EP3274654B1 - Procédé, dispositif et produit programme d'ordinateur de détermination de propriétés en matière de dimension d'un objet mesuré - Google Patents

Procédé, dispositif et produit programme d'ordinateur de détermination de propriétés en matière de dimension d'un objet mesuré Download PDF

Info

Publication number
EP3274654B1
EP3274654B1 EP15712622.8A EP15712622A EP3274654B1 EP 3274654 B1 EP3274654 B1 EP 3274654B1 EP 15712622 A EP15712622 A EP 15712622A EP 3274654 B1 EP3274654 B1 EP 3274654B1
Authority
EP
European Patent Office
Prior art keywords
elements
geometric
measurement
selection
test features
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15712622.8A
Other languages
German (de)
English (en)
Other versions
EP3274654A1 (fr
Inventor
Florian DOTSCHKAL
Guenter Haas
Josef Wanner
Florian Mayer
Tobias SCHRAMM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Industrielle Messtechnik GmbH
Original Assignee
Carl Zeiss Industrielle Messtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Industrielle Messtechnik GmbH filed Critical Carl Zeiss Industrielle Messtechnik GmbH
Publication of EP3274654A1 publication Critical patent/EP3274654A1/fr
Application granted granted Critical
Publication of EP3274654B1 publication Critical patent/EP3274654B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/047Accessories, e.g. for positioning, for tool-setting, for measuring probes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • G05B19/40931Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of geometry
    • G05B19/40932Shape input
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • G05B19/40931Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of geometry
    • G05B19/40935Selection of predetermined shapes and defining the dimensions with parameter input
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37441Use nc machining program, cad data for measuring, inspection
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37442Cad and cap for cmm
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37443Program cmm, coordinate measuring machine, use cad data

