EP3289213B1 - Schmierinjektor für grossen langsamen zweitaktmotor und herstellungsverfahren - Google Patents

Schmierinjektor für grossen langsamen zweitaktmotor und herstellungsverfahren Download PDF

Info

Publication number
EP3289213B1
EP3289213B1 EP16720341.3A EP16720341A EP3289213B1 EP 3289213 B1 EP3289213 B1 EP 3289213B1 EP 16720341 A EP16720341 A EP 16720341A EP 3289213 B1 EP3289213 B1 EP 3289213B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
injector
valve member
injector housing
stem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16720341.3A
Other languages
English (en)
French (fr)
Other versions
EP3289213A1 (de
Inventor
Rasmus Hans Jensen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hans Jensen Lubricators AS
Original Assignee
Hans Jensen Lubricators AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DK201570254A external-priority patent/DK178427B1/en
Application filed by Hans Jensen Lubricators AS filed Critical Hans Jensen Lubricators AS
Publication of EP3289213A1 publication Critical patent/EP3289213A1/de
Application granted granted Critical
Publication of EP3289213B1 publication Critical patent/EP3289213B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/08Lubricating systems characterised by the provision therein of lubricant jetting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/004Sliding valves, e.g. spool valves, i.e. whereby the closing member has a sliding movement along a seat for opening and closing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0071Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059 characterised by guiding or centering means in valves including the absence of any guiding means, e.g. "flying arrangements"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/08Lubricating systems characterised by the provision therein of lubricant jetting means
    • F01M2001/083Lubricating systems characterised by the provision therein of lubricant jetting means for lubricating cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/02Fuel-injection apparatus having means for reducing wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9038Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9053Metals

