EP3282125A1 - Valve for viscous materials - Google Patents

Valve for viscous materials Download PDF

Info

Publication number
EP3282125A1
EP3282125A1 EP16183665.5A EP16183665A EP3282125A1 EP 3282125 A1 EP3282125 A1 EP 3282125A1 EP 16183665 A EP16183665 A EP 16183665A EP 3282125 A1 EP3282125 A1 EP 3282125A1
Authority
EP
European Patent Office
Prior art keywords
valve
valve member
passage opening
thick
pivot axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16183665.5A
Other languages
German (de)
French (fr)
Inventor
Felix Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Putzmeister Engineering GmbH
Original Assignee
Putzmeister Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56686669&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3282125(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Putzmeister Engineering GmbH filed Critical Putzmeister Engineering GmbH
Priority to EP16183665.5A priority Critical patent/EP3282125A1/en
Priority to KR1020197005293A priority patent/KR102334498B1/en
Priority to US16/324,736 priority patent/US20200182230A1/en
Priority to JP2019529684A priority patent/JP7019924B2/en
Priority to PCT/EP2017/069783 priority patent/WO2018029099A1/en
Priority to EP17748765.9A priority patent/EP3497329B1/en
Priority to CN201780062954.7A priority patent/CN109804161B/en
Publication of EP3282125A1 publication Critical patent/EP3282125A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0019Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers
    • F04B7/003Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers and having a slidable movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • F04B15/023Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous supply of fluid to the pump by gravity through a hopper, e.g. without intake valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0019Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers
    • F04B7/0026Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers and having an oscillating movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/109Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers
    • F04B9/117Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other
    • F04B9/1176Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each piston in one direction being obtained by a single-acting piston liquid motor
    • F04B9/1178Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each piston in one direction being obtained by a single-acting piston liquid motor the movement in the other direction being obtained by a hydraulic connection between the liquid motor cylinders
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0436Devices for both conveying and distributing with distribution hose on a mobile support, e.g. truck
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/09Motor parameters of linear hydraulic motors
    • F04B2203/0903Position of the driving piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0019Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers
    • F04B7/0034Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers and having an orbital movement, e.g. elbow-pipe type members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type

Definitions

  • the invention relates to a thick matter valve having a first passage opening, a second passage opening and a valve member which cooperates with both passage openings.
  • Such valves are used for conveying thick materials, such as fresh concrete or mortar. There is a first conveying state, in which the thick matter passes through the first passage opening, and a second conveying state, in which the thick matter passes through the second passage opening.
  • the thick matter valve serves to release the appropriate passage for the respective passage passage for the thick matter.
  • valve member in which a valve member is associated with two passage openings are known, see DE 10 2013 215 990 A1 . US 8,827,657 . DE 195 93 986 A1 . DE 10 2005 008 938 A1 ,
  • the valve member has the form of an S-shaped pipe section, one end of which can be selectively coupled to the first passage opening or the second passage opening. This is mechanically complicated.
  • the invention has for its object to introduce a thick matter valve, which is simpler. Based on the cited prior art, the object is achieved with the features of claim 1. Advantageous embodiments are specified in the subclaims.
  • valve member associated with the two passage openings is pivotally mounted relative to a pivot axis and has a concentric with the pivot axis curved sealing surface. In a first state, the valve member releases the first passage opening and closes the second passage opening. In a second state, the valve member releases the second passage opening and closes the first passage opening.
  • Thick cloth is a generic term for media that are difficult to convey.
  • the thick matter may be, for example, a substance with coarse-grained constituents, a substance with aggressive constituents or the like.
  • the thick matter can also be a bulk material.
  • the thick stock is fresh concrete. Fresh concrete contains grains up to a size of more than 30 mm, binds, forms deposits in dead spaces and is therefore difficult to convey.
  • the valve member may be disposed in an interior of the slum valve.
  • the thick matter valve according to the invention can be designed so that the thick material enters through the passage openings in the interior of the thick matter valve.
  • the Dickstoffventil may additionally include an output port through which the thick matter entered leaves the valve again. To the output port, a pipe may be connected, through which the further transport of the thick matter takes place. The path between the passage openings and the outlet opening may be arranged so that it does not extend through the valve member.
  • the first and the second passage opening may each have a sealing surface which is designed to cooperate with the sealing surface of the valve member.
  • the sealing surface can be, for example, an inner surface of a housing of the thick matter valve which extends around the passage opening.
  • the sealing surfaces of the passage openings may have a curvature concentric with the pivot axis of the valve member. Due to the concentric curvature of the cooperating sealing surfaces, the valve member can be rotated about the pivot axis, which corresponds to the axis of the curvature. This makes it possible that one of the openings is freely flowed through, while on the other hand, the sealing surface of the valve member cooperating sealingly with the sealing surface of the other passage opening.
  • densities is to be understood with reference to the field of application in which 100% tightness is not required.
  • the concentric curvature corresponds to a segment of a cylinder jacket, wherein the cylinder axis is equal to the pivot axis.
  • the radial distance between the sealing surface of the valve member and the pivot axis over the length of the pivot axis is constant.
  • the radial distance varies along the pivot axis.
  • the curvature in the circumferential direction may correspond to a circle segment.
  • an intermediate surface may be arranged, which also has a curvature concentric with the pivot axis.
  • a continuous contour concentric with the pivot axis can be created, which extends from the first passage opening via the intermediate surface to the second passage opening.
  • the thick matter valve may include a third switching state (intermediate state) in which both the first passage opening and the second passage opening are released.
  • the valve member In the intermediate state, the valve member may be arranged between the first passage opening and the second passage opening. The distance between the two passage openings can be so large that both passage openings are completely released. This has the advantage that the edges of the sealing surface are not exposed to the flow of material extending through the openings. It is also possible that one or both passage openings are still partially covered by the valve member.
  • the valve member may comprise a sealing part and a pivoting part, wherein the pivoting part is rotatably mounted in the pivot axis.
  • a motor drive can act on the pivoting part in order to effect the switching operations between the various states of the high-density material valve.
  • the valve member may include a connecting structure that establishes a connection between the sealing part and the pivoting part.
  • the connection structure may be configured to be rigid with respect to torques that are relative to the pivot axis. Rigid in this sense means that upon rotation of the pivoting member relative to the pivot axis and the sealing member performs the corresponding pivotal movement.
  • the connecting structure may allow movement of the sealing part relative to the pivoting part.
  • the connecting structure may allow movement of the sealing part relative to the pivoting part.
  • the connecting structure may comprise an elastic element arranged between the sealing part and the pivoting part.
  • the elastic element In the initial state of the thick matter valve, the elastic element may be compressed. If wear occurs between the sealing surfaces during operation, the elastic element expands. The wear is thus compensated automatically.
  • valve member of the invention may include a drive to move the sealing member in the radial direction relative to the pivoting member.
  • the drive can be used to adjust the position of the sealing part to the pivoting part in operation. It is also possible to use the drive to adjust the spring tension of the elastic element.
  • the drive may be, for example, a hydraulic drive or a mechanical drive.
  • the valve member comprises a rigid connection between the sealing surface and the pivotably mounted shaft or the pivotally mounted stub shafts.
  • a radial mobility of the sealing surface relative to the valve housing may result from the fact that the shaft or the stub shafts are mounted elastically with respect to the valve housing.
  • one or more elastic elements may be provided that extend around the shaft or stub shafts. This embodiment has the advantage that the elastic elements are not affected by the thick material flow.
  • the valve member may be arranged in a housing of the high-density material valve according to the invention.
  • the valve member may be disposed adjacent to an end wall of the housing, wherein the end axis is aligned perpendicular to the pivot axis. The pivoting movement of the valve member then runs parallel to the end wall.
  • the valve member may be spaced from the end wall, so that the coarse-grained constituents of the thick matter space between the valve member and the end wall have space. This facilitates the actuation of the valve member.
  • the distance between the valve member and the end wall is smaller than the coarse-grained constituents of the thick material.
  • the valve member may include a scratch which pushes the thick matter along the end wall to the side during actuation of the valve member, so that no grains between the valve member and the end wall can be clamped. The scratch may rest on the bulkhead or be slightly away from the bulkhead.
  • the housing may have a second end wall, so that the valve member between the first and the second end wall is arranged.
  • the interaction between the valve member and the second end wall may be designed accordingly.
  • a shaft of the valve member may be mounted in the housing of the thick matter valve.
  • two bearings may be arranged so that they enclose the valve member between them.
  • a shaft may extend, which is a part of the pivoting part of the valve member.
  • the thick matter valve according to the invention can be designed such that a straight connecting path between an inlet opening and the outlet opening of the thick matter valve intersects the pivot axis. If a shaft of the valve member extends continuously along the pivot axis, then the flow of material must be guided along a curved path past the shaft.
  • the valve member may include a guide surface, with which the flow of material is conducted past the shaft.
  • the baffle may connect to the sealing surface (relative to the direction of movement of the valve member) and define a substantially straight path past the valve member and past the pivot axis.
  • the guide surface may be a planar guide surface, which may be aligned in particular parallel to the pivot axis. At its end adjacent to the exit opening, the guide surface may be provided with a recess to facilitate the passage of material flow into the exit opening.
  • the valve member may comprise two such baffles, the sealing surface being enclosed between the baffles. Depending on the switching state of the valve, the material flow can either be passed along the one and / or the other guide surface along.
  • Such a guide surface may be particularly advantageous if the valve member is designed so that the pivot axis is enclosed in the body of the valve member.
  • the elastic member of the valve member may extend around the shaft of the valve member or be disposed between the pivot axis and the sealing surface.
  • the shaft may comprise two stub shafts, which are guided in bearings of the valve housing.
  • the connection between the two stub shafts can be produced via a connecting structure whose distance from the sealing surface is less than the distance between the pivot axis and the sealing surface.
  • the connecting structure does not extend along the pivot axis, but is arranged closer to the sealing surface, leaving a space which is available for the flow of material on its way to the outlet opening.
  • the connection structure may be designed so that a straight line extending from the center of the non-closed passage opening to the center of the outlet opening does not intersect the valve member.
  • the connecting structure may comprise a leg which extends to the sealing part.
  • the leg can be aligned in the radial direction. Based on the sealing part of the leg can be arranged centrally. If the leg has a distance to the end walls of the valve housing, it can be well flowed around by the thick material.
  • the connecting structure comprises two legs which extend in the direction of the sealing part.
  • the legs may be parallel to each other and aligned in the radial direction.
  • the legs may be arranged so that an area arranged between the pivot axis and the center of the sealing part is kept free, so that it can be flowed through by the thick material.
  • the retained region may extend over at least 10%, preferably at least 30%, more preferably at least 50%.
  • the two legs may have a distance to the end walls of the housing.
  • the legs may be formed as scratches, so that the thick matter is pushed aside on actuation of the valve member along the end face.
  • the thick matter valve according to the invention is used in such a way that the material flow enters the interior of the valve through one of the passage openings, extends past the valve member and leaves the valve again through an outlet opening (pumping operation), there is regularly a pressure difference between the interior of the thick matter valve and an outer space, which adjoins the closed with the valve member passage opening.
  • the thick matter valve may be designed so that a force is exerted on the valve member by the pressure difference, which enhances the sealing effect.
  • valve member can be pressed in the radial direction against the sealing surface of the passage opening.
  • the direction indication radially refers to the pivot axis of the valve member.
  • the valve member may for this purpose comprise an outer surface, by which a pressure applied in the interior pressure is converted into a force acting in the radial direction.
  • Outer surface refers to a portion of the valve member which is in contact with the thick matter in the interior of the slum valve.
  • valve member may have an outer surface which faces the sealing surface.
  • the outer surface may be oriented to intersect the radial direction perpendicularly. A pressure acting on the outer surface is then aligned so that it directly enhances the sealing effect.
  • valve member has a relation to the radial direction inclined outer surface, so that only a portion of the compressive force acts in the direction of the sealing surface.
  • the valve member may also have two oppositely oriented inclined outer surfaces. Opposing means that the outer surfaces are aligned so that the components acting in the radial direction of the compressive force add.
  • the thick matter valve according to the invention is used in such a way that the material flow flows in the opposite direction (suction operation), the pressure difference can generally not be used in order to increase the sealing effect of the valve member.
  • the sealing effect then results primarily from the force exerted on the sealing part, starting from the pivoting part. As stated, this force can result either from an elastic bias or from an active drive.
  • the invention also relates to a pump equipped with such a thick matter valve.
  • the thick matter valve can do so be arranged such that in a pumping operation, the offset from the conveying member of the pump in motion material enters through the first and / or the second opening in the interior of the thick matter valve.
  • the pump may comprise a first delivery cylinder and a second delivery cylinder.
  • a piston may be arranged, which sucks in pumping operation with a backward movement thick matter in the interior of the delivery cylinder and promotes the thick material in the direction of the passage opening of the high-density valve with a forward movement.
  • the flow rates of the two delivery cylinders can be separated in front of the thick matter valve and combined with the thick matter valve to a common flow.
  • the flow from the first delivery cylinder can enter through the first passage opening of the thick matter valve in the interior of the slum.
  • the flow from the second delivery cylinder can enter through the second passage opening of the thick matter valve in the interior of the slum.
  • the pistons may be controlled so that the backward movement occurs within a shorter time than the forward movement.
  • the beginning of the forward movement of one piston may overlap with the end of the forward movement of the other piston. There is then a period of time in which both pistons convey material in parallel in the direction of the thick matter valve.
  • the switching positions of the thick matter valve can be coordinated with the movement of the pistons in the delivery cylinders. is If the piston of the first delivery cylinder in the forward movement and the piston of the second delivery cylinder in the backward movement, so the sludge valve can be switched to the first state in which the first passage opening is free and the second passage opening is closed. If the piston of the second delivery cylinder is in the forward movement and the piston of the first delivery cylinder is in the backward movement, then the thick matter valve can be switched to the second state, in which the second passage opening is free and the first passage opening is closed. In the intermediate phase, in which the pistons of both delivery cylinders are in the forward movement, the sludge valve can be switched to a state in which none of the passage openings is closed. Preferably, both passage openings are free in this intermediate state of the thick matter valve.
  • the piston of the first delivery cylinder is in the backward movement and the piston of the second delivery cylinder is in the forward movement, then there is a pressure difference across the first passage of the thick matter valve.
  • the pressure in the interior of the thick matter valve substantially corresponds to the pressure exerted by the piston of the second delivery cylinder with its forward movement on the material.
  • the suction pressure of the first delivery cylinder is located, which is much lower. This pressure difference can be used as described above to enhance the sealing effect between the valve member and the first passage opening.
  • the piston of the second delivery cylinder in the backward movement and the piston of the first delivery cylinder in the forward movement so is the corresponding pressure difference across the first opening of the slum valve on.
  • the thick matter valve can therefore be set up so that the switching operation takes place when there is a pressure difference across the valve member which is reduced in relation to this pressure difference.
  • the switching operation takes place only when the rearward movement of the piston is completed, the passage opening is closed with the valve member. It may also be advantageous that the switching process takes place only when the piston in question has begun its forward movement, so that a pressure has already been built up again before the respective passage opening.
  • the thick matter valve may be arranged to complete the shift operation before the reverse movement of the other piston begins.
  • the thick matter valve may be arranged so that the switching operation is completed before the forward movement of the other piston is completed.
  • the switching operation can be designed so that the valve member is moved from a first switching state, in which one of the passage openings is closed and the other passage opening is free, via an intermediate state, in which none of the passage openings is closed, into a second switching state, in which the respective other passage opening is closed or free.
  • the pump may be configured so that the switching operations of the valve member are only made when the pressure difference across the valve member is small.
  • the above statements relate to the pumping operation of the pump.
  • the pump can also be reversed be operated in a suction mode.
  • the suction operation can serve, for example, to clean the thick matter valve and a subsequent delivery line or to eliminate clogging in this area.
  • the interaction of the delivery cylinder and the thick matter valve is then matched in a reverse manner to each other.
  • valve member In suction operation, a pressure difference across the valve member regularly tends to reduce the sealing effect of the valve member.
  • the valve member should therefore be designed so that it has a sufficient sealing effect even under such a negative pressure difference by a force acting in the direction of the passage opening force is exerted on the sealing member via the pivoting part.
  • truck 14 On the back of a in Fig. 1 shown truck 14 is a slurry pump 15 is arranged in the form of a concrete pump.
  • the slurry pump 15 includes a prefill container 16 into which the concrete from a supply (not shown) is filled.
  • the sludge pump 15 sucks in the concrete from the prefill container and conveys the concrete through a connection pipe 17 which extends along a distribution boom 18.
  • the distribution boom 18 is mounted on a turntable 19 and can be folded over a plurality of joints, so that the end of the tube 17 can be brought into a spaced from the truck 14 position. In this position, the concrete is discharged from the connection pipe 17.
  • the slurry pump comprises according to Fig. 2 a first conveyor cylinder 21 and a second conveyor cylinder 22.
  • Each conveyor cylinder 21, 22 comprises a piston which sucks in a backward movement concrete from the Vorphilll essenceer 16 and conveys the concrete with a forward movement in the direction of an outlet 23 of the pump.
  • the first delivery cylinder 21 is associated with a first inlet valve 24.
  • the intake valve 24 is opened during the backward movement of the first delivery cylinder 21, so that the delivery cylinder 21 can suck in concrete from the Vorhell anyer 16.
  • the inlet valve 24 is closed during the forward movement of the first delivery cylinder 21, so that the concrete in Direction pump outlet 23 can be promoted.
  • the second delivery cylinder 22 is associated with a second inlet valve 25, the switching operations are matched to the backward and forward movements of the second delivery cylinder 22 accordingly.
  • the pump comprises a thick matter valve 26, which forms a common outlet valve for the first delivery cylinder 21 and the second delivery cylinder 22.
  • the thick matter valve 26 comprises a first passage opening 27 for concrete conveyed with the first delivery cylinder 21 and a second passage opening 28 for concrete conveyed with the second delivery cylinder 22.
  • a valve member 32 of the thick matter valve closes in a first switching state 29, the first passage opening 27 and leaves the second passage opening 28 open.
  • the thick matter valve 26 closes the second passage opening 28 and leaves the first passage opening 27 open.
  • both passage openings 27, 28 are open.
  • the two conveyor cylinders 21, 22 are driven so that the backward movement takes place within a shorter period of time than the forward movement.
  • the beginning of the forward movement of the one delivery cylinder overlaps with the end of the forward movement of the other delivery cylinder.
  • at least one of the delivery cylinders 21, 22 conveys concrete in the direction of the thick matter valve 26.
  • the valve member 32 of the thick matter valve 26 is actively switched by a drive between the various switching states. If the first delivery cylinder 21 in the forward movement and the second delivery cylinder 22 in the backward movement, then the thick matter valve 26 is in the switching state 30, in which only the material flow coming from the first delivery cylinder 21 can pass through the thick matter valve 26. If the second delivery cylinder 22 in the forward movement and the first delivery cylinder 21 in the backward movement, the sludge valve 26 is in the switching state 29, in which only the coming of the second delivery cylinder 20 material flow can pass through the sludge valve 26. In the overlapping phase, in which both conveying cylinders 21, 22 are in the forward movement, the thick matter valve 26 is in the intermediate state 31, in which the material flows from both delivery cylinders 21, 22 can pass through the thick matter valve 26.
  • Both conveyor cylinders 21, 22 have a basic speed for the forward movement.
  • the basic speed of the forward movement is used, while the respective other conveyor cylinder 21, 22 in the backward movement.
  • the basic speed of the material flow is defined, which is promoted in this phase towards the pump outlet 23.
  • the speed is reduced from the base speed so that the speeds of the two forward motions add up to the basic speed. In this way, a constant flow of material towards the pump outlet 23 is maintained even during the overlapping phase.
  • the Fig. 3 shows the sludge pump according to the invention in a perspective view.
  • the inlet valve 25 is in the open state, so that the associated inlet opening 45 of the pump is continuous and that with the second delivery cylinder 22 thick material from the Vorhell matterer 16 (FIG. Fig. 1 ) can be sucked.
  • the first inlet valve 24 is in the closed Status. When the piston of the first delivery cylinder 21 is in forward motion, the material flow moves through the first passage 27 of the slurry valve 26 towards the pump outlet 23, see Fig. 4 ,
  • FIG. 5A the valve member 32 of the thick matter valve 26 is connected so that it closes the passage opening 27 of the first delivery cylinder 21 and that it leaves open the passage opening 28 of the second delivery cylinder 22.
  • the inlet valve 25 of the second delivery cylinder 22 is closed, see Fig. 5B ,
  • the second delivery cylinder 22 is in the forward movement and conveys concrete through the passage opening 28 in the interior of the thick matter valve 26 and the pump outlet 23.
  • the inlet valve 24 of the first delivery cylinder 21 is opened so that the first delivery cylinder 21 can suck in concrete from the prefill container 16 with a backward movement through the inlet port 44 of the pump.
  • the backward movement of the first delivery cylinder 21 ends earlier than the forward movement of the second delivery cylinder 22 Fig. 6 the state is shown in which the forward movement of the first delivery cylinder 21 begins and the forward movement of the second delivery cylinder 22 is just before the end. Both inlet valves 24, 25 are closed.
  • the switching of the thick matter valve 26 in the intermediate state 31 begins after the first delivery cylinder 21 has already built up pressure in front of the passage opening 27, so that above the valve member 32 only a slight pressure difference is applied.
  • the thick matter valve 26 in the intermediate state 31 in which the valve member 32 leaves free both the first passage opening 27 and the second passage opening 28.
  • the speed of the forward movement is reduced, so that the delivery cylinder 21, 22 now jointly promote the amount of material that has previously promoted the second delivery cylinder 22 alone.
  • the intake valve 25 is opened, see Fig. 7 .
  • the second delivery cylinder 22 may already perform a first backward movement before opening the inlet valve 25.
  • the inlet valve 25 is opened, the second delivery cylinder 22 sucks concrete from the prefill container 16 with a backward movement through the inlet port 45 of the pump.
  • the first delivery cylinder 21 moves forward at its basic speed, so that the flow of material to the pump outlet 23 remains unchanged.
  • the valve member 32 of the thick matter valve 26 comprises according to Fig. 9 a pivoting part 34 and a sealing part 35.
  • the pivoting part 34 comprises two sections of a shaft 33, via which the pivoting part is rotatably mounted relative to a pivot axis 36.
  • connection structure 48 is formed between the shaft 33 and the sealing part 35. Via the connecting structure 48, the radial distance between the sealing part 35 and the shaft 33 can be changed.
  • the connecting structure 48 is rigid with respect to torques.
  • the sealing part 35 performs a pivoting movement by the same angle.
  • the underside of the sealing part 35 forms a sealing surface 38 in the form of a concentric with the pivot axis 36 aligned cylinder segment.
  • the housing of the thick matter valve 26 has a matching mating surface, which also has the shape of a cylinder segment. In the mating surface, the passage openings 27, 28 of the thick matter valve 26 are formed.
  • the sealing surface 38 of the valve member 32 cooperates with the counter surface of the valve housing and can depending on the switching state either the passage opening 27 or the passage opening 28 seal.
  • Fig. 10 is a state of the thick matter valve shown, in which a higher pressure is applied in the interior of the thick matter valve than in front of the passage opening 27, which is closed with the sealing part 35.
  • the valve member 32 has a sealing surface 38 opposite outer surface 43, on which the pressure of the material in the sludge 26 material acts in the radial direction. The pressure difference from the outside helps to enhance the sealing effect between the valve member 32 and the valve housing.
  • the valve member 32 also has two symmetrically arranged outer surfaces 44, 45. An acting on the outer surfaces 44, 45 pressure of the material also has a component in the radial direction, so that the outer surfaces 44, 45 contribute to enhance the sealing effect.
  • the pivot member 34 comprises a pin 50 which engages in a matching recess of the sealing part 35.
  • a sliding guide is formed, along which the sealing member 35 can move in the radial direction relative to the shaft 33. Compared to forces in other directions, the sliding guide is rigid.
  • a plate 37 is arranged made of an elastic material.
  • the plate 37 is part of the connecting structure between the pivot member 34 and the sealing member 35. By pressure in the radial direction, the plate 37 can be elastically compressed, whereby the sealing member 35 is approximated along the sliding guide to the pivot member 34.
  • the thick matter valve 26 according to the invention is set up in the delivery state such that the plate 37 is elastically compressed and consequently the sealing part 35 bears against the valve housing under an elastic pressure which the plate 37 exerts in the radial direction. If there is wear of the valve member 32 or the valve housing during operation of the pump, it can be compensated automatically by expansion of the elastic plate 37. In the suction operation is ensured by the plate 37 that a sufficient contact pressure sealing member 35 and the valve housing.
  • valve member 32 is also designed so that between two stub shafts 33 a clearance is included, so that the material flow can move directly from the passage openings 27, 28 in the direction of the pump outlet 23.
  • the pivoting part 34 comprises two legs 51, 52, which extend in the radial direction and which enclose the space between them. In the radial direction, the free space extends over more than 50% of the distance between the pivot axis 36 and the sealing surface 38.
  • connection structure is analogous to Fig. 11 designed with an elastic plate 37 and an in Fig. 12 invisible sliding guide.
  • Fig. 13 an alternative embodiment of a valve member 32 according to the invention is shown.
  • the sealing part 35 extends around the pivoting part 34, so that a portion of the pivoting part 34 is received in the interior of the sealing part.
  • the pivot member 34 in the interior of the sealing member 35 has a rectangular cross-section.
  • the sealing member 35 has a matching to the rectangular cross-section slot in which above and below the pivot member 34 elastic members 37 are arranged so that the sealing member 35 can move in the radial direction relative to the pivot member 34, while a relative rotational movement between the sealing member 35th and the pivoting part 34 is excluded.
  • the pivot member 34 includes a lever 39 to which a drive can engage to switch the valve member 32 between the various switching states.
  • the valve member 32 is dimensioned so that it with its two axially facing end faces directly to the housing 46 of the thick matter valve 26 is present.
  • the end faces of the valve member are formed as scratches 55. The scratches 55 push in a switching operation of the valve member 32, the thick matter along the end face of the housing to the side.
  • the side surfaces 57 of the valve member are designed as guide surfaces. Along the baffles, the flow of material is directed towards the exit port of the thick matter valve. At its upper side, the valve member 32 is provided with a recess 56, through which the movement of the material flow in the direction of the outlet opening is facilitated.

