerweise neben Zink und unvermeidbaren Verunreinigungen in Summe bis zu 3,0 Gew.-% eines oder mehrerer Elemente der Gruppe bestehend aus Al, Mg, Si, Pb, Ti, Ni, Cu, B und Mn.
  • Unabhängig davon, welche Variante gewählt worden ist, wird das Stahlflachprodukt nach Abschluss des Arbeitsschritts g) zur erneuten Erzeugung von Martensit mit einer Abkühlgeschwindigkeit θB2 von mehr als 5 K/s kontrolliert abgekühlt, wobei die Abkühlgeschwindigkeiten typischerweise höchstens 50 K/s betragen. θB2 beträgt mehr als 5 K/s, um die Bildung von Perlit und Ferrit zu vermeiden.
  • Das erfindungsgemäße Verfahren kann im kontinuierlichen Durchlauf in hierzu üblicherweise vorgesehenen konventionellen Glühanlagen oder Bandbeschichtungsanlagen durchgeführt werden.
  • Das erfindungsgemäße Stahlflachprodukt hat ein Gefüge, das
    • zu mindestens 90 Flächen-% aus Martensit, von dem : mindestens 50 Flächen-% angelassener Martensit aus dem ersten Abkühlschritt (Arbeitsschritt f)) ist,
    • zu höchstens 5 Flächen-% aus Bainit,
    • zu höchstens 2 Volumen-% aus Restaustenit und
    • zu höchstens 5 Flächen-% aus polygonalem Ferrit besteht.
  • Das Gefüge eines erfindungsgemäßen Stahlflachprodukts ist mit einer mittleren Korngröße von weniger als 2 µm sehr fein und kann mittels üblicher lichtoptischer Mikroskopie kaum beurteilt werden. Daher wird eine Beurteilung mittels Rasterelektronenmikroskopie (REM) und einer Mindestvergrößerung von 5000fach empfohlen.
  • Der maximal zulässige Restaustenitanteil kann auch bei hoher Vergrößerung nur schwer lichtmikroskopisch oder rasterelektronenmikroskopisch bestimmt werden. Daher wird eine quantitative Bestimmung des Restaustenits mittels Röntgen-Beugung (XRD) empfohlen (nach ASTM E975), wonach der Restaustenitanteil in Vol.-% angegeben wird.
  • Als Maß für die Qualität der mechanischen Eigenschaften eines erfindungsgemäßen Stahlflachprodukts kann auch die Verzerrung des Kristallgitters herangezogen werden. Diese Gitterverzerrung ist für den initialen Widerstand zur plastischen Verformung sehr bedeutend. Eine geeignete Methode für die Messung und Quantifizierung der Gitterverzerrung ist die Elektron Backscatter Diffraktion (EBSD). Mit der EBSD-Methode wird eine Probe im REM punktförmig abgerastert, wobei an jedem Messpunkt ein Beugungsmuster aufgenommen wird, aus dem sich die kristallographische Orientierung bestimmen lässt. Details zur Messung und zu den verschiedenen Auswerteverfahren sind in den Handbücher zu lesen. Ein nützliches EBSD-Auswerteverfahren ist die sog. Kernel Average Missorientation (KAM - weitere Beschreibung im Handbuch "OIM Analysis v5.31" von der EDAX Inc., 91 McKee Drive, Mahwah, NJ 07430, USA), wobei die Orientierung eines Messpunkts mit den Nachbarpunkten verglichen wird. Unterhalb eines Schwellwerts, typischerweise 5°, gehören benachbarte Punkte zum gleichen (verformten) Korn. Oberhalb des Schwellwerts gehören die benachbarten Punkte zu unterschiedlichen (Sub-)Körnern. Weil das Gefüge so fein ist, wird eine maximale Schrittweite bei der EBSD von 100 nm empfohlen. Für die Beurteilung des Gefüges der erfindungsgemäßen Stahlflachprodukte wird die KAM von den dritten Nachbarpunkten ausgewertet. Ein erfindungsgemäßes Stahlflachprodukt muss einen KAM-Mittelwert aus einem Messbereich von mindestens 75 µm x 75 µm von mehr als 1,20°, vorzugsweise mehr als 1,25°, aufweisen.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.
  • Zur Erprobung der Erfindung sind Proben von in konventioneller Weise erzeugten Stahlblechen bereitgestellt worden, die aus Stählen A - I mit den in Tabelle 1 angegebenen Zusammensetzungen bestanden.
  • In Tabelle 1 sind zusätzlich für jeden der Stähle A - I der Faktor ψ und das Kohlenstoffäquivalent CE angegeben, die nach den oben bereits erläuterten Formeln ψ = % C + % Mn / 5 + % Cr / 6 / % Al + % Si
    Figure imgb0004
    und CE = % C + % Si + % Mn / 5 + % Cr + % Mo / 6
    Figure imgb0005
    mit %C der jeweilige C-, mit %Si der jeweilige Si-, mit %Mn der jeweilige Mn-, mit %Cr der jeweilige Cr-, mit %Mo der jeweilige Mo- und mit %Al der jeweilige Al-Gehalt der Stähle A - I berechnet worden sind.
  • Die Stähle E, F und G erfüllten demnach nicht die durch den Faktor ψ erfindungsgemäß bestimmten Anforderungen an die Abstimmung der für die Austenitbildung und Härtbarkeit wesentlichen Legierungselemente.