Definitions

  • the present invention relates to an injector for injection of lubrication oil into the cylinder of a large slow-running two-stroke engine, for example marine diesel engine or gas or diesel engine in a power plant. It also relates to a method of production and to such an engine.
  • SIP Swirl Injection Principle
  • the lubrication oil injection valves also called lubrication oil injectors, are non-return valves that comprise an injector housing inside which a reciprocating valve member is provided, typically a valve needle.
  • the valve member for example with a needle tip, closes and opens access to a nozzle aperture according to a precise timing.
  • a number of injectors are arranged in a circle around the cylinder in a plane perpendicular to a cylinder axis and each injector comprises one or more nozzle apertures at the tip for delivering lubricant jets or sprays into the cylinder from each injector.
  • Examples of lubricant injectors in marine engines are disclosed in international patent applications WO02/35068 , WO2004/038189 , WO2005/124112 , WO2012/126480 , WO2012/126473 , and WO2014/048438 .
  • a general principle for fuel injectors having a valve body inside which a needle is reciprocating for ejection of fuel is known from car engines.
  • it is known to apply hardened surface to various parts of such fuel valves for example as disclosed in the patent documents DE10013198 , DE102005020143 , EP1940577 , EP2138705 , US2011/133002 , US2014/203109 , US2015/083829 .
  • hardened surfaces are known for such injectors in general, no distinct rule for which component to harden appears as dominant.
  • the conditions and, thus, requirements and operational parameters are different for lubrication oil injectors.
  • the lubrication oil viscosity is higher than the viscosity of diesel or gasoline fuel. Injecting viscous lubrication oil at pressure in the range of 25-100 bars with high precision in timing sets some crucial demands on the performance of the injectors and involves problems different from fuel injectors. Due to these different conditions and requirements, the developments of lubrication oil injectors for large slow-running two-stroke marine diesel engines have followed separate routes than fuel injectors for car and motorcycle engines, such that the two technical fields are regarded as separate by experts in the respective fields.
  • Hardened surfaces are in general disclosed for lubrication oil injection valves that are used for piston cooling, for example as disclosed in US2005/252997 and US2015/068471 .
  • the valves are connected to the nozzle aperture via a tube, and the oil is ejected from the nozzle aperture as a jet against the piston surface on the crankshaft-side of the piston, which opposite to the fuel burning side of the piston.
  • This is a very different principle than the use of the above-mentioned SIP valves, and the general mentioning of hardened valves does not point towards any specific considerations for how to improve SIP injectors where a needle slides in a valve liner and closes the nozzle aperture.
  • injectors proved better uniform performance when using hardened surfaces for the plain bearing in which a valve member slides. Also, hardened surfaces for valve seats at the nozzle were an improvement.
  • valve member and plain bearing which are slidingly abutting each other, both were hardened to yield the same surface harness or only differed by a minor degree in hardness. This is against the belief in the field that it should be best if valve needle stem and plain bearings have substantially different hardness along their contact region.
  • hitherto used tribological theory is incorrect, it turned nevertheless out that the use of two abutting hardened surfaced that slide against each other did lead to a remarkable improvement.
  • such engine comprises a controller functionally connected to a lubrication oil pump which is fluid-flow connected to the injectors by lubrication supply lines for providing lubrication oil at a predetermined oil pressure level, which is at a level within the interval of 25-100 bars.
  • Typical uses of the injectors are for marine engines. However, the injectors are also useful for large engines used in power plants. For example, these engines are burning diesel or gas fuel.
  • the injector comprises an injector housing configured for being mounted in a cylinder wall of the engine cylinder.
  • the injector housing comprises a nozzle tip at one end of the injector housing that reaches into the cylinder when the injector housing is mounted in the cylinder wall.
  • the nozzle tip is an integral part of the injector housing, but this is not always the case.
  • a nozzle is provided in the nozzle tip. The nozzle extends from an inner cavity inside the injector housing and through a wall of the nozzle tip, such that lubrication oil in the inner cavity is pressed under high pressure, typically between 25 and 100 bars, out of the injector housing through the nozzle for providing a spray.
  • a valve member is mounted inside the injector housing for reciprocal sliding along its longitudinal axis between an open and closed state of the injector.
  • the valve member is sealingly covering the nozzle when in the closed state for preventing access of lubrication oil to the nozzle, and the valve member is movable away from the nozzle during an open state for giving access of the lubrication oil from the inner cavity to the nozzle during an oil ejection phase.
  • the injector housing comprises a plain bearing with a first surface
  • the valve member comprises a stem with a second surface, the second surface being provided slidably abutting the first surface in order for the stem being reciprocally guided by the plain bearing along a contact region between the stem and the plain bearing.
  • the valve member comprises a valve needle in coaxial longitudinal extension of the stem.
  • the valve needle comprises a needle tip that is closing the nozzle when abutting a cooperating valve seat in the nozzle tip.
  • the principle of the injector is as disclosed in WO02/35068 , WO2004/038189 or WO2005/124212 for a single nozzle aperture or as disclosed in WO2012/126480 for multiple nozzle apertures.