Definitions

  • the present invention relates to a method and a device for determining dimensional properties of a measurement object which has a multiplicity of geometric elements.
  • EP 2 738 515 A1 discloses a typical example of such a device in the form of a coordinate measuring machine.
  • the known coordinate measuring machine has a workpiece holder and a CCD camera which can be moved in three orthogonal spatial directions relative to the workpiece holder.
  • the CCD camera is part of a measuring head, with the help of which the position of selected measuring points on a measuring object can be determined relative to a reference coordinate system.
  • measurement point coordinates are usually determined for a large number of measurement points on a measurement object. Based on these measuring point coordinates, dimensional properties of the measurement object can then be determined, such as the diameter of a hole or the distance between two edges on the measurement object.
  • an automated measurement process is desirable so that a large number of test objects of the same type can be measured as quickly and reproducibly as possible.
  • the creation of an automated measurement process requires basic knowledge of how coordinate measuring machines work and experience in how different geometric elements can best be measured on a measurement object.
  • an optimal measuring process can vary depending on the type of measuring head and / or which axes of movement are available on a coordinate measuring machine.
  • a measuring head can be made with a non-contact sensor, such as the coordinate measuring machine EP 2 738 515 A1 , require a different measuring sequence than, for example, a tactile measuring head, ie a measuring head with a probe element that is designed to touch selected measuring points on the measuring object.
  • a tactile measuring head ie a measuring head with a probe element that is designed to touch selected measuring points on the measuring object.
  • EP 2 738 515 A1 suggests using a wide-angle surveillance camera in addition to the CCD camera on the measuring head.
  • the wide-angle surveillance camera is designed to take a bird's-eye view of the entire measurement object. This (further) image is shown on the display of an operator terminal, in order to make it easier for the operator to create an automated measuring process, taking into account and avoiding possible collisions between the measuring head and the measuring object.
  • the device offers EP 2 738 515 A1 however, no further support in the creation of a measurement process and the operator therefore requires in-depth knowledge and experience in order to create an optimal measurement process for a specific measurement object.
  • a test characteristic represents a dimensional property of a defined geometric element (measuring element) on a measurement object, such as the diameter of a bore, the roundness of a cylinder section or the position of such a geometric element in relation to the reference coordinate system.
  • CALYPSO In order to quantify an inspection characteristic for a geometric element, several measuring points on the geometric element generally have to be recorded, so that the quantification of an inspection characteristic can require the acquisition of several individual measured values.
  • CALYPSO creates control commands with which the measuring head for measuring the associated measuring points can be automatically controlled.
  • CALYPSO makes it easier for an operator to create the measurement process because the test characteristics generally correspond to information that the operator can see from a technical drawing of the measurement object.
  • CALYPSO is able to automatically recognize geometric elements with defined standard geometries, such as circles, cylinders, rectangles, straight lines, etc., if the corresponding measuring point coordinates are available from the geometric element for evaluation.
  • the operator To create an automatic measurement process, however, the operator must recognize and determine all test features on the measurement object in advance, i.e. The creation of the measurement process begins with the recognition and definition of all the necessary test characteristics when planning "at the desk". The operator must then assign all the geometric elements on the measurement object to the previously selected test features. The operator then carries out all the measuring steps that the device should later perform automatically with manual control.
  • CALYPSO already facilitates the creation of an automatic measurement process in this way, the operator still has to have considerable specialist knowledge and experience in order to create a meaningful measurement process. The knowledge and experience of the operator must include, in particular, the individual mode of operation of the coordinate measuring machine used in order to obtain a measurement process that delivers all measurement values with the desired accuracy in the most efficient way.
  • the company Keyence Corporation offers a measuring system under the name "Model Series IM", in which the creation of measuring sequences takes place via a symbol menu.
  • the operator first selects individual general test characteristics from a symbol menu.
  • the operator selects specific measuring elements on which the previously selected test features are to be determined.
  • the measurement values are recorded using silhouette images of the measurement object.
  • US 2010/0268355 A1 discloses a method and a device for programming a coordinate measuring machine according to the preambles of claims 1 and 10.
  • a polygonal grid model of the object to be measured is created from a point cloud.
  • Measuring elements and an object coordinate system are determined using the grid model.
  • a measurement sequence is determined and checked for collisions. If necessary, the measurement process is modified to avoid collisions avoid.
  • a measuring program is issued with which the coordinate measuring machine can be operated.
  • US 2010/0138028 A1 describes a method in which you can drag figures created with a graphics program onto an image of a measurement object in order to initiate the measurement of features.
  • US 2010/0060903 A1 discloses two variants for measuring a measurement object.
  • all features are measured fully automatically as soon as a workpiece to be measured has been identified on the basis of its properties as a fundamentally known measurement object. An individual operator selection is not provided.
  • the operator is offered sample shapes for selection based on thumbnails . As soon as the operator selects a sample form, all associated measurement steps are adopted in a measurement process.
  • EP 2 801 876 A1 discloses a graphical user interface for programming a measuring sequence, wherein it is possible to individually edit repeated partial sequences, for example for measuring adjacent bores.
  • WO 03/044452 A1 discloses a hand-held coordinate measuring machine and a method for guiding the operator during a measurement.
  • the operator can carry out a measurement and enter so-called GD&T data for a tolerance determination.
  • the measured values and the GD&T data are merged. If the operator wants to apply GD&T data to features that have already been measured, he must select the required features from a list of the available measurement results.
  • WO 02/25207 A1 describes a further method for measuring an object geometry using a coordinate measuring machine. When changing the image content, it is automatically searched for suitable geometric structures for measuring the object. Suitable structures are marked and made available for evaluation.
  • this object is achieved by a device according to claim 10, with a workpiece holder for holding the measurement object, with a measuring head which can be moved relative to the workpiece holder and is designed for recording measured values which have a position of at least one Represent measurement point on the measurement object, with an evaluation and control unit that moves the measuring head depending on a defined measurement sequence relative to the workpiece holder, and with an image display device, the evaluation and control unit having a database that contains a large number of predefined measurement elements and contains a large number of typical test features for the predefined measuring elements, each typical test feature from the large number of typical test features representing a defined dimensional property of at least one predefined measuring element, the evaluation and control unit for this purpose is formed to display a pictorial representation of the measurement object, which shows at least a first and a second geometrical element from the plurality of geometrical elements, on the image display device, the evaluation and control unit providing a first selection tool for selecting the geometrical elements on the basis of the pictorial representation and to enable
