EP3291922A1 - Procédé permettant de réaliser une peinture multicouche sur des substrats en plastique - Google Patents

Procédé permettant de réaliser une peinture multicouche sur des substrats en plastique

Info

Publication number
EP3291922A1
EP3291922A1 EP16719014.9A EP16719014A EP3291922A1 EP 3291922 A1 EP3291922 A1 EP 3291922A1 EP 16719014 A EP16719014 A EP 16719014A EP 3291922 A1 EP3291922 A1 EP 3291922A1
Authority
EP
European Patent Office
Prior art keywords
basecoat
groups
basecoats
dispersion
polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16719014.9A
Other languages
German (de)
English (en)
Inventor
Jürgen Bauer
Audree Andersen
Hardy Reuter
Roland Ratz
Sina Winnen
Marita BUERMANN
Vera DIEPENBROCK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Coatings GmbH
Original Assignee
BASF Coatings GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Coatings GmbH filed Critical BASF Coatings GmbH
Publication of EP3291922A1 publication Critical patent/EP3291922A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/53Base coat plus clear coat type
    • B05D7/532Base coat plus clear coat type the two layers being cured or baked together, i.e. wet on wet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/57Three layers or more the last layer being a clear coat
    • B05D7/572Three layers or more the last layer being a clear coat all layers being cured or baked together
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3253Polyamines being in latent form
    • C08G18/3256Reaction products of polyamines with aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • B05D2201/02Polymeric substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/20Aqueous dispersion or solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2503/00Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2507/00Polyolefins
    • B05D2507/02Polypropylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers

Definitions

  • the present invention relates to a process for the production of a multicoat paint system on plastic substrates in which a basecoat film or several directly successive basecoat films are produced on a plastic substrate, a clearcoat film is prepared directly on one or the uppermost of the multiple basecoat films, and then the one or more basecoat films and the clearcoat layer cured together.
  • the present invention relates to a multi-layer coating, which was prepared by the process according to the invention.
  • the method can be used, for example, in the field of vehicle painting, for example in the painting of vehicle parts and accessories.
  • Plastics have prevailed in the context of vehicle painting as materials for vehicle parts as well as vehicle mounting and accessory parts both indoors and outdoors. Plastics as well as other materials for decorative reasons (for example, coloring) and / or due to technical expediency (for example, light and weather resistance) coated with appropriate coating agents such as basecoats and clearcoats or painted. While the basecoat layer produced by the application of a corresponding basecoat material is primarily responsible for the production of aesthetic properties such as the color and / or effects such as the flop, the clearcoat film generally prepared on the basecoat film in particular serves the scratch resistance and the gloss of the then present multicoat paint system.
  • the adhesion of coatings to plastic substrates is not always sufficient, so that they gradually detach from the substrate due to, for example, weathering or mechanical stress.
  • aqueous coating compositions which are becoming more and more prevalent in the plastic coating from an ecological point of view, the adhesion problems, especially in the coating of non-polar plastic substrates due to the polarity differences of the two media, the plastic substrate and the coating agent, are even more pronounced.
  • the Basecoat (b.1 .1) or at least one of the basecoats (b.1 .2.x) comprises at least one aqueous polyurethane-polyurea dispersion (PD) comprising polyurethane-polyurea particles, wherein the dispersion contained in the dispersion (PD) Polyurethane polyurea particles contain anionic and / or groups which can be converted into anionic groups and have an average particle size of 40 to 2000 nm and a gel content of at least 50%.
  • the abovementioned method is also referred to below as the method according to the invention and is accordingly the subject of the present invention.
  • Preferred embodiments of the method according to the invention are given in the description below and in the subclaims.
  • the present invention is a multi-layer coating on a plastic substrate, which was prepared by the method according to the invention.
  • the inventive method allows the production of multi-layer coatings on plastic substrates, which include the common structure of the basecoat film and clearcoat film and at the same time have excellent adhesion to the plastic substrate.
  • the application of a coating agent to a substrate or the production of a coating layer on a substrate are as follows.
  • the respective coating agent is applied such that the coating layer produced therefrom is arranged on the substrate, but does not necessarily have to be in direct contact with the substrate.
  • other layers may be arranged between the coating layer and the substrate.
  • at least one basecoat film is produced on the plastic substrate (S), but at least one further coat, for example a filler or adhesive primer coat, can be arranged between the substrate and the basecoat film.
  • a coating agent (b) to a coating layer (A) produced by means of another coating agent (a) (that is to say the production of a coating layer (B) on another coating layer (A)).
  • the coating layer (B) does not necessarily have to be in contact with the coating layer (A), it merely has to be arranged above it, that is to say on the side of the coating layer (A) facing away from the substrate.
  • applying a coating agent directly to a substrate or producing a coating layer directly on a substrate is understood as follows. The respective coating agent is applied such that the coating layer produced therefrom is arranged on the substrate and is in direct contact with the substrate. In particular, no other layer is arranged between the coating layer and the substrate.
  • flash drying, intermediate drying and hardening are to be understood as meaning the term contents familiar to the person skilled in the art in connection with processes for producing multicoat paint systems.
  • bleeding is basically understood to mean the evaporation or evaporation of organic solvents and / or water of a coating agent applied during the production of a coating at usually ambient temperature (ie room temperature), for example 15 to 35 ° C. for a period of for example, 0.5 to 30 minutes.
  • ambient temperature ie room temperature
  • organic solvents and / or water which are contained in the applied coating agent evaporate.
  • the coating material since the coating material is still flowable directly after application and at the beginning of venting, it can run during the venting process. Because at least one applied by spray application coating agent is usually applied droplet-shaped and not in a homogeneous thickness.
  • organic solvents and / or water evaporate successively, so that after the ablation phase, a comparatively smooth coating layer has formed, which contains less water and / or solvent compared to the applied coating composition.
  • the coating layer is not yet ready for use after it has been flashed off. It is, for example, no longer flowable, but still soft or sticky, possibly only dried. In particular, the coating layer is not yet cured as described below.
  • Intermediate drying is therefore also understood to mean the evaporation or evaporation of organic solvents and / or water of a coating agent applied during the production of a coating, usually at a temperature of, for example, 40 to 90 ° C., higher than the ambient temperature, for a duration of, for example, 1 to 20 min. Even with intermediate drying, the applied coating agent will thus lose a proportion of organic solvents and / or water. With respect to a particular coating agent is generally considered that the intermediate drying in comparison to bleeding at, for example, higher temperatures and / or for a longer period of time is done, so compared to bleeding and a higher proportion of organic solvents and / or water from the escaped coating layer escapes.
  • hardening of a coating layer is understood to mean the transfer of such a layer into the ready-to-use state, that is to say into a state in which the substrate equipped with the respective coating layer can be transported, stored and used as intended.
  • a cured coating layer is thus no longer particularly soft or sticky, but conditioned as a solid coating film, which no longer substantially changes its properties such as hardness or adhesion to the substrate even upon further exposure to curing conditions as described below.
  • coating compositions can basically be cured physically and / or chemically, depending on the constituents contained, such as binders and crosslinking agents. In the case of chemical curing, in particular the thermal-chemical curing is considered.
  • a coating composition may, for example if it is thermally-chemically curable, be self-crosslinking and / or externally-crosslinking.
  • a coating agent is self-crosslinking and / or externally crosslinking, it is to be understood in the context of the present invention that this coating composition contains polymers as binders and optionally crosslinking agents which can crosslink together accordingly.
  • the underlying mechanisms as well as usable binders and crosslinking agents are described below.
  • thermally curable or the term “physical curing” means the formation of a cured coating layer by release of solvent from polymer solutions or polymer dispersions, the curing being achieved by entanglement of polymer chains.
  • Such coating compositions are usually formulated as one-component coating compositions.
  • thermalally-chemically curable or the term “thermal-chemical curing” means the crosslinking of a lacquer layer initiated by chemical reaction of reactive functional groups (formation of a hardened coating layer), the energetic activation of this chemical reaction by thermal energy is possible.
  • different functional groups which are complementary to one another can react with one another (complementary functional groups) and / or the formation of the hardened layer is based on the reaction of autoreactive groups, that is to say functional groups which react with each other with groups of their type.
  • suitable complementary reactive functional groups and autoreactive functional groups are known, for example, from German Patent Application DE 199 30 665 A1, page 7, line 28, to page 9, line 24.
  • This crosslinking can be a self-crosslinking and / or an external crosslinking.
  • an organic polymer used as a binder for example a polyester, a polyurethane or a poly (meth) acrylate
  • self-crosslinking is present.
  • Crosslinking is present, for example, when a (first) organic polymer containing certain functional groups, for example hydroxyl groups, reacts with a crosslinking agent known per se, for example a polyisocyanate and / or a melamine resin.
  • the crosslinking agent thus contains reactive functional groups which are complementary to the reactive functional groups present in the (first) organic polymer used as binder.
  • external crosslinking are the per se known one-component and multi-component systems, in particular two-component systems into consideration.
  • the components to be crosslinked for example organic polymers as binders and crosslinking agents, are present next to one another, that is to say in one component. requirement This is because the components to be crosslinked only react with one another at elevated temperatures of, for example, above 100 ° C., that is, undergo curing reactions. Otherwise, the components to be crosslinked would have to be stored separately from one another and mixed with one another shortly before application to a substrate, in order to avoid premature, at least proportional, thermochemical curing (compare two-component systems).
  • hydroxy-functional polyesters and / or polyurethanes with melamine resins and / or blocked polyisocyanates may be mentioned as crosslinking agents.
  • the components to be crosslinked for example the organic polymers as binders and the crosslinking agents, are present separately from one another in at least two components which are combined only shortly before application.
  • This shape is chosen when the components to be cross-linked already react at ambient temperatures or slightly elevated temperatures between 40 and 100 ° C.
  • hydroxy-functional polyesters and / or polyurethanes and / or poly (meth) acrylates with free polyisocyanates as crosslinking agents may be mentioned.
  • an organic polymer has as binder both self-crosslinking and externally crosslinking functional groups and then combined with crosslinking agents.
  • thermally-chemically curable coating agent in the curing of a thermally-chemically curable coating agent is always a physical cure, that is a entanglement of polymer chains occur. Nevertheless, such a coating composition is then referred to as thermally-chemically curable.
  • curing is effected by different mechanisms, which of course also make different conditions necessary during the curing, in particular different curing temperatures and curing times.
  • curing preferably takes place between 15 and 100 ° C., preferably between 40 and 100 ° C., over a period of, for example, 5 minutes to 48 hours, preferably 10 to 60 minutes.
  • the curing of flash-off and / or intermediate drying thus differs possibly only by the duration of the conditioning of the coating layer.
  • thermo-chemically curable coating compositions the following applies.
  • the thermal-chemical curing of thermally-chemically curable one-component systems is carried out, for example, at temperatures of 100 to 200 ° C, preferably 120 to 200 ° C for a period of 10 to 60 minutes, preferably 15 to 50 minutes, since these conditions are usually necessary to convert the coating layer by chemical crosslinking reactions in a thermo-chemically cured coating layer. Accordingly, a flash-off and / or intermediate drying phase taking place before the thermochemical curing takes place at lower temperatures and / or for shorter times.
  • thermal-chemical curing of thermally-chemically curable two-component systems is carried out at temperatures of, for example, between 15 and 100 ° C., preferably between 40 and 100 ° C., for a period of 5 to 80 minutes, preferably 10 to 60 minutes.
  • a flash and / or intermediate drying phase taking place before the thermochemical curing takes place at lower temperatures and / or for shorter times.
  • thermo-chemically curable one-component coating composition which contains, for example, a combination of hydroxy-functional binders and typical amino resins and only at temperatures of, for example, above 100 ° C chemically cures, are cured physically at only 80 ° C. The possibly taking place in very minor proportion chemical crosslinking is then negligible.
  • polymeric binders and Aminoplast resins which are then purely physically cured in the cured coating, for example, certain property profiles can be achieved.
  • the curing of flash-off and / or intermediate drying thus optionally also differs only by the duration of the conditioning of the coating layer.
  • a basically thermally-chemically curable one-component basecoat material is selected in the context of the process according to the invention and if it is used to prepare a basecoat film or topmost basecoat film, a clearcoat is applied directly to this film. Finally, both layers are cured together. If the clear coat is a thermally-chemically curable two-component coating agent, which is preferred, then the final curing may be carried out at, for example, 80 ° C. The clearcoat is cured thermally-chemically, while the components contained in the applied basecoat can only cure physically at this temperature.
  • the substrate is not heated to such an extent during the curing of paint layers applied thereon that it decomposes or deforms.
  • common plastic substrates especially those used in vehicle painting, are generally not dimensionally stable at temperatures of 100.degree. C. and higher. Accordingly, the curing of coating layers in the present invention is preferably carried out at below 100 ° C. From what has been said above, it thus follows that in the context of the present invention, the following hardening processes are preferably realized.
  • a multicoat system is built up on a plastic substrate (S).
  • Suitable plastic substrates (S) are conventional plastics, for example polystyrene (PS), polyvinyl chloride (PVC), polyurethane (PUR), glass fiber-reinforced unsaturated polyesters, polymethyl methacrylate (PMMA), polyphenylene sulfide (PPS), polyoxymethylene (POM), polyphenylene ether (PPE) , Polyphenylene oxide (PPO), polyurea, polybutadiene terephthalate (PBT), polycarbonate (PC), acrylonitrile-butadiene-styrene copolymers (ABS) and polyolefins such as polypropylene (PP).
  • PS polystyrene
  • PVC polyvinyl chloride
  • PUR polyurethane
  • PMMA polymethyl methacrylate
  • PPS polyphenylene sulfide
  • POM polyoxymethylene
  • PPE polypheny
  • plastic substrates containing various of the plastics mentioned therefore mixtures of these plastics.
  • PP polypropylene
  • EPDM ethylene-propylene-diene copolymers
  • the plastic substrates may be simple plastic plates. Are possible as substrates but also vehicle bodies made of plastics or certain vehicle parts andsuinganbau- and accessories for both the vehicle interior and the vehicle exterior.
  • the substrates can be pretreated in a manner known per se. In particular, surface-activating pretreatments such as flaming, plasma treatment and corona discharge, in particular flaming, are suitable.
  • the substrates can be provided with basically known filler coatings or adhesive primer coatings.
  • Corresponding coating compositions are known and can be applied, for example, directly to the optionally surface-activating pretreated substrate and then cured.
  • it is of very particular advantage that can be completely dispensed with the use of a filler or adhesive primer in the context of the inventive method, but nevertheless excellent adhesion properties result.
  • step (1) of the process according to the invention (1 .1) a basecoat film (B.1 .1) is prepared or (1 .2) a plurality of directly successive basecoat films (B.1 .2.x) are prepared.
  • the layers are produced by applying (1 .1) an aqueous basecoat (b.1 .1) to the plastic substrate (S) or (1 .2) directly successively applying several basecoats (b.1 .2.x) on the plastic substrate (S).
  • the basecoats can be applied directly to the substrate, ie between the optionally surface-activating pretreated substrate and the basecoat (b.1 .1) or the first (that is to say the lowest) of the basecoats (b.1 .2.x) are no further Layers arranged.
  • at least one other coating layer such as a filler layer, to be produced on the substrate first.
  • the basecoat (b.1 .1) or the first basecoat (b.1 .2.x) is applied directly to the optionally surface-activating pretreated plastic substrate.