  • Die aus den Stählen A - I gefertigten Proben 1 - 7,11, 12, 16 - 23, 28 - 31, 33 - 35, 39, 40, 43 - 60 haben den in Figur 1 dargestellten Verfahrensablauf absolviert. Dabei sind sie zunächst mit einer Erwärmungsgeschwindigkeit θH1 auf eine Wendepunkttemperatur TW und dann mit einer Erwärmungsgeschwindigkeit θH2 auf eine Austenitisierungstemperatur THZ erwärmt worden, die jeweils oberhalb der A3-Temperatur des jeweiligen Stahls, jedoch niedriger als 950 °C lag. Die so erwärmten Proben sind anschließend über eine Austenitisierungsdauer tHZ bei der Austenitisierungstemperatur THZ gehalten und dann über eine Abkühldauer tK auf eine Zwischentemperatur TK abgekühlt worden. Bei Erreichen der Zwischentemperatur TK hat eine beschleunigte Abkühlung mit einer Abkühlgeschwindigkeit θQ eingesetzt, bei der die Proben 1 - 7, 11, 12, 16 - 23, 28 - 31, 33 - 35, 39, 40, 43 - 60 auf eine Kühlstopptemperatur TQ abgekühlt worden sind, die für die Proben 1 - 7, 11, 12, 16, 17, 19 - 23, 28 - 31, 33 - 35, 39, 40, 43 - 60 jeweils um bis zu 175 °C niedriger und für Probe 18 höher war als die Martensitstarttemperatur TMS des jeweiligen Stahls A - I der Proben 1 - 7, 11, 12, 16 - 23, 28 - 31, 33 - 35, 39, 40, 43 - 60. Bei der Kühlstopptemperatur TQ sind die Proben 1 - 7, 11, 12, 16 - 23, 28 - 31, 33 - 35, 39, 40, 43 - 60 für eine Haltedauer tQ von 10 - 60 s gehalten worden. Die Proben 1 - 7, 11, 12, 16, 17, 19 - 23, 28 - 31, 33 - 35, 39, 40, 43 - 48 wurden anschließend mit einer Erwärmungsgeschwindigkeit θB1 über eine Erwärmungszeit tBR auf eine Behandlungstemperatur TB erwärmt, auf der sie bei einigen Versuchen über eine zusätzliche Haltedauer tBI gehalten worden sind. Probe 18 wurde analog dazu auf die Behandlungstemperatur TB abgekühlt. Anschließend erfolgte die Abkühlung auf Raumtemperatur mit einer Abkühlgeschwindigkeit θB2. Die Proben 49 - 60 wurden nach der Abkühlung auf die Kühlstopptemperatur TQ und Halten auf TQ für die Haltedauer tQ ohne Erwärmung isotherm über eine Haltedauer tBI auf der Behandlungstemperatur TB gehalten. Anschließend erfolgte auch für die Proben 49 - 60 die Abkühlung auf Raumtemperatur mit einer Abkühlgeschwindigkeit θB2.
  • Die voranstehend genannten, bei den Versuchen angewendeten Parameter sind in Tabelle 2 angegeben. Von den aus den erfindungsgemäßen Stählen A - D, H und I bestehenden Proben 1 - 7, 11, 12, 16 - 23, 28 - 31, 44 - 55 sind demnach die Proben 3 (θQ < 30 K/s), 11 (THZ < A3), 18 (TQ > 500 °C), 19 (θQ < 30 K/s), 28 (THZ < A3), 29 (tHZ > 15s) und 48 (θB2 < 5 K/s) nicht erfindungsgemäß behandelt worden.
  • Im Zuge der letzten Abkühlung hätten die Proben 1 - 7, 11, 12, 16 - 23, 28 - 31, 33 - 35, 39, 40, 43 - 60 in den Fällen, bei denen die Behandlungstemperatur TB auf einem für den Eintritt in ein Zn-Schmelzenbad ausreichenden Niveau von ca. 450 °C lagen, ein Schmelzenbad durchlaufen können. Im Rahmen der Versuche ist hierauf jedoch verzichtet worden, ohne dass dies die Untersuchungsergebnisse beeinflusst hat.
  • An den nach der Wärmebehandlung erhaltenen Proben sind die mechanischen Eigenschaften Dehngrenze Rp0,2, Zugfestigkeit Rm, das Verhältnis Rp0,2/Rm, die Bruchdehnung A50 (nach DIN EN ISO 6892, Probenform 1), das Produkt Rm A50, und die Lochaufweitungsverhältnisse λ1, λ2 (nach ISO 16630) bestimmt worden. Ebenso sind die Gefügeanteile von Ferrit "F", angelassenem Martensit "AM", Restaustenit "RA", nicht angelassenem Martensit "M" und Bainit "B" sowie der gemäß der Kernel Average Missorientation ermittelte Wert "KAM" ermittelt worden. Die betreffenden Eigenschaftswerte sind in Tabelle 3 für jede der Proben angegeben.
  • Die erreichten mechanischen Eigenschaften im geglühten Material mit einer Quantifizierung des Gefüges sind in Tabelle 3 zu finden. Bei den Proben, die sowohl die Vorgaben der Erfindung in Bezug auf die Legierung des jeweiligen Stahls, als auch die erfindungsgemäßen Bedingungen der Wärmebehandlung erfüllen, werden regelmäßig Dehngrenzen Rp0,2 von mehr als 800 MPa, Zugfestigkeiten Rm von mehr als 950 MPa, Bruchdehnungswerte A50 von mehr als 8 % bei Lochaufweitungsverhältnissen λ1, λ2 von regelmäßig mehr als 30 % erreicht.
  • Die Vergleichsbeispiele B11 und D28 verdeutlichen dagegen die Auswirkung einer nicht ausreichenden Austenitisierungstemperatur THZ. Bei diesen Beispielen ist das Gefüge nicht vollständig austenitisiert worden, so dass sich zu viel Ferrit im Gefüge bildet. Dies führt zu extrem lokalisierter Schädigung und frühzeitigem Versagen während der Umformung.
  • Das Vergleichsbeispiel D29 zeigt, wie auch eine zu lange Austenitisierung bei hohen Temperaturen die Umformbarkeit negativ beeinflussen kann.