  • the new method and the corresponding device use a database in which typical test features for a large number of predefined measuring elements are stored.
  • the typical test features in the database are independent of specific geometric elements of an individual measurement object that is to be measured using the new method and the new device.
  • the typical test features are stored in the database as generic test features that relate to general, mathematically defined control geometries.
  • the typical test features “circle diameter” and “position of the center of the circle” for a generic circular measuring element are stored in the database, the circle diameter being contained as an indefinite, variable parameter value.
  • those control commands are preferably stored in the database with which the measuring head of the coordinate measuring machine has to be controlled in order to determine all measuring point coordinates which are required to quantify the respective typical test feature.
  • each predefined measuring element from the plurality of predefined measuring elements is assigned at least one typical test characteristic, so that at least one suitable test characteristic is displayed when the operator selects an individual geometric element in the graphic representation, for which a measuring element of the same type with a in the database defined standard geometry is included.
  • the new method and the corresponding device have the advantage that the operator is offered those test features that make sense for the individual measurement object and the coordinate measuring machine and / or the measuring head used.
  • the operator can quickly and easily take over the quantification of this suitable test feature in the defined measurement sequence.
  • the operator can create an individual measurement sequence for an individual measurement object without having to make a preliminary decision from a large number of generic test features.
  • the database is used for automatic preselection and the operator is offered those test features that are useful and suitable for the previously selected geometry element and the measuring head used.
  • a defined measurement sequence for the individual test object is created depending on the selected test features, preferably automatically by the evaluation and control unit of the coordinate measuring machine on which the measurement is carried out. This step means that all measuring points and all necessary machine movements are determined using the database in order to use the available measuring head to record precisely those measured values from which a numerical value for the selected test characteristic can be determined.
  • the database preferably contains precisely those generic control commands with which the required ones Measuring points for the quantification of the assigned typical test characteristic can be recorded.
  • the evaluation and control unit uses the database to configure the generic control commands in order to receive individual control commands for measuring the selected geometric element.
  • the configuration that represents a measurement strategy can include, for example, the determination of the length of the distance that the measurement head has to travel relative to the measurement object in one or more defined directions. and / or the speed and / or trajectory at which this is done.
  • the configuration can also include the individual setting of the optimal working distance to the measurement object.
  • the operator receives an individual measuring sequence that can optimally take into account the properties and possible travel paths of the measuring head relative to the workpiece holder in relation to the specific individual measuring object.
  • the operator can create a measurement process in a very simple and efficient manner, which is optimally adapted to the properties of the measuring head and the geometric element to be measured.
  • the operator can achieve a high level of measurement accuracy in conjunction with a fast measurement process even without in-depth knowledge and experience with the specific measuring device. The above task is therefore completely solved.
  • the database also contains a large number of predefined linking elements, each predefined linking element representing a defined property with respect to at least two of the predefined measuring elements.
  • the database contains not only typical test features for individual predefined measuring elements, but also predefined relationships between such measuring elements.
  • a predefined linking element can represent a point of symmetry between two measuring elements of the same type.
  • Another advantageous linking element is the distance between two measuring elements.
  • the design simplifies complex measurements on complex measurement objects.
  • the operator is not only Individual test features are offered for a selected individual geometry element, but also suitable and meaningful linking elements that relate to several geometry elements as soon as he has selected at least two geometry elements in the pictorial representation of the measurement object.
  • the second geometry element is therefore also selected on the basis of the visual representation, and suitable linkage elements for the selected first and second geometry element are displayed on the basis of the database.
  • the operator is offered suitable linking elements for the automatic creation of a defined measurement sequence as soon as at least two geometry elements have been selected in the visual representation of the measurement object.
  • suitable test features and suitable link elements are preferably displayed at the same time, so that by selecting test features and link elements in a display, the operator can very quickly and conveniently get to a complex measurement sequence in which all the necessary measurement points are measured only once and double measurements are avoided will.
  • suitable linking elements for the selected first (and preferably also for the selected second) geometry element are also graphically displayed in the graphic representation.
  • test features and / or linking elements are displayed as a dimension arrow or in a flag, which contains several items of information in a collection. By color A distinction is advantageously made clear to the operator which test features have already been selected and which are still offered for selection.
  • the numerical value for the selected test feature (and / or linking element), which was determined according to the new method and with the new device, is displayed in the graphic representation by the evaluation and control unit.
  • the evaluation and control unit preferably hides the respective numerical value for each selected test feature and / or linking element
  • a technical drawing of the measurement object is simulated to a certain extent using the graphic representation and the numerical values obtained for the previously selected test features and / or linking elements.
  • This embodiment has the advantage that the operator receives a corresponding "actual” representation in addition to the "target” (ie the technical drawing with dimensions).
  • the “actual” representation looks in principle like the target representation, but contains the “measured” numerical values determined on the basis of the measurement and, in some exemplary embodiments, colored markings to show the deviations between the technical drawing or the CAD Data and the measured values.
  • the device includes an image display device with a touch screen, on which the operator can directly select geometric elements and / or test features and / or link elements by touching them.
  • the selection in the pictorial representation can be made using a mouse pointer and / or using a PC keyboard.
  • the measurement sequence is created by the operator solely by selecting geometric elements and test features and / or linking elements. This advantageously takes place without the operator having to select geometric elements, test features and / or link elements in a menu structure, ie exclusively by direct selection in the pictorial representation.
