EP3261768B1 - Method and device for fragmenting and/or weakening pourable material by means of high-voltage discharge - Google Patents

Method and device for fragmenting and/or weakening pourable material by means of high-voltage discharge Download PDF

Info

Publication number
EP3261768B1
EP3261768B1 EP15710416.7A EP15710416A EP3261768B1 EP 3261768 B1 EP3261768 B1 EP 3261768B1 EP 15710416 A EP15710416 A EP 15710416A EP 3261768 B1 EP3261768 B1 EP 3261768B1
Authority
EP
European Patent Office
Prior art keywords
voltage
material flow
electrode assembly
voltage electrode
zones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15710416.7A
Other languages
German (de)
French (fr)
Other versions
EP3261768A1 (en
Inventor
Reinhard MÜLLER-SIEBERT
Joël KOLLY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Selfrag AG
Original Assignee
Selfrag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Selfrag AG filed Critical Selfrag AG
Publication of EP3261768A1 publication Critical patent/EP3261768A1/en
Application granted granted Critical
Publication of EP3261768B1 publication Critical patent/EP3261768B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/10Separating or sorting of material, associated with crushing or disintegrating with separator arranged in discharge path of crushing or disintegrating zone
    • B02C23/12Separating or sorting of material, associated with crushing or disintegrating with separator arranged in discharge path of crushing or disintegrating zone with return of oversize material to crushing or disintegrating zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • B02C23/36Adding fluid, other than for crushing or disintegrating by fluid energy the crushing or disintegrating zone being submerged in liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • B02C2019/183Crushing by discharge of high electrical energy

Definitions

  • the invention relates to methods for fragmentation and / or weakening of pourable material by means of high-voltage discharges and devices for carrying out the method according to the preambles of the independent claims.
  • the fragmentation and / or weakening of the material takes place in batch mode in a closed process vessel in which high-voltage breakdowns are generated by the material.
  • the fragmentation and / or weakening of the material takes place in a continuous process, by passing a stream of material from the material to be shredded past one or more high-voltage electrodes and generating these high-voltage breakdowns through the material.
  • a process is from the document DE 197 27 534 A1 known.
  • a first aspect of the invention relates to a method for fragmenting and / or weakening pourable material, in particular rock fragments or crushed rock, by means of high-voltage discharges.
  • a flow of material from the pourable material to be fragmented or weakened immersed in a process liquid at a high voltage electrode assembly with one or more high voltage electrodes is passed while high voltage breakdowns are generated by the material of the material flow by applying the high voltage electrodes with high voltage pulses.
  • the invention is doing the zone of the flow of material in which the high voltage breakdowns are generated by the material, as seen in the advancing direction laterally of substantially immobile areas or zones of the same material limited (stationary material areas).
  • process zone the lateral boundaries of the zone of the moving material stream in which the high-voltage breakdowns take place (process zone) are formed by identical but essentially non-moving material, which makes it possible to dispense with means for lateral limitation of the actual process zone, and contamination with foreign material is prevented.
  • the stationary material areas are formed by the material supplied via the material flow.
  • the stationary material regions are preferably formed such that the edge regions of the material stream are dammed at a location downstream of the high-voltage electrode arrangement, so that immobile material zones extend laterally along the entire length of the process zone.
  • the moving material stream and the still material areas are formed by providing the pourable material in a process liquid flooded gutter-type device whose bottom is formed in a central area of a conveyor belt or a conveyor chain and in FIG is fixed to the edge areas.
  • the stationary material areas can be generated in a controlled and low-wear manner.
  • Any material that is carried away from the material flow from the still material areas is preferably replaced by material from the flow of material and / or replaced by separately supplied material.
  • one or the other Variant be particularly advantageous or even a combination thereof.
  • a second aspect of the invention relates to a further method for fragmenting and / or weakening pourable material, in particular rock fragments or crushed rock, by means of high-voltage discharges.
  • a flow of material from the pourable material to be fragmented or weakened immersed in a process liquid is passed to a high-voltage electrode arrangement with one or more high voltage electrodes, while high voltage breakdowns are generated by the material of the material flow by applying the high voltage electrodes with high voltage pulses.
  • the middle region of the material flow is subjected to high-voltage breakdowns, while the edge regions of the material flow remain essentially unaffected by high-voltage breakdowns. Subsequently, the high-voltage breakdown material of the middle region of the material flow downstream of the high-voltage electrode arrangement is separated from the untreated material of the edge regions of the material flow.
  • process zone the zone of the material flow in which the high-voltage breakdowns take place (process zone), laterally limited by material flow of the material, which is not treated with high voltage breakdowns, which also has the advantage that on-site facilities for lateral limitation of the actual process zone can be dispensed with and contamination with foreign material is prevented.
  • the untreated material separated from the treated material from the middle region of the material flow of the edge regions of the material flow wholly or partially at a location upstream of the high voltage electrode assembly is fed back into the material flow, with advantage in the middle region of the material flow. In this way, the proportion of untreated material, ie material that is not treated with high voltage breakdowns, can be minimized.
  • the high-voltage electrode arrangement advantageously comprises a matrix of a plurality of high-voltage electrodes, which are each subjected to high-voltage pulses during normal operation. As a result, it is possible to achieve a two-dimensional loading of the bypassed material flow with high-voltage breakdowns.
  • each of the high-voltage electrodes of the matrix preferably has its own high-voltage generator, with which it is subjected to high-voltage pulses independently of the other high-voltage electrodes. This makes it possible to ensure a uniform and high energy input into the material flow over the entire surface of the matrix or to selectively apply individual areas with different amounts of energy.
  • an element limiting the underside of the material flow in the region of the high voltage electrode arrangement is used, so that by applying the high voltage electrodes with high voltage pulses high voltage breakdowns between the respective high voltage electrode and this element take place through the material flow.
  • this element is formed by a conveyor belt or a conveyor chain, with which or which of the material flow is guided past the high-voltage electrode arrangement.
  • the high-voltage electrodes of the high-voltage electrode arrangement are preferably immersed in the material flow.
  • each of the high voltage electrodes of the high voltage electrode assembly has one or more of its own, i. the respective high voltage electrode exclusively associated, counterelectrodes, which is so arranged laterally next to and / or below this high voltage electrode, that by applying the respective high voltage electrode with high voltage pulses Hochwoods screenelle between the high voltage electrode and the or the counter electrodes through the passing past these material flow be generated.
  • the high voltage electrodes and / or the counter electrodes are immersed in the material flow.
  • Another advantage of this embodiment is that it provides the greatest possible freedom of design with regard to the support surface or the conveyor for the material flow in the region of the process zone offers because the bottom surface of the process zone is not needed as a counter electrode.
  • the counterelectrodes are carried by the respective high-voltage electrode or by its supporting structure.
  • a third and a fourth aspect of the invention relate to an apparatus for carrying out the method according to the first aspect or the second aspect of the invention.
  • the device comprises a high-voltage electrode arrangement with one or more high-voltage electrodes and one or more high-voltage generators, by means of which or which the high-voltage electrode or the high-voltage electrodes of the high-voltage electrode arrangement can be acted upon by high-voltage pulses.
  • the apparatus comprises a conveying means, preferably conveying in a straight line, e.g. in the form of a conveyor belt or a conveyor chain, which is arranged in a tank filled or filled with a process liquid and with which in normal operation a stream of material from a free-flowing fragmented and / or weakened material are immersed in the process liquid passed to the high voltage electrode assembly can be generated while high voltage breakdowns by the material flow as a result of application of high voltage pulses to the high voltage electrode assembly.
  • a conveying means preferably conveying in a straight line, e.g. in the form of a conveyor belt or a conveyor chain, which is arranged in a tank filled or filled with a process liquid and with which in normal operation a stream of material from a free-flowing fragmented and / or weakened material are immersed in the process liquid passed to the high voltage electrode assembly can be generated while high voltage breakdowns by the material flow as a result of application of high voltage pulses to the high voltage electrode assembly.
  • the device according to the third aspect of the invention is designed such that during normal operation when passing the material flow in the lateral regions of the zone in which the high-voltage breakdowns are produced by the material of the material flow, the material flow material in each case accumulates to a substantially stationary material zone, which is substantially unaffected by the high-voltage breakdowns.
  • the device has facilities for targeted damming of the material flow, eg baffles or lateral boundary walls for the material flow with depressions in which the material accumulates.
  • process zone Due to the fact that the lateral boundaries of the zone of the moving material flow in which the high-voltage breakdowns take place (process zone) are formed by identical but substantially immobile material, it is possible to dispense with wear-intensive devices for lateral limitation of the actual process zone, which has a positive effect on the operating costs and affects the maintenance-related downtime of the device and also allows a process management with low foreign material contamination.
  • the device according to the fourth aspect of the invention is in contrast to the device according to the third aspect of the invention designed such that in normal operation when passing the material flow to the high voltage electrode assembly, the middle portion of the material flow is subjected to high voltage breakdowns, while the edge regions of Material flow are substantially unaffected by the high voltage breakdowns.
  • the device has a separation device, by means of which in the normal operation downstream of the high-voltage electrode arrangement, the material of the edge regions of the material flow is separated from the material of the central region of the material flow.
  • the device further comprises additional means for returning the separated with the separation device material of the edge regions of the material flow back into the flow of material upstream of the high voltage electrode assembly so that this material can be redirected past the high voltage electrode assembly for fragmentation and / or weakening thereof or for reformation of the edge regions of the material stream.
  • process zone Because the lateral boundaries of the zone of the moving material flow in which the high-voltage breakdowns take place (process zone) are formed by the material of the moving material flow, wear-intensive devices for lateral delimitation of the actual process zone can also be dispensed with, which, as already described has been mentioned, has a positive effect on the operating costs and the maintenance-related downtime of the device and also allows a process management with low foreign material contamination.
  • FIGS. 1 to 3 show a first inventive device for fragmenting pourable material 1 by means of high voltage discharges, once in a longitudinal section along the line BB in Fig. 3 ( Fig. 1 ), once in a plan view from above ( Fig. 2 ) and once in a cross section along the line AA in Fig. 1 ( Fig. 3 ).
  • the device has a high-voltage electrode arrangement 2 with a matrix of 16 high-voltage electrodes 7, which are arranged in four consecutively arranged rows each with four high-voltage electrodes 7 in the direction of passage through the material S (in the figures, for the sake of clarity, only one each the high-voltage electrodes with the reference numeral 7).
  • the high voltage electrodes 7 are shown in the intended operation with one each applied directly above them high voltage generator 3 with high voltage pulses.
  • a conveyor belt 6 by means of which a flow of material from a pourable material 1 to be fragmented, in the present case fragments of noble metal ore, from the feed side A of the device forth in the material passage direction S is passed to the high voltage electrodes 7 of the high voltage electrode assembly 2, while high voltage breakdowns are generated by the material 1 as a result of application of high voltage pulses to the high voltage electrode assembly 2.
  • the material 1 of the material flow is immersed in the water 4 located in the basin 5, as well as the high-voltage electrodes 7 arranged above it.
  • the height of the flow of material is adjusted prior to entry into the area between the conveyor belt 6 and the high voltage electrode assembly 2 (process zone) through a passage restriction plate 12.
  • the conveyor belt 6 seen in the direction of passage S does not extend over the entire width of the basin 5, but in the region of the basin center across the width of the process zone in which the high voltage breakdowns are carried out by the flow of material.
  • baffles 10 are arranged, which cause the material 1 in the edge regions of the pelvis 5 is dammed up on the support portions 13 and thereby forms substantially immobile material zones 9 along these edge regions, which the process zone in which the high-voltage breakdowns be generated by the material 1 of the material flow, limit laterally.
  • the transported on the conveyor belt 6 material 1 is increasingly fragmented when passing through the process zone, while the still material 1 in the edge regions 9 of the basin 5 remains virtually unchanged.
  • the fragmented material 1 emerging from the process zone is discharged from the conveyor belt 6 into a collection funnel 14 at the end of the basin 5, from where it is conveyed out of the basin 5 with a conveyor (not shown).
  • FIGS. 4 to 6 show a second inventive device for fragmenting pourable material 1 by means of high-voltage discharges, once in a longitudinal section along the line DD in Fig. 6 ( Fig. 4 ), once in a plan view from above ( Fig. 5 ) and once in a cross section along the line CC in Fig. 4 ( Fig. 6 ).
  • This device is different from the one in the FIGS. 1 to 3 shown device that here the conveyor belt 6 seen in the direction of passage S extends over the entire width of the basin 5, so that the moving material flow covers the entire width of the basin 5.
  • the middle portion of the material flow is applied when passing through the process zone with high voltage breakdowns, which leads to an increasing fragmentation of the material 1 in this area, while the edge regions of the material flow remain virtually untouched by high voltage breakdowns, so that the material 1 guided there original piece remains.
  • the material flow emerging from the process zone is discharged from the conveyor belt 6 into three collection funnels 14, 14a, 14b separated by separation walls 11 and extending side by side over the entire width of the conveyor belt 6 at the end of the basin 5.
  • the separation walls 11 are arranged such that the fragmented material 1 is discharged from the central region of the material flow into the central collecting funnel 14, while the unfragmented material 1 is discharged from the edge regions of the material flow into the outer collecting funnels 14a, 14b.
  • the fragmented material 1, which is discharged into the central collecting funnel 14, is conveyed out of the basin 5 by means of a conveying device (not shown) and supplied for further use.
  • the non-fragmented material 1, which is discharged into the outer collecting funnels 14a, 14b, is conveyed out of the basin 5 by means of conveying devices (not shown) and returned to the material flow on the feeding side A of the device.
  • each of the high voltage electrodes 7 has its own grounding counter electrode 8, which is disposed laterally adjacent to the respective high voltage electrode 7, in the illustrated operation the application of high-voltage pulses to the respective high-voltage electrode 7 generates high-voltage breakdowns between the high-voltage electrode 7 and its associated counter-electrode 8 through the material 1 of the material flow.
  • the counter electrode 8 is attached to the support structure of the high-voltage electrode 7.
  • FIGS. 8 and 9 show side views of two variants of the high voltage electrode Fig. 7 .
  • Fig. 8 shows a high voltage electrode 7, which differs from the in Fig. 7 shown essentially differs in that it has two identical, mirror image opposite counter-electrodes 8. Another difference is that this high voltage electrode 7 has a straight electrode tip.
  • Fig. 9 shows a high voltage electrode 7, which differs from the in Fig. 8 shown essentially differs in that here the in Fig. 8 shown two mirror-inverted counter-electrodes 8 are connected below the high voltage electrode 7 to a single, U-shaped counter electrode 8.
  • the high voltage electrodes 7 and the counter electrodes 8 are preferably immersed in the material flow.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die Erfindung betrifft Verfahren zur Fragmentierung und/oder Schwächung von schüttfähigem Material mittels Hochspannungsentladungen sowie Vorrichtungen zur Durchführung der Verfahren gemäss den Oberbegriffen der unabhängigen Patentansprüche.The invention relates to methods for fragmentation and / or weakening of pourable material by means of high-voltage discharges and devices for carrying out the method according to the preambles of the independent claims.