  • the injector is similar to the one disclosed in WO2012/126473 . Other examples are disclosed in the prior art.
  • a general improvement has been achieved by a high hardness of not only the surface of the stem but also by providing the plain bearing with a high hardness. For this reason, it is advantageous to surface-harden both the first and the second surface.
  • the stem is provided in a very hard material from the onset, for example ceramics, and the surface of the bearing, which is the first surface, is surface-hardened in order to provide hard surfaces that are abutting each other along a contact region, where the stem is sliding in the plain bearing.
  • the valve seat comprises a hardened surface.
  • the needle tip is has a hard surface, either due to surface-hardening or by the valve needle being provided as a hard material, for example ceramics.
  • the valve seat is surface-hardened, especially if it is part of the injector housing. Both the needle tip and the valve seat are correspondingly hard.
  • the valve needle comprises a conical part at the end of an otherwise cylindrical valve needle, although the end part may be tapering differently than conical as an alternative.
  • the needle tip comprises a ball that forms the front most part and which cooperates sealingly with the valve seat.
  • a useful hardness for the valve seat in terms of Rockwell Hardness C (HRC) is at least of 50, for example at least 55 or at least 60.
  • the injector housing comprises a cylindrical cavity part with a cylindrical first surface inside the nozzle tip.
  • the cylindrical cavity extends parallel with the reciprocal movement of the valve member.
  • the nozzle extends from the first surface through the wall of the nozzle tip.
  • the valve member comprises a cylindrical sealing head with a cylindrical second surface which is arranged slidably abutting the first surface in order for the sealing head to sealingly cover the nozzle when the injector is in a closed state.
  • the principle of the injector is as disclosed in WO2014/048438 .
  • a general improvement has been achieved by a high hardness of the cylindrical sealing head as well as a high hardness of the cavity wall along the contact region between the surface of the cavity wall, which is the first surface, and the surface of the cylindrical sealing head, which is the second surface. For this reason, it is advantageous to surface-harden both the first and the second surface.
  • the cylindrical sealing head of the valve member is provided in a very hard material from the onset, for example ceramics, and the surface of the cavity wall is surface-hardened in order to provide hard surfaces that are abutting each other along the contact region, where the cylindrical sealing head is sliding in the cylindrical cavity.
  • surface-hardening of such surfaces improves uniform long term performance among a plurality of identical lubrication oil injectors for a large slow-running two-stroke engine, especially marine engines or engines in power plants, for example burning diesel or gas. Hardening is performed during production of the injectors for the first surface and the second surface or for the valve seat or for the first and second surface as well as the valve seat.
  • the needle tip is hardened or provided in a hard material that corresponds to the hardness of hardened material.
  • a useful material that is surface-hardened for the purpose herein is carbon steel or low alloy steel.
  • a useful is steel of the type ETG® 88.
  • Such steel comprises 0.42-0.48% carbon, 0.10-0.30% silicon, 1.35-1.65% Manganese, less than 0.04% phosphorous and 0.24-0.33% sulphur.
  • the steel name is a trademark, the steel has a content of chemical elements and has physical properties that remain unchanged according to readily available data sheets.
  • the hardening method comprises hardening the steel surfaces by carbonitriding, optionally, austenitic carbonitriding, which is generally known in the art as a steel hardening method.
  • carbonitriding optionally, austenitic carbonitriding
  • An example of a suitable temperature is around 850 °C. It is performed in a gas atmosphere containing carbon and nitrogen and minor amounts of oxygen. An example is an atmosphere to which were added between 0.5 and 0.8 % carbon and between 0.2 and 0.4 % nitrogen.
  • the components are immediately submerged into oil.
  • a further option is subsequent tempering at a temperature of 150-200 °C.
  • An alternative surface hardening process is gas nitriding, which is generally known in the art as a steel hardening method. It is typically performed around 520°C.
  • a further alternative is nitrocarburizing, which is similar to gas nitriding but where carbon gas is added. The layer thickness of the hardened surface is influenced by the gas composition during the process.
  • a further process in the prior art is gaseous ferritic nitrocarburizing, which is also known under the trade name Corr-I-Dur® and various other trade names.
  • the hardness of the ETG 88 steel expressed in terms of Rockwell Hardness C (HRC) is 28. This is typical for materials used for the housing of such type of injectors.
  • HRC Rockwell Hardness C
  • the surface hardness of the component with the lowest hardness is less than 40% smaller, for example less than 30% or 20% smaller or, even better, less than 10% smaller.
  • a useful hardness for the hardest of the first or the second surface is at least HRC of 50, for example at least 55 or at least 60.
  • hardened surface means that the surface has a higher hardness than the underlying bulk material. Such hardened surfaces are provided for higher degree of product uniformity and better dimensional tolerances. In addition, the tolerances have a better longevity until dimensional changes occur to a substantial degree. A further advantage is reduced wear, possibly due to the better dimensional tolerance. It also influences the longevity.
  • FIG. 1 illustrates one half of a cylinder of a large slow-running two-stroke engine, for example marine diesel engine.
  • the cylinder comprises a cylinder liner 2 on the inner side of the cylinder wall 3.