  • the direct successive application of several basecoats (b.1 .2.x) to the substrate (S) is thus understood to mean that first a first basecoat is applied to the substrate and then a second basecoat is applied directly to the layer of the first basecoat is applied. An optionally third basecoat is then applied directly to the layer of the second basecoat. This process can then be repeated analogously for further basecoats (ie a fourth, fifth, etc. basecoat).
  • basecoat material and basecoat film in relation to the coating agents and coating layers applied in step (1) of the process according to the invention are used for the sake of clarity.
  • a basecoat is to be understood as meaning a coloring intermediate coating substance used in the automotive finishing and general industrial coating.
  • at least one additional clearcoat film is generally applied to this coat as well as within the scope of the inventive process. The curing then takes place together with the clearcoat.
  • the basecoats (b.1.1) and (b.1.2.x) are described in detail below. However, these are preferably physically curable basecoats and / or thermochemically curable externally crosslinking one-component basecoats.
  • the basecoat (b.1.1) and the basecoat materials (b.1.2.x) can be applied by the methods known to those skilled in the art for the application of liquid coating compositions, for example by dipping, knife coating, spraying, rolling or the like.
  • spray application methods are used, such as compressed air spraying (pneumatic application), airless spraying, high rotation, electrostatic spray application (ESTA), optionally combined with hot spray application such as hot air (hot spraying).
  • the basecoats are applied via the pneumatic spray application or the electrostatic spray application.
  • the application of the basecoat (b.1 .1) thus produces a basecoat film (B.1 .1), that is to say a layer of the basecoat (b.1 .1) applied to the plastic substrate (S).
  • the basecoats and basecoats are generally characterized by (b.1.2.x) and (B.1.2.x), while in naming the specific individual basecoats and basecoats, the x can be replaced by correspondingly appropriate other letters.
  • the first basecoat and the first basecoat film can be labeled a, the topmost basecoat and the topmost basecoat film can be labeled z. These two basecoats or basecoats are present in the stage (1 .2) in any case.
  • Optionally interposed layers may be consecutively labeled b, c, d and so on.
  • a basecoat film (B.1 .2.a) is thus produced on the plastic substrate (S).
  • the at least one further basecoat film (B.1 .2.x) is then produced directly on the basecoat film (B.1 .2.a). If several further basecoat films (B.1 .2.x) are produced, these are prepared directly in succession.
  • the basecoats (b.1 .2.x) can be identical or different. It is also possible to produce several basecoat films (B.1.2.x) with the same basecoat and one or more further basecoat films (B.1.2.x) with one or more other basecoats.
  • first basecoat film is prepared by applying a first basecoat material and a second basecoat film is applied by applying the same basecoat material, then obviously both layers on the same basecoat.
  • the application is obviously carried out in two stages, so that the corresponding basecoat in the sense of the inventive method corresponds to a first basecoat (b.1 .2.a) and another basecoat (b.1 .2.z).
  • the described construction is often also referred to as a single-layer basecoat layer structure produced in two jobs. Since, however, due to the technical conditions in a paint shop between the first job and the second job, a certain period of time always elapses, during which the substrate, for example the automobile body, is conditioned at, for example, 15 to 35 ° C. and thus vented, the characterization of this structure as a two-layer basecoat construction is formally more distinct.
  • the described process control is thus assigned to the second variant of the method according to the invention.
  • step (1 .1) the applied basecoat (b.1 .1) or the corresponding basecoat film (B.1 .1) after application, for example, at 15 to 35 ° C for a period of, for example, 0.5 to 30 min vented and / or intermittently dried at a temperature of preferably 40 to 90 ° C for a period of, for example, 1 to 20 minutes.
  • the mixture is first flashed off at 15 to 35 ° C. for a period of 0.5 to 30 minutes and then intermediately dried at 40 to 90 ° C. for a period of, for example, 1 to 20 minutes.
  • step (1 .2) the applied basecoats (b.1 .2.x) are generally flashed off on their own and / or with one another and / or inter-dried. Preference is also in the context of stage (1 .2) at 15 to 35 ° C for a period of 0.5 to 30 minutes and flashed at 40 to 90 ° C for a period of, for example, 1 to 20 minutes between dried.
  • the sequence of venting and / or intermediate drying of one or more base coat layers (B.1 .2.x) can be adapted to the requirements of the individual case.
  • the basecoat film (B.1.1) or basecoat films (B.1.2.x) are not cured within stage (1) of the process of the invention. This results clearly and directly from the below described step (3) of the method according to the invention. Since the basecoat films are cured only in step (3), they can not already hardened in the stage (1), because then the hardening in stage would no longer be possible.
  • the application of the basecoats (b.1 .1) and (b.1 .2.x) takes place in such a way that the basecoat film (B.1.1) and the individual basecoat films (B.1.2.x) are applied according to the method described in US Pat Stage (3) curing have a layer thickness of, for example, 3 to 50 microns, preferably 5 to 40 microns.
  • a clearcoat film (K) is produced directly on (2.1) the basecoat film (B.1 .1) or (2.2) of the topmost basecoat film (B.1 .2.z). This preparation is carried out by appropriate application of a clearcoat (k).
  • the clearcoat layer (K) is therefore arranged directly on the basecoat film (B.1 .1) or directly on the topmost basecoat film (B.1 .2.z).
  • the clearcoat (k) may be a transparent coating agent known per se to the person skilled in the art in this sense. Under transparent is to be understood that a layer formed with the coating agent is not color-covering, but is constituted so that the color of the underlying base paint assembly is visible. As you know, this does not exclude that Clearcoat in minor amounts may also contain pigments which may, for example, support the color depth of the overall structure.
  • aqueous or solvent-containing transparent, physically curing or thermally-chemically curable coating compositions are able to be formulated both as a one-component and as a two- or multi-component coating composition.
  • powder slurry clearcoats are also suitable. Preference is given to solvent-based clearcoats.
  • the clearcoats (k) used can in particular be thermally-chemically and / or chemically-actinically curable. In particular, they are thermally-chemically curable and externally crosslinking. Preference is given to thermally-chemically curable two-component clearcoats.
  • the clearcoats therefore usually and preferably contain at least one (first) polymer as binder with functional groups and at least one crosslinker with a functionality complementary to the functional groups of the binder. At least one hydroxy-functional poly (meth) acrylate polymer is preferably used as the binder and a free polyisocyanate as the crosslinking agent.
  • the clearcoat (k) is applied by the methods known to those skilled in the application of liquid coating compositions, for example by dipping, knife coating, spraying, rolling or the like.
  • spray application methods are used, such as compressed air spraying (pneumatic application), and electrostatic spray application (ESTA).
  • the clearcoat (k) or the corresponding clearcoat film (K) is preferably flashed after the application at 15 to 35 ° C for a period of 0.5 to 30 minutes or intermediate dried.
  • Such flash-off or intermediate drying conditions apply in particular to the preferred case that the clearcoat (k) is a thermally-chemically curable two-component coating composition.
  • this does not rule out that the clearcoat (k) on other curable coating agent and / or other flash or intermediate drying conditions are used.
  • the application of the clearcoat material (k) takes place in such a way that the clearcoat film has, after curing in step (3), a layer thickness of, for example, 15 to 80 micrometers, preferably 20 to 65 micrometers, particularly preferably 25 to 60 micrometers.
  • step (3) of the process according to the invention a joint curing of the (3.1) basecoat film (B.1 .1) and the clearcoat film (K) or (3.2) of the basecoat films (B.1 .2.x) and the clearcoat film (K. ).
  • the curing conditions depend on the basecoats and clearcoats used, if appropriate also on the conditions in which the basecoat film (B.1.1) or the basecoat films (B.1.2.x) were flashed off and temporarily dried.
  • the joint curing is preferably carried out at temperatures between 40 and 100 ° C, more preferably between 60 and 100 ° C, for a period of, for example, 5 to 60 minutes, preferably 20 to 60 minutes.
  • the preferably used thermally-chemically curable two-component clearcoats can be thermally-chemically cured.
  • the basecoats which are preferably used that is to say physically curable basecoats and / or thermo-chemically curable externally crosslinking one-component basecoats, are in any case physically hardened.
  • the plastic substrates can decompose or deform. If, for example, an applied basecoat requires a significantly longer duration for physical curing, it is of course also possible to harden longer in the final curing process and / or flash off or intermediate drying in stage (1) of the process is carried out at the necessary temperatures, for example for a longer period of time.
  • the basecoat (b.1 .1) to be used according to the invention comprises at least one, preferably exactly one, specific aqueous polyurethane-polyurea dispersion (PD).
  • the polymer particles present in the dispersion are therefore polyurethane-polyurea-based.
  • Such polymers can in principle be prepared by conventional polyaddition of, for example, polyisocyanates with polyols and polyamines.
  • the polyurethane-polyurea particles contained in the aqueous polyurethane-polyurea dispersion (PD) have a gel content of at least 50% (measuring method see example part).
  • the polyurethane-polyurea particles contained in the dispersion (PD) have an average particle size (also called average particle size) of from 40 to 2,000 nanometers (nm) (for the method of measurement, see the example section).
  • the dispersions (PD) according to the invention are thus microgel dispersions.
  • a microgel dispersion is known to be a polymer dispersion, in which on the one hand, the polymer in the form of relatively small
  • the polymer particles are at least partially intramolecularly crosslinked, the latter meaning that the polymer structures present within a particle have a typical macroscopic network with three-dimensional Macroscopically, however, such a microgel dispersion is still a dispersion of polymer particles in a dispersion medium, for example water, although the particles may also have partial cross-linking bridges (this can scarcely be ruled out purely for reasons of production), however
  • the system is a dispersion containing discrete particles with a measurable mean particle size, but due to their molecular nature, they are dissolved in suitable organic solvents, whereas macroscopic networks would only be swollen.
  • the microgels represent structures that are between branched and macroscopically crosslinked systems, thus combining the characteristics of suitable organic solvent-soluble macromolecules with network structure and insoluble macroscopic networks, the proportion of crosslinked polymers may not change until after isolation of the solid polymer Water and optionally organic solvents and subsequent extraction can be determined. It makes use of the fact that the originally soluble in suitable organic solvents microgel particles retain their internal network structure after isolation and behave in the solid as a macroscopic network. The crosslinking can be checked via the experimentally accessible gel fraction. Ultimately, the gel fraction is the fraction of the polymer from the dispersion which, as an isolated solid, can not be dissolved in a solvent in a molecularly disperse manner.
  • the polyurethane-polyurea particles contained in the aqueous polyurethane-polyurea dispersion (PD) preferably have a gel content of at least 60%, more preferably of at least 70%, particularly preferably of at least 80%.
  • the gel fraction can thus be up to 100% or approximately 100%, for example 99% or 98%. In such a case, therefore, all or approximately the entire polyurethane-polyurea polymer is present in the form of crosslinked particles.
  • the resulting polyurethane-polyurea dispersion is aqueous.
  • aqueous is known to the person skilled in the art in this context, which basically refers to a system which does not contain exclusively or mainly organic solvents (also called solvent) as the dispersion medium, but on the contrary contains a significant proportion of water as the dispersion medium aqueous character, based on the Maximum content of organic solvents and / or defined by the content of water are described below.
  • the polyurethane-polyurea particles contain anionic and / or anionic groups (that is, groups which can be converted to anionic groups by the use of known neutralizing agents, also mentioned below, such as bases).
  • these are, for example, carboxylic acid, sulfonic acid and / or phosphonic acid groups, particularly preferably carboxylic acid groups (functional groups which can be converted into anionic groups by neutralizing agents) and anionic groups derived from the abovementioned functional groups, in particular carboxylate , Sulfonate and / or phosphonate groups, preferably carboxylate groups.
  • carboxylic acid groups functional groups which can be converted into anionic groups by neutralizing agents
  • anionic groups derived from the abovementioned functional groups in particular carboxylate , Sulfonate and / or phosphonate groups, preferably carboxylate groups.
  • the introduction of such groups is known to increase water dispersibility.
  • the groups mentioned may be present proportionally or almost completely in one form (for example carboxylic acid) or in another form (carboxylate).
  • a determining influencing factor is, for example, the use of the already mentioned neutralizers, which are described in more detail below.
  • the introduction of said groups into polymers such as, for example, the polyurethane-polyurea particles can be known to take place via the use of appropriate starting compounds in the preparation of the polymers.
  • the starting compounds then contain the corresponding groups, for example carboxylic acid groups, and are replaced by further functional groups, for example Hydroxyl groups, polymerized in the polymer. Further details are described below.
  • Preferred anionic and / or anionic groups are carboxylate or carboxylic acid groups.
  • the polyurethane-polyurea particles contained in the dispersion (PD) preferably contain, in each case in reacted form, (Z.1 .1) at least one polyurethane prepolymer containing isocyanate groups, containing anionic groups and / or groups which can be converted into anionic groups, and 1 .2) at least one polyamine containing two primary amino groups and one or two secondary amino groups.
  • polymers for example the polyurethane-polyurea particles of the dispersion (PD)
  • PD dispersion
  • these particular components are used as starting compounds in the preparation of the respective polymers become.
  • the respective conversion to the target polymer takes place according to different mechanisms.
  • the components (Z.1 .1) and (Z.1.2) become apparent by reaction of the isocyanate groups of (Z.1.1) with the amino groups of (Z.1 .2) with formation of urea bonds reacted together.
  • the polymer then of course contains the pre-existing amino groups and isocyanate groups in the form of urea groups, that is, in their correspondingly reacted form. Nevertheless, the polymer ultimately contains the two components (Z.1 .1) and (Z.1 .2), because apart from the reacted isocyanate groups and amino groups, the components remain unchanged. Accordingly, for the sake of clarity, it is stated that the respective polymer contains the components, each in reacted form.
  • the meaning of the expression "the polymer contains, in converted form, a component (X)" is thus to be equated with the meaning of the expression "in the preparation of the polymer, the component (X) was used".
  • anionic groups and / or groups which can be converted into anionic groups are preferably introduced into the polyurethane-polyurea particles via the abovementioned isocyanate-group-containing polyurethane prepolymer.
  • the polyurethane-polyurea particles of the two components (Z.1 .1) and (Z.1 .2) are prepared from these two components.
  • the aqueous dispersion (PD) can be obtained by a specific three-step process, which is preferable. In the context of the description of this method, preferred embodiments of the components (Z.1 .1) and (Z.1 .2) are mentioned.
  • the method comprises
  • Isocyanate group-containing polyurethane polymers containing anionic and / or groups which can be converted into anionic groups are known in principle.
  • the component (Z.1 .1) is referred to as a prepolymer for the sake of clarity. It is a polymer to be referred to as a precursor, since it is used as starting component for the preparation of another component, namely the intermediate (Z.1).