STAND DER TECHNIKSTATE OF THE ART

Aus dem Stand der Technik ist es bekannt, verschiedenste Materialien mittels gepulster Hochspannungsentladungen zu zerkleinern oder derartig zu schwächen, dass diese in einem nachgeschalteten mechanischen Zerkleinerungsprozess einfacher zerkleinert werden können.It is known from the prior art to comminute or weaken various materials by means of pulsed high-voltage discharges in such a way that they can be comminuted more easily in a downstream mechanical comminution process.

Für die Fragmentierung und/oder Schwächung von schüttfähigem Material mittels Hochspannungsentladungen sind heute grundsätzlich zwei verschiedene Prozessarten bekannt.For the fragmentation and / or weakening of pourable material by means of high-voltage discharges, basically two different types of process are known today.

Bei kleinen Materialmengen bzw. strengen Vorgaben betreffend die Reinheit und/oder die Zielkorngrösse des prozessierten Materials erfolgt die Fragmentierung und/oder Schwächung des Materials im Batchbetrieb in einem geschlossenen Prozessgefäss, in welchem Hochspannungsdurchschläge durch das Material erzeugt werden.For small quantities of material or strict specifications regarding the purity and / or the target particle size of the processed material, the fragmentation and / or weakening of the material takes place in batch mode in a closed process vessel in which high-voltage breakdowns are generated by the material.

Bei grossen Materialmengen erfolgt die Fragmentierung und/oder Schwächung des Materials in einem kontinuierlichen Prozess, indem ein Materialstrom aus dem zu zerkleinernden Material an einer oder mehreren Hochspannungselektroden vorbeigeführt wird und mit diesen Hochspannungsdurchschläge durch das Material erzeugt werden. Ein derartiger Prozess ist aus der Druckschrift DE 197 27 534 A1 bekannt.In the case of large amounts of material, the fragmentation and / or weakening of the material takes place in a continuous process, by passing a stream of material from the material to be shredded past one or more high-voltage electrodes and generating these high-voltage breakdowns through the material. Such a process is from the document DE 197 27 534 A1 known.

Dabei ergibt sich jedoch das Problem, dass bei einem gegenüber der eigentlichen Prozesszone, in welcher die Hochspannungsdurchschläge stattfinden, zu breiten Materialstrom nicht das gesamte Material prozessiert wird, was die Qualität des prozessierten Produkts beeinträchtigt, während hingegen bei einem zu schmalen Materialstrom ein Teil der Hochspannungsdurchschläge zu den seitlichen Begrenzungswandungen der den Materialstrom führenden Vorrichtung hin stattfindet, was die Prozesseffizienz reduziert und diese Begrenzungswandungen mit der Zeit zerstört. Auch wird hierdurch die Lebensdauer der Anlage reduziert und es besteht die Gefahr, dass es zu einer Kontamination des prozessierten Materials mit Fremdmaterial kommt.However, this results in the problem that in a compared to the actual process zone in which the high voltage breakdowns take place, too broad material flow is not the entire material is processed, which affects the quality of the processed product, while on the other hand at a too narrow material flow part of the high voltage breakdowns to the lateral boundary walls of the material flow leading device takes place, which reduces the process efficiency and destroys these boundary walls over time. This also reduces the life of the plant and there is a risk of contamination of the processed material with foreign material.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Es stellt sich deshalb die Aufgabe, kontinuierliche Verfahren und Vorrichtungen zur Fragmentierung und/oder Schwächung von schüttfähigem Material mittels Hochspannungsentladungen zur Verfügung zu stellen, welche die zuvor erwähnten Nachteile des Standes der Technik nicht aufweisen oder zumindest teilweise vermeiden.It is therefore an object to provide continuous methods and apparatus for fragmenting and / or weakening pourable material by means of high-voltage discharges, which do not have the aforementioned disadvantages of the prior art or at least partially avoided.