  • the injectors 4 receive lubrication oil from a lubricator pump and controller system 11 through lubrication supply lines 9. Some of the lubrication is returned to the pump by lubrication return lines 10.
  • the lubricator pump and controller system 11 supplies pressurised lubrication oil to the injectors 4 in precisely timed pulses, synchronised with the piston motion in the cylinder 1 of the engine.
  • the lubricator pump and controller system 11 comprises a computer that monitors parameters for the actual state and motion of the engine, including speed, load, and position of the crankshaft, as the latter reveals the position of the pistons in the cylinders.
  • Each of the injectors 4 has a nozzle 5 from which a spray of small droplets 7 is ejected under high pressure into the cylinder.
  • the swirl 9 of the scavenging air in the cylinder 1 presses the spray 8 against the cylinder liner 2 such that an even distribution of lubrication oil on the cylinder liner 2 is achieved.
  • This lubrication system is known in the field as Swirl Injection Principle, SIP, although also other principles are envisaged in connection with the improved injectors, for example injectors that have jets directed towards the cylinder liner.
  • the cylinder liner is provided with free cuts 6 for providing adequate space for the spray or jet from the injector.
  • FIG. 2a illustrates a first type 4a of lubrication oil injector.
  • the generalised principle of the injector is similar to the ones disclosed in WO02/35068 , WO2004/038189 or WO2005/124212 for a single nozzle aperture or as disclosed in WO2012/126480 for multiple nozzle apertures. These references also provide additional technical details as well as explanations to the functioning of the injectors presented here, which are not repeated here, for convenience.
  • the injector 4a comprises an injector housing 12 having a nozzle tip 13 which is integral with the injector housing 12 at one end.
  • a nozzle 14 with a nozzle aperture 14' is provided in the nozzle tip 13 for ejection of lubrication oil.
  • the nozzle 14 also comprises a duct 20 that extends from the nozzle aperture 14' through the wall 21 of the nozzle tip 13 into a cylindrical inner cavity 15 of the injector housing 12.
  • a valve member 16 is provided inside the injector housing 12.
  • the valve member 16 comprises a stem 17 that is slidingly guided for reciprocation inside a plain bearing 23, which in the shown embodiment is as a separate stationary part inside the injector housing, although it could also be part of the injector housing 12, itself.
  • a valve needle 18 is provided in the inner cavity 15 of the injector housing 12.
  • the valve needle 18 has a diameter that is smaller than the diameter of the inner cavity 15 such that lubrication can flow along the valve needle 18 and to the duct 20 and out of the nozzle aperture 14' when a needle tip 22, for example a conical end part, at the end of the valve needle 18 is retracted from a valve seat 19 at a second end of the duct 14 such that the duct 20 is open for flow of lubricant to the nozzle aperture 14' from where it is ejected.
  • valve member 16 and the valve needle 18 The position of the valve member 16 and the valve needle 18 is pre-stressed forwards towards the nozzle tip 13 by moderate spring pressure acting on the opposite end of the valve member; and the valve member 16 with the valve needle 18 is offset backwards away from the seat 19 by increase of oil pressure in the cavity 15. This is explained in greater detail in the prior art references cited herein.
  • valve seat 19 comprises a hardened surface at the contact region between the valve seat 19 and the needle tip 22 of the valve needle 18.
  • the needle tip 22 comprises a hardened surface.
  • FIG. 2b illustrates a second type 4b of lubrication oil injector.
  • the generalised principle of the injector is similar to the one disclosed in WO2014/048438 .
  • This reference also provides additional technical details as well as explanations to the functioning of the injector presented here, which are not repeated here, for convenience.
  • the injector 4b comprises an injector housing 12 having a nozzle tip 13 which is integral with the injector housing 12 at one end thereof.
  • a nozzle aperture 14' is provided in the nozzle tip 13 for ejection of lubrication oil.
  • a valve member 16 is provided inside a cavity 15 of the injector housing 12, the valve member 16 comprising a stem 17 and a cylindrical sealing head 25 which is arranged slidingly in a cylindrical cavity part 15' at the nozzle tip 13 of the injector housing 12.
  • the position of the valve member 16 is pre-stressed backwards away from the nozzle tip 13 by a spring 26 and is offset forwards by oil pressure acting through a channel 28 upon the back part 27 of the stem, the oil pressure acting against the spring 26 force.
  • the nozzle aperture 14' is sealingly covered by the sealing head 25 which abuts the cylindrical cavity part 15' at the nozzle tip 13, unless the valve member 16 is pushed forward such that the sealing head 25 slides pass and away from the nozzle aperture 14' to allow lubricant oil to flow from the inner cavity 15 through the nozzle aperture 14' for ejection.
  • both the cylindrical part 15' of the inner cavity 15 and the sealing head 25 have a hardened surface.
  • FIG. 2c illustrates a third type 4c of lubrication oil injector.
  • the generalised principle of the injector is similar to the one disclosed in WO2012/126473 .
  • This reference also provides additional technical details as well as explanations to the functioning of the injectors presented here, which are not repeated here, for convenience.
  • the injector 4c comprises an injector housing 12 having a nozzle tip 13, at which a nozzle 14 is provided with a duct 20 and a nozzle aperture 14' at a first end of the duct 20.
  • the duct 20 extends from the nozzle aperture 14' through the wall 21 of the nozzle tip 13 into the inner cavity 15 of the injector housing 12.