  • Die Vergleichsbeispiele A3 und C19 zeigen, dass bei zu geringen Abkühlungsgeschwindigkeiten θQ die gewünschte Dehngrenze nicht erreicht wird, was darauf zurückzuführen ist, dass die Ferritbildung nicht ausreichend verhindert werden konnte.
  • Das Vergleichsbeispiel C18, welches mit einer zu hohen Kühlstopptemperatur TQ erzeugt wurde, zeigt eine Unterschreitung der gewünschten Dehngrenze sowie geringe Lochaufweitungsverhältnisse. Diese sind auf einen erhöhten Ferrit- und Bainitanteil im Gefüge zurückzuführen.
  • Die Vergleichsbeispiele E33 - E35 und E56 - E58 zeigen eine Unterschreitung der gewünschten Dehngrenze und Festigkeit, was auf die nicht erfindungsgemäße Zusammensetzung und einen zu hohen Ferritanteil im erhaltenen Gefüge zurückzuführen ist. Der hohe Ferritanteil ist auf eine unzureichende Verhinderung der Karbidbildung bedingt durch einen zu geringen SiliziumGehalt sowie einen im Verhältnis zu Kohlenstoff, Mangan und Chrom zu geringen Gehalt von Aluminium und Silizium und damit einen zu hohen ψ-Faktor zurückzuführen.
  • Die Vergleichsbeispiele F39, F40, F59 und F60 zeigen schließlich die Auswirkungen eines zu niedrigen ψ-Faktors, der auch zu Abweichungen vom gewünschten Gefüge führt. Die Mindestfestigkeit wurde zum Teil erreicht, aber die Dehngrenze und die Lochaufweitung sind hier nicht im Zielgebiet.
  • Mit dem Vergleichsbeispiel G43 wird klar, dass ein zu hoher ψ-Faktor zu zu hohen Restaustenitanteilen und einer verminderten Umformbarkeit führt, die sich in schlechten Lochaufweitungswerten λ1, λ2 äußert.
  • Das Vergleichsbeispiel I48 verdeutlicht, dass eine zu geringe Abkühlungsgeschwindigkeit θB2 zu einer vermehrten Ferritbildung und damit zu niedrigen Dehngrenzen führt. Tabelle 1
    C Si Mn Al P S N Cr Mo Ti Nb B CE ψ Erfindungsgemäß ?
    A 0,066 0,29 2,54 0,037 0,009 0,003 0,005 0,666 0,000 0,071 0,001 0,0013 0,74 2,09 JA
    B 0,085 0,30 2,75 0,030 0,000 0,003 0,005 0,750 0,100 0,070 0,000 0,0000 0,84 2,3 JA
    C 0,159 0,29 1,82 0,041 0,015 0,003 0,004 0,422 0,101 0,047 0,001 0,0010 0,67 1,79 JA
    D 0,180 0,30 1,95 0,030 0,010 0,003 0,003 0,300 0,000 0,050 0,000 0,0000 0,68 1,88 JA
    E 0,075 0,10 1,52 0,035 0,010 0,001 0,004 0,530 0,050 0,025 0,000 0,0030 0,50 3,46 NEIN
    F 0,164 0,72 1,90 0,041 0,012 0,001 0,005 0,370 0,010 0,114 0,001 0,0000 0,75 0,8 NEIN
    G 0,190 0,23 2,97 0,030 0,008 0,004 0,006 0,801 0,050 0,060 0,001 0,0009 0,97 3,53 NEIN
    H 0,186 0,40 2,20 0,029 0,009 0,001 0,005 0,350 0,080 0,000 0,000 0,0000 0,78 1,6 JA
    I 0,190 0,25 2,85 0,210 0,008 0,003 0,005 0,000 0,110 0,000 0,000 0,0000 0,83 1,65 JA
    Angaben in Gew.-%, Rest Fe und unvermeidbare Verunreinigungen
    Unterstrichen und fettgedruckte Werte bezeichnen Werte außerhalb der erfindungsgemäßen Vorgaben Ψ = (%C + %Mn/5 + %Cr/6)/(%Si + %Al)
    %C = C-Gehalt, %Mn = Mn-Gehalt, %Cr = Cr-Gehalt, %Si = Si-Gehalt, %Al = Al-Gehalt
    Tabelle 2
    Stahl Lfd. Nr. ΘH1 TW ΘH2 A3 THZ tHZ TK tK ΘQ TQ TMS tQ ΘB1 tBR tBI TB ΘB2
    [K/s] [°C] [K/s] [°C] [°C] [s] [°C] [s] [K/s] [°C] [°C] [s] [K/s] [s] [s] [°C] [K/s]
    A 1 10 300 5 817 860 10 760 105 -31 310 433 50 3 46,7 0 450 -11
    A 2 11 270 4 817 860 12 760 100 -47 310 433 50 3 46,7 0 450 -11
    A 3 11 270 4 817 860 12 760 100 -16 370 433 40 2 40,0 0 450 -11
    A 4 5 270 5 817 860 10 775 100 -42 350 433 50 3 33,3 0 450 -10
    A 5 5 270 5 817 860 10 775 100 -39 370 433 50 1,75 45,7 0 450 -9
    A 6 5 270 5 817 860 12 775 120 -36 370 433 50 1,75 45,7 15 450 -20
    A 7 5 270 5 817 860 12 775 120 -36 370 433 50 1 55,0 20 425 -20
    B 11 5 300 2 809 780 8 760 135 -21 350 418 15 3 33,3 15 450 -10
    B 12 5 300 2 809 840 10 760 110 -35 290 418 12 2 80,0 15 450 -12
    B 16 8 300 2 809 860 10 740 120 -32 300 418 12 25 7,6 15 490 -15
    B 17 5 300 2 809 840 12 740 120 -45 325 418 10 4 31,3 15 450 -15
    C 18 9 255 3 807 860 10 740 105 -32 510 415 10 -1 60,0 16 450 -20
    C 19 9 255 3 807 860 12 740 105 -15 350 415 10 3 33,3 0 450 -20
    C 20 20 295 3 807 860 10 740 105 -49 290 415 50 3 53,3 22 450 -20
    C 21 5 270 5 807 860 14 760 95 -42 350 415 50 3 33,3 0 450 -20
    C 22 14 310 5 807 860 14 715 125 -39 350 415 50 3 33,3 0 450 -10
    C 23 10 270 3 807 860 12 700 125 -39 350 415 50 1,5 50,0 0 425 -10
    D 28 5 270 5 796 775 10 750 120 -32 290 402 11 3 45,0 0 425 -10
    D 29 5 270 5 796 840 25 750 120 -44 290 402 10 3 53,3 25 450 -10
    D 30 5 270 5 796 840 10 750 135 -38 250 402 12 3,5 57,1 0 450 -10
    D 31 5 270 5 796 840 12 700 70 -50 350 402 15 3,5 28,6 0 450 -10
    E 33 5 270 5 828 860 10 700 120 -54 300 461 50 3 50,0 5 450 -12
    E 34 11 270 3 828 860 12 685 140 -49 300 461 50 3 50,0 5 450 -12