Diese Aufgabe wird durch die Gegenstände der unabhängigen Patentansprüche gelöst.This object is solved by the subject matters of the independent claims.

Gemäss diesen betrifft ein erster Aspekt der Erfindung ein Verfahren zur Fragmentierung und/oder Schwächung von schüttfähigem Material, insbesondere von Gesteinsbruchstücken oder -schotter, mittels Hochspannungsentladungen.According to these, a first aspect of the invention relates to a method for fragmenting and / or weakening pourable material, in particular rock fragments or crushed rock, by means of high-voltage discharges.

Dabei wird ein Materialstrom aus dem zu fragmentierenden bzw. zu schwächenden schüttfähigen Material eingetaucht in eine Prozessflüssigkeit an einer Hochspannungselektroden-Anordnung mit einer oder mehreren Hochspannungselektroden vorbeigeführt, während durch Beaufschlagung der Hochspannungselektroden mit Hochspannungspulsen Hochspannungsdurchschläge durch das Material des Materialstroms erzeugt werden. Erfindungsgemäss wird dabei die Zone des Materialstromes, in welchem die Hochspannungsdurchschläge durch das Material erzeugt werden, in Vorbeiführungsrichtung gesehen seitlich von im Wesentlichen unbewegten Bereichen bzw. Zonen aus dem gleichen Material begrenzt (unbewegte Materialbereiche).In this case, a flow of material from the pourable material to be fragmented or weakened immersed in a process liquid at a high voltage electrode assembly with one or more high voltage electrodes is passed while high voltage breakdowns are generated by the material of the material flow by applying the high voltage electrodes with high voltage pulses. According to the invention is doing the zone of the flow of material in which the high voltage breakdowns are generated by the material, as seen in the advancing direction laterally of substantially immobile areas or zones of the same material limited (stationary material areas).

Auf diese Weise werden die seitlichen Begrenzungen der Zone des bewegten Materialstromes, in der die Hochspannungsdurchschläge stattfinden (Prozesszone), durch identisches aber im Wesentlichen unbewegtes Material gebildet, wodurch es möglich wird, auf Einrichtungen zur seitlichen Begrenzung der eigentlichen Prozesszone zu verzichten, und eine Kontamination mit Fremdmaterial verhindert wird.In this way, the lateral boundaries of the zone of the moving material stream in which the high-voltage breakdowns take place (process zone) are formed by identical but essentially non-moving material, which makes it possible to dispense with means for lateral limitation of the actual process zone, and contamination with foreign material is prevented.

Mit Vorteil werden dabei die unbewegten Materialbereiche durch das über den Materialstrom zugeführte Material gebildet. Hierzu werden die unbewegten Materialbereiche bevorzugterweise derart gebildet, dass die Randbereiche des Materialstromes an einer Stelle stromabwärts der Hochspannungselektroden-Anordnung aufgestaut werden, so dass sich unbewegte Materialzonen seitlich entlang der gesamte Länge der Prozesszone erstrecken.Advantageously, the stationary material areas are formed by the material supplied via the material flow. For this purpose, the stationary material regions are preferably formed such that the edge regions of the material stream are dammed at a location downstream of the high-voltage electrode arrangement, so that immobile material zones extend laterally along the entire length of the process zone.

Weiter ist es bevorzugt, dass der bewegte Materialstrom und die unbewegten Materialbereiche dadurch gebildet werden, dass das schüttfähige Material in einer mit Prozessflüssigkeit gefluteten rinnenartigen bzw. beckenartigen Vorrichtung bereitgestellt wird, deren Boden in einem mittleren Bereich von einem Förderband oder einer Förderkette gebildet ist und in den Randbereichen feststehend ist. Auf diese Weise können die unbewegten Materialbereiche auf kontrollierte und verschleissarme Weise erzeugt werden.Further, it is preferable that the moving material stream and the still material areas are formed by providing the pourable material in a process liquid flooded gutter-type device whose bottom is formed in a central area of a conveyor belt or a conveyor chain and in FIG is fixed to the edge areas. In this way, the stationary material areas can be generated in a controlled and low-wear manner.

Etwaiges Material, welches von dem Materialstrom aus den unbewegten Materialbereichen fortgetragen wird, wird bevorzugterweise durch Material aus dem Materialstrom ersetzt und/oder durch separat zugeführtes Material ersetzt. Je nach Aufbau der zur Durchführung des Verfahrens verwendeten Anlage kann die eine oder die andere Variante besonders vorteilhaft sein oder auch eine Kombination daraus.Any material that is carried away from the material flow from the still material areas is preferably replaced by material from the flow of material and / or replaced by separately supplied material. Depending on the structure of the system used to carry out the process, one or the other Variant be particularly advantageous or even a combination thereof.

Ein zweiter Aspekt der Erfindung betrifft ein weiteres Verfahren zur Fragmentierung und/oder Schwächung von schüttfähigem Material, insbesondere von Gesteinsbruchstücken oder -schotter, mittels Hochspannungsentladungen.A second aspect of the invention relates to a further method for fragmenting and / or weakening pourable material, in particular rock fragments or crushed rock, by means of high-voltage discharges.

Dabei wird ein Materialstrom aus dem zu fragmentierenden bzw. zu schwächenden schüttfähigen Material eingetaucht in eine Prozessflüssigkeit an einer Hochspannungselektroden-Anordnung mit einer oder mehreren Hochspannungselektroden vorbeigeführt, während durch Beaufschlagung der Hochspannungselektroden mit Hochspannungspulsen Hochspannungsdurchschläge durch das Material des Materialstroms erzeugt werden. Erfindungsgemäss wird dabei der mittlere Bereich des Materialstromes mit Hochspannungsdurchschlägen beaufschlagt, während die Randbereiche des Materialstromes im Wesentlichen unberührt von Hochspannungsdurchschlägen bleiben. Anschliessend wird das mit Hochspannungsdurchschlägen behandelte Material des mittleren Bereichs des Materialstromes stromabwärts von der Hochspannungselektroden-Anordnung von dem unbehandelten Material der Randbereiche des Materialstromes separiert. Bei diesem Verfahren wird die Zone des Materialstromes, in der die Hochspannungsdurchschläge stattfinden (Prozesszone), seitlich durch Material des Materialstromes begrenzt, welches nicht mit Hochspannungsdurchschlägen behandelt wird, woraus sich auch hier der Vorteil ergibt, dass auf anlagenseitige Einrichtungen zur seitlichen Begrenzung der eigentlichen Prozesszone verzichtet werden kann und eine Kontamination mit Fremdmaterial verhindert wird.In this case, a flow of material from the pourable material to be fragmented or weakened immersed in a process liquid is passed to a high-voltage electrode arrangement with one or more high voltage electrodes, while high voltage breakdowns are generated by the material of the material flow by applying the high voltage electrodes with high voltage pulses. According to the invention, the middle region of the material flow is subjected to high-voltage breakdowns, while the edge regions of the material flow remain essentially unaffected by high-voltage breakdowns. Subsequently, the high-voltage breakdown material of the middle region of the material flow downstream of the high-voltage electrode arrangement is separated from the untreated material of the edge regions of the material flow. In this method, the zone of the material flow in which the high-voltage breakdowns take place (process zone), laterally limited by material flow of the material, which is not treated with high voltage breakdowns, which also has the advantage that on-site facilities for lateral limitation of the actual process zone can be dispensed with and contamination with foreign material is prevented.

Dabei ist es bevorzugt, dass das von dem behandelten Material aus dem mittleren Bereich des Materialstromes separierte unbehandelte Material der Randbereiche des Materialstromes ganz oder teilweise an einer Stelle stromaufwärts von der Hochspannungselektroden-Anordnung wieder in den Materialstrom zugeführt wird, mit Vorteil in den mittleren Bereich des Materialstromes. Auf diese Weise kann der Anteil an unbehandeltem Material, d.h. Material, welches nicht mit Hochspannungsdurchschlägen behandelt wird, minimiert werden.It is preferred that the untreated material separated from the treated material from the middle region of the material flow of the edge regions of the material flow wholly or partially at a location upstream of the high voltage electrode assembly is fed back into the material flow, with advantage in the middle region of the material flow. In this way, the proportion of untreated material, ie material that is not treated with high voltage breakdowns, can be minimized.

Die Hochspannungselektroden-Anordnung umfasst bei den Verfahren gemäss dem ersten und dem zweiten Aspekt der Erfindung mit Vorteil eine Matrix aus mehreren Hochspannungselektroden, welche im bestimmungsgemässen Betrieb jeweils mit Hochspannungspulsen beaufschlagt werden. Hierdurch lässt sich eine flächige Beaufschlagung des vorbeigeführten Materialstromes mit Hochspannungsdurchschlägen erzielen.In the methods according to the first and second aspects of the invention, the high-voltage electrode arrangement advantageously comprises a matrix of a plurality of high-voltage electrodes, which are each subjected to high-voltage pulses during normal operation. As a result, it is possible to achieve a two-dimensional loading of the bypassed material flow with high-voltage breakdowns.