  • This configuration enables a particularly simple and intuitive selection of geometry elements, offered test features and / or linking elements by the operator.
  • the common representation of selected geometric elements and suitable test features and / or linking elements and the selection in the pictorial representation effectively avoid unnecessary multiple measurements as a result of an unfavorable measuring sequence. Accordingly, this configuration contributes very advantageously to short configuration and measurement times.
  • the (concrete) measurement object is scanned with the aid of the measurement head in order to provide the pictorial representation.
  • the device advantageously has a measuring head with a camera that is capable of recording and providing a 2D image of the measurement object.
  • the pictorial representation of the measurement object can also be created with a tactile measuring head and / or with the aid of an X-ray, for example.
  • This configuration enables a particularly simple and quick measurement of "unknown" measurement objects for which no CAD data are available.
  • this embodiment has the advantage that the creation of a measurement sequence takes place on the basis of the specific measurement object, so that any deviations from the CAD data provided are taken into account at an early stage and collisions between the measurement head and the measurement object can be avoided in particular.
  • the pictorial representation of the measurement object is generated using CAD data.
  • This configuration is particularly advantageous in order to check the conformity of an industrially manufactured series product with the specifications for this series product in a simple and quick manner.
  • this configuration enables the measurement sequence to be created for an automated measurement at a point in time at which the measurement object is not yet available.
  • the steps of selecting are repeated for a plurality of geometry elements from the plurality of geometry elements and / or for a number of suitable test features displayed, and the defined measurement sequence is created automatically depending on all selection steps.
  • the entire measurement sequence is advantageously created using the new method and the corresponding device.
  • the preferred embodiment enables particularly simple and quick measurement without the operator of the device having to have extensive detailed knowledge and experience of the device.
  • a selection tool is provided, and the display of suitable test features (and preferably also the display of suitable linking elements) takes place temporarily, while the selection tool is positioned in the area of the first geometry element.
  • This configuration includes a temporary preview of suitable test features and / or linking elements as soon as the selection tool is in the area of corresponding geometric elements. It is only through the conscious selection of a displayed test feature and / or linking element that this is adopted in the defined measurement process.
  • the design enables the measurement of complex measurement objects in a particularly simple and quick manner, without the operator having to have in-depth knowledge and experience in measurement technology.
  • the geometric elements of the measurement object are automatically identified on the basis of the database and assigned to the predefined measurement elements in order to display the suitable test features.
  • This configuration also advantageously contributes to the fact that the operator of a coordinate measuring machine without extensive experience with the machine can very quickly and easily create a technically optimal measurement sequence and carry out the corresponding measurement.
  • the determination of the dimensional properties of a measurement object is therefore particularly simple and quick.
  • Fig. 1 is a device that works according to the new method, in its entirety with the reference number 10.
  • the device 10 includes a coordinate measuring machine 12 with a workpiece holder 14 (here in the form of an xy cross table) and a measuring head 16.
  • the measuring head 16 is arranged on a column 18 and can move in the vertical direction along the column 18 relative to the workpiece holder 14 will. This axis of movement is usually referred to as the z-axis.
  • the workpiece holder 14 can be moved relative to the measuring head 16 in two orthogonal directions, which are usually referred to as the x and y axes. Overall, the measuring head 16 can thus be moved in three orthogonal spatial directions relative to the workpiece holder 14 in order to carry out a measurement on a measurement object (not shown here).
  • the three orthogonal spatial directions x, y, z here span a machine coordinate system, which in some exemplary embodiments serves as a reference coordinate system for the measuring point coordinates.
  • coordinate measuring machines are known in the prior art, for example coordinate measuring machines in portal or bridge construction.
  • the new device and the new method are not restricted to a specific construction of the movement axes, so that instead of the coordinate measuring device 12, a coordinate measuring device can also be used, in which the movement of the measuring head 16 relative to the workpiece holder 14 is realized in a different way.
  • the movement of the measuring head 16 relative to the workpiece holder 14 can be limited to fewer than three movement axes, or the measuring head 16 and / or the workpiece holder 14 could have further movement axes, such as axes of rotation.
  • the measuring head 16 has an optical sensor 20 with which a measurement object (not shown here) is measured without contact can be.
  • the optical sensor 20 includes a camera and a lens to capture an image of the measurement object.
  • the coordinate measuring device 12 in this exemplary embodiment also has a tactile sensor 22 with which measuring points on a measurement object can be touched in order to carry out a measurement.
  • the coordinate measuring device 12 here shows a preferred exemplary embodiment for the new device and the new method.
  • the device can have a different measuring head, for example only a tactile measuring head or only an optical measuring head.
  • the measuring head 16 could also include a capacitively measuring sensor or, for example, a measuring head operating according to the X-ray principle.
  • the measuring head supplies measured values that represent the position of at least one measuring point on the measuring object relative to a coordinate measuring system 24.
  • the coordinate measuring machine 12 has a control unit 26, with the aid of which the drives (not shown here) for the workpiece holder 14 and the measuring head 16 are controlled in order to carry out a measurement.
  • the control unit 26 records the measured values of the measuring head 16 and makes them available for further evaluation by an evaluation unit 28.
  • the evaluation unit 28 is a PC on which a configuration and evaluation software is executed.
  • the configuration and evaluation software enables the creation of a measurement sequence for the implementation of an automated measurement on a measurement object.
  • the evaluation software provides the operator with the quantified measurement results in a suitable manner.
  • the evaluation unit 28 here contains an image display device, on which, among other things, an image 32 of the measurement object can be displayed.
  • the image 32 is generated using the camera of the sensor 20, ie the image is a 2D camera image of the object to be measured.
  • the pictorial representation 32 can be generated on the basis of CAD data of a measurement object, the CAD data being supplied to the evaluation unit 28 in a manner known per se.
  • the device 10 has a special camera in order to generate the pictorial representation 32 of the measurement object, or the pictorial representation is generated separately from the device 10 and fed to the evaluation unit 28 as an image file.
  • the device 10 has a database 34 in which a large number of predefined measuring elements 36, a large number of typical test features 38 and a large number of typical linking elements 39 to the predefined measuring elements 36 are stored.
  • the typical test features 38 and link elements 39 are each assigned to the predefined measurement elements 36 in such a way that typical test features and / or link elements can be determined for a predefined measurement element using the database 34.