Abstract

Die Erfindung betrifft ein Dickstoffventil mit einer ersten Durchtrittsöffnung (27), mit einer zweiten Durchtrittsöffnung (28) und mit einem den beiden Durchtrittsöffnungen (27, 28) zugeordneten Ventilglied (32). Das Ventilglied (32) ist bezogen auf eine Schwenkachse (36) schwenkbar gelagert, wobei das Ventilglied (32) eine konzentrisch zu der Schwenkachse (36) gewölbte Dichtfläche (38) aufweist. Das Ventilglied (32) gibt in einem ersten Zustand (30) die erste Durchtrittsöffnung (27) frei und verschließt die zweite Durchtrittsöffnung (28). Das Ventilglied (32) gibt in einem zweiten Zustand (29) die zweite Durchtrittsöffnung (28) hin frei und verschließt die erste Durchtrittsöffnung (27). Das erfindungsgemäße Dickstoffventil ist einfach aufgebaut und kann zum Erzeugen eines kontinuierlichen Materialstroms in Richtung eines Auslasses (23) einer Dickstoffpumpe verwendet werden.

Figure imgaf001
Figure imgaf002
The invention relates to a thick matter valve having a first passage opening (27), a second passage opening (28) and a valve member (32) assigned to the two passage openings (27, 28). The valve member (32) is pivotally mounted relative to a pivot axis (36), wherein the valve member (32) has a concentric with the pivot axis (36) curved sealing surface (38). The valve member (32) releases the first passage opening (27) in a first state (30) and closes the second passage opening (28). The valve member (32) releases the second passage opening (28) in a second state (29) and closes the first passage opening (27). The thick matter valve according to the invention has a simple construction and can be used to generate a continuous stream of material in the direction of an outlet (23) of a slurry pump.
Figure imgaf001
Figure imgaf002

Description

Die Erfindung betrifft ein Dickstoffventil mit einer ersten Durchtrittsöffnung, einer zweiten Durchtrittsöffnung und mit einem Ventilglied, das mit beiden Durchtrittsöffnungen zusammenwirkt.The invention relates to a thick matter valve having a first passage opening, a second passage opening and a valve member which cooperates with both passage openings.

Solche Ventile kommen beim Fördern von Dickstoffen, wie beispielsweise Frischbeton oder Mörtel zum Einsatz. Dabei gibt es einen ersten Förderzustand, in dem der Dickstoff durch die erste Durchtrittsöffnung hindurchtritt, und einen zweiten Förderzustand, in dem der Dickstoff durch die zweite Durchtrittsöffnung hindurchtritt. Das Dickstoffventil dient dazu, die für den jeweiligen Förderzustand passende Durchtrittsöffnung für den Dickstoff freizugeben.Such valves are used for conveying thick materials, such as fresh concrete or mortar. There is a first conveying state, in which the thick matter passes through the first passage opening, and a second conveying state, in which the thick matter passes through the second passage opening. The thick matter valve serves to release the appropriate passage for the respective passage passage for the thick matter.