  • diisocyanates may be mentioned: 1, 3 or 1, 4 Phenylene diisocyanate, 2,4- or 2,6-toluene diisocyanate, 4,4'- or 2,4'-diphenylmethane diisocyanate, 1, 4- or 1, 5-naphthylene diisocyanate,
  • Diisocyanatodiphenyl ether trimethylene diisocyanate, tetramethylene diisocyanate, ethylethylene diisocyanate, 2,3-dimethylethylene diisocyanate, 1-methyltrimethylene diisocyanate, pentamethylene diisocyanate, 1,3-cyclopentylene diisocyanate,
  • TXDI tetramethylxylylene diisocyanates
  • dimers and trimers of said diisocyanates such as uretdiones and isocyanurates is of course possible. It is also possible to use polyisocyanates of higher isocyanate functionality. Examples of these are tris (4-isocyanatophenyl) methane, 1, 3,4-triisocyanatobenzene, 2,4,6-triisocyanatotoluene, 1,3,5-tris (6-isocyanatohexylbiuret), bis (2,5-diisocyanato-4 - methylphenyl) methane.
  • the functionality can be reduced by reaction with monoalcohols or secondary amines.
  • diisocyanates particularly preferably the use of aliphatic diisocyanates, such as hexamethylene diisocyanate, isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4'-diisocyanate, 2,4- or 2,6-diisocyanato-1-methylcyclohexane, m- Tetramethylxylylene diisocyanate (m-TMXDI).
  • IPDI isophorone diisocyanate
  • m-TMXDI m- Tetramethylxylylene diisocyanate
  • An aliphatic is an isocyanate when the Isocyant phenomenon are attached to aliphatic groups, that is in the alpha position to an isocyanate group no aromatic carbon is present.
  • the polyisocyanates are generally reacted to form urethanes with polyols, especially diols.
  • suitable polyols are saturated or olefinically unsaturated polyester polyols and / or polyether polyols.
  • polyester polyols in particular those having a number average molecular weight of 400 to 5000 g / mol (method of measurement see example), are used.
  • polyester polyols preferably polyester diols
  • polyester diols can be prepared in known manner by reaction of corresponding polycarboxylic acids, preferably dicarboxylic acids, and / or their anhydrides with corresponding polyols, preferably diols, by esterification.
  • monocarboxylic acids and / or monoalcohols may also be used proportionately for the preparation.
  • the polyester diols are preferably saturated, in particular saturated and linear.
  • polyester polyols preferably polyester diols
  • phthalic acid isophthalic acid and terephthalic acid, of which isophthalic acid is advantageous and is therefore preferably used.
  • Suitable aliphatic polycarboxylic acids are oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid and dodecanedicarboxylic acid or else hexahydrophthalic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 4-methylhexahydrophthalic acid, tricyclodecanedicarboxylic acid as well as tetrahydrophthalic acid.
  • Dicarboxylic acids which can also be used are dimer fatty acids or dimerized fatty acids, which are known to be mixtures which are prepared by dimerization of unsaturated fatty acids and can be obtained, for example, under the trade names Radiacid (Oleon) or Pripol (Croda).
  • the use of such dimer fatty acids for the preparation of polyester diols is preferred in the context of the present invention.
  • Preferably used polyols for the preparation of prepolymers (Z.1 .1) are thus polyester diols which have been prepared using dimer fatty acids.
  • Particular preference is given to polyester diols, in the preparation of which at least 50% by weight, preferably 55 to 75% by weight, of the dicarboxylic acids used are dimer fatty acids.
  • polyester polyols examples include ethylene glycol, 1, 2 or 1, 3-propanediol, 1, 2, 1, 3 or 1, 4 Butanediol, 1, 2, 1, 3, 1, 4- or 1, 5-pentanediol, 1, 2, 1, 3, 1, 4, 1, 5 or 1, 6-hexanediol, hydroxypivalates , Neopentyl glycol, diethylene glycol, 1, 2-, 1, 3- or 1, 4-cyclohexanediol, 1, 2-, 1, 3- or 1, 4-cyclohexanedimethanol and trimethylpentanediol. Preference is therefore given to using diols.
  • Such polyols or diols can of course also be used directly for the preparation of the prepolymer (Z.1 .1), that is to say reacted directly with polyisocyanates.
  • starting compounds can be used in the preparation of the prepolymers (Z.1 .1) which, in addition to groups to be reacted in the preparation of urethane bonds, preferably hydroxyl groups, also contain the abovementioned groups, for example carboxylic acid groups. In this way, the corresponding groups are introduced into the prepolymer.
  • Suitable compounds for introducing the preferred carboxylic acid groups, if containing carboxyl groups are polyether polyols and / or polyester polyols. In any case, preference is given to using low molecular weight compounds which have at least one carboxylic acid group and at least one isocyanate-reactive functional group, preferably hydroxyl groups.
  • low molecular weight compound is to be understood as meaning, in contrast to relatively high molecular weight compounds, in particular polymers, those to which a discrete molecular weight can be assigned as preferably monomeric compounds, ie a low molecular weight compound is in particular no polymer, since the latter always represent a mixture of molecules and must be described by means of average molecular weights, preferably the term low molecular weight compound to understand that the corresponding compounds have a molecular weight of less than 300 g / mol. Preferably, the range is from 100 to 200 g / mol.
  • Preferred compounds in this sense are, for example, monocarboxylic acids containing two hydroxyl groups, for example dihydroxypropionic acid, dihydroxysuccinic acid and dihydroxybenzoic acid.
  • alpha, alpha dimethylolalkanoic acids such as 2,2-dimethylolacetic acid, 2,2-dimethylolpropionic acid, 2,2-dimethylolbutyric acid and 2,2-dimethylolpentanoic acid, in particular 2,2-dimethylolpropionic acid.
  • the prepolymers (Z.1 .1) are therefore preferably carboxy-functional. They have, based on the solids, preferably an acid number of 10 to 35 mg KOH / g, in particular 15 to 23 mg KOH / g.
  • the number-average molecular weight of the prepolymers can vary widely and is for example in the range from 2000 to 20 000 g / mol, preferably from 3500 to 6000 g / mol (measuring method see example part).
  • the prepolymer (Z.1 .1) is isocyanate group-containing. It preferably has, based on the solids, an isocyanate content of 0.5 to 6.0 wt .-%, preferably 1, 0 to 5.0 wt .-%, particularly preferably 1, 5 to 4.0 wt .-% (Measurement method it sample part).
  • the hydroxyl value of the prepolymer will, as a rule, be very low.
  • the hydroxyl number of the prepolymer, based on the solids, is preferably less than 15 mg KOH / g, in particular less than 10 mg KOH / g, more preferably less than 5 mg KOH / g (measuring method see example).
  • the preparation of the prepolymers (Z.1 .1) can be carried out by known and established methods in bulk or solution, more preferably by reacting the starting compounds in organic solvents, such as preferably methyl ethyl ketone at temperatures of for example 60 to 120 ° C, and optionally with use from Catalysts typical for polyurethane production.
  • organic solvents such as preferably methyl ethyl ketone
  • Catalysts typical for polyurethane production.
  • Such catalysts are known to the person skilled in the art, an example being dibutyltin laurate. It is of course to proceed so that the ratio of the starting components is selected so that the product, that is, the prepolymer (Z.1 .1) contains isocyanate groups.
  • the solvents should be selected so that they do not undergo any undesired reactions with the functional groups of the starting compounds, ie are inert to these groups insofar as they do not hinder the reaction of these functional groups.
  • the preparation is preferably already carried out in an organic solvent (Z.2) as described below, since this must be present in any case in the composition (Z) to be prepared in stage (I) of the process.
  • the groups which can be converted into anionic groups in the prepolymer (Z.1 .1) can also be present proportionally as corresponding anionic groups, for example by the use of a neutralizing agent. In this way, the water-dispersibility of the prepolymers (Z.1 .1) and thus also of the intermediate (Z.1) can be adjusted.
  • Suitable neutralizing agents are, in particular, the known basic neutralizing agents, such as, for example, carbonates, bicarbonates or hydroxides of alkali metals and alkaline earth metals, for example LiOH, NaOH, KOH or Ca (OH) 2.
  • suitable for neutralization and preferably used in the context of the present invention are organic, nitrogen-containing bases such as amines such as ammonia, trimethylamine, triethylamine, tributylamines, dimethylaniline, triphenylamine, dimethylethanolamine, methyldiethanolamine or triethanolamine and mixtures thereof.
  • the neutralizing agent can already during or before Are added at the beginning of the actual polymerization, then crizsp the carboxylic acid group-containing starting compounds are neutralized.
  • the neutralizing agent may be added, for example, in such an amount that a proportion of 35 to 65% of the groups is neutralized (degree of neutralization). A range of 40 to 60% is preferred (calculation method see example part).
  • the prepolymer (Z.1 .1) after its preparation and before its use for the preparation of the intermediate (Z.1) is neutralized as described.
  • the preparation of the intermediate (Z.1) described here comprises the reaction of the described prepolymer (Z.1 .1) with at least one, preferably exactly one polyamine (Z.1.2a) derived from a polyamine (Z.1.2) ,
  • the polyamine (Z.1.2a) contains two masked primary amino groups and one or two free secondary amino groups.
  • masked amino groups are to be understood as those in which the hydrogen radicals, which are present in free amino groups, are substituted on the nitrogen by reversible reaction with a masking agent. Due to the masking, the amino groups can not be reacted as free amino groups via condensation or addition reactions, so are not reactive in this regard and thus differ from free amino groups. Only the removal again of the reversibly attached masking agent, which in turn gives rise to the free amino groups, then evidently allows the known per se reactions of the amino groups. The principle thus resembles the principle of blocked or masked isocyanates likewise known in the field of polymer chemistry.
  • the primary amino groups of the polyamine (Z.1.2a) can be masked with the masking agents known per se, for example with ketones and / or aldehydes. With such a masking, ketimines and / or aldemines, which do not contain any nitrogen-hydrogen bonds, are then formed with liberation of water, so that no typical condensation or addition reactions of an amino group with another functional group, such as an isocyanate group, can take place.
  • Reaction conditions for preparing such a masked primary amine for example a ketimine
  • a corresponding masking can be realized.
  • the resulting water of reaction is removed during the reaction to prevent the otherwise possible reverse reaction (unmasking) of the reversible masking.
  • the reaction conditions for unmasking masked primary amino groups are known per se.
  • the conversion of a masked amine into the aqueous phase is sufficient to shift the equilibrium back to the side of the unmasking by the then existing concentration pressure of the water, thereby producing primary amino groups free of water and a free ketone.
  • Preferred masking agents are acetone, methyl ethyl ketone, methyl isobutyl ketone, diisopropyl ketone, cyclopentanone or cyclohexanone, particularly preferably the ketones (Z.2) are methyl ethyl ketone and methyl isobutyl ketone.
  • the preferred masking with ketones and / or aldehydes, in particular ketones, and the resulting production of ketimines and / or aldimines also has the advantage that selectively primary amino groups are masked. Existing secondary amino groups apparently can not be masked and thus remain free.
  • a polyamine (Z.1.2a) which also contains one or two free secondary amino groups in addition to the two masked primary amino groups, easily via the said preferred masking reactions of a polyamine (Z.1 .2), which free secondary and primary Contains amino groups can be prepared.
  • the polyamines (Z.1.2a) can be prepared by masking the primary amino groups of polyamines (Z.1.2) containing two primary amino groups and one or two secondary amino groups.
  • any desired aliphatic, aromatic or araliphatic groups can be present.
  • monovalent groups arranged as terminal groups on a secondary amino group or divalent groups arranged between two amino groups are possible.
  • aliphatic is understood as meaning all organic groups which are not aromatic.
  • aliphatic hydrocarbon groups that is groups which consist exclusively of carbon and hydrogen and are not aromatic.
  • These aliphatic hydrocarbon groups may be linear, branched or cyclic, which may be saturated or unsaturated. Of course, these groups may also contain both cyclic and linear or branched portions. It is also possible that aliphatic groups contain heteroatoms, in particular in the form of bridging groups such as ether, ester, amide and / or urethane groups. Possible aromatic groups are also known and require no further explanation.
  • the polyamines (Z.1 .2a) have two masked primary amino groups and one or two free secondary amino groups and they have as primary amino groups exclusively masked primary amino groups and as secondary amino groups exclusively free secondary amino groups.
  • the polyamines (Z.1.2a) have a total of three or four amino groups, these being selected from the group of the masked primary amino groups and the free secondary amino groups.
  • Very particularly preferred polyamines are those which consist of two masked primary amino groups, one or two free secondary amino groups and aliphatic-saturated hydrocarbon groups.
  • Examples of preferred polyamines (Z.1.2) from which polyamines (Z.1.2a) can also be prepared by masking the primary amino groups are diethylenetriamine, 3- (2-aminoethyl) aminopropylamine, dipropylenetriamine and N1- (2 (4- (2-aminoethyl) piperazin-1-yl) ethyl) ethane-1,2-diamine (one secondary amino group, two primary amino groups to be blocked) and triethylenetetramine and N, N'-bis (3-amino) aminopropyl) ethylenediamine (two secondary amino groups, two primary amino groups to be blocked).
  • the preparation of the intermediate (Z.1) comprises the reaction of the prepolymer (Z.1.1) with the polyamine (Z.1.2a) by addition reaction of isocyanate groups (Z.1.1) with free secondary amino groups (Z. .1 .2a).
  • This reaction which is known per se, then leads to the binding of the polyamine (Z.1 .2a) to the prepolymer (Z.1 .1) to form urea bonds, whereby ultimately the intermediate (Z.1) is formed.
  • preferably no other amines with free or masked secondary or free or masked primary amino groups are used.
  • the preparation of the intermediate (Z.1) can be carried out by known and established methods in bulk or solution, in particular preferably by reaction of (Z.1 .1) with (Z.1.2a) in organic solvents. It is immediately apparent that the solvents should be selected such that they do not undergo any undesired reactions with the functional groups of the starting compounds, ie that they are inert or largely inert towards these groups.
  • the solvent used in the preparation is preferably at least partly an organic solvent (Z.2), in particular methyl ethyl ketone, as described below, since this must be present in any case in the composition (Z) to be prepared in step (I) of the process.
  • a solution of a prepolymer (Z.1 .1) in a solvent (Z.2) is preferably mixed with a solution of a polyamine (Z.1 .2a) in a solvent (Z.2), the reaction described taking place can.
  • the intermediate (Z.1) is isocyanate group-containing. Accordingly, in the reaction of (Z.1 .1) and (Z.1.2a), the ratio of these components must, of course, be chosen so that the product, ie the intermediate (Z.1), contains isocyanate groups.
  • the intermediate (Z.1) formed by reacting isocyanate groups of (Z.1.1) with the free secondary amino groups of (Z.1.2a) has an excess relative to the masked primary amino groups of isocyanate groups. This is ultimately achieved by selecting the molar ratio of isocyanate groups of (Z.1.1) to the total amount of free secondary amino groups and masked primary amino groups of (Z.1.2a) to be such that even after the preparation of (Z.1) and the corresponding consumption of isocyanate groups by the reaction with the free secondary amino groups remains a corresponding excess of the isocyanate groups.
  • the polyamine (Z.1.2a) has a free secondary amino group and two masked primary amino groups
  • the molar ratio between the isocyanate groups of (Z.1.1) to the polyamine (Z.1.2a) in the whole particularly preferred embodiment set with 5/1.
  • the consumption of an isocyanate group in the reaction with the free secondary amino group would then mean that for the above-mentioned condition 4/2 (or 2/1) is realized.
  • the proportion of the intermediate (Z.1) is from 15 to 65 wt .-%, preferably from 25 to 60 wt .-%, more preferably from 30 to 55 wt .-%, particularly preferably from 35 to 52.5 wt. -% and in a very particular embodiment from 40 to 50 wt .-%, each based on the total amount of the composition (Z).