  • Predefined measuring elements are, in particular, geometric elements that can be described abstractly using simple mathematical formulas, such as cylinders, cuboids, pyramids, cones, circles, squares, rectangles, triangles, straight lines, etc.
  • Typical test features for a circular measuring element are the diameter and the position of the center of the circle relative to a reference coordinate system, which can be the coordinate system 24 of the device 10, for example.
  • an operator can create a defined measurement sequence 40 for measuring a measurement object using the representation 32 on the image display device and transmit it to the control unit 26, which is indicated here by a line 42.
  • the measuring process 40 represents a large number of control commands which cause the control unit 26 to move the measuring head 16 relative to the workpiece holder 14 and to record individual measured values.
  • the evaluation unit 28 uses the measured values to quantify selected test features for the individual measurement object.
  • Fig. 2 shows a simplified representation 32a of a measurement object which has a large number of geometric elements.
  • some geometric elements are designated by the reference numerals 46, 48, 50, 52.
  • the geometric elements 46, 48 are, for example, cylindrical bores, while the geometric element 50 is an octagonal pin that protrudes vertically from the viewing plane.
  • the geometric element 52 is, for example, an oval depression in the surface of the measurement object shown here only schematically and by way of example.
  • the representation 32a is displayed on the image display device 30.
  • the operator of the device 10 can now select individual geometric elements in the manner described below in order to have the measurement sequence 40 created automatically using the evaluation unit 28.
  • Fig. 3 shows a representation 32b, that of representation 32a Fig. 2 corresponds. However, in the representation 32b, the operator has selected the geometric element 46 with the aid of a mouse pointer 54. In preferred exemplary embodiments, a selected geometric element is highlighted, as is shown in Fig. 3 is shown using the geometric element 46 '. In some exemplary embodiments, the optical highlighting can be implemented by means of a colored marking. Alternatively or in addition, in some exemplary embodiments, the operator can make a selection via a touchscreen on which the representation 32 is displayed.
  • the software of the evaluation unit 28 uses the database 34 to determine typical test features for a selected geometric element 46 '.
  • the evaluation unit 28 therefore has the ability to detect edges in the pictorial representation 32 of a measurement object in order to automatically identify geometric elements of the measurement object.
  • the evaluation unit 28 searches in the database 34 for predefined measuring elements, the shape of which corresponds to the identified geometric element.
  • the evaluation unit 28 uses the database 34 to select the associated typical test features and graphically displays them in the graphic representation 32 for the selected geometric element 46 '.
  • Fig. 4 shows a further pictorial representation 32c, that of representation 32b Fig. 3 corresponds, but after the operator has selected a further geometric element 48 '.
  • the evaluation unit 28 also uses the database 34 to determine suitable test features 60, 62a and 62b for the further selected geometric element 48 '.
  • the evaluation unit 28 determines suitable linking elements for the at least two selected geometry elements.
  • a suitable linking element in this exemplary embodiment is the relative distance 64 between the two selected geometry elements 46 ', 48'.
  • Another suitable linking element here is, for example, the lateral offset 66 of the center points of the two selected geometry elements 46 ', 48'.
  • Another link element can be the point of symmetry 68 between the two selected geometry elements 46 ', 48'.
  • linking elements are features of the object to be measured, which represent a spatial relationship between two or more geometric elements on the measurement object.
  • Fig. 4 two geometry elements of the measurement object are selected and the evaluation unit 28 offers suitable test features 56, 58, 60, 62 and linking elements 64, 66, 68 for the selected geometry elements 46 ', 48'.
  • Fig. 5 shows a pictorial representation 32d in which the operator has selected the test features 56 'and 60' and the offered linking element 68 'with the mouse pointer 54.
  • selected test features and linking elements are highlighted, as is shown in Fig. 5 is indicated schematically.
  • the evaluation unit 28 adopts the selected test feature and / or link element in the measurement sequence 40. The user can thus configure an individual measurement sequence for a measurement object through multiple selections.
  • the measurement sequence 40 is created automatically by the evaluation unit 28 after all selection steps have been completed, in that the evaluation unit 28 determines the control commands for the control unit 26 on the basis of the selected test features and / or linking elements and on the basis of further predefined information in the database 34.
  • the evaluation unit 28 transmits the measurement sequence 40 to the control unit for receiving the individual measurement values on the selected geometric elements of the measurement object.
  • the evaluation unit 28 then reads in the recorded measured values from the control unit 26 and, depending on these measured values, determines numerical values for all selected test characteristics and / or linking elements, each of these numerical values representing a dimensional property of the measurement object that corresponds to the selected test characteristic and / or linking element .
  • an image of the measurement object is first recorded in this exemplary embodiment.
  • the image could be generated from CAD data of the object to be measured, or an image of the measurement object could be provided in another way, for example as an X-ray image, for example as a point cloud independent of the sensor being generated.
  • step 78 an edge detection is then carried out in order to identify, according to step 80, geometric elements on the measurement object which can be considered as measurement elements.
  • step 82 the operator then selects a geometric element in the visual representation.
  • suitable test features for the selected geometric element are then offered to him, the suitable test features being determined using the database 34.
  • step 86 the operator selects a suitable test feature, which is then adopted in step 88 in the measurement sequence.
  • a decision is then made in step 90 as to whether further geometric elements and / or test features are to be selected. If this is the case, further selection steps 82, 86 can be carried out in accordance with loop 92.
  • the measurement process is finalized. This includes the determination of suitable control commands for the control unit 26 for recording those measured values which are required for the quantification of the selected test features.
  • step 96 the required measurement values are then recorded and in step 98, the selected test features are quantified and output on the basis of the recorded measurement values, for example on the image display device 30.
  • the image display device 30 can include a touchscreen in some exemplary embodiments, and the selection of geometric elements, test features and / or linking elements can be carried out by “touching” the respective elements on the touchscreen.
  • the operator is shown logically meaningful test features and / or linking elements as a function of previously selected geometric elements of the object to be measured, graphically displayed in the pictorial representation of the measurement object and offered for (further) selection. If the operator selects another geometry element and / or further geometry elements, the display of the test features and / or linking elements offered for further selection changes depending on the current selection. Multiple selection of geometric elements and / or test features and / or linking elements is advantageously possible. It is particularly preferred if the operator creates the measurement sequence solely by selecting displayed geometric elements and test features and / or linking elements offered for this purpose, without making additional selections and / or configurations by opening and closing menus.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Claims (11)