Dabei weist bevorzugterweise jede der Hochspannungselektroden der Matrix ihren eigenen Hochspannungsgenerator auf, mit welchem sie unabhängig von den anderen Hochspannungselektroden mit Hochspannungspulsen beaufschlagt wird. Hierdurch wird es möglich, über die gesamte Fläche der Matrix eine gleichmässige und hohe Energieeinbringung in den Materialstrom sicherzustellen oder auch gezielt einzelne Bereiche mit unterschiedlichen Energiemengen zu beaufschlagen.In this case, each of the high-voltage electrodes of the matrix preferably has its own high-voltage generator, with which it is subjected to high-voltage pulses independently of the other high-voltage electrodes. This makes it possible to ensure a uniform and high energy input into the material flow over the entire surface of the matrix or to selectively apply individual areas with different amounts of energy.

Als Gegenelektrode für die Hochspannungselektroden der Hochspannungselektroden-Anordnung wird gemäss einer bevorzugten Ausführungsform der Verfahren gemäss dem ersten und dem zweiten Aspekt der Erfindung ein die Unterseite des Materialstromes im Bereich der Hochspannungselektroden-Anordnung begrenzendes Element verwendet, so dass durch das Beaufschlagen der Hochspannungselektroden mit Hochspannungspulsen Hochspannungsdurchschläge zwischen der jeweiligen Hochspannungselektrode und diesem Element durch den Materialstrom hindurch stattfinden. Bevorzugterweise wird dieses Element von einem Förderband oder einer Förderkette gebildet, mit welchem oder welcher der Materialstrom an der Hochspannungselektroden-Anordnung vorbeigeführt wird. Bevorzugterweise sind dabei die Hochspannungselektroden der Hochspanungselektroden-Anordnung in den Materialstrom eingetaucht. Mit dieser Verfahrensvariante kann besonders intensiv auf das Material des Materialstromes eingewirkt werden, da die Hochspannungsdurchschläge über die gesamte Dicke des Materialstromes erfolgen.As a counterelectrode for the high voltage electrodes of the high voltage electrode arrangement, according to a preferred embodiment of the method according to the first and the second aspect of the invention, an element limiting the underside of the material flow in the region of the high voltage electrode arrangement is used, so that by applying the high voltage electrodes with high voltage pulses high voltage breakdowns between the respective high voltage electrode and this element take place through the material flow. Preferably, this element is formed by a conveyor belt or a conveyor chain, with which or which of the material flow is guided past the high-voltage electrode arrangement. In this case, the high-voltage electrodes of the high-voltage electrode arrangement are preferably immersed in the material flow. With this process variant can be acted particularly intensively on the material of the material flow, since the high voltage breakdowns are made over the entire thickness of the material flow.

In einer anderen bevorzugten Ausführungsform der Verfahren gemäss dem ersten und dem zweiten Aspekt der Erfindung weist jede der Hochspannungselektroden der Hochspannungselektroden-Anordnung eine oder mehrere eigene, d.h. der jeweiligen Hochspannungselektrode exklusiv zugeordnete, Gegenelektroden auf, welche derartig seitlich neben und/oder unter dieser Hochspannungselektrode angeordnet ist bzw. sind, dass durch das Beaufschlagen der jeweiligen Hochspannungselektrode mit Hochspannungspulsen Hochspannungsdurchschläge zwischen der Hochspannungselektrode und der bzw. den Gegenelektroden durch den an diesen vorbeigeführten Materialstrom erzeugt werden. Bevorzugterweise sind dabei die Hochspannungselektroden und/oder die Gegenelektroden in den Materialstrom eingetaucht.In another preferred embodiment of the methods according to the first and second aspects of the invention, each of the high voltage electrodes of the high voltage electrode assembly has one or more of its own, i. the respective high voltage electrode exclusively associated, counterelectrodes, which is so arranged laterally next to and / or below this high voltage electrode, that by applying the respective high voltage electrode with high voltage pulses Hochspannungsdurchschläge between the high voltage electrode and the or the counter electrodes through the passing past these material flow be generated. Preferably, the high voltage electrodes and / or the counter electrodes are immersed in the material flow.

Hierdurch ergibt sich der Vorteil, dass die Durchschlagsspannung im Wesentlichen entkoppelt ist von der Dicke des Materialstromes, so dass auch Materialströme aus grossen Materialstücken ohne Weiteres prozessiert werden können. Ein weiterer Vorteil dieser Ausführungsform besteht darin, dass sie grösstmögliche Gestaltungsfreiheit bezüglich der Auflagefläche bzw. der Fördereinrichtung für den Materialstrom im Bereich der Prozesszone bietet, weil die Bodenfläche der Prozesszone nicht als Gegenelektrode benötigt wird.This results in the advantage that the breakdown voltage is substantially decoupled from the thickness of the material flow, so that material flows from large pieces of material can be processed without further ado. Another advantage of this embodiment is that it provides the greatest possible freedom of design with regard to the support surface or the conveyor for the material flow in the region of the process zone offers because the bottom surface of the process zone is not needed as a counter electrode.

Dabei ist es bei der letztgenannten bevorzugten Ausführungsform weiter bevorzugt, dass die Gegenelektroden von der jeweiligen Hochspannungselektrode bzw. von deren Tragstruktur getragen werden.It is further preferred in the last-mentioned preferred embodiment that the counterelectrodes are carried by the respective high-voltage electrode or by its supporting structure.

Wie zuvor dargelegt wird es mit den erfindungsgemässen Verfahren möglich, schüttfähiges Material auf verschleiss- und kontaminationsarme Weise in einem kontinuierlichen Prozess mittels Hochspannungsentladungen zu fragmentieren und/oder zu schwächen.As explained above, it is possible with the method according to the invention to fragment and / or weaken pourable material in a continuous process by means of high-voltage discharges in a low-wear and low-contamination manner.

Ein dritter und ein vierter Aspekt der Erfindung betreffen eine Vorrichtung zur Durchführung des Verfahrens gemäss dem ersten Aspekt bzw. dem zweiten Aspekt der Erfindung.A third and a fourth aspect of the invention relate to an apparatus for carrying out the method according to the first aspect or the second aspect of the invention.

Die Vorrichtung umfasst eine Hochspannungselektroden-Anordnung mit einer oder mehreren Hochspannungselektroden sowie einen oder mehrere Hochspannungsgeneratoren, mittel welchem oder welchen die Hochspannungselektrode oder die Hochspannungselektroden der Hochspannungselektroden-Anordnung mit Hochspannungspulsen beaufschlagbar ist oder sind.The device comprises a high-voltage electrode arrangement with one or more high-voltage electrodes and one or more high-voltage generators, by means of which or which the high-voltage electrode or the high-voltage electrodes of the high-voltage electrode arrangement can be acted upon by high-voltage pulses.

Weiter umfasst die Vorrichtung eine mit Vorteil geradlinig fördernde Fördereinrichtung, z.B. in Form eines Förderbands oder einer Förderkette, welche in einem mit einer Prozessflüssigkeit befüllten oder befüllbaren Becken angeordnet ist und mit welcher im bestimmungsgemässen Betrieb ein Materialstrom aus einem schüttfähigen zu fragmentierenden und/oder zu schwächenden Material eingetaucht in die Prozessflüssigkeit an der Hochspannungselektroden-Anordnung vorbeigeführt werden kann, während Hochspannungsdurchschläge durch den Materialstrom infolge einer Beaufschlagung der Hochspannungselektroden-Anordnung mit Hochspannungspulsen erzeugt werden.Further, the apparatus comprises a conveying means, preferably conveying in a straight line, e.g. in the form of a conveyor belt or a conveyor chain, which is arranged in a tank filled or filled with a process liquid and with which in normal operation a stream of material from a free-flowing fragmented and / or weakened material are immersed in the process liquid passed to the high voltage electrode assembly can be generated while high voltage breakdowns by the material flow as a result of application of high voltage pulses to the high voltage electrode assembly.

Dabei ist die Vorrichtung gemäss dem dritten Aspekt der Erfindung derartig ausgebildet, dass sich im bestimmungsgemässen Betrieb beim Vorbeiführen des Materialstromes in den Seitenbereichen der Zone, in welcher die Hochspannungsdurchschläge durch das Material des Materialstromes erzeugt werden, das Material des Materialstromes jeweils zu einer im Wesentlichen unbewegten Materialzone aufstaut, welche im Wesentlichen unberührt ist von den Hochspannungsdurchschlägen. Mit Vorteil weist die Vorrichtung Einrichtungen zum gezielten Aufstauen des Materialstroms auf, z.B. Staubleche oder seitliche Begrenzungswandungen für den Materialstrom mit Vertiefungen, in denen sich das Material staut. Dadurch, dass die seitlichen Begrenzungen der Zone des bewegten Materialstromes, in der die Hochspannungsdurchschläge stattfinden (Prozesszone), durch identisches aber im Wesentlichen unbewegtes Material gebildet sind, kann auf verschleissintensive Einrichtungen zur seitlichen Begrenzung der eigentlichen Prozesszone verzichtet werden, was sich positiv auf die Betriebskosten und auf die wartungsbedingten Stillstandszeiten der Vorrichtung auswirkt und zudem eine Prozessführung mit geringer Fremdmaterialkontamination ermöglicht.In this case, the device according to the third aspect of the invention is designed such that during normal operation when passing the material flow in the lateral regions of the zone in which the high-voltage breakdowns are produced by the material of the material flow, the material flow material in each case accumulates to a substantially stationary material zone, which is substantially unaffected by the high-voltage breakdowns. Advantageously, the device has facilities for targeted damming of the material flow, eg baffles or lateral boundary walls for the material flow with depressions in which the material accumulates. Due to the fact that the lateral boundaries of the zone of the moving material flow in which the high-voltage breakdowns take place (process zone) are formed by identical but substantially immobile material, it is possible to dispense with wear-intensive devices for lateral limitation of the actual process zone, which has a positive effect on the operating costs and affects the maintenance-related downtime of the device and also allows a process management with low foreign material contamination.