  • a valve member 16 is provided inside the cavity 15 of the injector housing 12, the valve member 16 comprising a stem 17 that is slidingly guided for reciprocation inside a plain bearing 23, which in the embodiment is shown as a separate stationary part inside the injector housing, although it could also be part of the injector housing 12 itself.
  • the position of the valve member 16 is pre-stressed forward towards the nozzle tip 13 by a spring 26.
  • valve member 16 is offset backwards by increased oil pressure in the cavity 15 acting on the valve member 16 against the spring 26 force.
  • the valve member 16 comprises a valve needle 18 to which there is fastened a sealing ball member 28 as part of a needle tip 22, which in closed valve conditions is pressed against the seat valve 19 for closure of the duct 20 and which in open valve conditions is offset from the seat 19 a distance to allow lubrication oil to pass from the inner cavity 15 pass the needle tip 22 with the ball 28 and into the duct 20 and out of the nozzle aperture 14'.
  • the inner cavity 15 is sealed backwards towards the remaining parts inside the injector housing 12.
  • the valve seat 19 comprises a hardened surface at the sealing contact region 30 between the valve seat 19 and the ball member 28 in order to prolong lifetime against wear from the repeated hits of the ball member 28.
  • a hardened surface is provided on the surface of the stem 17 and on the surface of the plain bearing 23 such that two hardened surfaces are sliding along each other at the contact region 24.
  • hardened surface means that the surface has a higher hardness than the underlying bulk material. Such hardened surfaces on both surfaces are provided for higher degree of product uniformity and better dimensional tolerances with good longevity. A further advantage is reduced wear, possibly due to the better dimensional tolerance.
  • the abutting surfaces should have identical hardness, or at least a hardness that is the same within 40%, for example with a difference in hardness of less than 30% or 20%, or even as little as less than 10%.
  • Typical dimensions for the injector housings are 10-30 mm in diameter and 50-130 mm in length, although, the injector including the back end where the supply lines are connected can be somewhat longer.
  • the valve member 16 has a typical length of 40-80 mm and a diameter of 5-7 mm at the stem and a smaller diameter for the valve needle 18.
  • the housing tip 13 has a typical diameter of 6-10 mm, depending on the overall size of the injector housing 12.
  • FIG. 3a and FIG. 3b illustrate measurements from pressure tests for lubrication oil injectors of the type 4a with a stem diameter of 6 mm and a displacement of 2 mm.
  • FIG. 3a is a graph for measurements taken from a lubrication oil injector of the type 4a, where only the surface of the stem 17 of the valve member 16 was hardened but not the surface of the plain bearing 23.
  • FIG. 3b is a graph for measurements taken from an otherwise identical lubrication oil injector 4a which, however, has been provided with with a contact region 24 where both the surface of the stem 17 and the surface of the plain bearing 23 were hardened.
  • the experiments were conducted after operation of the injectors in a nine cylinder two-stroke marine diesel engine, where each cylinder has ten SIP spray injectors distributed along the circumference of the cylinder liner.
  • the abscissa shows the time with about 2 seconds between repeated measurements in FIG. 3a and about 2.7 seconds in FIG. 3b , the onset of a measurements indicated by a spike.
  • the ordinate is the pressure in bars.
  • the pressure decreases about 10 bars from 63.5 bars onset of a measurement till 53.5 bars prior to the next measurement, and in FIG. 3b , the pressure varies less than 0.7 bar between 63 and 64 bars. It is clearly apparent that a better performance of the injector was achieved if the stem as well as the plain bearing were hardened.
  • the surfaces were hardened by austenitic carbonitriding, which involves carbon and nitrogen in the surface of the hardened component.
  • the carbonitriding was performed at a temperature of about 850 °C in a gas atmosphere to which were added between 0.5 and 0.8 % carbon and 0.2-0.4 % ( ⁇ 5 %) nitrogen to the surface of carbon steel or low alloy steel. After the diffusion, the components were immediately submerged into oil.
  • the typical hardening depth was not above 0.7 mm and did not solely depend on the carbonitriding depth but also on the hardening temperature and the time until cooling. Subsequent tempering at a temperature of 150-200 °C can be used for larger hardening depth and reduced brittleness.
  • FIG. 4a shows a table with indications for injector performance.
  • the left column shows dates for measurements and the heading above the columns shows the number of the ten injectors of a cylinder.
  • the number in each entry of the table shows the number of hours of operation of the injector.
  • a light grey indication corresponds to a minor pressure loss of 0-1 bars, for example as in FIG. 3b .
  • the slightly darker grey shade corresponds to a pressure loss of 1-5 bars which is acceptable.
  • the dark grey indication shows a pressure loss of more than 5 bars, which affects the spray characteristics substantially.
  • FIG. 4a it is observed that the performances for the injectors are very different even after identical hours of operation.
  • the first injector (col. 1) changes performance after only 200 hours of operation, whereas others operated stable up to 640 hours of operation.
  • FIG. 4b measurements were performed in cylinder No. 2 of the same engine with injectors having only the stem hardened but not the plain bearing surface.
  • FIG. 4b there is also a black indication for stopped operation. It is seen that the substantial variations of performance among the injectors are similar to the patters in FIG. 4a prior to exchange of the injectors to the improved ones.
  • the performance was remarkably improved not only with respect to longevity but also particularly with respect to uniform performance for those injectors where both the surface of the steel stem as well as the surface of the steel plain bearing were hardened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Claims (16)