Dickstoffventile, bei denen ein Ventilglied zwei Durchtrittsöffnungen zugeordnet ist, sind bekannt, siehe DE 10 2013 215 990 A1 , US 8,827,657 , DE 195 93 986 A1 , DE 10 2005 008 938 A1 . Das Ventilglied hat die Form eines S-förmigen Rohrabschnitts, dessen eines Ende wahlweise mit der ersten Durchtrittsöffnung oder der zweiten Durchtrittsöffnung gekoppelt werden kann. Dies ist mechanisch aufwändig.Dickstoffventile, in which a valve member is associated with two passage openings are known, see DE 10 2013 215 990 A1 . US 8,827,657 . DE 195 93 986 A1 . DE 10 2005 008 938 A1 , The valve member has the form of an S-shaped pipe section, one end of which can be selectively coupled to the first passage opening or the second passage opening. This is mechanically complicated.

Der Erfindung liegt die Aufgabe zugrunde, ein Dickstoffventil vorzustellen, das einfacher aufgebaut ist. Ausgehend vom genannten Stand der Technik wird die Aufgabe gelöst mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausführungsformen sind in den Unteransprüchen angegeben.The invention has for its object to introduce a thick matter valve, which is simpler. Based on the cited prior art, the object is achieved with the features of claim 1. Advantageous embodiments are specified in the subclaims.

Bei dem erfindungsgemäßen Dickstoffventil ist das den beiden Durchtrittsöffnungen zugeordnete Ventilglied bezogen auf eine Schwenkachse schwenkbar gelagert und hat eine konzentrisch zu der Schwenkachse gewölbte Dichtfläche. In einem ersten Zustand gibt das Ventilglied die erste Durchtrittsöffnung frei und verschließt die zweite Durchtrittsöffnung. In einem zweiten Zustand gibt das Ventilglied die zweite Durchtrittsöffnung frei und verschließt die erste Durchtrittsöffnung.In the thick matter valve according to the invention the valve member associated with the two passage openings is pivotally mounted relative to a pivot axis and has a concentric with the pivot axis curved sealing surface. In a first state, the valve member releases the first passage opening and closes the second passage opening. In a second state, the valve member releases the second passage opening and closes the first passage opening.

Durch die erfindungsgemäße Gestaltung gibt es eine einfache räumliche Zuordnung zwischen den Durchtrittsöffnungen und der Schwenkachse des Ventilglieds, wodurch eine konstruktiv einfache Gestaltung des Dickstoffventils möglich wird.Due to the design according to the invention, there is a simple spatial association between the passage openings and the pivot axis of the valve member, whereby a structurally simple design of the thick matter valve is possible.

Dickstoff ist ein Oberbegriff für schwer förderbare Medien. Bei dem Dickstoff kann es sich beispielsweise um einen Stoff mit grobkörnigen Bestandteilen, einen Stoff mit aggressiven Bestandteilen oder Ähnliches handeln. Der Dickstoff kann auch ein Schüttgut sein. In einer Ausführungsform ist der Dickstoff Frischbeton. Frischbeton enthält Körner bis zu einer Größe von mehr als 30 mm, bindet ab, bildet Ablagerungen in Toträumen und ist aus diesen Gründen schwierig zu fördern.Thick cloth is a generic term for media that are difficult to convey. The thick matter may be, for example, a substance with coarse-grained constituents, a substance with aggressive constituents or the like. The thick matter can also be a bulk material. In one embodiment, the thick stock is fresh concrete. Fresh concrete contains grains up to a size of more than 30 mm, binds, forms deposits in dead spaces and is therefore difficult to convey.

Das Ventilglied kann in einem Innenraum des Dickstoffventils angeordnet sein. Das erfindungsgemäße Dickstoffventil kann so gestaltet sein, dass der Dickstoff durch die Durchtrittsöffnungen in den Innenraum des Dickstoffventils eintritt. Das Dickstoffventil kann zusätzlich eine Ausgangsöffnung umfassen durch die der eingetretene Dickstoff das Ventil wieder verlässt. An die Ausgangsöffnung kann ein Rohr angeschlossen sein, durch das der weitere Transport des Dickstoffs erfolgt. Der Weg zwischen den Durchtrittsöffnungen und der Ausgangsöffnung kann so eingerichtet sein, dass er sich nicht durch das Ventilglied hindurch erstreckt.The valve member may be disposed in an interior of the slum valve. The thick matter valve according to the invention can be designed so that the thick material enters through the passage openings in the interior of the thick matter valve. The Dickstoffventil may additionally include an output port through which the thick matter entered leaves the valve again. To the output port, a pipe may be connected, through which the further transport of the thick matter takes place. The path between the passage openings and the outlet opening may be arranged so that it does not extend through the valve member.

Die erste und die zweite Durchtrittsöffnung können jeweils eine Dichtfläche aufweisen, die dazu ausgelegt ist, mit der Dichtfläche des Ventilglieds zusammenzuwirken. Bei der Dichtfläche kann es sich beispielsweise um eine Innenfläche eines Gehäuses des Dickstoffventils handeln, die sich rund um die Durchtrittsöffnung herum erstreckt. Die Dichtflächen der Durchtrittsöffnungen können eine zu der Schwenkachse des Ventilglieds konzentrische Wölbung aufweisen. Durch die konzentrische Wölbung der zusammenwirkenden Dichtflächen kann das Ventilglied um die Schwenkachse, die der Achse der Wölbung entspricht, verdreht werden. Dadurch wird es möglich, dass eine der Öffnungen frei durchströmbar ist, während andererseits die Dichtfläche des Ventilglieds dichtend mit der Dichtfläche der anderen Durchtrittsöffnung zusammenwirkt. Der Begriff Dichten ist mit Bezug auf das Anwendungsgebiet zu verstehen, in dem eine hundertprozentige Dichtheit nicht gefordert ist.The first and the second passage opening may each have a sealing surface which is designed to cooperate with the sealing surface of the valve member. The sealing surface can be, for example, an inner surface of a housing of the thick matter valve which extends around the passage opening. The sealing surfaces of the passage openings may have a curvature concentric with the pivot axis of the valve member. Due to the concentric curvature of the cooperating sealing surfaces, the valve member can be rotated about the pivot axis, which corresponds to the axis of the curvature. This makes it possible that one of the openings is freely flowed through, while on the other hand, the sealing surface of the valve member cooperating sealingly with the sealing surface of the other passage opening. The term densities is to be understood with reference to the field of application in which 100% tightness is not required.

In einer Ausführungsform entspricht die konzentrische Wölbung einem Segment eines Zylindermantels, wobei die Zylinderachse gleich der Schwenkachse ist. Bei dieser Ausführungsform ist der radiale Abstand zwischen der Dichtfläche des Ventilglieds und der Schwenkachse über die Länge der Schwenkachse konstant.In one embodiment, the concentric curvature corresponds to a segment of a cylinder jacket, wherein the cylinder axis is equal to the pivot axis. In this embodiment, the radial distance between the sealing surface of the valve member and the pivot axis over the length of the pivot axis is constant.

Umfasst sind auch Ausführungsformen, bei denen der radiale Abstand längs der Schwenkachse variiert. In jedem Fall kann die Wölbung in Umfangsrichtung einem Kreissegment entsprechen.Also included are embodiments in which the radial distance varies along the pivot axis. In any case, the curvature in the circumferential direction may correspond to a circle segment.

Zwischen der ersten Durchtrittsöffnung und der zweiten Durchtrittsöffnung kann eine Zwischenfläche angeordnet sein, die ebenfalls eine zu der Schwenkachse konzentrische Wölbung aufweist. Dadurch kann eine durchgehende zu der Schwenkachse konzentrische Kontur geschaffen werden, die sich von der ersten Durchtrittsöffnung über die Zwischenfläche bis zu der zweiten Durchtrittsöffnung erstreckt.Between the first passage opening and the second passage opening, an intermediate surface may be arranged, which also has a curvature concentric with the pivot axis. As a result, a continuous contour concentric with the pivot axis can be created, which extends from the first passage opening via the intermediate surface to the second passage opening.

Neben den genannten Schaltzuständen, in denen das Ventilglied die erste bzw. die zweite Durchtrittsöffnung verschließt, kann das Dickstoffventil einen dritten Schaltzustand (Zwischenzustand) umfassen, in dem sowohl die erste Durchtrittsöffnung als auch die zweite Durchtrittsöffnung freigegeben sind. In dem Zwischenzustand kann das Ventilglied zwischen der ersten Durchtrittsöffnung und der zweiten Durchtrittsöffnung angeordnet sein. Der Abstand zwischen den beiden Durchtrittsöffnungen kann so groß sein, dass beide Durchtrittsöffnungen vollständig freigegeben sind. Dies hat den Vorteil, dass die Kanten der Dichtfläche nicht dem Materialstrom ausgesetzt sind, der sich durch die Öffnungen hindurch erstreckt. Möglich ist auch, dass eine oder beide Durchtrittsöffnungen noch teilweise von dem Ventilglied überdeckt sind.In addition to the aforementioned switching states in which the valve member closes the first or the second passage opening, the thick matter valve may include a third switching state (intermediate state) in which both the first passage opening and the second passage opening are released. In the intermediate state, the valve member may be arranged between the first passage opening and the second passage opening. The distance between the two passage openings can be so large that both passage openings are completely released. This has the advantage that the edges of the sealing surface are not exposed to the flow of material extending through the openings. It is also possible that one or both passage openings are still partially covered by the valve member.

Das Ventilglied kann ein Dichtteil und ein Schwenkteil umfassen, wobei das Schwenkteil in der Schwenkachse drehbar gelagert ist. An dem Schwenkteil kann ein motorischer Antrieb angreifen, um die Schaltvorgänge zwischen den verschiedenen Zuständen des Dickstoffventils zu bewirken.The valve member may comprise a sealing part and a pivoting part, wherein the pivoting part is rotatably mounted in the pivot axis. A motor drive can act on the pivoting part in order to effect the switching operations between the various states of the high-density material valve.

Das Ventilglied kann eine Verbindungsstruktur umfassen, die eine Verbindung zwischen dem Dichtteil und dem Schwenkteil herstellt. Die Verbindungsstruktur kann so gestaltet sein, dass sie starr ist gegenüber Drehmomenten, die relativ zu der Schwenkachse wirken. Starr in diesem Sinne bedeutet, dass bei einer Drehung des Schwenkteils relativ zu der Schwenkachse auch das Dichtteil die entsprechende Schwenkbewegung vollzieht.The valve member may include a connecting structure that establishes a connection between the sealing part and the pivoting part. The connection structure may be configured to be rigid with respect to torques that are relative to the pivot axis. Rigid in this sense means that upon rotation of the pivoting member relative to the pivot axis and the sealing member performs the corresponding pivotal movement.

Bezogen auf die Radialrichtung kann die Verbindungsstruktur eine Bewegung des Dichtteils relativ zu dem Schwenkteil zulassen. Durch eine solche Relativbewegung kann der radiale Abstand zwischen der Dichtfläche und der Schwenkachse so angepasst werden, dass sich die gewünschte Dichtwirkung zwischen dem Ventilglied und der Durchtrittsöffnung einstellt.Relative to the radial direction, the connecting structure may allow movement of the sealing part relative to the pivoting part. By such a relative movement of the radial distance between the sealing surface and the pivot axis can be adjusted so that adjusts the desired sealing effect between the valve member and the passage opening.

Die Verbindungsstruktur kann ein zwischen dem Dichtteil und dem Schwenkteil angeordnetes elastisches Element umfassen. Im Anfangszustand des Dickstoffventils kann das elastische Element komprimiert sein. Kommt es im Laufe des Betriebs zu einem Verschleiß zwischen den Dichtflächen, so dehnt sich das elastische Element aus. Der Verschleiß wird also automatisch ausgeglichen.The connecting structure may comprise an elastic element arranged between the sealing part and the pivoting part. In the initial state of the thick matter valve, the elastic element may be compressed. If wear occurs between the sealing surfaces during operation, the elastic element expands. The wear is thus compensated automatically.

Zusätzlich oder alternativ dazu kann das erfindungsgemäße Ventilglied einen Antrieb umfassen, um das Dichtteil in Radialrichtung relativ zu dem Schwenkteil zu bewegen. Der Antrieb kann genutzt werden, um die Position des Dichtteils zu dem Schwenkteil im Betrieb anzupassen. Möglich ist auch, den Antrieb zu nutzen, um die Federspannung des elastischen Elements zu justieren. Der Antrieb kann beispielsweise ein hydraulischer Antrieb oder ein mechanischer Antrieb sein.Additionally or alternatively, the valve member of the invention may include a drive to move the sealing member in the radial direction relative to the pivoting member. The drive can be used to adjust the position of the sealing part to the pivoting part in operation. It is also possible to use the drive to adjust the spring tension of the elastic element. The drive may be, for example, a hydraulic drive or a mechanical drive.

In einer Variante umfasst das Ventilglied eine starre Verbindung zwischen der Dichtfläche und der schwenkbar gelagerten Welle bzw. den schwenkbar gelagerten Wellenstummeln. Eine radiale Beweglichkeit der Dichtfläche relativ zu dem Ventilgehäuse kann daraus resultieren, dass die Welle bzw. die Wellenstummel elastisch gegenüber dem Ventilgehäuse gelagert sind. Beispielsweise können eines oder mehrere elastische Elemente vorgesehen sein, die sich um die Welle bzw. die Wellenstummel herum erstrecken. Diese Ausführungsform hat den Vorteil, dass die elastischen Elemente nicht durch den Dickstoffstrom beeinträchtigt werden.In a variant, the valve member comprises a rigid connection between the sealing surface and the pivotably mounted shaft or the pivotally mounted stub shafts. A radial mobility of the sealing surface relative to the valve housing may result from the fact that the shaft or the stub shafts are mounted elastically with respect to the valve housing. For example, one or more elastic elements may be provided that extend around the shaft or stub shafts. This embodiment has the advantage that the elastic elements are not affected by the thick material flow.