    E 35 11 270 3 828 860 12 700 165 -42 350 461 50 3 33,3 5 450 -20
    F 39 5 270 4 820 860 12 700 120 -31 310 408 50 3 46,7 5 450 -16
    F 40 5 270 5 820 860 10 685 125 -33 310 408 20 3 46,7 0 450 -16
    G 43 5 340 4 771 850 10 720 100 -21 325 368 25 8 40,0 25 465 -11
    H 44 21 375 7 796 835 12 695 135 -37 230 391 14 3,5 57,1 0 430 -15
    I 45 11 350 3 776 860 9 720 75 -41 295 376 11 2,8 53,6 0 445 -12
    I 46 11 270 4 776 840 12 800 75 -35 290 376 10 0,012 833,3 0 300 -15
    I 47 13 325 3,5 776 860 12 745 65 -45 240 376 13 6 36,7 0 460 -12
    I 48 10 340 4 776 860 10 730 70 -31 350 376 15 3 46,7 0 450 -2
    A 49 10 270 4 817 840 12 740 120 -32 300 433 10 0 0 420 300 -20
    A 50 11 300 5 817 840 12 740 120 -32 325 433 10 0 0 420 325 -20
    A 51 5 270 5 817 860 12 740 120 -31 325 433 10 0 0 420 325 -20
    C 52 10 270 3 807 840 10 760 100 -32 300 415 12 0 0 420 300 -10
    C 53 15 290 5 807 840 10 780 80 -32 325 415 12 0 0 470 325 -10
    C 54 5 270 5 807 860 12 750 140 -31 325 415 12 0 0 470 325 -16
    C 55 20 300 3 807 860 12 775 135 -32 350 415 12 0 0 380 350 -16
    E 56 5 270 5 828 840 14 700 135 -22 300 461 15 0 0 410 300 -10
    E 57 5 270 5 828 840 14 700 135 -20 325 461 15 0 0 460 325 -10
    E 58 5 270 5 828 860 8 735 135 -21 325 461 15 0 0 460 325 -10
    F 59 10 300 3 820 840 10 720 140 -22 350 408 13 0 0 770 350 -9
    F 60 8 270 4 820 840 12 720 80 -22 300 408 13 0 0 420 300 -9
    Unterstrichen und fettgedruckte Werte bezeichnen Werte außerhalb der erfindungsgemäßen Vorgaben
    Tabelle 3
    Stahl Lfd. Nr. RP02 Rm RP02/Rm A50 Rm A50 λ1 λ2 F AM RA M B KAM Erfindungsgemäß?
    [MPa] [%] [MPa*%] [%] [Flächen-%] [Vol-%] [Flächen-%] [°]
    A 1 1050 1063 0,99 9,3 9885,9 80 62 - 80 1 19 - 1,43 JA
    A 2 1090 1093 1,00 8,0 8744 64 80 - 90 0 10 - 1,45 JA
    A 3 661 952 0,69 11,2 10662 35 28 10 45 1 43 Sp. 1,19 NEIN
    A 4 989 1072 0,92 9,9 10613 61 41 - 75 1 24 - 1,37 JA
    A 5 890 1063 0,84 10,2 10843 60 62 - 70 0,5 29 Sp. 1,35 JA
    A 6 873 1056 0,83 10,7 11299 47 40 - 70 1,5 28 Sp. 1,36 JA
    A 7 866 1071 0,81 8,8 9425 44 32 - 70 0 29 Sp. 1,34 JA
    B 11 565 1197 0,47 11,2 13406 26 32 10 50 3,5 30 6,5 1.03 NEIN
    B 12 1030 1255 0,82 10,8 13554 54 49 - 75 0,5 24 Sp. 1,29 JA
    B 16 980 1183 0,83 8,3 9819 38 41 - 60 1 38 Sp. 1,32 JA
    B 17 1077 1292 0,83 10,5 13566 31 32 - 70 0,5 27 Sp. 1,3 JA
    C 18 630 1056 0,60 12,7 13411 15 18 15 0 0 55 30 1,01 NEIN
    C 19 695 992 0,70 13 12896 35 29 20 65 1 14 - 1,09 NEIN
    C 20 1120 1123 1,00 8,3 9321 55 51 - 85 0 15 - 1,42 JA
    C 21 1026 1119 0,92 8,4 9400 48 47 - 75 0,5 23 Sp. 1,4 JA
    C 22 927 1074 0,86 9,9 10633 46 43 - 75 1 23 Sp. 1,34 JA
    C 23 908 1074 0,85 9,5 10203 45 40 Sp. 65 0,5 33 Sp. 1,31 JA
    D 28 701 1231 0,57 13,4 16495 24 17 20 30 2 40 8 1,03 NEIN
    D 29 979 1290 0,76 9,1 11739 31 29 Sp. 50 4 45 Sp. 1,38 NEIN
    D 30 1138 1366 0,83 8,9 12157 45 39 - 75 0,5 24 Sp. 1,47 JA
    D 31 1091 1204 0,91 11,1 13364 31 34 Sp. 65 1 33 - 1,45 JA
    E 33 416 616 0,68 10,5 6468 71 71 30 15 1 45 9 1,22 NEIN
    E 34 277 538 0,51 19,8 10652 76 78 45 10 0,5 40 4,5 1,03 NEIN
    E 35 283 540 0,52 23,4 12636 77 61 40 10 1 45 4 0,98 NEIN
    F 39 428 931 0,46 17,4 16199 20 23 35 30 1 30 4 1,02 NEIN
    F 40 442 977 0,45 17,4 17000 17 16 35 30 0,5 34 Sp. 1,05 NEIN
    G 43 873 1253 0,70 14,3 17918 26 23 10 40 5 40 5 1,11 NEIN
    H 44 812 1079 0,75 16,7 18019 56 62 Sp. 75 1,5 20 3 1,32 JA
    I 45 823 1156 0,65 15,9 18380 35 42 - 65 1 30 4 1,42 JA
    I 46 917 1109 0,83 16,2 17966 62 57 - 75 0,5 20 4,5 1,42 JA
    I 47 890 1047 0,85 13,1 13716 73 68 - 85 1,5 12 Sp. 1,38 JA
    I 48 690 978 0,71 18,3 17897 14 12 10 60 2,0 20 8 1,21 NEIN
    A 49 861 1049 0,82 9 9441 82 75 - 60 0,5 39 Sp. 1,34 JA
    A 50 816 1019 0,80 10,7 10903 62 53 - 50 1,5 48 Sp. 1,29 JA
    A 51 875 1052 0,83 9,1 9573 72 76 - 60 1 38 Sp. 1,31 JA
    C 52 893 1139 0,78 9,1 10365 35 35 Sp. 65 0 34 - 1,29 JA
    C 53 862 1091 0,79 9 9819 47 36 Sp. 70 0,5 27 Sp. 1,27 JA
    C 54 959 1153 0,83 8,1 9339 55 38 - 50 0 50 - 1,41 JA
    C 55 1038 1144 0,91 8,4 9610 43 36 - 55 1 44 - 1,46 JA
    E 56 429 661 0,65 13,6 8990 78 76 25 25 1,5 45 3,5 1,17 NEIN
    E 57 398 628 0,63 15,9 9985 65 81 30 15 0 55 - 1,13 NEIN
    E 58 521 695 0,75 8,5 5908 71 72 15 35 0 50 - 1,26 NEIN
    F 59 491 841 0,58 19,7 16568 30 26 Sp. 64 6 28 Sp. 1,26 NEIN
    F 60 405 961 0,42 16,6 15953 21 20 15 35 0 40 10 1,18 NEIN
    "Sp." = Anteil < 2 Flächen-%;
    Unterstrichen und fettgedruckte Werte bezeichnen Werte außerhalb der erfindungsgemäßen Vorgaben