  1. Schmierinjektor (4) zum Einspritzen von Schmieröl in den Zylinder (1) eines großen langsamen Zweitaktmotors; wobei der Injektor (4) ein Injektorgehäuse (12) umfasst, das konfiguriert ist, um in einer Zylinderwand (3) des Zylinders (1) montiert zu sein; wobei das Injektorgehäuse (12) an einem Ende des Injektorgehäuses (12) eine Düsenspitze (13) umfasst, um sich in den Zylinder (1) auszudehnen, wenn das Injektorgehäuse (12) in der Zylinderwand (3) montiert ist; wobei eine Düse (14) in der Düsenspitze (13) vorgesehen ist, wobei sich die Düse (14) aus einem inneren Hohlraum (15) im Injektorgehäuse (12) und durch eine Wand (21) der Düsenspitze (13) zum Ausstoßen von Schmieröl durch die Düse (14) aus dem inneren Hohlraum (15) aus dem Injektorgehäuse (12) heraus erstreckt; wobei ein Ventilelement (16) im Injektorgehäuse (12) vorgesehen ist, wobei das Ventilelement (16) reziprok zwischen einem offenen und einem geschlossenen Zustand des Injektors (4) montiert ist; wobei das Ventilelement (16) die Düse (14) dichtend abdeckt, wenn sie sich im geschlossenen Zustand befindet, um das Eintreten von Schmieröl in die Düse (14) zu verhindern, und das Ventilelement (16) während eines offenen Zustands von der Düse (14) weg bewegbar ist, um während einer Ölausstoßphase das Eintreten des Schmieröls aus dem inneren Hohlraum (15) in die Düse (14) zu gewähren;
    wobei
    entweder
    A) das Injektorgehäuse (12) ein Gleitlager (23) mit einer ersten Oberfläche umfasst und das Ventilelement (16) einen Schaft (17) mit einer zweiten Oberfläche umfasst, wobei die zweite Oberfläche gleitbar an der ersten Oberfläche anliegend vorgesehen ist, damit der Schaft (17) reziprok durch das Gleitlager (23) entlang eines Kontaktbereichs (24) zwischen dem Schaft (17) und dem Gleitlager (23) geführt wird; wobei das Ventilelement (16) eine Ventilnadel (18) in koaxialer Längsausdehnung des Schafts (17) umfasst, wobei die Ventilnadel (18) eine Nadelspitze (22) umfasst, die die Düse (14) schließt, wenn sie an einem zusammenwirkenden Ventilsitz (19) in der Düsenspitze (13) anliegt; wobei die erste Oberfläche und die zweite Oberfläche gehärtete Oberflächen sind;
    oder
    B) das Injektorgehäuse (12) einen zylindrischen Hohlraumteil (15') mit einer ersten Oberfläche in der Düsenspitze (13) umfasst, wobei sich die Düse (14) von der ersten Oberfläche durch die Wand (21) der Düsenspitze (13) erstreckt; wobei das Ventilelement (16) einen zylindrischen Dichtkopf (25) mit einer zweiten Oberfläche umfasst, die gleitbar an der ersten Oberfläche anliegend angeordnet ist, damit der Dichtkopf (25) die Düse (14) im geschlossenen Zustand dichtend abdeckt; wobei die erste Oberfläche und die zweite Oberfläche gehärtete Oberflächen sind.
  2. Injektor nach Anspruch 1, wobei die Härte der weichsten der beiden Oberflächen weniger als 10 % von der Härte der anderen Oberfläche abweicht.
  3. Injektor nach einem der vorhergehenden Ansprüche, wobei die härteste der ersten und der zweiten Oberfläche eine Oberflächenhärte von mindestens 50 nach der Rockwell-Härte C aufweist.
  4. Injektor nach einem der vorhergehenden Ansprüche, wobei die erste und die zweite Oberfläche gehärtete Stahloberflächen sind.
  5. Injektor nach einem der vorhergehenden Ansprüche, wobei der Injektor ein Sprühinjektor ist, der konfiguriert ist, um Schmieröl als Spray auszustoßen, wenn er bei einem vorbestimmten Öldruckniveau betrieben wird, das ein Niveau innerhalb des Intervalls von 25 bis 100 bar ist.
  6. Injektor nach einem der vorhergehenden Ansprüche, wobei der Ventilsitz (19) eine gehärtete Oberfläche umfasst.
  7. Injektor nach Anspruch 6, wobei der Ventilsitz (19) eine Oberflächenhärte von mindestens 50 nach der Rockwell-Härte C aufweist.
  8. Verfahren zum Erreichen einer gleichmäßigen Langzeitleistung aus einer Vielzahl von identisch hergestellten Schmierinjektoren für einen großen langsamen Zweitaktmotor; wobei der Injektor (4) ein Injektorgehäuse (12) umfasst, das in einer Zylinderwand (3) des Zylinders (1) montiert ist; wobei das Injektorgehäuse (12) an einem Ende des Injektorgehäuses (12) eine Düsenspitze (13) umfasst, die sich in den Zylinder (1) ausdehnt, wenn das Injektorgehäuse (12) in der Zylinderwand (3) montiert ist; wobei eine Düse (14) in der Düsenspitze (13) vorgesehen ist, wobei sich die Düse (14) aus einem inneren Hohlraum (15) im Injektorgehäuse (12) und durch eine Wand (21) der Düsenspitze (13) erstreckt, wobei das Verfahren das Ausstoßen von Schmieröl durch die Düse (14) aus dem inneren Hohlraum (15) aus dem Injektorgehäuse (12) heraus während des Betriebs des Motors umfasst; wobei ein Ventilelement (16) im Injektorgehäuse (12) vorgesehen ist, wobei das Ventilelement (16) reziprok zwischen einem offenen und einem geschlossenen Zustand des Injektors (4) montiert ist; wobei das Ventilelement (16) die Düse (14) dichtend abdeckt, wenn sie sich im geschlossenen Zustand befindet, um das Eintreten von Schmieröl in die Düse (14) zu verhindern, und das Ventilelement (16) während eines offenen Zustands von der Düse (14) weg bewegbar ist, um während einer Ölausstoßphase das Eintreten des Schmieröls aus dem inneren Hohlraum (15) in die Düse (14) zu gewähren; wobei entweder