Das Ventilglied kann in einem Gehäuse des erfindungsgemäßen Dickstoffventils angeordnet sein. Das Ventilglied kann benachbart zu einer Stirnwand des Gehäuses angeordnet sein, wobei die Stirnachse rechtwinklig zu der Schwenkachse ausgerichtet ist. Die Schwenkbewegung des Ventilglieds verläuft dann parallel zu der Stirnwand. Das Ventilglied kann von der Stirnwand beabstandet sein, so dass auch die grobkörnigen Bestandteile des Dickstoffs zwischen dem Ventilglied und der Stirnwand Platz haben. Damit wird die Betätigung des Ventilglieds erleichtert.The valve member may be arranged in a housing of the high-density material valve according to the invention. The valve member may be disposed adjacent to an end wall of the housing, wherein the end axis is aligned perpendicular to the pivot axis. The pivoting movement of the valve member then runs parallel to the end wall. The valve member may be spaced from the end wall, so that the coarse-grained constituents of the thick matter space between the valve member and the end wall have space. This facilitates the actuation of the valve member.

In einer alternativen Ausführungsform ist der Abstand zwischen dem Ventilglied und der Stirnwand kleiner als die grobkörnigen Bestandteile des Dickstoffs. Das Ventilglied kann einen Kratzer umfassen, der beim Betätigen des Ventilglieds den Dickstoff entlang der Stirnwand zur Seite schiebt, sodass keine Körner zwischen dem Ventilglied und der Stirnwand eingeklemmt werden können. Der Kratzer kann auf der Stirnwand aufliegen oder einen geringfügigen Abstand zu der Stirnwand haben.In an alternative embodiment, the distance between the valve member and the end wall is smaller than the coarse-grained constituents of the thick material. The valve member may include a scratch which pushes the thick matter along the end wall to the side during actuation of the valve member, so that no grains between the valve member and the end wall can be clamped. The scratch may rest on the bulkhead or be slightly away from the bulkhead.

Das Gehäuse kann eine zweite Stirnwand aufweisen, sodass das Ventilglied zwischen der ersten und der zweiten Stirnwand angeordnet ist. Das Zusammenwirken zwischen dem Ventilglied und der zweiten Stirnwand kann entsprechend gestaltet sein.The housing may have a second end wall, so that the valve member between the first and the second end wall is arranged. The interaction between the valve member and the second end wall may be designed accordingly.

Eine Welle des Ventilglieds kann in dem Gehäuse des Dickstoffventils gelagert sein. Dabei können zwei Lager so angeordnet sein, dass sie das Ventilglied zwischen sich einschließen. Zwischen den Lagern kann sich eine Welle erstrecken, die ein Bestandteil des Schwenkteils des Ventilglieds ist.A shaft of the valve member may be mounted in the housing of the thick matter valve. In this case, two bearings may be arranged so that they enclose the valve member between them. Between the bearings, a shaft may extend, which is a part of the pivoting part of the valve member.

Das erfindungsgemäße Dickstoffventil kann so gestaltet sein, dass eine gerade Verbindungsstrecke zwischen einer Eingangsöffnung und der Ausgangsöffnung des Dickstoffventils die Schwenkachse schneidet. Erstreckt sich eine Welle des Ventilglieds durchgehend entlang der Schwenkachse, so muss der Materialstrom entlang einem gekrümmten Weg an der Welle vorbeigeführt werden.The thick matter valve according to the invention can be designed such that a straight connecting path between an inlet opening and the outlet opening of the thick matter valve intersects the pivot axis. If a shaft of the valve member extends continuously along the pivot axis, then the flow of material must be guided along a curved path past the shaft.

Um den Strömungswiderstand gering zu halten, kann das Ventilglied eine Leitfläche umfassen, mit der der Materialstrom an der Welle vorbei geleitet wird. Die Leitfläche kann an die Dichtfläche anschließen (bezogen auf die Bewegungsrichtung des Ventilglieds) und einen im Wesentlichen geraden Weg an dem Ventilglied und der Schwenkachse vorbei definieren. Die Leitfläche kann eine ebene Leitfläche sein, die insbesondere parallel zu der Schwenkachse ausgerichtet sein kann. An ihrem zu der Ausgangsöffnung benachbarten Ende kann die Leitfläche mit einer Ausnehmung versehen sein, um den Übergang des Materialstroms in die Ausgangsöffnung zu erleichtern. Das Ventilglied kann zwei solcher Leitflächen umfassen, wobei die Dichtfläche zwischen den Leitflächen eingeschlossen ist. Je nach Schaltzustand des Ventils kann der Materialstrom entweder an der einen und/oder der anderen Leitfläche entlang geleitet werden.In order to keep the flow resistance low, the valve member may include a guide surface, with which the flow of material is conducted past the shaft. The baffle may connect to the sealing surface (relative to the direction of movement of the valve member) and define a substantially straight path past the valve member and past the pivot axis. The guide surface may be a planar guide surface, which may be aligned in particular parallel to the pivot axis. At its end adjacent to the exit opening, the guide surface may be provided with a recess to facilitate the passage of material flow into the exit opening. The valve member may comprise two such baffles, the sealing surface being enclosed between the baffles. Depending on the switching state of the valve, the material flow can either be passed along the one and / or the other guide surface along.

Eine solche Leitfläche kann insbesondere dann von Vorteil sein, wenn das Ventilglied so gestaltet ist, dass die Schwenkachse im Körper des Ventilglieds eingeschlossen ist. Das elastische Element des Ventilglieds kann sich um die Welle des Ventilglieds herum erstrecken oder zwischen der Schwenkachse und der Dichtfläche angeordnet sein.Such a guide surface may be particularly advantageous if the valve member is designed so that the pivot axis is enclosed in the body of the valve member. The elastic member of the valve member may extend around the shaft of the valve member or be disposed between the pivot axis and the sealing surface.

Um den Strömungswiderstand gering zu halten, kann die Welle zwei Wellenstummel umfassen, die in Lagern des Ventilgehäuses geführt sind. Die Verbindung zwischen den beiden Wellenstummeln kann über eine Verbindungsstruktur hergestellt werden, deren Abstand zu der Dichtfläche geringer ist als der Abstand zwischen der Schwenkachse und der Dichtfläche. Indem die Verbindungsstruktur sich nicht entlang der Schwenkachse erstreckt, sondern näher an der Dichtfläche angeordnet ist, bleibt ein Freiraum, der für den Materialstrom auf seinem Weg zu der Ausgangsöffnung zur Verfügung steht. Insbesondere kann die Verbindungsstruktur so gestaltet sein, dass eine Gerade, die sich vom Mittelpunkt der nicht verschlossenen Durchtrittsöffnung zum Mittelpunkt der Austrittsöffnung erstreckt das Ventilglied nicht schneidet.In order to keep the flow resistance low, the shaft may comprise two stub shafts, which are guided in bearings of the valve housing. The connection between the two stub shafts can be produced via a connecting structure whose distance from the sealing surface is less than the distance between the pivot axis and the sealing surface. By the connecting structure does not extend along the pivot axis, but is arranged closer to the sealing surface, leaving a space which is available for the flow of material on its way to the outlet opening. In particular, the connection structure may be designed so that a straight line extending from the center of the non-closed passage opening to the center of the outlet opening does not intersect the valve member.

Für die Verbindung zwischen der Welle und dem Dichtteil kann die Verbindungsstruktur einen Schenkel umfassen, der sich zu dem Dichtteil erstreckt. Insbesondere kann der Schenkel in radialer Richtung ausgerichtet sein. Bezogen auf das Dichtteil kann der Schenkel mittig angeordnet sein. Wenn der Schenkel einen Abstand zu den Stirnwänden des Ventilgehäuses hat, so kann er gut von dem Dickstoff umströmt werden.For the connection between the shaft and the sealing part, the connecting structure may comprise a leg which extends to the sealing part. In particular, the leg can be aligned in the radial direction. Based on the sealing part of the leg can be arranged centrally. If the leg has a distance to the end walls of the valve housing, it can be well flowed around by the thick material.

Möglich ist auch, dass die Verbindungsstruktur zwei Schenkel umfasst, die sich in Richtung Dichtteil erstrecken. Die Schenkel können parallel zueinander sein und in radialer Richtung ausgerichtet sein. Die Schenkel können so angeordnet sein, dass ein zwischen der Schwenkachse und dem Zentrum des Dichtteils angeordneter Bereich freigehalten wird, sodass er von dem Dickstoff durchströmt werden kann. Bezogen auf den Abstand zwischen der Schwenkachse und der Dichtfläche des Ventilglieds kann der freigehaltene Bereich sich über wenigstens 10 %, vorzugsweise wenigstens 30 %, weiter vorzugsweise wenigstens 50 % erstrecken.It is also possible that the connecting structure comprises two legs which extend in the direction of the sealing part. The legs may be parallel to each other and aligned in the radial direction. The legs may be arranged so that an area arranged between the pivot axis and the center of the sealing part is kept free, so that it can be flowed through by the thick material. Based on the distance between the pivot axis and the sealing surface of the valve member, the retained region may extend over at least 10%, preferably at least 30%, more preferably at least 50%.

Die beiden Schenkel können einen Abstand zu den Stirnwänden des Gehäuses aufweisen. Alternativ können die Schenkel als Kratzer ausgebildet sein, sodass der Dickstoff bei einer Betätigung des Ventilglieds entlang der Stirnfläche beiseite geschoben wird.The two legs may have a distance to the end walls of the housing. Alternatively, the legs may be formed as scratches, so that the thick matter is pushed aside on actuation of the valve member along the end face.

Wird das erfindungsgemäße Dickstoffventil so verwendet, dass der Materialstrom durch eine der Durchtrittsöffnungen in den Innenraum des Ventils eintritt, sich an dem Ventilglied vorbei erstreckt und das Ventil durch eine Ausgangsöffnung wieder verlässt (Pumpbetrieb), so liegt regelmäßig eine Druckdifferenz zwischen dem Innenraum des Dickstoffventils und einem Außenraum an, der sich an die mit dem Ventilglied verschlossene Durchtrittsöffnung anschließt. Das Dickstoffventil kann so gestaltet sein, dass durch die Druckdifferenz eine Kraft auf das Ventilglied ausgeübt wird, die die Dichtwirkung verstärkt.If the thick matter valve according to the invention is used in such a way that the material flow enters the interior of the valve through one of the passage openings, extends past the valve member and leaves the valve again through an outlet opening (pumping operation), there is regularly a pressure difference between the interior of the thick matter valve and an outer space, which adjoins the closed with the valve member passage opening. The thick matter valve may be designed so that a force is exerted on the valve member by the pressure difference, which enhances the sealing effect.

Ist der Druck im Innenraum höher als im Außenraum, so kann das Ventilglied in radialer Richtung gegen die Dichtfläche der Durchtrittsöffnung gedrückt werden. Die Richtungsangabe radial bezieht sich auf die Schwenkachse des Ventilglieds. Das Ventilglied kann zu diesem Zweck eine Außenfläche umfassen, durch die ein in dem Innenraum anliegender Druck in eine in radialer Richtung wirkende Kraft umgesetzt wird. Außenfläche bezeichnet einen Bereich des Ventilglieds, der mit dem Dickstoff im Innenraum des Dickstoffventils in Berührung steht.If the pressure in the interior is higher than in the outer space, then the valve member can be pressed in the radial direction against the sealing surface of the passage opening. The direction indication radially refers to the pivot axis of the valve member. The valve member may for this purpose comprise an outer surface, by which a pressure applied in the interior pressure is converted into a force acting in the radial direction. Outer surface refers to a portion of the valve member which is in contact with the thick matter in the interior of the slum valve.

Insbesondere kann das Ventilglied eine Außenfläche aufweisen, die der Dichtfläche gegenüberliegt. Die Außenfläche kann so ausgerichtet sein, dass sie die Radialrichtung senkrecht schneidet. Ein auf die Außenfläche wirkender Druck ist dann so ausgerichtet, dass er direkt die Dichtwirkung verstärkt.In particular, the valve member may have an outer surface which faces the sealing surface. The outer surface may be oriented to intersect the radial direction perpendicularly. A pressure acting on the outer surface is then aligned so that it directly enhances the sealing effect.

Möglich ist auch, dass das Ventilglied eine bezogen auf die Radialrichtung geneigte Außenfläche aufweist, sodass lediglich ein Anteil der Druckkraft in Richtung der Dichtfläche wirkt. Das Ventilglied kann auch zwei gegensinnig orientierte geneigte Außenflächen aufweisen. Gegensinnig bedeutet, dass die Außenflächen so ausgerichtet sind, dass die in radialer Richtung wirkenden Komponenten der Druckkraft sich addieren.It is also possible that the valve member has a relation to the radial direction inclined outer surface, so that only a portion of the compressive force acts in the direction of the sealing surface. The valve member may also have two oppositely oriented inclined outer surfaces. Opposing means that the outer surfaces are aligned so that the components acting in the radial direction of the compressive force add.

Wird das erfindungsgemäße Dickstoffventil so eingesetzt, dass der Materialstrom in umgekehrter Richtung fließt (Saugbetrieb), so kann die Druckdifferenz im Allgemeinen nicht genutzt werden, um die Dichtwirkung des Ventilglieds zu verstärken. Die Dichtwirkung resultiert dann in erster Linie aus der Kraft, die ausgehend von dem Schwenkteil auf das Dichtteil ausgeübt wird. Diese Kraft kann sich wie dargelegt entweder aus einer elastischen Vorspannung oder aus einem aktiven Antrieb ergeben.If the thick matter valve according to the invention is used in such a way that the material flow flows in the opposite direction (suction operation), the pressure difference can generally not be used in order to increase the sealing effect of the valve member. The sealing effect then results primarily from the force exerted on the sealing part, starting from the pivoting part. As stated, this force can result either from an elastic bias or from an active drive.

Die Erfindung betrifft außerdem eine mit einem solchen Dickstoffventil ausgestattete Pumpe. Das Dickstoffventil kann so angeordnet sein, dass in einem Pumpbetrieb das von dem Förderorgan der Pumpe in Bewegung versetzte Material durch die erste und/oder die zweite Öffnung in den Innenraum des Dickstoffventils eintritt.The invention also relates to a pump equipped with such a thick matter valve. The thick matter valve can do so be arranged such that in a pumping operation, the offset from the conveying member of the pump in motion material enters through the first and / or the second opening in the interior of the thick matter valve.

Die Pumpe kann einen ersten Förderzylinder und einen zweiten Förderzylinder umfassen. In jedem der Förderzylinder kann ein Kolben angeordnet sein, der im Pumpbetrieb mit einer Rückwärts-Bewegung Dickstoff in den Innenraum des Förderzylinders einsaugt und der mit einer Vorwärts-Bewegung den Dickstoff in Richtung der Durchtrittsöffnung des Dickstoffventils fördert.The pump may comprise a first delivery cylinder and a second delivery cylinder. In each of the delivery cylinder, a piston may be arranged, which sucks in pumping operation with a backward movement thick matter in the interior of the delivery cylinder and promotes the thick material in the direction of the passage opening of the high-density valve with a forward movement.