Claims (7)

  1. Stahlflachprodukt, das eine Zugfestigkeit Rm von mindestens 950 MPa, eine Dehngrenze von mindestens 800 MPa und eine Bruchdehnung A50 von mindestens 8 % besitzt, und die Zugfestigkeit, Dehngrenze und Bruchdehnung nach DIN EN ISO 6892, Probenform 1 ermittelt sind, wobei das Stahlflachprodukt aus einem Stahl besteht, der neben Eisen und unvermeidbaren Verunreinigungen, aus, in Gew.-%, C: 0,05 - 0,20 %, Si: 0,2 - 1,5 %, Al: 0,01 - 1,5 %, Mn: 1,0 - 3,0 %,
    P: bis zu 0,02 %,
    S: bis zu 0,005 %,
    N: bis zu 0,008 %,
    sowie optional einem oder mehreren der Elemente aus der Gruppe "Cr, Mo, Ti, Nb, B" in folgenden Gehalten: Cr: 0,05 - 1,0 %, Mo: 0,05 - 0,2 % Ti: 0,005 - 0,2 %, Nb: 0,001 - 0,05 %, B: 0,0001 - 0,005 %
    besteht,
    wobei für das Verhältnis ψ = % C + % Mn / 5 + % Cr / 6 / % Al + % Si
    Figure imgb0006
    mit %C: jeweiliger C-Gehalt des Stahls
    %Mn: jeweiliger Mn-Gehalt des Stahls
    %Cr: jeweiliger Cr-Gehalt des Stahls
    %Al: jeweiliger Al-Gehalt des Stahls
    %Si: jeweiliger Si-Gehalt des Stahls
    gilt 1,6 ψ 3
    Figure imgb0007
    und wobei das Stahlflachprodukt ein Gefüge aufweist, das aus
    - höchstens 5 Flächen-% Bainit,
    - höchstens 5 Flächen-% polygonalen Ferrit,
    - höchstens 2 Volumen-% Restaustenit,
    und
    - mindestens 90 Flächen-% Martensit besteht, wobei mindestens die Hälfte des Martensits angelassener Martensit ist und für das Kohlenstoffäquivalent
    CE = % C + % Si + % Mn / 5 + % Cr + % Mo / 6
    Figure imgb0008
    mit
    %C: jeweiliger C-Gehalt des Stahls
    %Si: jeweiliger Si-Gehalt des Stahls
    %Mn: jeweiliger Mn-Gehalt des Stahls
    %Cr: jeweiliger Cr-Gehalt des Stahls
    %Mo: jeweiliger Mo-Gehalt des Stahls
    gilt 0,254 CE 1,1 Gew . % .
    Figure imgb0009
  2. Stahlflachprodukt nach Anspruch 1, dadurch gekennzeichnet, dass das Kohlenstoffäquivalent CE höchstens 1,0 Gew.-% beträgt.
  3. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Summe der Gehalte an Ti und Nb höchstens gleich 0,2 Gew.-% ist.
  4. Stahlflachprodukt nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass es mit einem durch Schmelztauchbeschichten aufgebrachten metallischen Schutzüberzug auf Zn-Basis versehen ist.
  5. Verfahren zum Herstellen eines : Stahlflachproduktes nach den Ansprüchen 1 bis 4, umfassend folgende Arbeitsschritte:
    a) Bereitstellen eines unbeschichteten Stahlflachproduktes, das aus einem Stahl besteht, der neben Eisen und unvermeidbaren Verunreinigungen; aus, in Gew.-%,
    C: 0,05 - 0,20 %,
    Si: 0,2 - 1,5 %,
    Al: 0,01 - 1,5 %,
    Mn: 1,0 - 3,0 %,
    P: bis zu 0,02 %,
    S: bis zu 0,005 %,
    N: bis zu 0,008 %,
    sowie optional einem oder mehreren der Elemente aus der Gruppe "Cr, Mo, Ti, Nb, B" in folgenden Gehalten: Cr: 0,05 - 1,0 %, Mo: 0,05 - 0,2 %, Ti: 0,005 - 0,2 %, Nb: 0,001 - 0,05 %, B: 0,0001 - 0,005 %
    besteht,
    wobei für das Verhältnis ψ = % C + % Mn / 5 + % Cr / 6 / % Al + % Si
    Figure imgb0010
    mit %C: jeweiliger C-Gehalt des Stahls
    %Mn: jeweiliger Mn-Gehalt des Stahls
    %Cr: jeweiliger Cr-Gehalt des Stahls
    %Al: jeweiliger Al-Gehalt des Stahls
    %Si: jeweiliger Si-Gehalt des Stahls
    gilt 1,6 ψ 3
    Figure imgb0011
    und für das Kohlenstoffäquivalent CE = % C + % Si + % Mn / 5 + % Cr + % Mo / 6
    Figure imgb0012
    mit %C: jeweiliger C-Gehalt des Stahls
    %Si: jeweiliger Si-Gehalt des Stahls
    %Mn: jeweiliger Mn-Gehalt des Stahls
    %Cr: jeweiliger Cr-Gehalt des Stahls
    %Mo: jeweiliger Mo-Gehalt des Stahls