  • the determination of the proportion of an intermediate (Z.1) can be carried out as follows: The solid of a mixture which contains only organic solvents in addition to the intermediate (Z.1) is determined (measurement method for determination of the solid (also solids content or solids content) called) see example). The solid then corresponds to the amount of the intermediate (Z.1). By taking into account the solids of the mixture, the proportion of the intermediate (Z.1) in the composition (Z) can thus be determined or determined. Since the intermediate (Z.1) is preferably already produced in an organic solvent, that is to say it is anyway present in a mixture after preparation, which contains only organic solvents in addition to the intermediate, this is the method of choice.
  • composition (Z) also contains at least one special organic solvent (Z.2).
  • the solvents (Z.2) have a solubility in water of not more than 38% by weight at a temperature of 20 ° C. (measuring method see example part).
  • the solubility in water at a temperature of 20 ° C is less than 30 wt .-%.
  • a preferred range is from 1 to 30% by weight. Accordingly, the solvent (Z.2) has a rather moderate solubility in water, in particular is not completely miscible with water or has no unlimited solubility in water. Fully miscible with water is a solvent when it can be mixed in any proportions with water, without causing a segregation, that is two-phase formation.
  • solvents (Z.2) are methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, diethyl ether, dibutyl ether, dipropylene glycol dimethyl ether, ethylene glycol diethyl ether, toluene, methyl acetate, ethyl acetate, butyl acetate, propylene carbonate, cyclohexanone or mixtures of these solvents.
  • No solvents (Z.2) are thus solvents such as acetone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, tetrahydrofuran, dioxane, N-formylmorpholine, dimethylformamide or dimethylsulfoxide.
  • the selection of the special solvents (Z.2) with only limited solubility in water achieves, in particular, that a homogeneous solution can not be formed directly in the aqueous phase in the dispersion of the composition (Z) in step (II) of the process. It is believed that the present dispersion allows the crosslinking reactions (addition reactions of free primary amino groups and isocyanate groups to form urea linkages) proceeding under step (II) to proceed in limited volumes, ultimately allowing the formation of the microparticles as defined above.
  • Preferred solvents (Z.2) in addition to the described water solubility have a boiling point of at most 120 ° C, more preferably of at most 90 ° C (at atmospheric pressure, that is 1, 013 bar).
  • step (III) of the process is to say the at least partial removal of the at least one organic solvent (Z.2) from the dispersion which is prepared in step (II) of the process.
  • these solvents can be removed, for example, by distillation be removed without the simultaneous significant amounts of the introduced in step (II) of the process water.
  • step (PD) eliminates the costly yielding of water to obtain the aqueous character of the dispersion (PD).
  • the proportion of the at least one organic solvent (Z.2) is from 35 to 85 wt .-%, preferably from 40 to 75 wt .-%, more preferably from 45 to 70 wt .-%, particularly preferably from 47.5 to 65 wt .-% and in a very particular embodiment of 50 to 60 wt .-%, each based on the total amount of the composition (Z).
  • the described components (Z.1) and (Z.2) in total preferably make up at least 90% by weight of the composition (Z).
  • the two components preferably make up at least 95% by weight, in particular at least 97.5% by weight, of the composition (Z).
  • the composition (Z) consists of these two components.
  • these neutralizing agents are included in the calculation of the amount of an intermediate (Z.1) the intermediate.
  • the intermediate (Z.1) in any case has anionic groups, which go back to the use of the neutralizing agent. The cation present after the formation of these anionic groups is therefore likewise attributed to the intermediate.
  • the composition (Z) contains other components in addition to the components (Z.1) and (Z.2), these are preferably only organic Solvents.
  • the solid of the composition (Z) thus corresponds to the proportion of the intermediate (Z.1) in the composition (Z).
  • the composition (Z) thus preferably has a solids content of 15 to 65 wt .-%, preferably from 25 to 60 wt .-%, more preferably from 30 to 55 wt .-%, particularly preferably from 35 to 52.5 wt. % and in a very particular embodiment from 40 to 50% by weight.
  • a particularly preferred composition (Z) thus contains in total at least 90% by weight of the components (Z.1) and (Z.2) and contains, in addition to the intermediate (Z.1), exclusively organic solvents.
  • composition (Z) An advantage of the composition (Z) is that it can be prepared without the use of environmentally and harmful organic solvents such as N-methyl-2-pyrrolidone, dimethylformamide, dioxane, tetrahydrofuran and N-ethyl-2-pyrrolidone. Accordingly, the composition (Z) preferably contains less than 10 wt .-%, preferably less than 5 wt .-%, more preferably less than 2.5 wt .-% of organic solvents selected from the group consisting of N-methyl-2 - pyrrolidone, dimethylformamide, dioxane, tetrahydrofuran and N-ethyl-2-pyrrolidone. Preferably, the composition (Z) is completely free of these organic solvents.
  • composition (Z) is dispersed in aqueous phase.
  • step (II) a demasking of the masked primary amino groups of the intermediate (Z.1) is thus realized in step (II). Because the conversion of a masked amine into the aqueous phase releases the reversibly attached masking agent while consuming water, and free primary amino groups are formed. It is also clear that the resulting free primary amino groups then also present with isocyanate groups of the intermediate (Z.1) or the unmasked from the intermediate (Z.1) unmasked intermediate by addition reaction to form urea bonds are reacted.
  • step (II) of the process described here the composition (Z) is dispersed in water, wherein a unmasking of the masked primary amino groups of the intermediate (Z.1) and a reaction of the resulting free primary amino groups with the isocyanate groups of the intermediate (Z. 1) and the isocyanate groups of the demasked intermediate formed from the intermediate (Z.1) by addition reaction.
  • Step (II) of the process described here that is, the dispersion in the aqueous phase
  • the composition (Z) can be carried out in any desired manner.
  • the composition (Z) which may be present after preparation, for example, at room temperature, that is 20 to 25 ° C, or at room temperature increased temperature, for example, 30 to 60 ° C, are stirred into water, whereby a dispersion is formed.
  • the water introduced, for example, has room temperature. It can be dispersed in pure water (deionized water), that is, the aqueous phase consists only of water, which is preferred.
  • the aqueous phase may also contain proportionate typical auxiliaries, such as typical emulsifiers and protective colloids.
  • typical auxiliaries such as typical emulsifiers and protective colloids.
  • suitable emulsifiers and protective colloids can be found for example in Houben Weyl, Methods of Organic Chemistry, Volume XIV / 1 Macromolecular substances, Georg Thieme Verlag, Stuttgart 1961, S 41 1 ff.
  • step (II) of the process that is, in the dispersion of the composition (Z) in the aqueous phase, the weight ratio of organic solvents and water is chosen so that the resulting dispersion has a weight ratio of water to organic solvents greater than 1, preferably from 1.05 to 2/1, particularly preferably from 1.1 to 1.5 / 1.
  • step (III) of the process described here the at least partial removal of the at least one organic solvent (Z.2) takes place from the dispersion obtained in step (II).
  • step (III) of the process other solvents, which were present, for example, optionally in the composition (Z), are removed.
  • the removal of the at least one organic solvent (Z.2) and optionally further organic solvents can be carried out in any known manner, for example by vacuum distillation at temperatures slightly elevated from room temperature, for example 30 to 60 ° C.
  • the polyurethane-polyurea dispersion (PD) obtained is aqueous (for the basic definition of "aqueous”, see above).
  • the dispersion (PD) to be used according to the invention preferably contains at most 15.0% by weight, particularly preferably at most 10% by weight, very particularly preferably at most 5% by weight and more preferably at most 2.5% by weight of organic solvents (measuring method see example part).
  • the proportion of the polyurethane-polyurea polymer in the dispersion (PD) is preferably 25 to 55 wt .-%, preferably 30 to 50 wt .-%, more preferably 35 to 45 wt .-%, each based on the total amount of the dispersion (Determination analogous to the determination of the solids content described above for the intermediate (Z.1)).
  • the proportion of water in the dispersion (PD) is preferably 45 to 75 wt .-%, preferably 50 to 70 wt .-%, more preferably 55 to 65 wt .-%, each based on the total amount of the dispersion.
  • dispersions are provided which can be used in aqueous basecoats and lead there to the performance and technical advantages described in the introduction and also in the examples below.
  • adequate freedom of formulation is achieved in the production of aqueous basecoats.
  • additional amounts of organic solvents can be used, which are necessary, for example, to properly formulate various components.
  • the fundamentally aqueous character of the basecoat is not endangered.
  • the basecoats can nevertheless be formulated with comparatively low proportions of organic solvents, ie have a particularly good ecological profile.
  • the dispersion contains only water and optionally organic solvents, for example in the form of residual constituents which have not been completely removed in stage (III) of the process.
  • the solids content of the dispersion (PD) is preferably 25 to 55%, preferably 30 to 50%, more preferably 35 to 45%, and more preferably corresponds to the proportion of the polymer in the dispersion.
  • the dispersion (PD) preferably contains less than 7.5 wt .-%, preferably less than 5 wt .-%, more preferably less than 2.5 wt .-% of organic solvents selected from the group consisting of N-methyl -2- pyrrolidone, dimethylformamide, dioxane, tetrahydrofuran and N-ethyl-2-pyrrolidone.
  • the dispersion (PD) is completely free of these organic solvents.
  • the polyurethane-polyurea polymer present in the dispersion preferably has little or no hydroxyl groups.
  • the OH number of the polymer, based on the solids, is preferably less than 15 mg KOH / g, in particular less than 10 mg KOH / g, more preferably less than 5 mg KOH / g (measuring method see Example).
  • the proportion of the at least one dispersion (PD), based on the total weight of the aqueous basecoat material (b.1.1), is preferably 5 to 60% by weight, more preferably 15 to 50% by weight and most preferably 20 to 45% by weight.
  • the fraction of the polyurethane-polyurea polymers derived from the dispersions (PD) is preferably from 2.0 to 24.0% by weight, preferably 6.0, based on the total weight of the aqueous basecoat material (b.1.1) to 20.0 wt .-%, particularly preferably 8.0 to 18.0 wt .-%.
  • the determination or definition of the proportion of the polyurethane-polyurea polymers derived from the dispersions according to the invention on Basecoat can be carried out by determining the solids of a dispersion (PD) according to the invention which is to be used in the basecoat.
  • PD dispersion
  • the abovementioned principle applies to all the components of the basecoat material mentioned and their ranges of proportions, for example the pigments mentioned below or also the crosslinking agents mentioned below, such as melamine resins.
  • the basecoat (b.1 .1) to be used according to the invention preferably contains at least one pigment.
  • pigments and effect pigments are those skilled in the art, for example, in Römpp Lexikon coatings and printing inks, Georg Thieme Verlag, Stuttgart, New York, 1998, pages 176 and 451 described.
  • coloring pigment and color pigment as well as the terms optically effecting pigment and effect pigment are interchangeable.
  • Preferred effect pigments are, for example, platelet-shaped metallic effect pigments such as platelet-shaped aluminum pigments, gold bronzes, fire-colored bronzes and / or iron oxide aluminum pigments, pearl pigments such as fish-silver, basic lead carbonate, bismuth oxychloride and / or metal oxide mica pigments and / or other effect pigments such as platelet-shaped graphite, platelet-shaped iron oxide, multilayer Effect pigments of PVD films and / or liquid crystal polymer pigments. Particular preference is given to platelet-shaped metallic effect pigments, in particular platelet-shaped aluminum pigments.
  • Typical color pigments include, in particular, inorganic color pigments, such as white pigments, such as titanium dioxide, zinc white, zinc sulfide or lithopone; Black pigments such as carbon black, iron manganese black or spinel black; Colored pigments such as chromium oxide, chromium oxide hydrate green, cobalt green or ultramarine green, cobalt blue, ultramarine blue or manganese blue, ultramarine violet or cobalt and manganese violet, iron oxide red, cadmium sulfoselenide, molybdate red or ultramarine red; Iron oxide brown, mixed brown, spinel and corundum phases or chrome orange; or iron oxide yellow, nickel titanium yellow, chromium titanium yellow, cadmium sulfide, cadmium zinc sulfide, chrome yellow or bismuth vanadate.
  • inorganic color pigments such as white pigments, such as titanium dioxide, zinc white, zinc sulfide or lithopone
  • Black pigments such as
  • the proportion of the pigments is preferably in the range from 1, 0 to 40.0 wt .-%, preferably 2.0 to 35.0 wt .-%, particularly preferably 5.0 to 30.0 wt .-%, each based on the total weight of the aqueous basecoat (b.1 .1).
  • Preferred polyurethane-polyacrylate copolymers (acrylated polyurethanes) and their preparation are described, for example, in WO 91/15528 A1, page 3, line 21 to page 20, line 33 and in DE 4437535 A1, page 2, line 27 to page 6, line 22 described.
  • the polymers described as binders are preferably hydroxy-functional and more preferably have an OH number in the range from 15 to 200 mg KOH / g, more preferably from 20 to 150 mg KOH / g.
  • the basecoats contain at least one hydroxy-functional polyurethane-polyacrylate copolymer, more preferably at least one hydroxy-functional polyurethane-polyacrylate copolymer and at least one hydroxy-functional polyester.
  • the proportion of the further polymers as a binder can vary widely and is preferably in the range from 1.0 to 25.0% by weight, preferably 3.0 to 20.0% by weight, particularly preferably 5.0 to 15.0 Wt .-%, in each case based on the total weight of the basecoat (b.1 .1).
  • the basecoat (b.1 .1) may contain at least one typical crosslinking agent known per se. If it contains a crosslinking agent, it is preferably at least one blocked polyisocyanate and / or an aminoplast resin, more preferably at least one melamine resin.
  • the basecoat (b.1.1) contains crosslinking agents, the proportion of these crosslinking agents is preferably in the range from 0.5 to 20.0% by weight, preferably from 1.0 to 15.0% by weight, particularly preferably 1 , 5 to 10.0 wt .-%, each based on the total weight of the basecoat (b.1 .1).
  • the basecoat (b.1 .1) may also contain at least one thickener. Suitable thickeners are inorganic thickeners from the group of phyllosilicates such as lithium-aluminum-magnesium silicates.
  • lacquers whose rheological property profile is determined by the main or predominant use of corresponding inorganic thickeners are in need of improvement in terms of their solids content, ie can only be formulated with fairly low solids contents of, for example, less than 20%, without adversely affecting important performance properties become.
  • a particular advantage of the basecoat (b.1 .1) is that it can be formulated without or without a large proportion of such inorganic phyllosilicates used as thickeners. Accordingly, the proportion of inorganic phyllosilicates used as thickener, based on the total weight of the basecoat, is preferably less than 0.7% by weight, more preferably less than 0.3% by weight and even more preferably less than 0.1% by weight. , Most preferably, the basecoat is completely free of such inorganic phyllosilicates used as thickeners.
  • the basecoat may contain at least one organic thickener, for example a (meth) acrylic acid (meth) acrylate copolymer thickener or a polyurethane thickener.
  • organic thickener for example a (meth) acrylic acid (meth) acrylate copolymer thickener or a polyurethane thickener.
  • associative thickeners such as, for example, the known polyurethane associative thickeners.
  • associative thickeners it is known to refer to water-soluble polymers which have strongly hydrophobic groups at the chain ends or in side chains and / or whose hydrophilic chains contain hydrophobic blocks or bundles in the interior. As a result, these polymers have a surfactant character and are capable of forming micelles in the aqueous phase.
  • the hydrophilic regions remain in the aqueous phase while the hydrophobic regions are incorporated in the particles of polymer dispersions, adsorb on the surface of other solid particles such as pigments and / or fillers, and / or form micelles in the aqueous phase.
  • a thickening effect is achieved without there being an increased settling behavior.
  • Corresponding thickeners are commercially available, for example under the trade name Adekanol (Adeka Corporation).
  • the basecoat (b.1 .1) may contain at least one other additive.