Die Förderströme der beiden Förderzylinder können vor dem Dickstoffventil getrennt sein und mit dem Dickstoffventil zu einem gemeinsamen Förderstrom vereinigt werden. Der Förderstrom von dem ersten Förderzylinder kann durch die erste Durchtrittsöffnung des Dickstoffventils in den Innenraum des Dickstoffventils eintreten. Der Förderstrom von dem zweiten Förderzylinder kann durch die zweite Durchtrittsöffnung des Dickstoffventils in den Innenraum des Dickstoffventils eintreten.The flow rates of the two delivery cylinders can be separated in front of the thick matter valve and combined with the thick matter valve to a common flow. The flow from the first delivery cylinder can enter through the first passage opening of the thick matter valve in the interior of the slum. The flow from the second delivery cylinder can enter through the second passage opening of the thick matter valve in the interior of the slum.

Die Kolben können so angesteuert sein, dass die Rückwärts-Bewegung innerhalb einer kürzeren Zeitspanne erfolgt als die Vorwärts-Bewegung. Der Beginn der Vorwärts-Bewegung des einen Kolbens kann sich überschneiden mit dem Ende der Vorwärts-Bewegung des anderen Kolbens. Es gibt dann eine Zeitspanne, in der beide Kolben parallel Material in Richtung des Dickstoffventils befördern.The pistons may be controlled so that the backward movement occurs within a shorter time than the forward movement. The beginning of the forward movement of one piston may overlap with the end of the forward movement of the other piston. There is then a period of time in which both pistons convey material in parallel in the direction of the thick matter valve.

Die Schaltstellungen des Dickstoffventils können mit der Bewegung der Kolben in den Förderzylindern abgestimmt sein. Befindet sich der Kolben des ersten Förderzylinders in der Vorwärts-Bewegung und der Kolben des zweiten Förderzylinders in der Rückwärts-Bewegung, so kann das Dickstoffventil in den ersten Zustand geschaltet sein, in dem die erste Durchtrittsöffnung frei ist und die zweite Durchtrittsöffnung verschlossen ist. Befindet sich der Kolben des zweiten Förderzylinders in der Vorwärts-Bewegung und der Kolben des ersten Förderzylinders in der Rückwärts-Bewegung, so kann das Dickstoffventil in den zweiten Zustand geschaltet sein, in dem die zweite Durchtrittsöffnung frei ist und die erste Durchtrittsöffnung verschlossen ist. In der Zwischenphase, in der sich die Kolben beider Förderzylinder in der Vorwärts-Bewegung befinden, kann das Dickstoffventil in einen Zustand geschaltet sein, in dem keine der Durchtrittsöffnungen verschlossen ist. Bevorzugt sind beide Durchtrittsöffnungen in diesem Zwischenzustand des Dickstoffventils frei.The switching positions of the thick matter valve can be coordinated with the movement of the pistons in the delivery cylinders. is If the piston of the first delivery cylinder in the forward movement and the piston of the second delivery cylinder in the backward movement, so the sludge valve can be switched to the first state in which the first passage opening is free and the second passage opening is closed. If the piston of the second delivery cylinder is in the forward movement and the piston of the first delivery cylinder is in the backward movement, then the thick matter valve can be switched to the second state, in which the second passage opening is free and the first passage opening is closed. In the intermediate phase, in which the pistons of both delivery cylinders are in the forward movement, the sludge valve can be switched to a state in which none of the passage openings is closed. Preferably, both passage openings are free in this intermediate state of the thick matter valve.

Befindet sich der Kolben des ersten Förderzylinders in der Rückwärts-Bewegung und der Kolben des zweiten Förderzylinders in der Vorwärts-Bewegung, so liegt eine Druckdifferenz über der ersten Durchtrittsöffnung des Dickstoffventils an. Der Druck im Innenraum des Dickstoffventils entspricht im Wesentlichen dem Druck, den der Kolben des zweiten Förderzylinders mit seiner Vorwärts-Bewegung auf das Material ausübt. Vor der ersten Durchtrittsöffnung liegt der Saugdruck des ersten Förderzylinders an, der wesentlich niedriger ist. Diese Druckdifferenz kann wie oben beschrieben genutzt werden, um die Dichtwirkung zwischen dem Ventilglied und der ersten Durchtrittsöffnung zu verstärken. Ist umgekehrt der Kolben des zweiten Förderzylinders in der Rückwärts-Bewegung und der Kolben des ersten Förderzylinders in der Vorwärts-Bewegung, so liegt die entsprechende Druckdifferenz über der ersten Öffnung des Dickstoffventils an.If the piston of the first delivery cylinder is in the backward movement and the piston of the second delivery cylinder is in the forward movement, then there is a pressure difference across the first passage of the thick matter valve. The pressure in the interior of the thick matter valve substantially corresponds to the pressure exerted by the piston of the second delivery cylinder with its forward movement on the material. Before the first passage opening, the suction pressure of the first delivery cylinder is located, which is much lower. This pressure difference can be used as described above to enhance the sealing effect between the valve member and the first passage opening. Conversely, when the piston of the second delivery cylinder in the backward movement and the piston of the first delivery cylinder in the forward movement, so is the corresponding pressure difference across the first opening of the slum valve on.

Für einen Schaltvorgang des Dickstoffventils ist eine über dem Ventilglied anliegende Druckdifferenz hinderlich. Das Dickstoffventil kann deswegen so eingerichtet sein, dass der Schaltvorgang dann stattfindet, wenn über dem Ventilglied eine Druckdifferenz anliegt, die gegenüber dieser Druckdifferenz vermindert ist. Dazu ist es von Vorteil, wenn der Schaltvorgang erst dann stattfindet, wenn die Rückwärtsbewegung des Kolbens abgeschlossen ist, dessen Durchtrittsöffnung mit dem Ventilglied verschlossen ist. Weiter von Vorteil kann es sein, dass der Schaltvorgang erst dann stattfindet, wenn der betreffende Kolben seine Vorwärts-Bewegung begonnen hat, sodass vor der betreffenden Durchtrittsöffnung bereits wieder ein Druck aufgebaut wurde.For a switching operation of the thick matter valve overlying the valve member pressure difference is a hindrance. The thick matter valve can therefore be set up so that the switching operation takes place when there is a pressure difference across the valve member which is reduced in relation to this pressure difference. For this purpose, it is advantageous if the switching operation takes place only when the rearward movement of the piston is completed, the passage opening is closed with the valve member. It may also be advantageous that the switching process takes place only when the piston in question has begun its forward movement, so that a pressure has already been built up again before the respective passage opening.

Das Dickstoffventil kann so eingerichtet sein, dass der Schaltvorgang abgeschlossen ist, bevor die Rückwärts-Bewegung des anderen Kolbens beginnt. Insbesondere kann das Dickstoffventil so eingerichtet sein, dass der Schaltvorgang abgeschlossen ist, bevor die Vorwärts-Bewegung des anderen Kolbens beendet ist. Der Schaltvorgang kann so gestaltet sein, dass das Ventilglied von einem ersten Schaltzustand, in dem eine der Durchtrittsöffnungen geschlossen ist und die andere Durchtrittsöffnung frei ist, über einen Zwischenzustand, in dem keine der Durchtrittsöffnungen geschlossen ist, in einen zweiten Schaltzustand bewegt wird, in dem die jeweils andere Durchtrittsöffnung geschlossen bzw. frei ist. Insbesondere kann die Pumpe so eingerichtet sein, dass die Schaltvorgänge des Ventilglieds nur dann vorgenommen werden, wenn die über dem Ventilglied anliegende Druckdifferenz klein ist.The thick matter valve may be arranged to complete the shift operation before the reverse movement of the other piston begins. In particular, the thick matter valve may be arranged so that the switching operation is completed before the forward movement of the other piston is completed. The switching operation can be designed so that the valve member is moved from a first switching state, in which one of the passage openings is closed and the other passage opening is free, via an intermediate state, in which none of the passage openings is closed, into a second switching state, in which the respective other passage opening is closed or free. In particular, the pump may be configured so that the switching operations of the valve member are only made when the pressure difference across the valve member is small.

Die vorstehenden Ausführungen beziehen sich auf den Pumpbetrieb der Pumpe. Die Pumpe kann auch in umgekehrter Richtung in einem Saugbetrieb betrieben werden. Der Saugbetrieb kann beispielsweise dazu dienen, das Dickstoffventil sowie eine daran anschließende Förderleitung zu reinigen oder um eine Verstopfung in diesem Bereich zu beseitigen. Das Zusammenspiel der Förderzylinder und des Dickstoffventils ist dann in umgekehrter Weise aufeinander abgestimmt.The above statements relate to the pumping operation of the pump. The pump can also be reversed be operated in a suction mode. The suction operation can serve, for example, to clean the thick matter valve and a subsequent delivery line or to eliminate clogging in this area. The interaction of the delivery cylinder and the thick matter valve is then matched in a reverse manner to each other.

Im Saugbetrieb hat eine über dem Ventilglied anliegende Druckdifferenz regelmäßig die Tendenz, die Dichtwirkung des Ventilglieds zu vermindern. Das Ventilglied sollte deswegen so gestaltet sein, dass es auch unter einer solchen negativen Druckdifferenz eine ausreichende Dichtwirkung aufweist, indem über das Schwenkteil eine in Richtung der Durchtrittsöffnung wirkende Kraft auf das Dichtteil ausgeübt wird.In suction operation, a pressure difference across the valve member regularly tends to reduce the sealing effect of the valve member. The valve member should therefore be designed so that it has a sufficient sealing effect even under such a negative pressure difference by a force acting in the direction of the passage opening force is exerted on the sealing member via the pivoting part.

Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen anhand vorteilhafter Ausführungsformen beispielhaft beschrieben. Es zeigen:

Fig. 1:
ein Fahrzeug mit einer Dickstoffpumpe, das mit einem erfindungsgemäßen Dickstoffventil ausgestattet ist;
Fig. 2:
ein Blockschaltbild einer mit einem erfindungsgemäßen Dickstoffventil ausgestatteten Dickstoffpumpe (in Hydrauliknotation);
Fig. 3:
eine perspektivische Darstellung einer Dickstoffpumpe mit einem erfindungsgemäßen Dickstoffventil;
Fig. 4:
eine Schnittdarstellung der Pumpe gemäß Fig. 3;
Figuren 5
bis 8: schematische Darstellungen verschiedener Zustände der Dickstoffpumpe gemäß Fig. 3;
Fig. 9:
eine schematische Darstellung eines erfindungsgemäßen Ventilglieds;
Fig. 10:
eine Darstellung der auf das Dichtteil des Ventilglieds wirkenden Drücke;
Fig. 11:
ein Ventilglied eines erfindungsgemäßen Dickstoffventils in teilweise geschnittener Darstellung;
Figuren 12 und 13:
Ventilglieder in alternativen Ausführungsformen der Erfindung; und
Fig. 14
eine Schnittdarstellung der Ausführungsform gemäß Fig. 13.
The invention will now be described by way of example with reference to the accompanying drawings, given by way of advantageous embodiments. Show it:
Fig. 1:
a vehicle with a sludge pump, which is equipped with a slender valve according to the invention;
Fig. 2:
a block diagram of an equipped with a thick matter valve according to the invention thick matter pump (in hydraulic notation);
3:
a perspective view of a sludge pump with a slender valve according to the invention;
4:
a sectional view of the pump according to Fig. 3 ;
Figures 5
to 8: schematic representations of various states of the sludge pump according to Fig. 3 ;
Fig. 9:
a schematic representation of a valve member according to the invention;
Fig. 10:
an illustration of the forces acting on the sealing part of the valve member pressures;
Fig. 11:
a valve member of a thick matter valve according to the invention in a partially sectioned representation;
FIGS. 12 and 13:
Valve members in alternative embodiments of the invention; and
Fig. 14
a sectional view of the embodiment according to Fig. 13 ,

Auf der Ladefläche eines in Fig. 1 gezeigten Lastwagens 14 ist eine Dickstoffpumpe 15 in Form einer Betonpumpe angeordnet. Die Dickstoffpumpe 15 umfasst einen Vorfüllbehälter 16, in den der Beton aus einem Vorrat (nicht dargestellt) eingefüllt wird. Die Dickstoffpumpe 15 saugt den Beton aus dem Vorfüllbehälter an und fördert den Beton durch ein Anschlussrohr 17, das sich entlang einem Verteilermast 18 erstreckt. Der Verteilermast 18 ist auf einem Drehkranz 19 gelagert und kann über mehrere Gelenke ausgeklappt werden, so dass das Ende des Rohrs 17 in eine von dem Lastwagen 14 beabstandete Position gebracht werden kann. In dieser Position wird der Beton aus dem Anschlussrohr 17 ausgebracht.On the back of a in Fig. 1 shown truck 14 is a slurry pump 15 is arranged in the form of a concrete pump. The slurry pump 15 includes a prefill container 16 into which the concrete from a supply (not shown) is filled. The sludge pump 15 sucks in the concrete from the prefill container and conveys the concrete through a connection pipe 17 which extends along a distribution boom 18. The distribution boom 18 is mounted on a turntable 19 and can be folded over a plurality of joints, so that the end of the tube 17 can be brought into a spaced from the truck 14 position. In this position, the concrete is discharged from the connection pipe 17.

Die Dickstoffpumpe umfasst gemäß Fig. 2 einen ersten Förderzylinder 21 und einen zweiten Förderzylinder 22. Jeder Förderzylinder 21, 22 umfasst einen Kolben, der mit einer Rückwärts-Bewegung Beton aus dem Vorfüllbehälter 16 ansaugt und der mit einer Vorwärts-Bewegung den Beton in Richtung eines Auslasses 23 der Pumpe fördert.The slurry pump comprises according to Fig. 2 a first conveyor cylinder 21 and a second conveyor cylinder 22. Each conveyor cylinder 21, 22 comprises a piston which sucks in a backward movement concrete from the Vorfüllbehälter 16 and conveys the concrete with a forward movement in the direction of an outlet 23 of the pump.