  1. Procédé de détermination des propriétés dimensionnelles d'un objet de mesure, qui possède une pluralité d'éléments géométriques (46, 48, 50, 52), comprenant les étapes suivantes :
    - fourniture d'un appareil de mesure de coordonnées (12) pourvu d'une tête de mesure (16) servant à enregistrer des valeurs mesurées qui représentent une position d'au moins un point de mesure sur l'objet de mesure,
    - fourniture d'une base de données (34) qui contient une pluralité d'éléments de mesure (36) prédéfinis et une pluralité de caractéristiques de contrôle (38) types à propos des éléments de mesure (36) prédéfinis, chaque caractéristique de contrôle type parmi la pluralité de caractéristiques de contrôle (38) types représentant une propriété dimensionnelle définie d'au moins un élément de mesure prédéfini,
    - fourniture d'une représentation visuelle (32) de l'objet de mesure, laquelle indique au moins un premier et un deuxième élément géométrique (46, 48) parmi la pluralité d'éléments géométriques (46, 48, 50, 52),
    - sélection des éléments géométriques (46, 48) à l'aide de la représentation visuelle (32) et sélection de caractéristiques de contrôle (56, 58a, 58b) pour les éléments géométriques (46, 48), et
    - création assistée par ordinateur d'une séquence de mesure définie (40) en fonction des caractéristiques de contrôle,
    caractérisé en ce
    que l'étape de sélection contient une sélection d'éléments géométriques individuels dans la représentation visuelle (32) de l'objet de mesure par un opérateur,
    que des caractéristiques de contrôle (56, 58a, 58b) appropriées pour le premier élément géométrique (46') sont affichées sous forme graphique dans la représentation visuelle (32) de l'objet de mesure lorsque l'opérateur sélectionne le premier élément géométrique (46'), les caractéristiques de contrôle (56, 58a, 58b) appropriées étant déterminées à partir de la pluralité de caractéristiques de contrôle (38) types en associant le premier élément géométrique (46') sélectionné à un élément de mesure prédéfini de la pluralité d'éléments de mesure (36) prédéfinis, et l'affichage des caractéristiques de contrôle proposées pour la sélection supplémentaire variant en fonction de la sélection actuelle lorsque l'opérateur sélectionne un autre élément géométrique et/ou des éléments géométriques (48) supplémentaires,
    qu'au moins une caractéristique de contrôle (56, 58a, 58b) appropriée affichée pour le premier élément géométrique (46') est sélectionnée par l'opérateur dans la représentation visuelle (32) de l'objet de mesure, l'au moins une caractéristique de contrôle appropriée affichée devenant, par la sélection, une caractéristique de contrôle (56') sélectionnée pour le premier élément géométrique (46), et
    que la séquence de mesure (40) définie est créée avec assistance par ordinateur en fonction de la caractéristique de contrôle (56') sélectionnée,
    et comprenant en outre les étapes supplémentaires suivante
    - enregistrement (96) de valeurs mesurées individuelles au niveau du premier élément géométrique (46) à l'aide de la tête de mesure (16) et en fonction de la séquence de mesure (40) définie, et
    - détermination (98) d'une valeur numérique en fonction des valeurs mesurées individuelles, la valeur numérique représentant une propriété dimensionnelle du premier élément géométrique (46), laquelle correspond à la caractéristique de contrôle (56') sélectionnée.
  2. Procédé selon la revendication 1, la base de données (34) contenant en outre une pluralité d'éléments de liaison (39) prédéfinis, et chaque élément de liaison prédéfini représentant une propriété dimensionnelle définie en référence à au moins deux des éléments de mesure (36) prédéfinis.
  3. Procédé selon la revendication 2, le deuxième élément géométrique (48) étant en outre sélectionné à l'aide de la représentation visuelle (32), et des éléments de liaison (64, 66, 68) appropriés pour le premier et le deuxième élément géométrique (46', 48') sélectionnés étant affichés à l'aide de la base de données (34) pour la sélection supplémentaire.
  4. Procédé selon l'une des revendications 1 à 3, la valeur numérique à propos de la caractéristique de contrôle (56') sélectionnée étant affichée dans la représentation visuelle.
  5. Procédé selon l'une des revendications 1 à 4, l'objet de mesure étant palpé à l'aide de la tête de mesure (16) afin de fournir la représentation visuelle (32) .
  6. Procédé selon l'une des revendications 1 à 5, la représentation visuelle (32) de l'objet de mesure étant générée à l'aide de données de CAO.
  7. Procédé selon l'une des revendications 1 à 6, les étapes de sélection étant répétées pour plusieurs éléments géométriques (46, 48) parmi la pluralité d'éléments géométriques et/ou pour plusieurs caractéristiques de contrôle (56, 58, 60, 62) appropriées affichées, et la séquence de mesure (40) définie étant créée automatiquement en fonction de toutes les étapes de sélection.
  8. Procédé selon l'une des revendications 1 à 7, un outil de sélection (54) étant fourni et l'affichage des caractéristiques de contrôle (56, 58a, 58b) appropriées s'effectuant respectivement temporairement pendant que l'outil de sélection (54) est positionné dans la zone du premier élément géométrique (46) affiché.
  9. Procédé selon l'une des revendications 1 à 8, les éléments géométriques (46, 48, 50, 52) de l'objet de mesure étant identifiés automatiquement à l'aide de la base de données (34) et associés aux éléments de mesure prédéfinis afin d'afficher les caractéristiques de contrôle appropriées.
  10. Dispositif de détermination des propriétés dimensionnelles d'un objet de mesure, qui possède une pluralité d'éléments géométriques (46, 48, 50, 52), comprenant un attachement d'outil (14) destiné à maintenir l'objet de mesure, comprenant une tête de mesure (16) qui peut être déplacée par rapport à l'attachement d'outil (14) et qui est configurée pour enregistrer des valeurs mesurées qui représentent une position d'au moins un point de mesure sur l'objet de mesure, comprenant une unité d'interprétation et de commande (26, 28) qui déplace la tête de mesure en fonction d'une séquence de mesure (40) définie par rapport à l'attachement d'outil (14), et comprenant un appareil d'affichage d'image (30), l'unité d'interprétation et de commande (26, 28) possédant une base de données (34) qui contient une pluralité d'éléments de mesure (36) prédéfinis et une pluralité de caractéristiques de contrôle (38) types à propos des éléments de mesure (36) prédéfinis, chaque caractéristique de contrôle type parmi la pluralité de caractéristiques de contrôle (38) types représentant une propriété dimensionnelle définie d'au moins un élément de mesure prédéfini, l'unité d'interprétation et de commande (26, 28) étant configurée pour afficher sur l'appareil d'affichage d'image (30) une représentation visuelle (32) de l'objet de mesure, laquelle indique au moins un premier et un deuxième élément géométrique (46, 48) parmi la pluralité d'éléments géométriques (46, 48, 50, 52), l'unité d'interprétation et de commande (26, 28) fournissant un premier outil de sélection (54) afin de permettre une sélection des éléments géométriques (46, 48) à l'aide de la représentation visuelle (32) et une sélection de caractéristiques de contrôle (56, 58a, 58b), et l'unité d'interprétation et de commande (26, 28) étant en outre configurée pour créer une séquence de mesure définie (40) en fonction des caractéristiques de contrôle sélectionnées, caractérisé en ce que le premier outil de sélection (54) permet une sélection ciblée d'éléments géométriques individuels dans la représentation visuelle (32) de l'objet de mesure par un opérateur, en ce que l'unité d'interprétation et de commande (26, 28) est en outre configurée pour afficher sous forme graphique dans la représentation visuelle (32) de l'objet de mesure des caractéristiques de contrôle (56, 58a, 58b) appropriées pour le premier élément géométrique (46) lorsque l'opérateur sélectionne le premier élément géométrique (46'), l'unité d'interprétation et de commande (26, 28) déterminant les caractéristiques de contrôle (56, 58a, 58b) appropriées en fonction de la sélection à partir de la pluralité de caractéristiques de contrôle (38) types dans la base de données (34) en associant le premier élément géométrique (46') sélectionné à un élément de mesure prédéfini de la pluralité d'éléments de mesure (36) prédéfinis, et l'affichage des caractéristiques de contrôle proposées pour la sélection supplémentaire variant en fonction de la sélection actuelle lorsque l'opérateur sélectionne un autre élément géométrique et/ou des éléments géométriques (48) supplémentaires, en ce que l'unité d'interprétation et de commande (26, 28) fournit en outre un deuxième outil de sélection afin de permettre une sélection d'au moins une caractéristique de contrôle (56, 58a, 58b) appropriée affichée par l'opérateur dans la représentation visuelle (32), l'au moins une caractéristique de contrôle appropriée affichée devenant, par la sélection, une caractéristique de contrôle (56') sélectionnée, et en ce que l'unité d'interprétation et de commande (26, 28) est en outre configurée pour enregistrer des valeurs mesurées individuelles au niveau du premier élément géométrique (46) en fonction de la caractéristique de contrôle (56') sélectionnée et pour déterminer une valeur numérique qui représente une propriété dimensionnelle du premier élément géométrique (46), laquelle correspond à la caractéristique de contrôle (56') sélectionnée.
  11. Produit de programme informatique comprenant un code de programme qui est configuré pour mettre en œuvre un procédé selon l'une des revendications 1 à 9 lorsque le code de programme est exécuté sur une unité d'interprétation et de commande (26, 28) d'un appareil de mesure de coordonnées (12) qui possède un appareil d'affichage d'image (30), au moins un outil de sélection (54) et une tête de mesure (16) servant à enregistrer des valeurs mesurées qui représentent une position d'au moins un point de mesure sur un objet de mesure.
EP15712622.8A 2015-03-26 2015-03-26 Procédé, dispositif et produit programme d'ordinateur de détermination de propriétés en matière de dimension d'un objet mesuré Active EP3274654B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2015/056613 WO2016150517A1 (fr) 2015-03-26 2015-03-26 Procédé et dispositif de détermination de propriétés en matière de dimension d'un objet mesuré