  • additives are residue-free or substantially residue-free thermally decomposable salts, of the polymers mentioned as binders various physically, thermally and / or actinic radiation curable polymers as binders, other crosslinking agents, organic solvents, reactive diluents, transparent pigments, fillers, molecular disperse soluble dyes, nanoparticles, light stabilizers, antioxidants, deaerators, emulsifiers, slip additives, polymerization inhibitors, free radical polymerization initiators, primers, leveling agents, film forming aids, sag-control agents (SCAs), flame retardants, corrosion inhibitors, waxes, siccatives, biocides, and matting agents.
  • SCAs sag-control agents
  • the solids content of the basecoat (b.1.1) may vary according to the requirements of the case. In the first place, the solids content depends on the viscosity required for application, in particular spray application. It is of particular advantage that the basecoat according to the invention can nevertheless have a viscosity at comparatively high solids, which permits adequate application.
  • the solids content of the basecoat, if it contains at least one crosslinking agent is at least 25%, preferably at least 27.5%, more preferably at least 30%.
  • preferred basecoats have a viscosity of 40 to 150 mPa ⁇ s, in particular 70 to 110 mPa, at 23 ° C. and a shear stress of 1000 l / s -s (see example section for more details on the measuring method).
  • a viscosity in this range at the specified shear stress is referred to as the spray viscosity (processing viscosity).
  • coating compositions are applied at spray viscosity, that is to say they have a viscosity under the conditions then present (high shear stress) which, in particular, is not too high in order to allow effective application.
  • a base lacquer (b.1 .1) adjusted to spray viscosity also has a high solids content.
  • the preferred ranges of the solid content, in particular the lower limits, thus show that the basecoat (b.1 .1) in the state capable of application preferably has comparatively high solids contents.
  • the basecoat according to the invention is aqueous (for the definition of "aqueous" see above).
  • the proportion of water in the basecoat (b.1 .1) is preferably from 35 to 70 wt .-%, more preferably 42 to 63 wt .-%, each based on the total weight of the basecoat. It is again preferred that the percentage sum of the solids of the basecoat and the proportion of water in the basecoat is at least 70% by weight, preferably at least 75% by weight. Preferred among these are ranges of from 75 to 95% by weight, in particular from 80 to 90% by weight. In this specification, the solid, which traditionally has only the unit "%”, is given in "% by weight". Since the solids ultimately represent a percentage weight, this form of representation is justified.
  • a basecoat has a solids content of 35% and a water content of 50% by weight
  • the percentage sum of the solids of the basecoat and the proportion of water in the basecoat as defined above is 85% by weight.
  • preferred basecoats contain principally polluting components, in particular organic solvents, in relation to the solids of the basecoat, at only small proportions.
  • the ratio of the volatile organic content of the basecoat material (in% by weight) and the solids content of the basecoat material is from 0.05 to 0.7, more preferably from 0.15 to 0.6.
  • the volatile organic content is the proportion of the basecoat which is calculated neither in relation to the proportion of water nor to the solids.
  • the basecoat (b.1.1) is that it is prepared without the use of environmentally harmful organic solvents such as N-methyl-2-pyrrolidone, dimethylformamide, dioxane, tetrahydrofuran and N-ethyl-2-pyrrolidone can be.
  • the basecoat preferably contains less than 10 wt .-%, preferably less than 5 wt .-%, more preferably less than 2.5 wt .-% of organic solvents selected from the group consisting of N-methyl-2-pyrrolidone, Dimethylformamide, dioxane, tetrahydrofuran and N-ethyl-2-pyrrolidone.
  • the basecoat is completely free of these organic solvents.
  • the preparation of the basecoats can be carried out using the customary and known for the production of basecoats mixing methods and mixing units.
  • the basecoats (b.1 .2.x) used in the process according to the invention at least one of these basecoats is the one described for the basecoat (b.1 .1) having features essential to the invention.
  • PD aqueous polyurethane-polyurea dispersion
  • the preferred features and embodiments described in the context of the description of the basecoat (b.1 .1) also apply-preferably to at least one of the basecoats (b.1 .2.x).
  • the inventive method allows the production of multi-layer coatings on plastic substrates, which have excellent adhesion to the plastic substrate.
  • the present invention also relates to an aqueous mixed lacquer system for the production of aqueous basecoats.
  • the mixed lacquer system comprises, in each case based on the total weight of the aqueous mixed lacquer system,
  • the components described total at least 90 wt .-%, preferably at least 95 wt .-% make up of the mixed paint system.
  • the mixed paint system is substantially free of pigments, that is containing less than 1 wt .-% pigments. Most preferably, it is completely free of pigments.
  • the mixed lacquer system is outstandingly suitable for use by individually tailored completion with, in particular, pigments and, if appropriate, different additives for the production of aqueous basecoats become.
  • One and the same mixing lacquer system can thus be used to prepare various aqueous basecoats by subsequent and individual completion. This of course results in a huge workload and thus increasing the efficiency in the formulation of basecoats, especially on a large scale.
  • the mixed lacquer system can be prepared and stored separately and then completed on an occasion basis with, for example, corresponding pigment pastes.
  • the present invention also relates to a process for the preparation of aqueous basecoats, which comprises the addition of pigments, in particular in the form of pigment pastes, to a mixed lacquer system as described above.
  • solids content hereinafter also referred to as solid content, according to DIN EN ISO 3251 at 130 ° C; 60 min, weight 1, 0 g, determined. If reference is made in the context of the present invention to an official standard, this naturally includes the version of the standard applicable at the filing date or, if no valid version at this time, the last valid version.
  • the determination of the isocyanate content was achieved by adding an excess of a 2% strength N, N-dibutylamine solution in xylene to a homogeneous solution of the samples in acetone / N-ethylpyrrolidone (1: 1 Vol .-%) determined by potentiometric back-titration of the excess amine with a 0.1 N hydrochloric acid on the basis of DIN EN ISO 3251, DIN EN ISO 1 1909 and DIN EN ISO 14896. About the proportion of a polymer (solid) in solution can be calculated back to the NCO content of the polymer based on solids. 3. Hydroxyl number
  • the hydroxyl number was based on R.-P. Krüger, R. Gnauck and R. Algeier, Plaste und Kautschuk, 20, 274 (1982), using acetic anhydride in the presence of 4-dimethylaminopyridine as a catalyst in a tetrahydrofuran (THF) / dimethylformamide (DMF) solution at room temperature, the remaining excess of acetic anhydride after acetylation was completely hydrolyzed and the acetic acid was back titrated potentiometrically with alcoholic potassium hydroxide solution. 60 min acetylation times were sufficient in all cases to guarantee complete conversion.
  • THF tetrahydrofuran
  • DMF dimethylformamide
  • the acid number was determined on the basis of DIN EN ISO 21 14 in a homogeneous solution of tetrahydrofuran (THF) / water (9 parts by volume of THF and 1 part by volume of distilled water) with ethanolic potassium hydroxide solution.
  • the degree of neutralization of a component x was calculated from the molar amount of the carboxylic acid groups contained in the component (determined by the acid number) and the molar amount of the neutralizing agent used.
  • the amine equivalent mass (solution) serves to determine the amine content of a solution and was determined as follows.
  • the sample to be examined was dissolved in glacial acetic acid at room temperature and titrated against 0.1 N perchloric acid in glacial acetic acid in the presence of crystal violet. From the weight of the sample and the consumption of perchloric acid, the amine equivalent mass (solution), the mass of the basic amine solution necessary to neutralize one mole of perchloric acid, was obtained.
  • the content of an organic solvent in a mixture was determined by gas chromatography (Agilent 7890A, 50m silica capillary column with polyethylene glycol phase or 50m silica capillary column with polydimethylsiloxane phase, carrier gas helium, split injector 250 ° C, oven temperature 40 - 220 ° C, Flammionisationsdetektor, detector temperature 275 ° C, internal standard n-propyl glycol) determined.
  • gas chromatography Alent 7890A, 50m silica capillary column with polyethylene glycol phase or 50m silica capillary column with polydimethylsiloxane phase, carrier gas helium, split injector 250 ° C, oven temperature 40 - 220 ° C, Flammionisationsdetektor, detector temperature 275 ° C, internal standard n-propyl glycol
  • M n The number-average molar mass (M n ) was, unless stated otherwise, by means of a steam pressure osmometer type 10.00 (Knauer) in concentration series in toluene at 50 ° C with benzophenone as a calibration substance to determine the experimental calibration constant of the measuring device according to E. Schröder, G Müller, K.-F. Arndt, "Guide of Polymer Characterization", Akademie- Verlag, Berlin, pp. 47-54, 1982. 10.
  • the mean particle size (volume average) of the polyurethane-polyurea particles present in the dispersions (PD) according to the invention are determined in the context of the present invention by photon correlation spectroscopy (PCS). Specifically used for measurement was a "Malvern Nano S90" (Malvern Instruments) at 25 ⁇ 1 ° C. The device covers a size range from 3 to 3000 nm and was equipped with a 4mW He-Ne laser at 633 nm. The dispersions (PD) were diluted with particle-free, deionized water as dispersing medium, and then in a 1 ml polystyrene. Measure cuvette with suitable scattering intensity.
  • PCS photon correlation spectroscopy
  • the evaluation was carried out by means of a digital correlator with the aid of the evaluation software Zetasizer Ver. 6.32 (Malvern Instruments). It was five times and measurements repeated on a second freshly prepared sample. The standard deviation of a 5-fold determination was ⁇ 4%. The maximum deviation of the arithmetic mean of the volume average (V-average mean) of five individual measurements was ⁇ 15%. The reported mean particle size (volume average) is the arithmetic mean of the mean particle size (volume average) of the individual preparations. The test was carried out using polystyrene standards with certified particle sizes between 50 to 3000 nm.
  • the gel content of the polyurethane-polyurea particles (microgel particles) contained in the dispersions (PD) according to the invention is determined gravimetrically in the context of the present invention.
  • the polymer contained was isolated by freeze-drying from a sample of an aqueous dispersion (PD) (weight 1, 0 g).
  • the main drying of the completely frozen sample was usually carried out in the pressure range of the drying vacuum between 5 mbar and 0.05 mbar, at 10 ° C lower drying temperature than the solidification temperature.
  • the gel fraction determined in this way according to the invention is also called the gel fraction (freeze-dried).
  • gel fraction 130 ° C.
  • gel fraction a proportion of gel, hereinafter also referred to as gel fraction (130 ° C.) was determined gravimetrically by isolating from aqueous dispersion (weight 1, 0 g) a polymer sample at 130 ° C., 60 min (solids). The mass of the polymer was determined to extract the polymer then in analogy to the procedure described above for 24 hours at 25 ° C in an excess of tetrahydrofuran, separate the insoluble fraction (gel fraction), to dry and weigh back. 12. Solubility in water
  • the solubility of an organic solvent in water was determined at 20 ° C as follows.
  • the respective organic solvent and water were combined in a suitable glass vessel, mixed and the mixture subsequently equilibrated.
  • the amounts of water and the solvent were chosen so that after equilibration two separate phases resulted.
  • a sample of the aqueous phase (that is, the phase containing more water than organic solvent) is withdrawn via a syringe, diluted with tetrahydrofuran in a ratio of 1/10, and the proportion of the solvent is determined by gas chromatography (conditions see item 8) Solvent content).
  • volume solid was calculated according to VdL-RL 08, "Determination of the Solid Volume of Anti-Corrosive Coating Materials as the Basis for Yield Calculations", Verband der Lackindustrie eV, Edition Dec. 1999.
  • volume solids VFK solids volume
  • VFK (density (wet paint) x solid content (wet paint)) / density (baked paint)
  • Density calculated density of wet paint from the density of the wet paint
  • Solid content (wet paint) Solid content (in%) of the wet paint, according to DIN EN ISO
  • a dispersion (PD) was prepared as follows: a) Preparation of a partially neutralized prepolymer solution
  • BASF SE BASF SE
  • microgel dispersion A white, stable, solids-rich, low-viscosity dispersion with crosslinked particles was obtained, which had no settling even after 3 months.
  • the microgel dispersion thus obtained had the following characteristics:
  • Polyester dispersion prepared according to example
  • TMDD BG 52 BASF
  • Tables 2 to 5 show the compositions of the prepared aqueous basecoats, wherein the indicated components were mixed in the order given. In this case, the constituents of the mixed-paint systems are also listed individually, since the use of the mixed-paint systems is advantageous, but not absolutely necessary.
  • the same basecoats result by appropriately combining the individual components in the specified order. All aqueous basecoats (BC) had a pH of 7.8 to 8.6 and a spray viscosity of 70 to 1 10 mPa s at a shear stress of 1000 s ⁇ measured with a rotary viscometer (Rheomat RM 180 from Mettler Toledo) at 23 ° C, on.
  • Table 2 basecoats 1 (gray) and 2 (white), based on mixed lacquer system 1
  • the basecoats 1 and 2 are stable for at least 4 weeks at 40 ° C., ie they show no settling tendency at this time and no significant change (less than 15%) in the low shear viscosity (shear stress of 1 s ⁇ measured with a rotary viscometer) on.
  • the basecoat 1 has a solids content of 42% and a calculated volume solids of 35%.
  • the basecoat 2 has a solids content of 47% and a calculated volume solids of 35%.
  • Table 3 basecoats 3 (gray) and 4 (white), based on mixed lacquer system 2
  • the basecoats 3 and 4 are stable in storage for at least 4 weeks at 40 ° C, that is they have at this time no tendency to settle and no significant change (less than 15%) of the low shear viscosity (shear stress of 1 s ⁇ measured with a rotational viscometer) on.
  • the basecoat 3 has a solids content of 38% and a calculated volume solids content of 32%.
  • the basecoat 4 has a solids content of 42% and a calculated volume solids content of 31%.
  • Table 4 basecoats 5 (silver) and 6 (red), based on mixed lacquer system 1
  • mice Micapigment (MEARLIN EXT. FINE RUSSET 459
  • mice Micapigment (MEARLIN EXT. SUPER RUSSET
  • Polyester dispersion prepared according to example
  • TMDD BG 52 BASF
  • mice Micapigment (MEARLIN EXT. FINE RUSSET 459
  • the basecoats 7 and 8 are stable for storage for at least 4 weeks at 40 ° C., ie they show no settling tendency at this time and no significant change (less than 15%) in the low shear viscosity (shear stress of 1 s ⁇ measured with a rotary viscometer) on.
  • the basecoat 7 has a solids content of 19% and a calculated volume solids content of 22%.
  • the basecoat 8 has a solids content of 24% and a calculated volume solids content of 21%
  • the tinting paste (white) was prepared from 43 parts by weight of an acrylated polyurethane dispersion prepared according to International Patent Application WO 91/15528 Binder Dispersion A, 50 parts by weight of titanium rutile 231 0, 3 parts by weight of 1-propoxy-2-propanol and 4 parts by weight of deionized water.
  • Component BC V1 (Silver)
  • TMDD BG 52 BASF
  • Polyester dispersion prepared according to example
  • TMDD BG 52 BASF
  • Polyester dispersion prepared according to example
  • Basecoat V1 is stable in storage for at least 4 weeks at 40 ° C., ie it exhibits no settling tendency at this time and no significant change (less than 15%) in the low-shear viscosity (shear stress of 1 s ⁇ measured with a rotation Viscometer). It has a solids content of 19% and a calculated volume solids of 16%.
  • a color and / or effect basecoat was applied by electrostatic spray application in a layer thickness of 20 micrometers, then flashed for 10 minutes at room temperature and then dried at 80 ° C for 10 minutes.
  • a commercially available two-component clearcoat material in a layer thickness of 35-45 micrometers was applied to this intermediately dried basecoat film by electrostatic spray application and the overall structure was then flashed off again for 10 minutes at room temperature and then cured at 80 ° C. for 30 minutes.
  • the adhesion properties of the multicoat paint systems produced in this way were investigated.