Dem ersten Förderzylinder 21 ist ein erstes Einlassventil 24 zugeordnet. Das Einlassventil 24 ist während der Rückwärts-Bewegung des ersten Förderzylinders 21 geöffnet, sodass der Förderzylinder 21 Beton aus dem Vorfüllbehälter 16 ansaugen kann. Das Einlassventil 24 ist während der Vorwärts-Bewegung des ersten Förderzylinders 21 geschlossen, sodass der Beton in Richtung Pumpenauslass 23 gefördert werden kann. Dem zweiten Förderzylinder 22 ist ein zweites Einlassventil 25 zugeordnet, dessen Schaltvorgänge entsprechend auf die Rückwärts- und Vorwärts-Bewegungen des zweiten Förderzylinders 22 abgestimmt sind.The first delivery cylinder 21 is associated with a first inlet valve 24. The intake valve 24 is opened during the backward movement of the first delivery cylinder 21, so that the delivery cylinder 21 can suck in concrete from the Vorfüllbehälter 16. The inlet valve 24 is closed during the forward movement of the first delivery cylinder 21, so that the concrete in Direction pump outlet 23 can be promoted. The second delivery cylinder 22 is associated with a second inlet valve 25, the switching operations are matched to the backward and forward movements of the second delivery cylinder 22 accordingly.

Die Pumpe umfasst ein Dickstoffventil 26, das ein gemeinsames Auslassventil für den ersten Förderzylinder 21 und den zweiten Förderzylinder 22 bildet. Das Dickstoffventil 26 umfasst eine erste Durchtrittsöffnung 27 für mit dem ersten Förderzylinder 21 geförderten Beton und eine zweite Durchtrittsöffnung 28 für mit dem zweiten Förderzylinder 22 geförderten Beton. Ein Ventilglied 32 des Dickstoffventils verschließt in einem ersten Schaltzustand 29 die erste Durchtrittsöffnung 27 und lässt die zweite Durchtrittsöffnung 28 offen. In einem zweiten Schaltzustand 30 verschließt das Dickstoffventil 26 die zweite Durchtrittsöffnung 28 und lässt die erste Durchtrittsöffnung 27 offen. In einem dritten Schaltzustand 31 (Zwischenzustand) sind beide Durchtrittsöffnungen 27, 28 offen.The pump comprises a thick matter valve 26, which forms a common outlet valve for the first delivery cylinder 21 and the second delivery cylinder 22. The thick matter valve 26 comprises a first passage opening 27 for concrete conveyed with the first delivery cylinder 21 and a second passage opening 28 for concrete conveyed with the second delivery cylinder 22. A valve member 32 of the thick matter valve closes in a first switching state 29, the first passage opening 27 and leaves the second passage opening 28 open. In a second switching state 30, the thick matter valve 26 closes the second passage opening 28 and leaves the first passage opening 27 open. In a third switching state 31 (intermediate state) both passage openings 27, 28 are open.

Die beiden Förderzylinder 21, 22 sind so angetrieben, dass die Rückwärts-Bewegung innerhalb einer kürzeren Zeitspanne erfolgt als die Vorwärts-Bewegung. Der Beginn der Vorwärts-Bewegung des einen Förderzylinders überschneidet sich mit dem Ende der Vorwärts-Bewegung des anderen Förderzylinders. Zu jedem Zeitpunkt wird also von mindestens einem der Förderzylinder 21, 22 Beton in Richtung des Dickstoffventils 26 gefördert.The two conveyor cylinders 21, 22 are driven so that the backward movement takes place within a shorter period of time than the forward movement. The beginning of the forward movement of the one delivery cylinder overlaps with the end of the forward movement of the other delivery cylinder. At any time, therefore, at least one of the delivery cylinders 21, 22 conveys concrete in the direction of the thick matter valve 26.

Das Ventilglied 32 des Dickstoffventils 26 wird über einen Antrieb aktiv zwischen den verschiedenen Schaltzuständen umgeschaltet. Ist der erste Förderzylinder 21 in der Vorwärts-Bewegung und der zweite Förderzylinder 22 in der Rückwärts-Bewegung, so ist das Dickstoffventil 26 in dem Schaltzustand 30, in dem nur der von dem ersten Förderzylinder 21 kommende Materialstrom durch das Dickstoffventil 26 hindurchtreten kann. Ist der zweite Förderzylinder 22 in der Vorwärts-Bewegung und der erste Förderzylinder 21 in der Rückwärts-Bewegung, so ist das Dickstoffventil 26 in dem Schaltzustand 29, in dem nur der von dem zweiten Förderzylinder 20 kommende Materialstrom durch das Dickstoffventil 26 hindurchtreten kann. In der Überschneidungsphase, in der beide Förderzylinder 21, 22 sich in der Vorwärts-Bewegung befinden, ist das Dickstoffventil 26 in dem Zwischenzustand 31, in dem die Materialströme von beiden Förderzylindern 21, 22 durch das Dickstoffventil 26 hindurchtreten können.The valve member 32 of the thick matter valve 26 is actively switched by a drive between the various switching states. If the first delivery cylinder 21 in the forward movement and the second delivery cylinder 22 in the backward movement, then the thick matter valve 26 is in the switching state 30, in which only the material flow coming from the first delivery cylinder 21 can pass through the thick matter valve 26. If the second delivery cylinder 22 in the forward movement and the first delivery cylinder 21 in the backward movement, the sludge valve 26 is in the switching state 29, in which only the coming of the second delivery cylinder 20 material flow can pass through the sludge valve 26. In the overlapping phase, in which both conveying cylinders 21, 22 are in the forward movement, the thick matter valve 26 is in the intermediate state 31, in which the material flows from both delivery cylinders 21, 22 can pass through the thick matter valve 26.

Beide Förderzylinder 21, 22 haben eine Grundgeschwindigkeit für die Vorwärts-Bewegung. Die Grundgeschwindigkeit der Vorwärts-Bewegung kommt zur Anwendung, während der jeweils andere Förderzylinder 21, 22 in der Rückwärts-Bewegung ist. Durch die Grundgeschwindigkeit ist der Materialstrom definiert, der in dieser Phase in Richtung Pumpenauslass 23 gefördert wird. In der Überschneidungsphase, in der beide Förderzylinder 21, 22 sich in der Vorwärts-Bewegung befinden, ist die Geschwindigkeit gegenüber der Grundgeschwindigkeit derart vermindert, dass die Geschwindigkeiten der beiden Vorwärts-Bewegungen sich zur Grundgeschwindigkeit addieren. Auf diese Weise wird auch während der Überschneidungsphase ein konstanter Materialstrom in Richtung Pumpenauslass 23 aufrechterhalten.Both conveyor cylinders 21, 22 have a basic speed for the forward movement. The basic speed of the forward movement is used, while the respective other conveyor cylinder 21, 22 in the backward movement. By the basic speed of the material flow is defined, which is promoted in this phase towards the pump outlet 23. In the overlapping phase, in which both conveyor cylinders 21, 22 are in the forward motion, the speed is reduced from the base speed so that the speeds of the two forward motions add up to the basic speed. In this way, a constant flow of material towards the pump outlet 23 is maintained even during the overlapping phase.

Die Fig. 3 zeigt die erfindungsgemäße Dickstoffpumpe in einer perspektivischen Darstellung. Das Einlassventil 25 ist im geöffneten Zustand, sodass die zugehörige Eingangsöffnung 45 der Pumpe durchgängig ist und dass mit dem zweiten Förderzylinder 22 Dickstoff aus dem Vorfüllbehälter 16 (Fig. 1) angesaugt werden kann. Das erste Einlassventil 24 ist im geschlossenen Zustand. Wenn der Kolben des ersten Förderzylinders 21 in der Vorwärtsbewegung ist, bewegt sich der Materialstrom durch die erste Durchtrittsöffnung 27 des Dickstoffventils 26 in Richtung Pumpenauslass 23, siehe Fig. 4.The Fig. 3 shows the sludge pump according to the invention in a perspective view. The inlet valve 25 is in the open state, so that the associated inlet opening 45 of the pump is continuous and that with the second delivery cylinder 22 thick material from the Vorfüllbehälter 16 (FIG. Fig. 1 ) can be sucked. The first inlet valve 24 is in the closed Status. When the piston of the first delivery cylinder 21 is in forward motion, the material flow moves through the first passage 27 of the slurry valve 26 towards the pump outlet 23, see Fig. 4 ,

Der Ablauf im Betrieb der Pumpe wird nachfolgend anhand der schematischen Darstellungen der Figuren 5 bis 8 erläutert. In Fig. 5A ist das Ventilglied 32 des Dickstoffventils 26 so geschaltet, dass es die Durchtrittsöffnung 27 des ersten Förderzylinders 21 verschließt und dass es die Durchtrittsöffnung 28 des zweiten Förderzylinders 22 freilässt. Das Einlassventil 25 des zweiten Förderzylinders 22 ist geschlossen, siehe Fig. 5B. Der zweite Förderzylinder 22 ist in der Vorwärts-Bewegung und fördert Beton durch die Durchtrittsöffnung 28 in den Innenraum des Dickstoffventils 26 und zum Pumpenauslass 23. Durch die über dem Ventilglied 32 anliegende Druckdifferenz wird die Dichtwirkung zwischen Ventilglied 32 und der Durchtrittsöffnung 27 verstärkt. Das Einlassventil 24 des ersten Förderzylinders 21 ist geöffnet, sodass der erste Förderzylinder 21 mit einer Rückwärts-Bewegung durch die Einlassöffnung 44 der Pumpe Beton aus dem Vorfüllbehälter 16 ansaugen kann.The sequence in the operation of the pump is described below with reference to the schematic representations of FIGS. 5 to 8 explained. In Fig. 5A the valve member 32 of the thick matter valve 26 is connected so that it closes the passage opening 27 of the first delivery cylinder 21 and that it leaves open the passage opening 28 of the second delivery cylinder 22. The inlet valve 25 of the second delivery cylinder 22 is closed, see Fig. 5B , The second delivery cylinder 22 is in the forward movement and conveys concrete through the passage opening 28 in the interior of the thick matter valve 26 and the pump outlet 23. By the pressure applied across the valve member 32 pressure difference between the valve member 32 and the passage opening 27 is amplified. The inlet valve 24 of the first delivery cylinder 21 is opened so that the first delivery cylinder 21 can suck in concrete from the prefill container 16 with a backward movement through the inlet port 44 of the pump.

Die Rückwärts-Bewegung des ersten Förderzylinders 21 endet früher als die Vorwärts-Bewegung des zweiten Förderzylinders 22. In Fig. 6 ist der Zustand gezeigt, in dem die Vorwärts-Bewegung des ersten Förderzylinders 21 beginnt und die Vorwärts-Bewegung des zweiten Förderzylinders 22 kurz vor dem Ende steht. Beide Einlassventile 24, 25 sind geschlossen. Das Umschalten des Dickstoffventils 26 in den Zwischenzustand 31 beginnt, nachdem der erste Förderzylinder 21 bereits wieder Druck vor der Durchtrittsöffnung 27 aufgebaut hat, so dass über dem Ventilglied 32 nur noch eine geringfügige Druckdifferenz anliegt. Nach dem Umschalten ist das Dickstoffventil 26 im Zwischenzustand 31, in dem das Ventilglied 32 sowohl die erste Durchtrittsöffnung 27 als auch die zweite Durchtrittsöffnung 28 freilässt. Bei beiden Förderzylindern 21, 22 ist die Geschwindigkeit der Vorwärts-Bewegung reduziert, sodass die Förderzylinder 21, 22 nun gemeinsam die Materialmenge fördern, die zuvor der zweite Förderzylinder 22 alleine gefördert hat.The backward movement of the first delivery cylinder 21 ends earlier than the forward movement of the second delivery cylinder 22 Fig. 6 the state is shown in which the forward movement of the first delivery cylinder 21 begins and the forward movement of the second delivery cylinder 22 is just before the end. Both inlet valves 24, 25 are closed. The switching of the thick matter valve 26 in the intermediate state 31 begins after the first delivery cylinder 21 has already built up pressure in front of the passage opening 27, so that above the valve member 32 only a slight pressure difference is applied. After switching, the thick matter valve 26 in the intermediate state 31, in which the valve member 32 leaves free both the first passage opening 27 and the second passage opening 28. In both delivery cylinders 21, 22, the speed of the forward movement is reduced, so that the delivery cylinder 21, 22 now jointly promote the amount of material that has previously promoted the second delivery cylinder 22 alone.

Nach dem Ende der Vorwärts-Bewegung des zweiten Förderzylinders 22 wird das Einlassventil 25 geöffnet, siehe Fig. 7. Zur Druckentlastung kann der zweite Förderzylinder 22 vor dem Öffnen des Einlassventils 25 bereits eine erste Rückwärts-Bewegung vollführen. Wenn das Einlassventil 25 geöffnet ist, saugt der zweite Förderzylinder 22 mit einer Rückwärts-Bewegung durch die Einlassöffnung 45 der Pumpe Beton aus dem Vorfüllbehälter 16 an. Der erste Förderzylinder 21 bewegt sich mit seiner Grundgeschwindigkeit nach vorne, sodass der Materialstrom zum Pumpenauslass 23 unverändert aufrechterhalten bleibt.After the end of the forward movement of the second delivery cylinder 22, the intake valve 25 is opened, see Fig. 7 , For pressure relief, the second delivery cylinder 22 may already perform a first backward movement before opening the inlet valve 25. When the inlet valve 25 is opened, the second delivery cylinder 22 sucks concrete from the prefill container 16 with a backward movement through the inlet port 45 of the pump. The first delivery cylinder 21 moves forward at its basic speed, so that the flow of material to the pump outlet 23 remains unchanged.

In Fig. 8 beginnt erneut die Vorwärts-Bewegung des zweiten Förderzylinders 22, während die Vorwärts-Bewegung des ersten Förderzylinders 21 endet. Mit dem Ende der Vorwärts-Bewegung des ersten Förderzylinders 21 endet der Zyklus und die Pumpe geht wieder in den Zustand gemäß Fig. 5 über.In Fig. 8 Again, the forward movement of the second delivery cylinder 22 begins, while the forward movement of the first delivery cylinder 21 ends. With the end of the forward movement of the first delivery cylinder 21, the cycle ends and the pump returns to the state according to Fig. 5 above.

Das Ventilglied 32 des Dickstoffventils 26 umfasst gemäß Fig. 9 ein Schwenkteil 34 und ein Dichtteil 35. Das Schwenkteil 34 umfasst zwei Abschnitte einer Welle 33, über die das Schwenkteil bezogen auf eine Schwenkachse 36 drehbar gelagert ist. Zwischen der Welle 33 und dem Dichtteil 35 ist eine in Fig. 9 nur schematisch dargestellte Verbindungsstruktur 48 ausgebildet. Über die Verbindungsstruktur 48 kann der radiale Abstand zwischen dem Dichtteil 35 und der Welle 33 verändert werden.The valve member 32 of the thick matter valve 26 comprises according to Fig. 9 a pivoting part 34 and a sealing part 35. The pivoting part 34 comprises two sections of a shaft 33, via which the pivoting part is rotatably mounted relative to a pivot axis 36. Between the shaft 33 and the sealing part 35 is an in Fig. 9 only schematically illustrated connection structure 48 is formed. Via the connecting structure 48, the radial distance between the sealing part 35 and the shaft 33 can be changed.