Die Vorrichtung gemäss dem vierten Aspekt der Erfindung ist im Gegensatz zu der Vorrichtung gemäss dem dritten Aspekt der Erfindung derartig ausgebildet, dass im bestimmungsgemässen Betrieb beim Vorbeiführen des Materialstromes an der Hochspannungselektroden-Anordnung der mittlere Bereich des Materialstromes mit Hochspannungsdurchschlägen beaufschlagt wird, während die Randbereiche des Materialstromes im Wesentlichen unberührt von den Hochspannungsdurchschlägen sind. Zudem weist die Vorrichtung eine Separationseinrichtung auf, mittels welcher im bestimmungsgemässen Betrieb stromabwärts von der Hochspannungselektroden-Anordnung das Material der Randbereiche des Materialstromes von dem Material des mittleren Bereichs des Materialstromes separiert wird. Mit Vorteil weist die Vorrichtung weiter zusätzliche Einrichtungen zum Zurückführen des mit der Separationseinrichtung separierten Materials der Randbereiche des Materialstromes zurück in den Materialstrom stromaufwärts der Hochspannungselektroden-Anordnung auf, so dass dieses Material erneut an der Hochspannungselektroden-Anordnung vorbeigeführt werden kann, zur Fragmentierung und/oder Schwächung desselben oder zur erneuten Bildung der Randbereiche des Materialstromes.The device according to the fourth aspect of the invention is in contrast to the device according to the third aspect of the invention designed such that in normal operation when passing the material flow to the high voltage electrode assembly, the middle portion of the material flow is subjected to high voltage breakdowns, while the edge regions of Material flow are substantially unaffected by the high voltage breakdowns. In addition, the device has a separation device, by means of which in the normal operation downstream of the high-voltage electrode arrangement, the material of the edge regions of the material flow is separated from the material of the central region of the material flow. Advantageously, the device further comprises additional means for returning the separated with the separation device material of the edge regions of the material flow back into the flow of material upstream of the high voltage electrode assembly so that this material can be redirected past the high voltage electrode assembly for fragmentation and / or weakening thereof or for reformation of the edge regions of the material stream.

Dadurch, dass die seitlichen Begrenzungen der Zone des bewegten Materialstromes, in der die Hochspannungsdurchschläge stattfinden (Prozesszone), durch das Material des bewegten Materialstromes gebildet sind, kann auch hier auf verschleissintensive Einrichtungen zur seitlichen Begrenzung der eigentlichen Prozesszone verzichtet werden, was sich, wie bereits erwähnt wurde, positiv auf die Betriebskosten und auf die wartungsbedingten Stillstandzeiten der Vorrichtung auswirkt und zudem eine Prozessführung mit geringer Fremdmaterialkontamination ermöglicht.Because the lateral boundaries of the zone of the moving material flow in which the high-voltage breakdowns take place (process zone) are formed by the material of the moving material flow, wear-intensive devices for lateral delimitation of the actual process zone can also be dispensed with, which, as already described has been mentioned, has a positive effect on the operating costs and the maintenance-related downtime of the device and also allows a process management with low foreign material contamination.

KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

Weitere Ausgestaltungen, Vorteile und Anwendungen der Erfindung ergeben sich aus den abhängigen Ansprüchen und aus der nun folgenden Beschreibung anhand der Figuren. Dabei zeigen:

  • Fig. 1 einen Längsschnitt entlang der Linie B-B in Fig. 3 durch eine erste erfindungsgemässe Vorrichtung;
  • Fig. 2 eine Draufsicht von oben auf die Vorrichtung aus Fig. 1;
  • Fig. 3 einen Querschnitt durch die Vorrichtung entlang der Linie A-A in Fig. 1;
  • Fig. 4 einen Längsschnitt entlang der Linie D-D in Fig. 6 durch eine zweite erfindungsgemässe Vorrichtung;
  • Fig. 5 eine Draufsicht von oben auf die Vorrichtung aus Fig. 4;
  • Fig. 6 einen Querschnitt durch die Vorrichtung entlang der Linie C-C in Fig. 4;
  • Fig. 7 eine Seitenansicht einer der Hochspannungselektroden der Vorrichtungen;
  • Fig. 8 eine Seitenansicht einer ersten Variante der Hochspannungselektrode aus Fig. 7; und
  • Fig. 9 eine Seitenansicht einer zweiten Variante der Hochspannungselektrode aus Fig. 7.
Further embodiments, advantages and applications of the invention will become apparent from the dependent claims and from the following description with reference to FIGS. Showing:
  • Fig. 1 a longitudinal section along the line BB in Fig. 3 by a first device according to the invention;
  • Fig. 2 a top view of the device from above Fig. 1 ;
  • Fig. 3 a cross section through the device along the line AA in Fig. 1 ;
  • Fig. 4 a longitudinal section along the line DD in Fig. 6 by a second device according to the invention;
  • Fig. 5 a top view of the device from above Fig. 4 ;
  • Fig. 6 a cross section through the device along the line CC in Fig. 4 ;
  • Fig. 7 a side view of one of the high voltage electrodes of the devices;
  • Fig. 8 a side view of a first variant of the high voltage electrode Fig. 7 ; and
  • Fig. 9 a side view of a second variant of the high voltage electrode Fig. 7 ,

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS FOR CARRYING OUT THE INVENTION

Die Figuren 1 bis 3 zeigen eine erste erfindungsgemässe Vorrichtung zum Fragmentieren von schüttfähigem Material 1 mittels Hochspannungsentladungen, einmal in einem Längsschnitt entlang der Linie B-B in Fig. 3 (Fig. 1), einmal in einer Draufsicht von oben (Fig. 2) und einmal in einem Querschnitt entlang der Linie A-A in Fig. 1 (Fig. 3).The FIGS. 1 to 3 show a first inventive device for fragmenting pourable material 1 by means of high voltage discharges, once in a longitudinal section along the line BB in Fig. 3 ( Fig. 1 ), once in a plan view from above ( Fig. 2 ) and once in a cross section along the line AA in Fig. 1 ( Fig. 3 ).

Wie zu erkennen ist, weist die Vorrichtung eine Hochspannungselektroden-Anordnung 2 mit einer Matrix von 16 Hochspannungselektroden 7 auf, welche in Materialdurchlaufrichtung S gesehen in vier hintereinander angeordneten Reihen mit je vier Hochspannungselektroden 7 angeordnet sind (in den Figuren ist der Übersichtlichkeit halber jeweils nur eine der Hochspannungselektroden mit der Bezugsziffer 7 versehen).As can be seen, the device has a high-voltage electrode arrangement 2 with a matrix of 16 high-voltage electrodes 7, which are arranged in four consecutively arranged rows each with four high-voltage electrodes 7 in the direction of passage through the material S (in the figures, for the sake of clarity, only one each the high-voltage electrodes with the reference numeral 7).

Die Hochspannungselektroden 7 werden im dargestellten bestimmungsgemässen Betrieb mit jeweils einem direkt über ihnen angeordneten Hochspannungsgenerator 3 mit Hochspannungspulsen beaufschlagt.The high voltage electrodes 7 are shown in the intended operation with one each applied directly above them high voltage generator 3 with high voltage pulses.

Unter der Hochspannungselektroden-Anordnung 2 befindet sich, angeordnet in einem mit Wasser 4 (Prozessflüssigkeit) gefluteten Becken 5, ein Förderband 6, mittels welchem ein Materialstrom aus einem zu fragmentierenden schüttfähigen Material 1, im vorliegenden Fall Bruchstücke von Edelmetall-Erzgestein, von der Aufgabeseite A der Vorrichtung her in Materialdurchlaufrichtung S an den Hochspannungselektroden 7 der Hochspannungselektroden-Anordnung 2 vorbeigeführt wird, während Hochspannungsdurchschläge durch das Material 1 infolge einer Beaufschlagung der Hochspannungselektroden-Anordnung 2 mit Hochspannungspulsen erzeugt werden. Dabei ist das Material 1 des Materialstroms in das im Becken 5 befindliche Wasser 4 eingetaucht, ebenso wie die darüber angeordneten Hochspannungselektroden 7.Below the high-voltage electrode arrangement 2, arranged in a tank 5 flooded with water 4 (process liquid), there is a conveyor belt 6, by means of which a flow of material from a pourable material 1 to be fragmented, in the present case fragments of noble metal ore, from the feed side A of the device forth in the material passage direction S is passed to the high voltage electrodes 7 of the high voltage electrode assembly 2, while high voltage breakdowns are generated by the material 1 as a result of application of high voltage pulses to the high voltage electrode assembly 2. In this case, the material 1 of the material flow is immersed in the water 4 located in the basin 5, as well as the high-voltage electrodes 7 arranged above it.