    A) das Injektorgehäuse (12) ein Gleitlager (23) mit einer ersten Oberfläche umfasst und das Ventilelement (16) einen Schaft (17) mit einer zweiten Oberfläche umfasst, wobei die zweite Oberfläche gleitbar an der ersten Oberfläche anliegend vorgesehen ist, damit der Schaft (17) reziprok durch das Gleitlager (23) entlang eines Kontaktbereichs (24) zwischen dem Schaft (17) und dem Gleitlager (23) geführt wird; wobei das Ventilelement (16) eine Ventilnadel (18) in koaxialer Längsausdehnung des Schafts (17) umfasst, wobei die Ventilnadel (18) eine Nadelspitze (22) umfasst, die die Düse (14) schließt, wenn sie an einem zusammenwirkenden Ventilsitz (19) in der Düsenspitze (13) anliegt;
    oder
    B) das Injektorgehäuse (12) einen zylindrischen Hohlraumteil (15') mit einer ersten Oberfläche in der Düsenspitze (13) umfasst, wobei sich die Düse (14) von der ersten Oberfläche durch die Wand (21) der Düsenspitze (13) erstreckt; wobei das Ventilelement (16) einen zylindrischen Dichtkopf (25) mit einer zweiten Oberfläche umfasst, die gleitbar an der ersten Oberfläche anliegend angeordnet ist, damit der Dichtkopf (25) die Düse (14) im geschlossenen Zustand dichtend abdeckt;
    wobei das Verfahren während der Herstellung der Injektoren das Härten der ersten Oberfläche und der zweiten Oberfläche umfasst.
  9. Verfahren nach Anspruch 8, wobei die härteste der ersten und der zweiten Oberfläche eine Oberflächenhärte von mindestens 50 nach der Rockwell-Härte C aufweist.
  10. Verfahren nach einem der Ansprüche 8-9, wobei das Verfahren das Bereitstellen der Oberflächen als Stahloberflächen und das Härten der Stahloberflächen umfasst.
  11. Verfahren nach Anspruch 10, wobei das Verfahren das Härten der Stahloberflächen durch Carbonitrieren umfasst.
  12. Verfahren nach Anspruch 11, wobei das Verfahren das Härten der Stahloberflächen durch austenitisches Carbonitrieren bei einer Temperatur von 850 °C in einer Gasatmosphäre umfasst, zu der zwischen 0,5 und 0,8 % Kohlenstoff und zwischen 0,2 und 0,4 % Stickstoff gegeben wurden.
  13. Verfahren nach einem der Ansprüche 8-12, wobei das Verfahren das Härten des Ventilsitzes umfasst.
  14. Verwendung von Oberflächenhärtung zum Erreichen einer gleichmäßigen Langzeitleistung aus einer Vielzahl von identischen Schmierinjektoren für einen großen langsamen Zweitaktmotor; wobei bei jedem Injektor der Injektor (4) ein Injektorgehäuse (12) umfasst, das konfiguriert ist, um in einer Zylinderwand (3) des Zylinders (1) montiert zu sein; wobei das Injektorgehäuse (12) an einem Ende des Injektorgehäuses (12) eine Düsenspitze (13) umfasst, die sich in den Zylinder (1) ausdehnt, wenn das Injektorgehäuse (12) in der Zylinderwand (3) montiert ist; wobei eine Düse (14) in der Düsenspitze (13) vorgesehen ist, wobei sich die Düse (14) aus einem inneren Hohlraum (15) im Injektorgehäuse (12) und durch eine Wand (21) der Düsenspitze (13) zum Ausstoßen von Schmieröl durch die Düse (14) aus dem inneren Hohlraum (15) aus dem Injektorgehäuse (12) heraus erstreckt; wobei ein Ventilelement (16) im Injektorgehäuse (12) vorgesehen ist, wobei das Ventilelement (16) reziprok zwischen einem offenen und einem geschlossenen Zustand des Injektors (4) montiert ist; wobei das Ventilelement (16) die Düse (14) dichtend abdeckt, wenn sie sich im geschlossenen Zustand befindet, um das Eintreten von Schmieröl in die Düse (14) zu verhindern, und das Ventilelement (16) während eines offenen Zustands von der Düse (14) weg bewegbar ist, um während einer Ölausstoßphase das Eintreten des Schmieröls aus dem inneren Hohlraum (15) in die Düse (14) zu gewähren; wobei entweder
    A) das Injektorgehäuse (12) ein Gleitlager (23) mit einer ersten Oberfläche umfasst und das Ventilelement (16) einen Schaft (17) mit einer zweiten Oberfläche umfasst, wobei die zweite Oberfläche gleitbar an der ersten Oberfläche anliegend vorgesehen ist, damit der Schaft (17) reziprok durch das Gleitlager (23) entlang eines Kontaktbereichs (24) zwischen dem Schaft (17) und dem Gleitlager (23) geführt wird; wobei das Ventilelement (16) eine Ventilnadel (18) in koaxialer Längsausdehnung des Schafts (17) umfasst, wobei die Ventilnadel (18) eine Nadelspitze (22) umfasst, die die Düse (14) schließt, wenn sie an einem zusammenwirkenden Ventilsitz (19) in der Düsenspitze (13) anliegt;
    oder
    B) das Injektorgehäuse (12) einen zylindrischen Hohlraumteil (15') mit einer ersten Oberfläche in der Düsenspitze (13) umfasst, wobei sich die Düse (14) von der ersten Oberfläche durch die Wand (21) der Düsenspitze (13) erstreckt; wobei das Ventilelement (16) einen zylindrischen Dichtkopf (25) mit einer zweiten Oberfläche umfasst, die gleitbar an der ersten Oberfläche anliegend angeordnet ist, damit der Dichtkopf (25) die Düse (14) im geschlossenen Zustand dichtend abdeckt;
    wobei die Oberflächenhärtung während der Herstellung der Injektoren das Härten der ersten und der zweiten Oberfläche umfasst.
  15. Verwendung nach Anspruch 14, wobei die härteste der ersten und der zweiten Oberfläche eine Oberflächenhärte von mindestens 50 nach der Rockwell-Härte C aufweist.
  16. Verwendung nach Anspruch 14 oder 15, wobei das Verfahren das Härten des Ventilsitzes umfasst.
EP16720341.3A 2015-04-29 2016-04-29 Schmierinjektor für grossen langsamen zweitaktmotor und herstellungsverfahren Active EP3289213B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DK201570254A DK178427B1 (en) 2015-04-29 2015-04-29 Lubricant injector for large slow-running two-stroke engine and production method
DKPA201570790A DK179113B1 (en) 2015-04-29 2015-12-02 Lubricant injector for large slow-running two-stroke engine and production method
PCT/DK2016/050112 WO2016173601A1 (en) 2015-04-29 2016-04-29 Lubricant injector for large slow-running two-stroke engine and production method