Hingegen ist die Verbindungsstruktur 48 gegenüber Drehmomenten starr. Wird also die Welle um einen bestimmten Winkel gedreht, so vollführt das Dichtteil 35 eine Schwenkbewegung um denselben Winkel.By contrast, the connecting structure 48 is rigid with respect to torques. Thus, if the shaft is rotated by a certain angle, the sealing part 35 performs a pivoting movement by the same angle.

Die Unterseite des Dichtteils 35 bildet eine Dichtfläche 38 in Form eines konzentrisch zu der Schwenkachse 36 ausgerichteten Zylindersegments. Das Gehäuse des Dickstoffventils 26 hat eine dazu passende Gegenfläche, die ebenfalls die Form eines Zylindersegments hat. In der Gegenfläche sind die Durchtrittsöffnungen 27, 28 des Dickstoffventils 26 ausgebildet. Die Dichtfläche 38 des Ventilglieds 32 wirkt mit der Gegenfläche des Ventilgehäuses zusammen und kann je nach Schaltzustand entweder die Durchtrittsöffnung 27 oder die Durchtrittsöffnung 28 abdichten.The underside of the sealing part 35 forms a sealing surface 38 in the form of a concentric with the pivot axis 36 aligned cylinder segment. The housing of the thick matter valve 26 has a matching mating surface, which also has the shape of a cylinder segment. In the mating surface, the passage openings 27, 28 of the thick matter valve 26 are formed. The sealing surface 38 of the valve member 32 cooperates with the counter surface of the valve housing and can depending on the switching state either the passage opening 27 or the passage opening 28 seal.

In Fig. 10 ist ein Zustand des Dickstoffventils dargestellt, in dem im Innenraum des Dickstoffventils ein höherer Druck anliegt als vor der Durchtrittsöffnung 27, die mit dem Dichtteil 35 verschlossen ist. Das Ventilglied 32 hat eine der Dichtfläche 38 gegenüberliegende Außenfläche 43, auf die der Druck des in dem Dickstoffventil 26 befindlichen Materials in radialer Richtung wirkt. Die Druckdifferenz gegenüber der Außenseite trägt dazu bei, die Dichtwirkung zwischen dem Ventilglied 32 und dem Ventilgehäuse zu verstärken. Das Ventilglied 32 hat außerdem zwei symmetrisch zueinander angeordnete Außenflächen 44, 45. Ein auf die Außenflächen 44, 45 wirkender Druck des Materials hat ebenfalls eine Komponente in radialer Richtung, sodass auch die Außenflächen 44, 45 zur Verstärkung der Dichtwirkung beitragen.In Fig. 10 is a state of the thick matter valve shown, in which a higher pressure is applied in the interior of the thick matter valve than in front of the passage opening 27, which is closed with the sealing part 35. The valve member 32 has a sealing surface 38 opposite outer surface 43, on which the pressure of the material in the sludge 26 material acts in the radial direction. The pressure difference from the outside helps to enhance the sealing effect between the valve member 32 and the valve housing. The valve member 32 also has two symmetrically arranged outer surfaces 44, 45. An acting on the outer surfaces 44, 45 pressure of the material also has a component in the radial direction, so that the outer surfaces 44, 45 contribute to enhance the sealing effect.

Bei dem in Fig. 11 gezeigten Ventilglied 32 umfasst das Schwenkteil 34 einen Zapfen 50, der in eine passende Ausnehmung des Dichtteils 35 eingreift. Mit dem Zapfen 50 wird eine Schiebeführung gebildet, entlang derer sich das Dichtteil 35 in radialer Richtung relativ zu der Welle 33 bewegen kann. Gegenüber Kräften in anderen Richtungen ist die Schiebeführung starr.At the in Fig. 11 shown valve member 32, the pivot member 34 comprises a pin 50 which engages in a matching recess of the sealing part 35. With the pin 50, a sliding guide is formed, along which the sealing member 35 can move in the radial direction relative to the shaft 33. Compared to forces in other directions, the sliding guide is rigid.

Zwischen dem Schwenkteil 34 und dem Dichtteil 35 ist eine Platte 37 aus einem elastischen Material angeordnet. Die Platte 37 ist Bestandteil der Verbindungsstruktur zwischen dem Schwenkteil 34 und dem Dichtteil 35. Durch Druck in radialer Richtung kann die Platte 37 elastisch komprimiert werden, wodurch das Dichtteil 35 entlang der Schiebeführung an das Schwenkteil 34 angenähert wird.Between the pivoting part 34 and the sealing part 35, a plate 37 is arranged made of an elastic material. The plate 37 is part of the connecting structure between the pivot member 34 and the sealing member 35. By pressure in the radial direction, the plate 37 can be elastically compressed, whereby the sealing member 35 is approximated along the sliding guide to the pivot member 34.

Das erfindungsgemäße Dickstoffventil 26 ist im Auslieferungszustand so eingerichtet, dass die Platte 37 elastisch komprimiert ist und das Dichtteil 35 folglich unter einem elastischen Druck an dem Ventilgehäuse anliegt, den die Platte 37 in radialer Richtung ausübt. Kommt es im Betrieb der Pumpe zu einem Verschleiß des Ventilglieds 32 oder des Ventilgehäuses, so kann dieser durch Ausdehnung der elastischen Platte 37 selbsttätig ausgeglichen werden. Im Saugbetrieb wird durch die Platte 37 sichergestellt, dass ein ausreichender Anpressdruck Dichtteil 35 und dem Ventilgehäuse.The thick matter valve 26 according to the invention is set up in the delivery state such that the plate 37 is elastically compressed and consequently the sealing part 35 bears against the valve housing under an elastic pressure which the plate 37 exerts in the radial direction. If there is wear of the valve member 32 or the valve housing during operation of the pump, it can be compensated automatically by expansion of the elastic plate 37. In the suction operation is ensured by the plate 37 that a sufficient contact pressure sealing member 35 and the valve housing.

Das in Fig. 11 gezeigte Ventilglied 32 ist außerdem so gestaltet, dass zwischen zwei Wellenstummeln 33 ein Freiraum eingeschlossen ist, sodass der Materialstrom sich auf direktem Weg von den Durchtrittsöffnungen 27, 28 in Richtung Pumpenauslass 23 bewegen kann. Das Schwenkteil 34 umfasst zwei Schenkel 51, 52, die sich in radialer Richtung erstrecken und die den Freiraum zwischen sich einschließen. In radialer Richtung erstreckt der Freiraum sich über mehr als 50 % des Abstands zwischen der Schwenkachse 36 und der Dichtfläche 38.This in Fig. 11 shown valve member 32 is also designed so that between two stub shafts 33 a clearance is included, so that the material flow can move directly from the passage openings 27, 28 in the direction of the pump outlet 23. The pivoting part 34 comprises two legs 51, 52, which extend in the radial direction and which enclose the space between them. In the radial direction, the free space extends over more than 50% of the distance between the pivot axis 36 and the sealing surface 38.

Bei der Ausführungsform gemäß Fig. 12 ist ebenfalls zwischen zwei Wellenstummeln 33 ein Freiraum eingeschlossen, um die Bewegung des Förderstroms in Richtung der Auslassöffnung zu erleichtern. Ein zentraler Schenkel 53 erstreckt sich in radialer Richtung und ist mittig mit dem Dichtteil 35 verbunden. Um den Schenkel 53 herum ist ausreichend Raum für die Bewegung des Materialstroms. Im Übrigen ist die Verbindungsstruktur analog zu Fig. 11 gestaltet mit einer elastischen Platte 37 und einer in Fig. 12 nicht sichtbaren Schiebeführung.In the embodiment according to Fig. 12 is also enclosed between two stub shafts 33 a clearance to facilitate the movement of the flow in the direction of the outlet opening. A central leg 53 extends in the radial direction and is centrally connected to the sealing part 35. Around the leg 53 there is sufficient space for the movement of the flow of material. Incidentally, the connection structure is analogous to Fig. 11 designed with an elastic plate 37 and an in Fig. 12 invisible sliding guide.

In Fig. 13 ist eine alternative Ausführungsform eines erfindungsgemäßen Ventilglieds 32 dargestellt. Das Dichtteil 35 erstreckt sich um das Schwenkteil 34 herum, so dass ein Abschnitt des Schwenkteils 34 im Inneren des Dichtteils aufgenommen ist. Gemäß der Schnittdarstellung in Fig. 14 hat das Schwenkteil 34 im Inneren des Dichtteils 35 einen rechteckigen Querschnitt. Das Dichtteil 35 hat einen zu dem rechteckigen Querschnitt passenden Schlitz, in dem oberhalb und unterhalb des Schwenkteils 34 elastische Elemente 37 angeordnet sind, so dass das Dichtteil 35 sich in Radialrichtung relativ zu dem Schwenkteil 34 bewegen kann, während eine relative Drehbewegung zwischen dem Dichtteil 35 und dem Schwenkteil 34 ausgeschlossen ist. Das Schwenkteil 34 umfasst einen Hebel 39, an dem ein Antrieb angreifen kann, um das Ventilglied 32 zwischen den verschiedenen Schaltzuständen umzuschalten.In Fig. 13 an alternative embodiment of a valve member 32 according to the invention is shown. The sealing part 35 extends around the pivoting part 34, so that a portion of the pivoting part 34 is received in the interior of the sealing part. According to the sectional view in Fig. 14 has the pivot member 34 in the interior of the sealing member 35 has a rectangular cross-section. The sealing member 35 has a matching to the rectangular cross-section slot in which above and below the pivot member 34 elastic members 37 are arranged so that the sealing member 35 can move in the radial direction relative to the pivot member 34, while a relative rotational movement between the sealing member 35th and the pivoting part 34 is excluded. The pivot member 34 includes a lever 39 to which a drive can engage to switch the valve member 32 between the various switching states.

Das Ventilglied 32 ist so bemessen, dass es mit seinen beiden in Axialrichtung weisenden Stirnflächen direkt an dem Gehäuse 46 des Dickstoffventils 26 anliegt. Die Stirnflächen des Ventilglieds sind als Kratzer 55 ausgebildet. Die Kratzer 55 schieben bei einem Schaltvorgang des Ventilglieds 32 den Dickstoff entlang der Stirnfläche des Gehäuses zur Seite.The valve member 32 is dimensioned so that it with its two axially facing end faces directly to the housing 46 of the thick matter valve 26 is present. The end faces of the valve member are formed as scratches 55. The scratches 55 push in a switching operation of the valve member 32, the thick matter along the end face of the housing to the side.

Die Seitenflächen 57 des Ventilglieds sind als Leitflächen gestaltet. Entlang den Leitflächen wird der Materialstrom in Richtung der Ausgangsöffnung des Dickstoffventils geleitet. An seiner Oberseite ist das Ventilglied 32 mit einer Ausnehmung 56 versehen, durch die die Bewegung des Materialstroms in Richtung der Austrittsöffnung erleichtert wird.The side surfaces 57 of the valve member are designed as guide surfaces. Along the baffles, the flow of material is directed towards the exit port of the thick matter valve. At its upper side, the valve member 32 is provided with a recess 56, through which the movement of the material flow in the direction of the outlet opening is facilitated.

Claims (15)