Die Höhe des Materialstromes wird vor dem Einlauf in den Bereich zwischen dem Förderband 6 und der Hochspannungselektroden-Anordnung 2 (Prozesszone) durch ein Durchlassbegrenzungsblech 12 eingestellt.The height of the flow of material is adjusted prior to entry into the area between the conveyor belt 6 and the high voltage electrode assembly 2 (process zone) through a passage restriction plate 12.

Wie aus Fig. 3 zu erkennen ist, erstreckt sich das Förderband 6 in Durchlaufrichtung S gesehen nicht über die gesamte Breite des Beckens 5, sondern im Bereich der Beckenmitte über die Breite der Prozesszone, in welcher die Hochspannungsdurchschläge durch den Materialstrom erfolgen. Entlang der Randbereiche des Beckens 5 erstrecken sich auf Höhe der Oberseite des Förderbands 6 fest mit der Seitenwand des Beckens 5 verbundene Tragabschnitte 13, an deren Enden stromabwärts der Hochspannungselektroden-Anordnung 2 Staubleche 10 angeordnet sind, welche bewirken, dass das Material 1 in den Randbereichen des Beckens 5 auf den Tragabschnitten 13 aufgestaut wird und dabei entlang dieser Randbereiche im Wesentlichen unbewegte Materialzonen 9 bildet, welche die Prozesszone, in welcher die Hochspannungsdurchschläge durch das Material 1 des Materialstromes erzeugt werden, seitlich begrenzen.How out Fig. 3 can be seen, the conveyor belt 6 seen in the direction of passage S does not extend over the entire width of the basin 5, but in the region of the basin center across the width of the process zone in which the high voltage breakdowns are carried out by the flow of material. Along the edge regions of the basin 5 extending at the top of the conveyor belt 6 fixed to the side wall of the basin 5 connected support sections 13, at the ends downstream of the high voltage electrode assembly 2 baffles 10 are arranged, which cause the material 1 in the edge regions of the pelvis 5 is dammed up on the support portions 13 and thereby forms substantially immobile material zones 9 along these edge regions, which the process zone in which the high-voltage breakdowns be generated by the material 1 of the material flow, limit laterally.

Wie insbesondere aus den Figuren 1 und 3 zu ersehen ist, wird das auf dem Förderband 6 transportierte Material 1 beim Durchlaufen der Prozesszone zunehmend fragmentiert, während das unbewegte Material 1 in den Randbereichen 9 des Beckens 5 praktisch unverändert bleibt.As in particular from the FIGS. 1 and 3 can be seen, the transported on the conveyor belt 6 material 1 is increasingly fragmented when passing through the process zone, while the still material 1 in the edge regions 9 of the basin 5 remains virtually unchanged.

Stromabwärts von der Hochspannungselektroden-Anordnung 2 wird das aus der Prozesszone austretende fragmentierte Material 1 vom Förderband 6 in einen Sammeltrichter 14 am Ende des Beckens 5 abgegeben, von wo es mit einer (nicht gezeigten) Fördereinrichtung aus dem Becken 5 herausgefördert wird.Downstream of the high-voltage electrode assembly 2, the fragmented material 1 emerging from the process zone is discharged from the conveyor belt 6 into a collection funnel 14 at the end of the basin 5, from where it is conveyed out of the basin 5 with a conveyor (not shown).

Die Figuren 4 bis 6 zeigen eine zweite erfindungsgemässe Vorrichtung zum Fragmentieren von schüttfähigem Material 1 mittels Hochspannungsentladungen, einmal in einem Längsschnitt entlang der Linie D-D in Fig. 6 (Fig. 4), einmal in einer Draufsicht von oben (Fig. 5) und einmal in einem Querschnitt entlang der Linie C-C in Fig. 4 (Fig. 6).The FIGS. 4 to 6 show a second inventive device for fragmenting pourable material 1 by means of high-voltage discharges, once in a longitudinal section along the line DD in Fig. 6 ( Fig. 4 ), once in a plan view from above ( Fig. 5 ) and once in a cross section along the line CC in Fig. 4 ( Fig. 6 ).

Diese Vorrichtung unterscheidet sich von der in den Figuren 1 bis 3 gezeigten Vorrichtung darin, dass sich hier das Förderband 6 in Durchlaufrichtung S gesehen über die gesamte Breite des Beckens 5 erstreckt, so dass der bewegte Materialstrom die gesamte Breite des Beckens 5 erfasst.This device is different from the one in the FIGS. 1 to 3 shown device that here the conveyor belt 6 seen in the direction of passage S extends over the entire width of the basin 5, so that the moving material flow covers the entire width of the basin 5.

Wie insbesondere aus den Figuren 4 und 6 zu ersehen ist, wird der mittlere Bereich des Materialstromes beim Durchlaufen der Prozesszone mit Hochspannungsdurchschlägen beaufschlagt, was zu einer zunehmenden Fragmentierung des Materials 1 in diesem Bereich führt, während die Randbereiche des Materialstromes praktisch unberührt von Hochspannungsdurchschlägen bleiben, so dass das dort geführte Material 1 seine ursprüngliche Stückigkeit behält.As in particular from the FIGS. 4 and 6 can be seen, the middle portion of the material flow is applied when passing through the process zone with high voltage breakdowns, which leads to an increasing fragmentation of the material 1 in this area, while the edge regions of the material flow remain virtually untouched by high voltage breakdowns, so that the material 1 guided there original piece remains.

Stromabwärts von der Hochspannungselektroden-Anordnung 2 wird der aus der Prozesszone austretende Materialstrom vom Förderband 6 in drei von Separationswänden 11 getrennte und sich nebeneinander über die gesamte Breite des Förderbands 6 erstreckende Sammeltrichter 14, 14a, 14b am Ende des Beckens 5 abgegeben. Dabei sind die Separationswände 11 derartig angeordnet, dass das fragmentierte Material 1 aus dem mittleren Bereich des Materialstromes in den mittleren Sammeltrichter 14 abgegeben wird, während das unfragmentierte Material 1 aus den Randbereichen des Materialstromes in die äusseren Sammeltrichter 14a, 14b abgegeben wird.Downstream of the high-voltage electrode arrangement 2, the material flow emerging from the process zone is discharged from the conveyor belt 6 into three collection funnels 14, 14a, 14b separated by separation walls 11 and extending side by side over the entire width of the conveyor belt 6 at the end of the basin 5. In this case, the separation walls 11 are arranged such that the fragmented material 1 is discharged from the central region of the material flow into the central collecting funnel 14, while the unfragmented material 1 is discharged from the edge regions of the material flow into the outer collecting funnels 14a, 14b.

Das fragmentierte Material 1, welches in den mittleren Sammeltrichter 14 abgegeben wird, wird mittels einer (nicht gezeigten) Fördereinrichtung aus dem Becken 5 herausgefördert und einer weiteren Verwendung zugeführt. Das nicht-fragmentierte Material 1, welches in die äusseren Sammeltrichter 14a, 14b abgegeben wird, wird mittels (nicht gezeigter) Fördereinrichtungen aus dem Becken 5 herausgefördert und auf der Aufgabeseite A der Vorrichtung wieder in den Materialstrom zugeführt.The fragmented material 1, which is discharged into the central collecting funnel 14, is conveyed out of the basin 5 by means of a conveying device (not shown) and supplied for further use. The non-fragmented material 1, which is discharged into the outer collecting funnels 14a, 14b, is conveyed out of the basin 5 by means of conveying devices (not shown) and returned to the material flow on the feeding side A of the device.

Wie aus Fig. 7 ersichtlich ist, welche eine der Hochspannungselektroden 7 der Hochspannungselektroden-Anordnungen 2 der Vorrichtungen in der Seitenansicht zeigt, weist jede der Hochspannungselektroden 7 eine eigene auf Erdpotential liegende Gegenelektrode 8 auf, welche derartig seitlich neben der jeweiligen Hochspannungselektrode 7 angeordnet ist, dass im dargestellten Betrieb durch das Beaufschlagen der jeweiligen Hochspannungselektrode 7 mit Hochspannungspulsen Hochspannungsdurchschläge zwischen der Hochspannungselektrode 7 und der ihr zugeordneten Gegenelektrode 8 durch das Material 1 des Materialstromes hindurch erzeugt werden. Dabei ist die Gegenelektrode 8 an der Tragstruktur der Hochspannungselektrode 7 befestigt.How out Fig. 7 which shows one of the high voltage electrodes 7 of the high voltage electrode assemblies 2 of the devices in side view, each of the high voltage electrodes 7 has its own grounding counter electrode 8, which is disposed laterally adjacent to the respective high voltage electrode 7, in the illustrated operation the application of high-voltage pulses to the respective high-voltage electrode 7 generates high-voltage breakdowns between the high-voltage electrode 7 and its associated counter-electrode 8 through the material 1 of the material flow. In this case, the counter electrode 8 is attached to the support structure of the high-voltage electrode 7.