Publications (2)

Publication Number Publication Date
EP3289213A1 EP3289213A1 (de) 2018-03-07
EP3289213B1 true EP3289213B1 (de) 2021-01-13

Family

ID=55910694

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16720341.3A Active EP3289213B1 (de) 2015-04-29 2016-04-29 Schmierinjektor für grossen langsamen zweitaktmotor und herstellungsverfahren

Country Status (6)

Country Link
EP (1) EP3289213B1 (de)
KR (1) KR102510836B1 (de)
CN (1) CN107873069B (de)
DK (1) DK179113B1 (de)
SG (1) SG11201708772YA (de)
WO (1) WO2016173601A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK179484B1 (en) 2017-05-26 2018-12-17 Hans Jensen Lubricators A/S Method for lubricating large two-stroke engines using controlled cavitation in the injector nozzle
EP3724463B1 (de) 2017-12-13 2024-01-31 Hans Jensen Lubricators A/S Ein injektor für einen grossen, langsam laufenden zweitaktmotor und verfahren zum schmieren eines solchen motors, sowie ein solcher motor
DK179750B1 (en) 2017-12-13 2019-05-07 Hans Jensen Lubricators A/S Large slow-running two-stroke engine and method of lubri-cating such engine, as well as an injector with an electric pumping system for such engine and method
DK179521B1 (en) * 2017-12-13 2019-02-05 Hans Jensen Lubricators A/S A large slow-running two-stroke engine, a method of lubricating it, and an injector with a step-wise hydraulic pumping system for such engine and method
DK179946B1 (en) 2018-07-06 2019-10-21 Hans Jensen Lubricators A/S A METHOD FOR OPTIMIZING LUBRICATION IN A LARGESLOW RUNNING TWO-STROKE ENGINE
DK179952B1 (en) 2018-07-06 2019-10-25 Hans Jensen Lubricators A/S A METHOD FOR UPGRADING A LUBRICATION SYSTEM IN A LARGE SLOW-RUNNING TWO-STROKE ENGINE
DK180390B1 (en) * 2019-06-11 2021-03-05 Hans Jensen Lubricators As Injector for several oils, large engine with such an injector, method of lubrication and use thereof
DK181120B1 (en) 2021-11-17 2023-01-12 Hans Jensen Lubricators As A large slow-running two-stroke engine, a method of lubricating it and a use of the engine and the method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2011113A (en) 1934-05-05 1935-08-13 Hughes Tool Co Lubricated plug valve
JPH06128696A (ja) * 1992-10-16 1994-05-10 Hitachi Metals Ltd 耐摩耐食燃料噴射ノズル材
EP0982493B1 (de) * 1998-08-27 2003-09-24 Wärtsilä Schweiz AG Verfahren zum Herstellen einer Brennstoffeinspritzdüse und Brennstoffeinspritzdüse
DE10013198A1 (de) 2000-03-17 2001-09-20 Siemens Ag Injektor für eine Einspritzanlage
JP3630076B2 (ja) * 2000-05-30 2005-03-16 株式会社デンソー 弁装置
DE60118589T2 (de) * 2000-10-24 2007-05-16 Hans Jensen Lubricators A/S Dosiersystem
DK200201605A (da) * 2002-10-22 2004-04-23 Hans Jensen Lubricators As Ventil til montering i cyllindervæg
DE10261180A1 (de) * 2002-12-20 2004-07-01 Daimlerchrysler Ag Temperaturgeregelte Ölspritzdüse zur Kolbenkühlung
FR2871215B1 (fr) 2004-06-04 2007-08-17 Epsilon Composite Sarl Sarl Procede de fabrication d'un tube en materiau composite de grande raideur, et tube obtenu
DK200400958A (da) 2004-06-18 2005-12-19 Hans Jensen Lubricators As Doseringssystem
DE102005020143A1 (de) 2005-04-29 2006-11-02 Siemens Ag Verfahren zum Herstellen eines Düsenkörpers für ein Einspritzventil und Einspritzventil
DE102005049534A1 (de) 2005-10-17 2007-04-19 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bearbeitung eines Düsenkörpers für ein Kraftstoffeinspritzventil
EP2138706B1 (de) 2008-06-27 2010-11-10 C.R.F. Società Consortile per Azioni Kraftstoffeinspritzgerät mit symmetrischem Mess-Servoventil für einen Verbrennungsmotor
KR20100079776A (ko) * 2008-12-31 2010-07-08 (주)신일에이스 선박 엔진용 연료분사노즐 및 그 제조방법
DK2365206T3 (da) * 2010-03-05 2014-05-19 Wärtsilä Switzerland Ltd Dyse til en brændstofindsprøjtningsindretning til motorer med indvendig forbrænding og fremgangsmåde til fremstilling af en dyse
DK177258B1 (da) 2011-03-18 2012-08-27 Hans Jensen Lubricators As Doseringssystem for cylindersmøreolie til store cylindre samt fremgangsmåde til dosering af cylindersmøreolie til store cylindre
DK177242B1 (da) 2011-03-22 2012-08-06 Hans Jensen Lubricators As Injektor, doseringssystem samt fremgangsmåde til indsprøjtning af cylindersmøreolie i store cylindre i en dieselmotor
AT511880B1 (de) 2011-09-06 2013-12-15 Bosch Gmbh Robert Verschleissoptimierte herstellung von konischen spritzlöchern
DK177669B1 (da) * 2012-09-25 2014-02-10 Hans Jensen Lubricators As Injektionsdyse til brug ved olieinjicering af olie for smøring af cylindre i større motorer samt anvendelse heraf
EP2757247A1 (de) 2013-01-18 2014-07-23 EFI Hightech AG Einspritzdüse für eine Verbrennungskraftmaschine
DE102013014930A1 (de) * 2013-09-11 2015-03-12 Man Truck & Bus Ag Steuerventil für eine Schmiermitteldüse

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3289213A1 (de) 2018-03-07
CN107873069A (zh) 2018-04-03
SG11201708772YA (en) 2017-11-29
DK201570790A1 (en) 2017-01-02
KR20170141762A (ko) 2017-12-26
DK179113B1 (en) 2017-11-06
WO2016173601A1 (en) 2016-11-03
KR102510836B1 (ko) 2023-03-15
CN107873069B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
EP3289213B1 (de) Schmierinjektor für grossen langsamen zweitaktmotor und herstellungsverfahren
JP6585221B2 (ja) 大型低速2ストロークエンジン内で使用され、焼入れ弁座を有する潤滑油インジェクタ及び製造方法
DE60202042T2 (de) Kraftstoffpumpe und direkt einspritzende Brennkraftmaschine
EP3368751B1 (de) Grosser langsam laufender zweitaktmotor mit sip-schmierinjektor
ATE460584T1 (de) Hochdruckpumpe, insbesondere für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
US20070116583A1 (en) Fuel supply pump
US20160230274A1 (en) Multilayer coating for a component
CN102859177A (zh) 高压泵
KR20160070072A (ko) 고압 매질을 안내하는 부품
CN113167147A (zh) 改造阀座以改进大型低速二冲程发动机的润滑器泵单元和润滑系统,以及改进的润滑器泵单元
WO2007082598A1 (de) Kraftstoffinjektor
JP3940259B2 (ja) 燃料ポンプ及びそれを用いた筒内噴射エンジン
US7412971B2 (en) Selectively detachable helix ring for a fuel injector
JP2011174424A (ja) 高圧燃料供給ポンプ
JP2007002776A (ja) 内燃機関の燃料噴射装置
US20130209815A1 (en) One-piece component and method for its production
RU2306449C1 (ru) Распылитель форсунки
EP1273790A3 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
RU77359U1 (ru) Форсунка для двигателя внутреннего сгорания
RU2567340C1 (ru) Форсунка многотопливного дизеля

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190215

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200902

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016051358

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1354746

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20210400973

Country of ref document: GR

Effective date: 20210519

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1354746

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210113

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210113

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210413

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016051358

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

26N No opposition filed

Effective date: 20211014

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210429

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210429

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160429

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210113

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230427

Year of fee payment: 8

Ref country code: CH

Payment date: 20230502

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20230428

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113