    gilt 0,254 CE 1,1 Gew . % ;
    Figure imgb0013
    b) Erwärmen des Stahlflachproduktes auf eine oberhalb der A3-Temperatur des Stahls des Stahlflachprodukts liegende und höchstens 950 °C betragende Austenitisierungstemperatur THZ, wobei die Erwärmung bis zu einer 200 - 400 °C betragenden Wendepunkttemperatur Tw mit einer Erwärmungsgeschwindigkeit θH1 von 5 - 25 K/s und anschließend bis zur Austenitisierungstemperatur THZ mit einer Erwärmungsgeschwindigkeit θH2 von mindestens 2 - 10 °K/s erfolgt
    mit THZ > Ac3[°C]= 910-203√(%C)-15,2%Ni +44, 7%Si+31,5%Mo-21,1%Mn
    mit %C: C-Gehalt des Stahls,
    %Ni: Ni-Gehalt des Stahls,
    %Si: Si-Gehalt des Stahls,
    %Mo: Mo-Gehalt des Stahls,
    %Mn: Mn-Gehalt des Stahls;
    c) Halten des Stahlflachprodukts bei der Austenitisierungstemperatur THZ über eine Austenitisierungsdauer tHZ von 5 -15 s;
    d) erstes Abkühlen des Stahlflachprodukts über eine Abkühldauer tk von 50 - 300 s auf eine Zwischentemperatur TK von nicht weniger als 680 °C;
    e) von der Zwischentemperatur TK ausgehendes Abschrecken des Stahlflachprodukts mit einer mehr als 30 K/s betragenden Abkühlgeschwindigkeit θQ auf eine Kühlstopptemperatur TQ für die gilt: T MS 175 ° C < T Q < T MS
    Figure imgb0014
    mit T MS ° C = 539 ° C + 423 % C 30,4 % Mn 7,5 % Si + 30 % Al ° C / Gew . %
    Figure imgb0015
    mit %C: C-Gehalt des Stahls,
    %Mn: Mn-Gehalt des Stahls,
    %Si: Si-Gehalt des Stahls,
    %Al: Al-Gehalt des Stahls;
    f) Halten des Stahlflachprodukts auf der Kühlstopptemperatur TQ für eine Haltedauer tQ von 10 - 60 s;
    g) Behandeln des auf die Kühlstopptemperatur TQ abgeschreckten Stahlflachprodukts,
    g.1) wobei das Stahlflachprodukt über eine Gesamtbehandlungsdauer tB von 10 - 1000 s bei einer Behandlungstemperatur TB, die mindestens gleich der Kühlstopptemperatur TQ und nicht höher als 550 °C ist, gehalten wird,
    oder
    g.2) wobei das Stahlflachprodukt ausgehend von der Kühlstopptemperatur TQ auf eine 450 - 500 °C betragende Behandlungstemperatur TB erwärmt wird, wobei das Stahlflachprodukt anschließend optional bei dieser Behandlungstemperatur TB über eine Haltedauer tBI isotherm gehalten wird, wobei die Erwärmung auf die Behandlungstemperatur TB mit einer Erwärmungsgeschwindigkeit θB1 von weniger als 80 K/s erfolgt und die als Summe der für die Erwärmung benötigte Erwärmungszeit tBR und der Haltedauer tBI gebildete Gesamtbehandlungsdauer tBT 10 - 1000 s beträgt, und wobei das Stahlflachprodukt nach dem Behandeln durch ein Schmelzenbad geleitet wird, um es mit einem metallischen Schutzüberzug auf Zn-Basis zu überziehen;
    h) von der Behandlungstemperatur TB ausgehendes Abkühlen mit einer Abkühlgeschwindigkeit θB2 von mehr als 5 K/s.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass im Arbeitsschritt b) die Erwärmungsgeschwindigkeiten θH1 und θH2 gleich sind.
  7. Verfahren nach Anspruch 5oder 6, dadurch gekennzeichnet, dass das Stahlflachprodukt im Arbeitsschritt g.1) von der Kühlstopptemperatur TQ mit einer Erwärmungsgeschwindigkeit θB1 von weniger als 80 K/s auf die Behandlungstemperatur TB erwärmt wird.
EP16723293.3A 2015-05-06 2016-05-04 Stahlflachprodukt und verfahren zu seiner herstellung Active EP3292228B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/EP2015/059968 WO2016177420A1 (de) 2015-05-06 2015-05-06 Stahlflachprodukt und verfahren zu seiner herstellung
PCT/EP2016/059960 WO2016177763A1 (de) 2015-05-06 2016-05-04 Stahlflachprodukt und verfahren zu seiner herstellung