Publications (2)

Publication Number Publication Date
EP3274654A1 EP3274654A1 (fr) 2018-01-31
EP3274654B1 true EP3274654B1 (fr) 2020-04-29

Family

ID=52829068

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15712622.8A Active EP3274654B1 (fr) 2015-03-26 2015-03-26 Procédé, dispositif et produit programme d'ordinateur de détermination de propriétés en matière de dimension d'un objet mesuré

Country Status (5)

Country Link
US (1) US10539417B2 (fr)
EP (1) EP3274654B1 (fr)
JP (1) JP6516865B2 (fr)
CN (1) CN107429997B (fr)
WO (1) WO2016150517A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107429997B (zh) * 2015-03-26 2019-10-11 卡尔蔡司工业测量技术有限公司 用于确定测量对象的尺寸特性的方法和装置
US11698851B2 (en) 2018-04-28 2023-07-11 Micro Focus Llc Recommending programmatic descriptions for test objects
US20210010915A1 (en) * 2019-07-12 2021-01-14 Illinois Tool Works Inc. Methods and apparatus to control staging of test specimens
EP3865979A1 (fr) * 2020-02-14 2021-08-18 Carl Zeiss Industrielle Messtechnik GmbH Procédé et dispositif d'aide à une planification basée sur un logiciel d'une mesure dimensionnelle
EP3882568B1 (fr) * 2020-03-16 2022-07-06 Carl Zeiss Industrielle Messtechnik GmbH Procédé mis en oeuvre par ordinateur permettant d'établir automatiquement un plan de mesure et programme informatique, produit programme informatique et machine de mesure de coordonnées correspondants
EP4019894B1 (fr) * 2020-12-22 2024-02-07 Carl Zeiss Industrielle Messtechnik GmbH Procédé de mesure d'une pièce au moyen d'une machine de mesure de coordonnées, et agencement comprenant une machine de mesure de coordonnées
US11543809B2 (en) * 2021-05-28 2023-01-03 Textron Innovations Inc. Automated inspection program generation

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1003735B (zh) * 1985-08-10 1989-03-29 株式会社三丰制作所 坐标测量仪
CN85107031B (zh) * 1985-09-20 1988-08-24 株式会社三丰制作所 坐标测量仪
JPH02108910A (ja) * 1988-10-18 1990-04-20 Nikon Corp 3次元座標測定機のオフラインティーチング装置
US5611147A (en) * 1993-02-23 1997-03-18 Faro Technologies, Inc. Three dimensional coordinate measuring apparatus
US5596744A (en) * 1993-05-20 1997-01-21 Hughes Aircraft Company Apparatus and method for providing users with transparent integrated access to heterogeneous database management systems
US5953687A (en) * 1997-08-18 1999-09-14 Giddings & Lewis, Inc. Method and apparatus for displaying active probe tip status of a coordinate measuring machine
JP2963419B2 (ja) * 1997-08-25 1999-10-18 防衛庁技術研究本部長 航空機搭載用撮影機器の姿勢変化測定装置
JP3482362B2 (ja) * 1999-01-12 2003-12-22 株式会社ミツトヨ 表面性状測定機、表面性状測定機用の傾斜調整装置および表面性状測定機における測定対象物の姿勢調整方法
JP3468504B2 (ja) * 1999-06-09 2003-11-17 株式会社ミツトヨ 測定手順ファイル生成方法、測定装置および記憶媒体
JP2004509346A (ja) 2000-09-22 2004-03-25 ベルス・メステヒニーク・ゲーエムベーハー 座標測定装置によって測定対象物の幾何学的形状を測定する方法。
US6889113B2 (en) * 2001-08-23 2005-05-03 Fei Company Graphical automated machine control and metrology
US6879933B2 (en) 2001-11-16 2005-04-12 Faro Technologies, Inc. Method and system for assisting a user taking measurements using a coordinate measurement machine
JP3891853B2 (ja) * 2002-02-01 2007-03-14 株式会社ミツトヨ 画像測定装置及び画像測定装置用プログラム
DE10211760A1 (de) * 2002-03-14 2003-10-02 Werth Messtechnik Gmbh Anordnung und Verfahren zum Messen von Geometrien bzw. Strukturen von im Wesentlichen zweidimensionalen Objekten mittels Bildverarbeitungssenorik
DE102004026357B4 (de) * 2004-05-26 2022-11-17 Werth Messtechnik Gmbh Vorrichtung und Verfahren zum Messen eines Objektes
US7398179B2 (en) * 2004-08-25 2008-07-08 Gm Global Technology Operations, Inc. Part measurement prioritization system and method
JP4759957B2 (ja) * 2004-08-26 2011-08-31 パナソニック電工株式会社 検査・計測用プログラムの作成方法並びにそのプログラムを作成するためのコンピュータプログラム及び検査・計測用プログラムの作成装置
JP5132775B2 (ja) * 2007-09-17 2013-01-30 コノプチカ エイエス 回転パーツの位置及び変化を見出す方法及び装置
JP2010060528A (ja) * 2008-09-08 2010-03-18 Keyence Corp 画像計測装置及びコンピュータプログラム
CN101387494B (zh) * 2008-10-06 2010-08-25 天津大学 大型隧道管片构件几何量测量装置和方法
CN101871775B (zh) * 2009-04-21 2012-09-19 鸿富锦精密工业(深圳)有限公司 三坐标测量机编程系统及方法
JP5515432B2 (ja) * 2009-06-03 2014-06-11 セイコーエプソン株式会社 三次元形状計測装置
JP5525953B2 (ja) 2010-07-29 2014-06-18 株式会社キーエンス 寸法測定装置、寸法測定方法及び寸法測定装置用のプログラム
JP6124570B2 (ja) 2012-11-30 2017-05-10 株式会社ミツトヨ Xyz直交測定装置
US9235337B2 (en) * 2013-05-09 2016-01-12 Mitutoyo Corporation System, GUI and method for editing step and repeat operation instructions in a machine vision inspection system
CN107429997B (zh) * 2015-03-26 2019-10-11 卡尔蔡司工业测量技术有限公司 用于确定测量对象的尺寸特性的方法和装置
WO2016169589A1 (fr) * 2015-04-21 2016-10-27 Carl Zeiss Industrielle Messtechnik Gmbh Procédé et dispositif permettant de déterminer les propriétés dimensionnelles effectives d'un objet à mesurer
US20160334778A1 (en) * 2015-05-13 2016-11-17 InspectionXpert Corporation Method and system for integrated manufacturing production quality inspections
US11520472B2 (en) * 2015-09-24 2022-12-06 Mitutoyo Corporation Inspection program editing environment including integrated alignment program planning and editing features
DE102016103557B4 (de) * 2016-02-29 2018-05-30 Carl Zeiss Industrielle Messtechnik Gmbh Koordinatenmessgerät
DE102016107336B4 (de) * 2016-04-20 2017-11-02 Carl Zeiss Industrielle Messtechnik Gmbh Koordinatenmessgerät, Verfahren zur Herstellung eines Koordinatenmessgeräts und Verfahren zur Messung eines optischen Filters
US10748327B2 (en) * 2017-05-31 2020-08-18 Ethan Bryce Paulson Method and system for the 3D design and calibration of 2D substrates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10539417B2 (en) 2020-01-21
CN107429997B (zh) 2019-10-11
CN107429997A (zh) 2017-12-01
JP2018512588A (ja) 2018-05-17
WO2016150517A1 (fr) 2016-09-29
EP3274654A1 (fr) 2018-01-31
US20180010910A1 (en) 2018-01-11
JP6516865B2 (ja) 2019-05-22