Dickstoffventil mit einer ersten Durchtrittsöffnung (27), mit einer zweiten Durchtrittsöffnung (28) und mit einem den beiden Durchtrittsöffnungen (27, 28) zugeordneten Ventilglied (32), wobei das Ventilglied (32) bezogen auf eine Schwenkachse (36) schwenkbar gelagert ist, wobei das Ventilglied (32) eine konzentrisch zu der Schwenkachse (36) gewölbte Dichtfläche (38) aufweist, und wobei das Ventilglied (32) in einem ersten Zustand (30) die erste Durchtrittsöffnung (27) freigibt sowie die zweite Durchtrittsöffnung (28) verschließt und wobei das Ventilglied (32) in einem zweiten Zustand (29) die zweite Durchtrittsöffnung (28) freigibt sowie die erste Durchtrittsöffnung (27) verschließt.Thick-type valve having a first passage opening (27), with a second passage opening (28) and with a valve member (32) assigned to the two passage openings (27, 28), wherein the valve member (32) is pivotably mounted relative to a pivot axis (36), wherein the valve member (32) has a concentric with the pivot axis (36) curved sealing surface (38), and wherein the valve member (32) in a first state (30), the first passage opening (27) releases and the second passage opening (28) closes and wherein the valve member (32) in a second state (29) releases the second passage opening (28) and closes the first passage opening (27). Dickstoffventil nach Anspruch 1, dadurch gekennzeichnet, dass das Ventilglied (32) in einem Innenraum des Dickstoffventils angeordnet ist.Thick-matter valve according to claim 1, characterized in that the valve member (32) is arranged in an inner space of the high-density material valve. Dickstoffventil nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass zwischen der ersten Durchtrittsöffnung (27) und der zweiten Durchtrittsöffnung (28) eine Zwischenfläche angeordnet ist, die eine zu der Schwenkachse (36) konzentrische Wölbung aufweist.Thick-matter valve according to one of claims 1 to 2, characterized in that between the first passage opening (27) and the second passage opening (28) an intermediate surface is arranged, which has a to the pivot axis (36) concentric curvature. Dickstoffventil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in einem dritten Schaltzustand das Ventilglied (32) zwischen der ersten Durchtrittsöffnung (27) und der zweiten Durchtrittsöffnung (28) angeordnet ist.Density valve according to one of claims 1 to 3, characterized in that in a third switching state, the valve member (32) between the first passage opening (27) and the second passage opening (28) is arranged. Dickstoffventil nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Ventilglied (32) ein Dichtteil (35) und ein Schwenkteil (34) umfasst, wobei das Schwenkteil (34) in der Schwenkachse (36) drehbar gelagert ist und wobei das Dichtteil (35) über eine Verbindungsstruktur (37) mit dem Schwenkteil (34) verbunden ist.Thickened matter valve according to one of claims 1 to 4, characterized in that the valve member (32) comprises a sealing part (35) and a pivoting part (34), wherein the pivoting part (34) is rotatably mounted in the pivot axis (36) and wherein the sealing part (35) is connected via a connecting structure (37) with the pivoting part (34). Dickstoffventil nach Anspruch 5, dadurch gekennzeichnet, dass die Verbindungsstruktur (37) starr ist gegenüber relativ zu der Schwenkachse (36) wirkenden Drehmomenten.Thickness valve according to claim 5, characterized in that the connecting structure (37) is rigid relative to relative to the pivot axis (36) acting torques. Dickstoffventil nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Verbindungsstruktur (37) in Radialrichtung eine Bewegung des Dichtteils (35) relativ zu dem Schwenkteil (34) zulässt.Density valve according to claim 5 or 6, characterized in that the connecting structure (37) in the radial direction allows movement of the sealing part (35) relative to the pivoting part (34). Dickstoffventil nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Verbindungsstruktur ein zwischen dem Dichtteil (35) und dem Schwenkteil (34) angeordnetes elastisches Element (37) umfasst.Thick-matter valve according to one of claims 5 to 7, characterized in that the connecting structure comprises a between the sealing part (35) and the pivot member (34) arranged elastic element (37). Ventil nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass zwischen einer Welle (33) des Ventilglieds (32) und einem Gehäuse (46) des Ventils ein elastisches Element ist.Valve according to claim 5 or 6, characterized in that between a shaft (33) of the valve member (32) and a housing (46) of the valve is an elastic element. Dickstoffventil nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Ventilglied (32) zwei in der Schwenkachse (36) gelagerte Wellenstummel (33) umfasst und dass die Wellenstummel (33) einen Freiraum zwischen sich einschließen.Thickening valve according to one of claims 1 to 9, characterized in that the valve member (32) comprises two in the pivot axis (36) mounted stub shaft (33) and that the stub shafts (33) include a free space between them. Dickstoffventil nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Ventilglied (32) einen Schenkel (51, 52, 53) umfasst, der sich zwischen der Schwenkachse (36) und der Dichtfläche (38) erstreckt, und dass der Schenkel (51, 52, 53) von einer Stirnfläche eines Gehäuses (46) des Dickstoffventils (26) beabstandet ist.Thick-matter valve according to one of claims 1 to 10, characterized in that the valve member (32) comprises a leg (51, 52, 53) extending between the pivot axis (36) and the sealing surface (38) extends, and that the leg (51, 52, 53) from an end face of a housing (46) of the thick matter valve (26) is spaced. Dickstoffventil nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Ventilglied (32) einen Kratzer (55) aufweist, der bei einem Schaltvorgang des Ventilglieds (32) entlang einer Stirnfläche des Gehäuses (46) des Dickstoffventils (26) geführt wird.Density valve according to one of claims 1 to 10, characterized in that the valve member (32) has a scratch (55), which is guided in a switching operation of the valve member (32) along an end face of the housing (46) of the high-density valve (26). Dickstoffventil nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Ventilglied (32) eine Außenfläche (43, 44, 45) umfasst, durch die eine über Ventilglied (32) anliegende Druckdifferenz in eine in radialer Richtung wirkende Kraft umgesetzt wird.Thick-matter valve according to one of claims 1 to 12, characterized in that the valve member (32) comprises an outer surface (43, 44, 45), by which a via valve member (32) applied pressure difference is converted into a force acting in the radial direction. Dickstoffpumpe mit einem Dickstoffventil gemäß einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das von einem Förderorgan der Pumpe in Bewegung versetzte Material durch die erste und/oder zweite Eintrittsöffnung (27, 28) in den Innenraum des Dickstoffventils eintritt.Slurry pump with a thick matter valve according to one of claims 1 to 13, characterized in that the material displaced by a conveying member of the pump in the material entering through the first and / or second inlet opening (27, 28) in the interior of the slum. Dickstoffpumpe nach Anspruch 14, dadurch gekennzeichnet, dass zwischen Zuständen des Dickstoffventils (26) umgeschaltet wird, wenn keine Druckdifferenz über dem Ventilglied (32) anliegt.A high-solids pump according to claim 14, characterized in that switching between states of the thick matter valve (26), when no pressure difference across the valve member (32) is applied.
EP16183665.5A 2016-08-11 2016-08-11 Valve for viscous materials Withdrawn EP3282125A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP16183665.5A EP3282125A1 (en) 2016-08-11 2016-08-11 Valve for viscous materials
KR1020197005293A KR102334498B1 (en) 2016-08-11 2017-08-04 high viscosity raw material valve
US16/324,736 US20200182230A1 (en) 2016-08-11 2017-08-04 Thick Stock Valve
JP2019529684A JP7019924B2 (en) 2016-08-11 2017-08-04 High density material valve
PCT/EP2017/069783 WO2018029099A1 (en) 2016-08-11 2017-08-04 Thick stock valve
EP17748765.9A EP3497329B1 (en) 2016-08-11 2017-08-04 Valve for viscous materials
CN201780062954.7A CN109804161B (en) 2016-08-11 2017-08-04 Concentrated material valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16183665.5A EP3282125A1 (en) 2016-08-11 2016-08-11 Valve for viscous materials

Publications (1)

Publication Number Publication Date
EP3282125A1 true EP3282125A1 (en) 2018-02-14

Family

ID=56686669

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16183665.5A Withdrawn EP3282125A1 (en) 2016-08-11 2016-08-11 Valve for viscous materials
EP17748765.9A Active EP3497329B1 (en) 2016-08-11 2017-08-04 Valve for viscous materials

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17748765.9A Active EP3497329B1 (en) 2016-08-11 2017-08-04 Valve for viscous materials

Country Status (6)

Country Link
US (1) US20200182230A1 (en)
EP (2) EP3282125A1 (en)
JP (1) JP7019924B2 (en)
KR (1) KR102334498B1 (en)
CN (1) CN109804161B (en)
WO (1) WO2018029099A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1653614A1 (en) * 1967-06-10 1971-08-19 Smith Bobbie Ray Mud pump
BE903948A (en) * 1985-12-30 1986-04-16 Neuckens Francois Piston-type concrete pump - has two cylinders in line connected to valve chamber between
DE10109516A1 (en) * 2000-03-02 2002-01-03 Da Silva Mauro Moura Valve for concrete pump has change drive independent of feed housing, double funnel for each pump cylinder, and mechanism to open/close concrete channels
DE102004015768A1 (en) * 2004-03-31 2005-10-20 Christoph Rothdach Thick matter feed pump for sucking in concrete has a pour-in funnel to generate a continuous feed flow in a pipeline with a rotary slide valve
DE102005008938A1 (en) 2005-02-26 2006-08-31 Schwing, Friedrich, Dipl.-Ing. Pump device comprises two main conveyor cylinders with a switchable slider system that changes position of the connecting either first or second main conveyor cylinders to conveying channel and has compensation cylinder downstream
US8827657B1 (en) 2014-01-15 2014-09-09 Francis Wayne Priddy Concrete pump system and method
DE102013215990A1 (en) 2013-08-13 2015-02-19 Putzmeister Engineering Gmbh Two-cylinder thick matter pump with diverter

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH96037A (en) 1921-04-27 1922-09-01 Bucher Guyer Ag Masch Three-way cock.
CH217841A (en) 1941-01-29 1941-11-15 Et Ateliers Du Kursaal Garage Key valve.
DE1653614U (en) * 1953-02-03 1953-04-09 Erich Iversen CULTIVATION IMPLEMENT.
DE1064308B (en) 1954-07-12 1959-08-27 Erich Kieback Dr Ing Rotary valve with part-cylindrical valve plate
DE1236287B (en) 1963-08-19 1967-03-09 Erkki Pietari Niskanen stopcock
DE1266595B (en) 1964-05-20 1968-04-18 Lederle Pumpen & Maschf Rotary valve for sugar centrifuges
US3279383A (en) 1965-01-06 1966-10-18 Burnup And Sims Inc Hydraulic powered mobile concrete pump assembly
US3398693A (en) * 1966-08-01 1968-08-27 Danken Inc Concrete pumping apparatus
DE1817568A1 (en) 1968-12-31 1970-07-09 Stetter Georg Control for a concrete pump
US3749525A (en) 1970-08-03 1973-07-31 D Hooper Hydraulically operated fluid aggregate pump
FR2177254A5 (en) 1972-03-24 1973-11-02 Pichon Maurice
DE2415276C2 (en) * 1974-03-29 1976-11-11 Friedrich Schwing Pump for pumping thick matter, especially concrete
IT1143815B (en) 1977-06-03 1986-10-22 Fata Fab App Sollevamento REVOLVING VALVE TO COMMAND THE FLOW OF A SOLID MATERILAE IN PARTICLES
DE3103321A1 (en) 1981-01-31 1982-08-12 Friedrich Wilh. Schwing Gmbh, 4690 Herne "TWO-CYLINDER HIGH-DENSITY PUMP, PREFERABLY CONCRETE PUMP WITH A SWITCHING GEAR ALTERNATING FROM A CYLINDRICAL-SUNGLASSED PLATE"
JPS57135276A (en) * 1981-02-14 1982-08-20 Kyokuto Kaihatsu Kogyo Co Ltd Apparatus for changing over suction conveying section of concrete pump
FR2632377B1 (en) 1988-06-07 1990-09-07 Neu Ets VALVE WITH SPHERICAL CAP
JPH06200868A (en) * 1992-12-29 1994-07-19 Shintetsuku:Kk Ready-mixed concrete pressure feed pump
DE19503986A1 (en) 1995-02-07 1996-08-08 Hudelmaier Ulrike Method and device for conveying concrete or other thick materials
WO1997035132A1 (en) 1996-03-21 1997-09-25 Saxlund Gmbh Valve with pivoting visor
JP2000257731A (en) 1999-03-09 2000-09-19 Ishikawajima Harima Heavy Ind Co Ltd Flow passage selecting device
CN100357604C (en) * 2006-01-23 2007-12-26 三一重工股份有限公司 Distributing valve for concrete pump
CN101245866B (en) * 2008-03-24 2010-12-15 三一重工股份有限公司 Concrete distributing valve and concrete pumping mechanism
DE202008008060U1 (en) 2008-06-18 2008-10-02 Leifert, Rudolf Double piston pump
WO2010043238A1 (en) 2008-10-15 2010-04-22 Norgren Gmbh Pressure-sealing valve
DE102009005318B3 (en) 2009-01-16 2010-09-30 Schwing, Friedrich, Dipl.-Ing. Process for conveying mushy masses and pumping device for conveying mushy masses
CN102269161B (en) * 2011-04-22 2012-11-14 三一重工股份有限公司 Pumping mechanism and distribution valve thereof, and concrete pumping machine
US9267420B2 (en) * 2011-11-07 2016-02-23 Toyota Jidosha Kabushiki Kaisha Engine cooling control device
CN202612694U (en) * 2012-03-26 2012-12-19 中交第二航务工程局有限公司 Hopper valve
CN202768380U (en) * 2012-04-25 2013-03-06 中联重科股份有限公司 Pumping dispensing mechanism, pumping device and concrete pump
JP6200868B2 (en) 2014-08-19 2017-09-20 富士フイルム株式会社 Manufacturing method of optical film
DE102016118133A1 (en) 2016-09-26 2018-03-29 Pierburg Gmbh Rotary valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1653614A1 (en) * 1967-06-10 1971-08-19 Smith Bobbie Ray Mud pump
BE903948A (en) * 1985-12-30 1986-04-16 Neuckens Francois Piston-type concrete pump - has two cylinders in line connected to valve chamber between
DE10109516A1 (en) * 2000-03-02 2002-01-03 Da Silva Mauro Moura Valve for concrete pump has change drive independent of feed housing, double funnel for each pump cylinder, and mechanism to open/close concrete channels
DE102004015768A1 (en) * 2004-03-31 2005-10-20 Christoph Rothdach Thick matter feed pump for sucking in concrete has a pour-in funnel to generate a continuous feed flow in a pipeline with a rotary slide valve
DE102005008938A1 (en) 2005-02-26 2006-08-31 Schwing, Friedrich, Dipl.-Ing. Pump device comprises two main conveyor cylinders with a switchable slider system that changes position of the connecting either first or second main conveyor cylinders to conveying channel and has compensation cylinder downstream
DE102013215990A1 (en) 2013-08-13 2015-02-19 Putzmeister Engineering Gmbh Two-cylinder thick matter pump with diverter
US8827657B1 (en) 2014-01-15 2014-09-09 Francis Wayne Priddy Concrete pump system and method

Also Published As

Publication number Publication date
KR20190038852A (en) 2019-04-09
JP7019924B2 (en) 2022-02-16
EP3497329B1 (en) 2020-04-01
CN109804161A (en) 2019-05-24
KR102334498B1 (en) 2021-12-03
WO2018029099A1 (en) 2018-02-15
CN109804161B (en) 2020-11-03
US20200182230A1 (en) 2020-06-11
EP3497329A1 (en) 2019-06-19
JP2019525106A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
DE19952881C2 (en) Air cylinder with damping mechanism
EP3282124B1 (en) Viscous material pump
DE102007007588A1 (en) Powder conveying device for spray coating powder
DE1947641A1 (en) Pump or motor with variable displacement
DE2447054B2 (en) Allocation device for a concrete pump
DE2311284A1 (en) VALVE ARRANGEMENT FOR REWINDING AIR OR GAS FILTERS
DE2532857A1 (en) VACUUM PROCESSING DEVICE FOR FOOD
DE2909964C2 (en)
DE1803819C3 (en) concrete pump
EP3497329B1 (en) Valve for viscous materials
DE3034467A1 (en) HYDRAULIC DEVICE FOR MONITORING A CONNECTION
DE102016002263A1 (en) Conveying device for conveying a flowable medium
DE102018110013A1 (en) Apparatus and method for separating metal particles
DE4224525C2 (en) concrete pump
DE19943107C2 (en) Eccentric screw pump connecting device and eccentric screw pump with such a connecting device
DE4211850A1 (en) Gate-house opening and closing for concrete pump - has gate-house swivel opened by operation of single bolt and hydraulic control
DE60205273T2 (en) SYSTEM FOR INJECTING AT LEAST TWO PRODUCTS IN CONTAINER
DE2054514C3 (en) concrete pump
DE4436247A1 (en) Cleaning mechanism for delivery pipelines e.g. for concrete
DE4102682C2 (en) Thick matter pump with alternating conveying and suction feed cylinders
EP0485862B1 (en) Slurry pump having a pair of alternatively sucking and delivering cylinders
DE2421322A1 (en) PUMPING DEVICE FOR PUMPING CONCRETE OR OTHER MATERIAL
DE102019117356A1 (en) Thick matter pump and method for conveying a thick matter
EP3273058A1 (en) Viscous material pump
EP4357657A1 (en) Valve device, construction machine and method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180815