Publications (2)

Publication Number Publication Date
EP3292228A1 EP3292228A1 (de) 2018-03-14
EP3292228B1 true EP3292228B1 (de) 2020-08-12

Family

ID=53267305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16723293.3A Active EP3292228B1 (de) 2015-05-06 2016-05-04 Stahlflachprodukt und verfahren zu seiner herstellung

Country Status (9)

Country Link
US (1) US20190119774A1 (de)
EP (1) EP3292228B1 (de)
JP (1) JP6788612B2 (de)
KR (1) KR102594922B1 (de)
CN (1) CN107580634A (de)
ES (1) ES2820348T3 (de)
MX (1) MX2017014090A (de)
WO (2) WO2016177420A1 (de)
ZA (1) ZA201707321B (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102478025B1 (ko) * 2016-12-14 2022-12-15 티센크루프 스틸 유럽 악티엔게젤샤프트 열간 압연 평탄형 강 제품 및 그 제조 방법
KR101917472B1 (ko) * 2016-12-23 2018-11-09 주식회사 포스코 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법
JP6822489B2 (ja) * 2017-01-31 2021-01-27 日本製鉄株式会社 鋼板
CN110651377A (zh) * 2017-05-18 2020-01-03 蒂森克虏伯钢铁欧洲股份公司 电池壳体
WO2019063081A1 (de) * 2017-09-28 2019-04-04 Thyssenkrupp Steel Europe Ag Stahlflachprodukt und verfahren zu seiner herstellung
CN108359895A (zh) * 2018-03-14 2018-08-03 河钢股份有限公司 一种抗拉强度950MPa级别的热成形钢及其热轧工艺
WO2019223854A1 (de) * 2018-05-22 2019-11-28 Thyssenkrupp Steel Europe Ag Aus einem stahl geformtes blechformteil mit einer hohen zugfestigkeit und verfahren zu dessen herstellung
CN112313349B (zh) * 2018-06-12 2023-04-14 蒂森克虏伯钢铁欧洲股份公司 扁钢产品及其生产方法
CN109266956B (zh) * 2018-09-14 2019-08-06 东北大学 一种汽车b柱加强板用钢及其制备方法
EP3856936B1 (de) * 2018-09-26 2022-08-24 ThyssenKrupp Steel Europe AG Verfahren zur herstellung eines beschichteten stahlflachprodukts und beschichtetes stahlflachprodukt
JP7410936B2 (ja) 2018-09-28 2024-01-10 ポスコ カンパニー リミテッド 穴拡げ性が高い高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、及びこれらの製造方法
KR102276741B1 (ko) * 2018-09-28 2021-07-13 주식회사 포스코 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
PT3754037T (pt) * 2019-06-17 2022-04-19 Tata Steel Ijmuiden Bv Método de tratamento térmico de uma tira de aço laminada a frio de alta resistência
WO2021149676A1 (ja) 2020-01-22 2021-07-29 日本製鉄株式会社 鋼板およびその製造方法
EP3872206B1 (de) * 2020-02-28 2023-06-21 ThyssenKrupp Steel Europe AG Verfahren zur herstellung eines nachbehandelten, kaltgewalzten stahlflachprodukts und nachbehandeltes, kaltgewalztes stahlflachprodukt
WO2021176249A1 (en) * 2020-03-02 2021-09-10 Arcelormittal High strength cold rolled and galvannealed steel sheet and manufacturing process thereof
CN114107794B (zh) * 2020-08-31 2023-08-11 宝山钢铁股份有限公司 一种980MPa级超低碳马氏体加残奥型超高扩孔钢及其制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826401B2 (ja) * 1990-12-29 1996-03-13 日本鋼管株式会社 加工性及び衝撃特性に優れた超高強度冷延鋼板の製造法
JPH06108152A (ja) * 1992-09-30 1994-04-19 Kobe Steel Ltd 曲げ加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JP2826058B2 (ja) * 1993-12-29 1998-11-18 株式会社神戸製鋼所 水素脆化の発生しない超高強度薄鋼板及び製造方法
JP3374659B2 (ja) * 1995-06-09 2003-02-10 日本鋼管株式会社 超高張力電縫鋼管およびその製造方法
JP3849625B2 (ja) * 1995-06-09 2006-11-22 Jfeスチール株式会社 超高張力電縫鋼管の製造方法
JP5365216B2 (ja) * 2008-01-31 2013-12-11 Jfeスチール株式会社 高強度鋼板とその製造方法
JP5402007B2 (ja) * 2008-02-08 2014-01-29 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5418047B2 (ja) 2008-09-10 2014-02-19 Jfeスチール株式会社 高強度鋼板およびその製造方法
KR20100034118A (ko) * 2008-09-23 2010-04-01 포항공과대학교 산학협력단 마르텐사이트 조직을 가진 초고강도 용융아연도금 강판 및 그 제조 방법
JP5315956B2 (ja) * 2008-11-28 2013-10-16 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5342912B2 (ja) * 2009-03-31 2013-11-13 株式会社神戸製鋼所 曲げ加工性に優れた高強度冷延鋼板
EP2524970A1 (de) * 2011-05-18 2012-11-21 ThyssenKrupp Steel Europe AG Hochfestes Stahlflachprodukt und Verfahren zu dessen Herstellung
JP6047037B2 (ja) * 2012-03-29 2016-12-21 株式会社神戸製鋼所 鋼板形状に優れた高強度冷延鋼板の製造方法
JP5906154B2 (ja) * 2012-07-20 2016-04-20 株式会社神戸製鋼所 耐遅れ破壊性に優れた高強度鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
MX2017014090A (es) 2018-03-01
KR102594922B1 (ko) 2023-10-27
US20190119774A1 (en) 2019-04-25
EP3292228A1 (de) 2018-03-14
ZA201707321B (en) 2022-11-30
JP2018518593A (ja) 2018-07-12
WO2016177420A1 (de) 2016-11-10
CN107580634A (zh) 2018-01-12
KR20180003581A (ko) 2018-01-09
JP6788612B2 (ja) 2020-11-25
WO2016177763A1 (de) 2016-11-10
ES2820348T3 (es) 2021-04-20