Die Figuren 8 und 9 zeigen Seitenansichten zweier Varianten der Hochspannungselektrode aus Fig. 7.The FIGS. 8 and 9 show side views of two variants of the high voltage electrode Fig. 7 ,

Fig. 8 zeigt eine Hochspannungselektrode 7, welche sich von der in Fig. 7 gezeigten im Wesentlichen dadurch unterscheidet, dass sie zwei identische, sich spiegelbildlich gegenüberliegende Gegenelektroden 8 aufweist. Ein weiterer Unterschied besteht darin, dass diese Hochspannungselektrode 7 eine gerade Elektrodenspitze aufweist. Fig. 8 shows a high voltage electrode 7, which differs from the in Fig. 7 shown essentially differs in that it has two identical, mirror image opposite counter-electrodes 8. Another difference is that this high voltage electrode 7 has a straight electrode tip.

Fig. 9 zeigt eine Hochspannungselektrode 7, welche sich von der in Fig. 8 gezeigten im Wesentlichen dadurch unterscheidet, dass hier die in Fig. 8 gezeigten zwei sich spiegelbildlich gegenüberliegenden Gegenelektroden 8 unterhalb der Hochspannungselektrode 7 zu einer einzigen, U-förmigen Gegenelektrode 8 verbunden sind. Fig. 9 shows a high voltage electrode 7, which differs from the in Fig. 8 shown essentially differs in that here the in Fig. 8 shown two mirror-inverted counter-electrodes 8 are connected below the high voltage electrode 7 to a single, U-shaped counter electrode 8.

Im bestimmungsgemässen Betrieb sind die Hochspannungselektroden 7 und die Gegenelektroden 8 bevorzugterweise in den Materialstrom eingetaucht.During normal operation, the high voltage electrodes 7 and the counter electrodes 8 are preferably immersed in the material flow.

Während in der vorliegenden Anmeldung bevorzugte Ausführungen der Erfindung beschrieben sind, ist klar darauf hinzuweisen, dass die Erfindung nicht auf diese beschränkt ist und auch in anderer Weise innerhalb des Umfangs der nun folgenden Ansprüche ausgeführt werden kann.While preferred embodiments of the invention are described in the present application, it should be clearly understood that the invention is not limited to these and may be practiced otherwise within the scope of the following claims.

Claims (15)

  1. Method for fragmenting and/or weakening of pourable material (1) by means of high-voltage discharges, comprising the steps of:
    a) providing a high-voltage electrode assembly (2), which is assigned to a high-voltage generator (3) by means of which it is chargeable with high-voltage pulses;
    b) guiding of a material flow of pourable material (1), immersed in a process liquid (4), past the high-voltage electrode assembly (2); and
    c) producing of high-voltage punctures through the material flow during the guiding thereof past the high-voltage electrode assembly (2) by means of charging of the high-voltage electrode assembly (2) with high-voltage pulses,
    characterized in that the zone of the material flow in which high-voltage punctures through the material (1) of the material flow are produced as viewed in a guiding-past direction (S) is laterally delimited by substantially unmoved zones (9) of the same material (1).
  2. Method according to claim 1, wherein the substantially unmoved zones (9) are produced in that the boundary zones of the material flow are piled up downstream of the high-voltage electrode assembly (2).
  3. Method according to one of the preceding claims, wherein the material flow and the substantially unmoved zones (9) are produced in that the material (1) is provided in a trough-like or tank-like device (5), the bottom of which is formed in a central zone by a conveyor belt (6) or a conveyor chain and is fixed in the boundary zones.
  4. Method according to one of the preceding claims, wherein material (1) which is carried away from the material flow from the substantially unmoved zones (9), is replaced by material (1) from the material flow.
  5. Method according to one of the preceding claims, wherein material (1) which is carried away from the material flow from the substantially unmoved zones (9), is replaced by separately supplied material.
  6. Method for fragmenting and/or weakening of pourable material (1) by means of high-voltage discharges, comprising the steps of:
    a) providing a high-voltage electrode assembly (2) which is assigned to a high-voltage generator (3) by means of which it is chargeable with high-voltage pulses;
    b) guiding of a material flow of pourable material (1), immersed in a process liquid (4), past the high-voltage electrode assembly (2); and
    c) producing of high-voltage punctures through the material flow during the guiding thereof past the high-voltage electrode assembly (2) by means of charging of the high-voltage electrode assembly (2) with high-voltage pulses,
    characterized in that the high-voltage punctures are produced in such a way that the central zone of the material flow is charged with high-voltage punctures while the boundary zones of the material flow remain unaffected by high-voltage punctures, and wherein the material (1) of the central zone of the material flow is separated from the material (1) of the boundary zones downstream of the high-voltage electrode assembly (2) after the charging with high-voltage punctures.
  7. Method according to claim 6, wherein the material (1) from the boundary zones which is separated from the material (1) from the central zones is fed back into the material flow completely or partially upstream of the high-voltage electrode assembly (2), in particular into the central zone of the material flow.
  8. Method according to one of the preceding claims, wherein the high-voltage electrode assembly (2) comprises a matrix of several high-voltage electrodes (7), each of which are charged with high-voltage pulses.
  9. Method according to claim 8, wherein a specific high-voltage generator is assigned to each high-voltage electrode, with which it is charged with high-voltage pulses independently of the other high-voltage electrodes.
  10. Method according to one of the preceding claims, wherein as a counter-electrode for the high-voltage electrodes of the high-voltage electrode assembly an element delimiting the bottom side of the material flow in the region of the high-voltage electrode assembly is used, and in particular, wherein this element is a conveyor belt or a conveyor chain, with which the material flow is guided past the high-voltage electrode assembly.
  11. Method according to one of the claims 1 to 9, wherein each of the high-voltage electrodes (7) of the high-voltage electrode assembly (2) has at least one specific counter-electrode (8) which is arranged laterally beside and/or below it in such a way that by means of charging of the respective high-voltage electrode (7) with high-voltage pulses, high-voltage punctures between the high-voltage electrode (7) and the counter-electrode (8) through the material flow guided past these are produced.
  12. Device for carrying out the method according to claim 1, comprising:
    a) a high-voltage electrode assembly (2), which is assigned to a high-voltage generator (3), with which it is chargeable with high-voltage pulses; and
    b) a conveying device (6), in particular in the form of a conveyor belt (6) or a conveyor chain, arranged in a basin (5) which is filled or fillable with a process liquid (4), with which in the intended operation a material flow of a pourable, to be fragmented and/or weakened material (1), immersed in a process liquid (4), can be guided past the high-voltage electrode assembly (2) while high-voltage punctures through the material flow are produced by means of charging of the high-voltage electrode assembly (2) with high-voltage pulses,
    characterized in that the device is structured such that, in the intended operation, during the guiding past of the material flow, in the lateral zones of the zone in which the high-voltage punctures through the material (1) of the material flow are produced, the material (1) of the material flow each is piled up to a substantially unmoved material zone (9), which is essentially unaffected by the high-voltage punctures.
  13. Device according to claim 12, wherein the device comprises damming devices, in particular baffles (10), or lateral delimiting walls for the material flow with recesses therein, for piling up of the material flow to the substantially unmoved material zones (9).
  14. Device for carrying out the method according to claim 6, comprising:
    c) a high-voltage electrode assembly (2), which is assigned to a high-voltage generator (3), with which it is chargeable with high-voltage pulses ; and
    d) a conveying device (6), in particular in the form of a conveyor belt (6) or a conveyor chain, arranged in a basin (5) which is filled or fillable with a process liquid (4), with which in the intended operation a material flow of a pourable, to be fragmented and/or to be weakened material (1), immersed in a process liquid (4), can be guided past the high-voltage electrode assembly (2) while high-voltage punctures through the material flow are produced by means of charging of the high-voltage electrode assembly (2) with high-voltage pulses,
    characterized in that the device is structured such that, in the intended operation, during the guiding past of the material flow, the central zone of the material flow is charged with high-voltage punctures, while the boundary zones of the material flow remain substantially unaffected by the high-voltage punctures, and wherein the device comprises a separation device (11, 14, 14a, 14b), by means of which in an intended operation the material (1) of the boundary zones of the material flow is separated from the material (1) of the central zone of the material flow downstream of the high-voltage electrode assembly (2).
  15. Device according to claim 14, further comprising a re-feeding device for refeeding the by means of the separation device (11, 14, 14a, 14b) separated material (1) of the boundary zones of the material flow back into the material flow upstream of the high-voltage electrode assembly (2).
EP15710416.7A 2015-02-27 2015-02-27 Method and device for fragmenting and/or weakening pourable material by means of high-voltage discharge Active EP3261768B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH2015/000032 WO2016134490A1 (en) 2015-02-27 2015-02-27 Method and device for fragmenting and/or weakening pourable material by means of high-voltage discharge

Publications (2)

Publication Number Publication Date
EP3261768A1 EP3261768A1 (en) 2018-01-03
EP3261768B1 true EP3261768B1 (en) 2019-09-11

Family

ID=52686033

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15710416.7A Active EP3261768B1 (en) 2015-02-27 2015-02-27 Method and device for fragmenting and/or weakening pourable material by means of high-voltage discharge

Country Status (9)