Similar Documents

Publication Publication Date Title
EP3274654B1 (fr) Procédé, dispositif et produit programme d'ordinateur de détermination de propriétés en matière de dimension d'un objet mesuré
EP3286524B1 (fr) Procédé et dispositif permettant de déterminer les propriétés dimensionnelles effectives d'un objet à mesurer
DE102014225482B4 (de) System und Verfahren zum Programmieren von Operationen zum Inspizieren von Werkstückmerkmalen für eine Koordinatenmessmaschine
EP2269130B1 (fr) Représentation des résultats de mesure de pièces en fonction de la détection des gestes d'un utilisateur
DE3805500C2 (fr)
DE102012220882B4 (de) System und Verfahren unter Verwendung eines Bearbeitungsinitialisierungsblocks in einer Teileprogramm-Bearbeitungsumgebung in einem Maschinenvisionssystem
DE112018006721T5 (de) Prüfprogrammbearbeitungsumgebung mit automatischen durchsichtigkeitsoperationen für verdeckte werkstückmerkmale
DE102014207095A1 (de) Kantenmessungs-Videowerkzeug mit robustem Kantenunterscheidungs-Spielraum
EP3794311B1 (fr) Procédé, dispositif et produit-programme informatique pour générer un plan de mesure pour mesurer un objet, procédé et dispositif pour mesurer un objet
EP3403051B1 (fr) Procédé et dispositif pour définir des données de consigne pour un mesurage d'une pièce à mesurer au moyen d'un appareil de mesure de coordonnées et/ou pour évaluer des résultats de mesure d'un mesurage d'une pièce mesurée au moyen d'un appareil de mesure de coordonnées
EP4056945A1 (fr) Validation des protocoles d'essai destinée à la mesure d'objet à l'aide d'un appareil de mesure de coordonnées
WO2017121585A1 (fr) Procédé de détermination d'une coordonnée de référence x-y-z d'une pièce et machine d'usinage
DE102015114715A1 (de) Verfahren zur Messung von Merkmalen an Werkstücken
EP1330686A2 (fr) Procede pour generer un programme de mesure destine a un appareil de mesure de coordonnees
DE19805155B4 (de) Verfahren zum Erzeugen von Steuerdaten für Koordinatenmeßgeräte
WO1999059038A1 (fr) Appareil de mesure de coordonnees et procede pour en assurer la commande
DE102007044000A1 (de) Verfahren zur Bestimmung einer Raumform eines Werkstücks
EP1377884B1 (fr) Appareil de mesure de coordonnees
DE112021000500T5 (de) Werkstückbild-Analysevorrichtung, Werkstück-Analyseverfahren und Programm
EP3865979A1 (fr) Procédé et dispositif d'aide à une planification basée sur un logiciel d'une mesure dimensionnelle
DE102010011841B4 (de) Verfahren zur Validierung eines Messergebnisses eines Koordinatenmessgeräts
EP3889890A1 (fr) Procédé de détection d'objet de mesure à base de données d'image
DE102008004578A1 (de) Verfahren zum Messen eines mit mindestens einer Schneide versehenen Rotationswerkzeuges sowie Messvorrichtung hierfür
EP3696496B1 (fr) Vérification des réglages de paramètres de mesure pour le fonctionnement d'un appareil de mesure de coordonnées
EP3875892B1 (fr) Appareil de mesure optique, méthode pour générer un programme de mesure optique d'un objet et méthode de mesure optique d'un objet

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190726

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20191209

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012425

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1263977

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200730

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200829

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200831

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012425

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210326

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210326

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210326

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210326

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1263977

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 10