Similar Documents

Publication Publication Date Title
EP3292228B1 (de) Stahlflachprodukt und verfahren zu seiner herstellung
EP2809819B1 (de) Höchstfester mehrphasenstahl mit verbesserten eigenschaften bei herstellung und verarbeitung
EP2710158B1 (de) Hochfestes stahlflachprodukt und verfahren zu dessen herstellung
EP2684975B1 (de) Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP3555337A1 (de) Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung
EP2836614B1 (de) Hochfester mehrphasenstahl und verfahren zur herstellung eines bandes aus diesem stahl
EP3688203B1 (de) Stahlflachprodukt und verfahren zu seiner herstellung
EP3320120A1 (de) Höchstfester mehrphasenstahl und verfahren zur herstellung eines kaltgewalzten stahlbandes hieraus
EP2690184B1 (de) Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
DE102013013067A1 (de) Siliziumhaltiger, mikrolegierter hochfester Mehrphasenstahl mit einer Mindestzugfestigkeit von 750 MPa und verbesserten Eigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
EP3692178B1 (de) Verfahren zur herstellung eines stahlbandes aus höchstfestem mehrphasenstahl
EP3221478A1 (de) Hochfester lufthärtender mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines bandes aus diesem stahl
WO2016078643A9 (de) Hochfester lufthärtender mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines bandes aus diesem stahl
WO2016078644A1 (de) Höchstfester lufthärtender mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines bandes aus diesem stahl
EP3807429A1 (de) Stahlflachprodukt und verfahren zu seiner herstellung
WO2020038883A1 (de) Warmgewalztes unvergütetes und warmgewalztes vergütetes stahlflachprodukt sowie verfahren zu deren herstellung
EP3872206A1 (de) Verfahren zur herstellung eines nachbehandelten, kaltgewalzten stahlflachprodukts und nachbehandeltes, kaltgewalztes stahlflachprodukt
DE102022125128A1 (de) Verfahren zur Herstellung eines Stahlbandes aus einem hochfesten Mehrphasenstahl und entsprechendes Stahlband
EP4136265A1 (de) Verfahren zur herstellung eines stahlbandes mit einem mehrphasengefüge und stahlband hierzu
WO2022207913A1 (de) Stahlband aus einem hochfesten mehrphasenstahl und verfahren zur herstellung eines derartigen stahlbandes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171018

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190325

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/14 20060101ALI20200131BHEP

Ipc: C22C 38/28 20060101ALI20200131BHEP

Ipc: C22C 38/26 20060101ALI20200131BHEP

Ipc: C21D 6/00 20060101ALI20200131BHEP

Ipc: C23C 2/28 20060101ALI20200131BHEP

Ipc: C21D 1/22 20060101ALI20200131BHEP

Ipc: C22C 38/38 20060101ALI20200131BHEP

Ipc: C22C 38/02 20060101AFI20200131BHEP

Ipc: C22C 38/22 20060101ALI20200131BHEP

Ipc: C22C 38/04 20060101ALI20200131BHEP

Ipc: C22C 38/00 20060101ALI20200131BHEP

Ipc: C23C 2/06 20060101ALI20200131BHEP

Ipc: C22C 38/32 20060101ALI20200131BHEP

Ipc: C21D 1/18 20060101ALI20200131BHEP

Ipc: C21D 8/02 20060101ALI20200131BHEP

Ipc: C22C 38/06 20060101ALI20200131BHEP

Ipc: C21D 9/46 20060101ALI20200131BHEP

Ipc: C23C 2/02 20060101ALI20200131BHEP

INTG Intention to grant announced

Effective date: 20200220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010837

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1301622

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201112

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201113

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2820348

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010837

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

26N No opposition filed

Effective date: 20210514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210504

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230519

Year of fee payment: 8

Ref country code: FR

Payment date: 20230526

Year of fee payment: 8

Ref country code: DE

Payment date: 20220620

Year of fee payment: 8

Ref country code: CZ

Payment date: 20230425

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230519

Year of fee payment: 8

Ref country code: AT

Payment date: 20230522

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 8

Ref country code: ES

Payment date: 20230725

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812