Country Link
US (1) US10792670B2 (en)
EP (1) EP3261768B1 (en)
CN (1) CN107405628B (en)
AU (1) AU2015384095B2 (en)
CA (1) CA2976810C (en)
ES (1) ES2748659T3 (en)
RU (1) RU2670126C1 (en)
WO (1) WO2016134490A1 (en)
ZA (1) ZA201704885B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016134492A1 (en) 2015-02-27 2016-09-01 Selfrag Ag Method and device for fragmenting and/or weakening pourable material by means of high-voltage discharges
RU2670126C1 (en) 2015-02-27 2018-10-18 Зельфраг Аг Method (variants) and devices for unit crushing and/or loosening of loose material by means of high-voltage discharges
CA2977556C (en) 2015-02-27 2023-09-05 Selfrag Ag Method and device for fragmenting and/or weakening pourable material by means of high voltage discharges
DE102018003512A1 (en) * 2018-04-28 2019-10-31 Diehl Defence Gmbh & Co. Kg Plant and method for electrodynamic fragmentation
JP6947126B2 (en) * 2018-06-12 2021-10-13 株式会社Sumco Silicon rod crushing method and equipment, and silicon ingot manufacturing method
CN110215985B (en) * 2019-07-05 2021-06-01 东北大学 High-voltage electric pulse device for ore crushing pretreatment
WO2023119241A1 (en) * 2021-12-23 2023-06-29 Vittorio Gorlier System and method for separating components of concrete
US20230256456A1 (en) * 2022-02-15 2023-08-17 Extiel AP, LLC Method and device for electric pulse fragmentation of materials

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR982415A (en) 1943-06-17 1951-06-11 Colombes Goodrich Pneumatiques Improvements to tubular rivets and to processes and apparatus for their installation
GB854830A (en) 1957-09-13 1960-11-23 Illinois Tool Works Improvements in fasteners
US3208674A (en) * 1961-10-19 1965-09-28 Gen Electric Electrothermal fragmentation
FR2302441A1 (en) 1975-02-27 1976-09-24 Otalu Hollow rivet with hexagonal hole - has internal thread tapped in smaller dia cylindrical shank
BE864969A (en) 1977-04-06 1978-07-17 Dejond N V Ets RIVET NUT
US4182216A (en) 1978-03-02 1980-01-08 Textron, Inc. Collapsible threaded insert device for plastic workpieces
SU888355A1 (en) 1980-07-16 1991-11-07 Yutkin L A Electrohydraulic crusher
SU1178487A1 (en) * 1984-04-13 1985-09-15 Специальное Конструкторское Бюро По Применению Электрогидравлического Эффекта В Сельском Хозяйстве Dispersing agent
SU1538928A1 (en) * 1988-04-07 1990-01-30 Московский Геологоразведочный Институт Им.Серго Орджоникидзе Device for grinding materials
DE19545580C2 (en) * 1995-12-07 2003-02-13 Rheinmetall W & M Gmbh Method and arrangement for the disintegration of elastic materials in connection with metallic materials
JPH09192526A (en) 1996-01-12 1997-07-29 Kobe Steel Ltd Discharge crusher
DE19727534C2 (en) * 1997-06-28 2002-06-06 Tzn Forschung & Entwicklung Method and device for cleaning mineral solids, especially gravel and sand
GB9714833D0 (en) 1997-07-16 1997-09-17 Uri Andres Disintegration of brittle dielectrics by high voltage electrical pulses in disintegration chamber
DE19736027C2 (en) 1997-08-20 2000-11-02 Tzn Forschung & Entwicklung Method and device for breaking concrete, in particular reinforced concrete slabs
GB9803314D0 (en) 1998-02-18 1998-04-15 British Aerospace Blind rivet connector
DE19902010C2 (en) 1999-01-21 2001-02-08 Karlsruhe Forschzent Process for the treatment of ashes from waste incineration plants and mineral residues by desalination and artificial aging using electrodynamic underwater processes and plant for carrying out the process
JP3802402B2 (en) * 2001-11-26 2006-07-26 日鉄鉱業株式会社 Electric crushing apparatus and electric crushing method
JP3840423B2 (en) * 2002-03-27 2006-11-01 日鉄鉱業株式会社 Method and apparatus for electrically crushing wood, and foreign matter collecting device for collecting solid foreign matter present in wood
US20050180841A1 (en) 2004-02-12 2005-08-18 Tian-Fu Cao Bund nuts
RU2263545C1 (en) * 2004-03-15 2005-11-10 Григорьев Юрий Васильевич Material treatment process
CN201105234Y (en) * 2007-10-11 2008-08-27 杨世英 Liquid electric crusher
RU113177U1 (en) * 2011-07-27 2012-02-10 Общество с ограниченной ответственностью "Научно-производственное объединение "Разряд" ELECTRIC DISCHARGE INSTALLATION FOR NON-WASTE INDUSTRIAL PROCESSING OF NON-CONDITIONAL OR SERVICING ITS PERIOD REINFORCED CONCRETE STRUCTURES IN SUITABLE FOR SECONDARY USE CONSTRUCTION MATERIALS
US10029262B2 (en) * 2011-10-10 2018-07-24 Selfrag Ag Method of fragmenting and/or weakening of material by means of high voltage discharges
US9593706B2 (en) 2012-11-11 2017-03-14 The Boeing Company Structural blind fastener and method of installation
KR101468275B1 (en) 2012-11-13 2014-12-02 전북대학교산학협력단 Selective fragmentation system and method using high voltage pulse generator
RU2670126C1 (en) 2015-02-27 2018-10-18 Зельфраг Аг Method (variants) and devices for unit crushing and/or loosening of loose material by means of high-voltage discharges
CA2977556C (en) 2015-02-27 2023-09-05 Selfrag Ag Method and device for fragmenting and/or weakening pourable material by means of high voltage discharges

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ZA201704885B (en) 2018-12-19
RU2670126C1 (en) 2018-10-18
CA2976810C (en) 2022-03-15
CN107405628B (en) 2020-02-14
CN107405628A (en) 2017-11-28
EP3261768A1 (en) 2018-01-03
US10792670B2 (en) 2020-10-06
ES2748659T3 (en) 2020-03-17
US20180043368A1 (en) 2018-02-15
CA2976810A1 (en) 2016-09-01
WO2016134490A1 (en) 2016-09-01
AU2015384095A1 (en) 2017-07-27
AU2015384095B2 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
EP3261768B1 (en) Method and device for fragmenting and/or weakening pourable material by means of high-voltage discharge
EP3261769B1 (en) Method and device for fragmenting and/or weakening pourable material by means of high-voltage discharges
EP3261766B1 (en) Method and device for fragmenting and/or weakening pourable material by means of high-voltage discharges
EP2766123B1 (en) Method for fragmenting and/or pre-weakening material using high-voltage discharges
EP2980031B1 (en) Method for feeding a glass furnace with bulk material consisting of cullet and raw materials and device for carrying out said method
EP3261767B1 (en) Method and device for the fragmentation and/or weakening of a piece of material by means of high-voltage discharges
EP1570919B1 (en) Apparatus for separating of substantially solid products
EP3060347B1 (en) Method for fragmenting and/or pre-weakening material by means of high-voltage discharges
EP3074708A1 (en) Device and method for producing an expanded granular material
WO2012092951A1 (en) Multiple roll crusher
EP2199209B1 (en) Device for filling pharmaceutical products into packaging containers
DE102018112902A1 (en) Stripping element for stripping from the outside on a hollow drum of a device for separating substances mixed with each other of different fluidity applied fabric remnants and device with such a stripping
EP2760586B1 (en) Roller mill and method for milling brittle milling material
WO2012092952A1 (en) Mobile crushing unit
DE102016108441B4 (en) Method and device for separating a substance mixture
DE1456699A1 (en) Bunker discharge and feed device for bulk goods of all kinds
EP2136937B1 (en) Method and device for heat treatment including method and device for separating or classifying material to be fed
DE102015104709B3 (en) Screening device for a chain scraper conveyor and chain scraper conveyor
DE102012206100A1 (en) Conditioning extruder for plasticizing plastic scrap and for forming purified plastic granulate, has screw cylinder with feed opening at its one end for plastic scrap and outlet opening for plastic granulate at its another end
DE3431653C1 (en) Discharge device for typesetting machines
DE2021735A1 (en) Device for pre-breaking coarse, rod-shaped materials, especially carbon electrodes
DE3107812A1 (en) Unit for homogenising crushing material, in particular coal
EP3894080A1 (en) Device for stressing particles by means of electric pulses
EP1329666B1 (en) Ash conveyor
DE1504489A1 (en) Process and devices for the pretreatment of foils and hoses made of thermoplastic material or metal by means of an electric brush discharge

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B02C 23/36 20060101ALI20181019BHEP

Ipc: B02C 23/12 20060101ALI20181019BHEP

Ipc: B02C 19/18 20060101AFI20181019BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181217

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190520

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1177754

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015010316

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2748659

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200113

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015010316

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200112

26N No opposition filed

Effective date: 20200615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1177754

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230221

Year of fee payment: 9

Ref country code: CH

Payment date: 20230307

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230216

Year of fee payment: 9

Ref country code: GB

Payment date: 20230221

Year of fee payment: 9

Ref country code: DE

Payment date: 20230216

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230427

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240219

Year of fee payment: 10

Ref country code: ES

Payment date: 20240326

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 10

Ref country code: GB

Payment date: 20240219

Year of fee payment: 10

Ref country code: CH

Payment date: 20240301

Year of fee payment: 10