Abstract

La présente invention concerne un procédé permettant de réaliser une peinture multicouche sur un substrat en plastique. Selon ce procédé, une couche de fond ou plusieurs couches de fond directement les unes sur les autres sont réalisées sur un substrat en plastique, une couche de vernis transparent est réalisée directement sur ladite couche de fond ou sur la couche de fond supérieure desdites plusieurs couches de fond, puis ladite couche de fond ou lesdites plusieurs couches de fond et la couche de vernis transparent sont durcies conjointement. Le procédé selon l'invention est caractérisé en ce qu'au moins une peinture de fond utilisée pour réaliser les couches de fond comprend au moins une dispersion aqueuse de polyuréthane-polyurée (PD) contenant des particules de polyuréthane-polyurée. Les particules de polyuréthane-polyurée contenues dans la dispersion (PD) renferment des groupes anioniques et/ou des groupes pouvant être transformés en groupes anioniques et présentent une taille particulaire moyenne allant de 40 à 2000 nm, ainsi qu'une proportion de gel d'au moins 50 %.
EP16719014.9A 2015-05-06 2016-03-31 Procédé permettant de réaliser une peinture multicouche sur des substrats en plastique Withdrawn EP3291922A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15166548 2015-05-06
PCT/EP2016/057007 WO2016177515A1 (fr) 2015-05-06 2016-03-31 Procédé permettant de réaliser une peinture multicouche sur des substrats en plastique

Publications (1)

Publication Number Publication Date
EP3291922A1 true EP3291922A1 (fr) 2018-03-14

Family

ID=53052732

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16719014.9A Withdrawn EP3291922A1 (fr) 2015-05-06 2016-03-31 Procédé permettant de réaliser une peinture multicouche sur des substrats en plastique

Country Status (10)

Country Link
US (1) US10363572B2 (fr)
EP (1) EP3291922A1 (fr)
JP (1) JP6689882B2 (fr)
KR (1) KR102059586B1 (fr)
CN (1) CN107548322B (fr)
BR (1) BR112017023648B1 (fr)
CA (1) CA2982027C (fr)
MX (1) MX2017014221A (fr)
RU (1) RU2686904C1 (fr)
WO (1) WO2016177515A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3371240B1 (fr) * 2015-11-03 2021-08-18 BASF Coatings GmbH Peinture de base aqueuse contenant des liants à base de polyuréthane réticulés et composition de solvant spéciale

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180002476A1 (en) * 2014-12-09 2018-01-04 Basf Coatings Gmbh Aqueous polyurethane-polyurea dispersion and aqueous base paint containing said dispersion
JP7204731B2 (ja) 2017-07-18 2023-01-16 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング 低温硬化1kベースコート及びその1kベースコートを有する基材をコーティングする方法
WO2019109022A1 (fr) * 2017-11-30 2019-06-06 Moore John R Compositions de revêtement pour application à l'aide d'un applicateur à efficacité de transfert élevée et procédés et systèmes associés
MX2021013953A (es) * 2019-05-13 2022-01-04 Ppg Ind Ohio Inc Composiciones de recubrimiento y sistemas y metodos para aplicar tales composiciones de recubrimiento.
CN110172861B (zh) * 2019-05-16 2021-10-22 浙江恒达新材料股份有限公司 一种无氯湿强剂及其制备方法
WO2021148255A1 (fr) * 2020-01-21 2021-07-29 Basf Coatings Gmbh Composition de revêtement aqueuse contenant de l'acide polycarboxylique présentant des propriétés de nivellement améliorées
CN113429893A (zh) * 2021-07-22 2021-09-24 南京海配新材料有限公司 一种非极性橡塑材料表面处理剂及表面处理方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108814A (en) * 1974-09-28 1978-08-22 Bayer Aktiengesellschaft Aqueous polyurethane dispersions from solvent-free prepolymers using sulfonate diols
DE2843790A1 (de) * 1978-10-06 1980-04-17 Bayer Ag Verfahren zur herstellung von waessrigen dispersionen oder loesungen von polyurethan-polyharnstoffen, die nach diesem verfahren erhaeltlichen dispersionen oder loesungen, sowie ihre verwendung
US4501852A (en) * 1983-06-20 1985-02-26 Mobay Chemical Corporation Stable, aqueous dispersions of polyurethane-ureas
US4822685A (en) * 1987-12-10 1989-04-18 Ppg Industries, Inc. Method for preparing multi-layered coated articles and the coated articles prepared by the method
US5242751A (en) * 1989-04-27 1993-09-07 Ppg Industries, Inc. Paint composites
DE4009858C2 (de) 1990-03-28 1998-02-05 Basf Lacke & Farben Wäßriger pigmentierter Basislack enthaltend als Bindemittel ein wasserverdünnbares Polyacrylatharz und Verwendung eines solchen Basislacks
DE4010176A1 (de) 1990-03-30 1991-10-02 Basf Lacke & Farben Verfahren zur herstellung einer mehrschichtigen lackierung und waessriger lack
DE4011633A1 (de) * 1990-04-11 1991-10-17 Herberts Gmbh Verfahren zur herstellung von mehrschichtueberzuegen
US5389718A (en) * 1990-07-30 1995-02-14 Miles Inc. Two-component aqueous polyurethane dispersions
JPH09505631A (ja) * 1994-04-30 1997-06-03 ワッカー−ケミー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 水性コーティング組成物及び観察される色が視角に依存する多層塗り塗装系の製造方法
DE4437535A1 (de) 1994-10-20 1996-04-25 Basf Lacke & Farben Polyurethanmodifziertes Polyacrylat
JPH08283612A (ja) * 1995-04-07 1996-10-29 Dainippon Ink & Chem Inc 水性ベースコート樹脂組成物
DE19930665A1 (de) 1999-07-02 2001-01-11 Basf Coatings Ag Basislack und seine Verwendung zur Herstellung von farb- und/oder effektgebenden Basislackierungen und Mehrschichtlackierung
DE19948004B4 (de) * 1999-10-06 2006-05-11 Basf Coatings Ag Polyurethane und Pfropfmischpolymerisate auf Polyurethanbasis sowie ihre Verwendung zur Herstellung von Beschichtungsstoffen, Klebstoffen und Dichtungsmassen
AU7755200A (en) * 1999-10-08 2001-04-23 Motorola, Inc. Remotely configurable multimedia entertainment and information system with real-time auctioning of advertisement space
JP2004509996A (ja) * 2000-09-22 2004-04-02 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 硬化可能なポリウレタン、これから調製されるコーティング、およびこれを作製する方法
DE10122444A1 (de) * 2001-05-09 2002-11-14 Bayer Ag Polyurethan-Polyharnstoff Dispersionen als Beschichtungsmittel
EP1366828A1 (fr) * 2002-05-31 2003-12-03 Rohm And Haas Company Revêtement multicouche et son procedé de production
DE10240972A1 (de) 2002-09-02 2004-03-18 Basf Coatings Ag Metallpigmente enthaltende, wässrige Pigmentpasten und ihre Verwendung zur Herstellung von effektgebenden wässrigen Beschichtungsstoffen
DE10393994D2 (de) 2002-10-14 2005-09-08 Bollig & Kemper Gmbh & Co Kg Emulgatorfreies Mikrogel
US20060292306A1 (en) 2005-06-20 2006-12-28 Armin Goebel Process for the multilayer coating of substrates
US20070071901A1 (en) * 2005-09-29 2007-03-29 Giannoula Avgenaki Process for the production of multi-layer coatings
BRPI0711679A2 (pt) * 2006-06-14 2012-01-17 Du Pont processo para a produção de revestimento de múltiplas camadas e substrato
MY149319A (en) * 2007-06-20 2013-08-30 Kansai Paint Co Ltd Multilayer coating film-forming method
MX336160B (es) * 2009-06-10 2016-01-11 Basf Se Solventes novedosos para la produccion de dispersiones de poliuretano.
CN104470645B (zh) * 2012-07-05 2016-10-12 涂料外国Ip有限公司 用于制备oem底色漆/罩面清漆多层涂层的方法
KR102097960B1 (ko) 2012-08-28 2020-04-07 바스프 코팅스 게엠베하 멀티코트 컬러 및/또는 효과 페인트 시스템에서의 중합체
EP2735554A1 (fr) * 2012-11-22 2014-05-28 Lafarge Procédé et équipement destinés au séchage de déchets solides à l'aide de gaz du refroidisseur de clinker de ciment
ES2774437T3 (es) 2013-07-17 2020-07-21 Basf Coatings Gmbh Dispersión acuosa de un polimerizado mixto
WO2015029627A1 (fr) * 2013-08-27 2015-03-05 関西ペイント株式会社 Composition de peinture à l'eau et article peint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3371240B1 (fr) * 2015-11-03 2021-08-18 BASF Coatings GmbH Peinture de base aqueuse contenant des liants à base de polyuréthane réticulés et composition de solvant spéciale

Also Published As

Publication number Publication date
KR102059586B1 (ko) 2019-12-27
BR112017023648B1 (pt) 2022-04-19
BR112017023648A2 (pt) 2018-07-17
US10363572B2 (en) 2019-07-30
MX2017014221A (es) 2018-03-28
KR20170133470A (ko) 2017-12-05
CA2982027C (fr) 2020-10-27
CN107548322B (zh) 2021-09-17
WO2016177515A1 (fr) 2016-11-10
CN107548322A (zh) 2018-01-05
RU2686904C1 (ru) 2019-05-06
JP2018521834A (ja) 2018-08-09
CA2982027A1 (fr) 2016-11-10
JP6689882B2 (ja) 2020-04-28
US20180141084A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
EP3292164B1 (fr) Procédé de fabrication d'une peinture multicouches
EP3229976B1 (fr) Dispersion de polyuréthane-polyurée aqueuse et apprêt en base aqueuse comprenant la dispersion
EP3484936B1 (fr) Appret en base aqueuse et fabrication de peintures multicouches a l'aide de l'appret
EP3291922A1 (fr) Procédé permettant de réaliser une peinture multicouche sur des substrats en plastique
EP1914282B1 (fr) Revêtement aqueux à base d'un mélange de liants comme vernis de base
EP3230336B1 (fr) Dispersion de polyuréthane-polyurée aqueuse et apprêt en base aqueuse comprenant ladite dispersion
EP3178864B1 (fr) Produits de reaction a base de polyether a fonction carboxy et appret en base aqueuse contenant les produits de reaction
EP2152824B1 (fr) Systèmes de revêtement bicouche aqueux à base d'uréthane, leur utilisation et substrats revêtus avec ceux-ci
EP3083080B1 (fr) Procédé de fabrication d'une peinture multicouches
EP3371240B1 (fr) Peinture de base aqueuse contenant des liants à base de polyuréthane réticulés et composition de solvant spéciale
DE102005036654A1 (de) Selbstvernetzende PUR-Dispersionen mit Uretdionstruktur
EP3297773B1 (fr) Apprêt en base aqueuse destinée à la fabrication d'un revêtement
DE19643802A1 (de) Wäßrige Bindemitteldispersion für physikalisch trocknende Überzugsmittel und deren Verwendung
EP3164433A1 (fr) Produits de réaction carboxyfonctionnnels à base de polyéther et peintures de base aqueuses contenant lesdits produits de réaction
WO2015091194A1 (fr) Agent de revêtement aqueux et production de laques multicouches en utilisant l'agent de revêtement
EP0632076B1 (fr) Procédé de revêtement multicouche
WO2016188656A1 (fr) Procédé de réalisation d'un revêtement multicouche
EP3504278A1 (fr) Procédé de fabrication d'un laquage en utilisant une laque de base aqueuse
EP3430067B1 (fr) Produits de réaction à base de polyéther hydroxyfonctionnel et apprêt en base aqueuse contenant les produits de réaction
EP3516000B2 (fr) Vernis à base aqueuse ayant une stabilité de circuit annulaire améliorée

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200219

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20231107