EP3250727B2 - Verfahren zur herstellung eines bauteils aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech - Google Patents

Verfahren zur herstellung eines bauteils aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech Download PDF

Info

Publication number
EP3250727B2
EP3250727B2 EP17721056.4A EP17721056A EP3250727B2 EP 3250727 B2 EP3250727 B2 EP 3250727B2 EP 17721056 A EP17721056 A EP 17721056A EP 3250727 B2 EP3250727 B2 EP 3250727B2
Authority
EP
European Patent Office
Prior art keywords
treatment
aluminum
steel sheet
press
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17721056.4A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3250727B1 (de
EP3250727A1 (de
Inventor
Thomas Koll
Marc Debeaux
Friedrich Luther
Christian Fritzsche
Stefan MÜTZE
Frank Beier
Matthias Graul
Haucke-Frederik Hartmann
Jan-Frederik LASS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Salzgitter Flachstahl GmbH
Original Assignee
Volkswagen AG
Salzgitter Flachstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58668836&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3250727(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Volkswagen AG, Salzgitter Flachstahl GmbH filed Critical Volkswagen AG
Publication of EP3250727A1 publication Critical patent/EP3250727A1/de
Publication of EP3250727B1 publication Critical patent/EP3250727B1/de
Application granted granted Critical
Publication of EP3250727B2 publication Critical patent/EP3250727B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/324Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe

Definitions

  • the invention relates to a method for producing a component made of press-hardened, aluminum-based steel sheet, the coating having a coating applied by hot-dipping that contains aluminum and silicon.
  • the coating relates to an aluminum-silicon coating.
  • press hardening can be used to produce high-strength components that are primarily used in the bodywork area.
  • Press hardening can basically be carried out using two different process variants, namely the direct or indirect process. While in the indirect process the process steps of forming and hardening take place separately from each other, in the direct process they take place together in one tool. Only the direct method is considered below.
  • a steel sheet is heated above the so-called austenitization temperature (Ac3).
  • the steel sheet heated in this way is then transferred to a mold and formed into the finished component in a single-stage forming step and simultaneously cooled by the cooled mold at a rate that is above the critical cooling rate of the steel, so that a hardened component is produced.
  • the steel sheet itself is usually cut out of a steel strip, usually wound up as a coil, and then further processed.
  • the steel sheet to be formed is often referred to as a blank.
  • Well-known hot-formable steels for this area of application include the manganese-boron steel "22MnB5" and, more recently, air-hardenable steels in accordance with the European patent EP 2 449 138 B1 .
  • steel sheets with anti-scaling protection are also used for press hardening (e.g. for automotive body construction). used.
  • press hardening e.g. for automotive body construction.
  • the advantages here are that the blanks or components do not scale in the oven, which reduces wear on the press tools caused by chipped scale and the components often do not have to be extensively blasted before further processing.
  • the following (alloy) coatings applied by hot-dipping are currently known for press hardening: aluminum-silicon (AS), zinc-aluminum (Z), zinc-aluminum-iron (ZF/Galvannealed), zinc-magnesium-aluminum (ZM ), as well as electrolytically deposited coatings made of zinc-nickel or zinc, the latter being converted into an iron-zinc alloy layer before hot forming.
  • AS aluminum-silicon
  • Z zinc-aluminum
  • ZF/Galvannealed zinc-aluminum-iron
  • ZM zinc-magnesium-aluminum
  • electrolytically deposited coatings made of zinc-nickel or zinc the latter being converted into an iron-zinc alloy layer before hot forming.
  • These corrosion protection coatings are usually applied to the hot or cold strip in a continuous process.
  • US 2011/0300407 A1 is a method of manufacturing a press-hardened steel sheet for use in the automotive industry.
  • the steel sheet is provided with an aluminum-silicon (AS) coating with a layer of 20 to 80 g/m 2 , heated to temperatures above 820 ° C and the temperature is maintained for some time (approx. 3 minutes).
  • AS aluminum-silicon
  • Different intermetallic phases are formed in the coating, for example Fe 3 Al, FeAl or Fe-Al 2 O 3 .
  • the product is cooled in the press.
  • European patent application EP 2 312 011 A1 describes a process for producing metallic coatings on cast parts for use in automobile construction.
  • the cast part is coated with an aluminum alloy in a melt pool and then subjected to heat treatment in an oxidizing atmosphere to produce a high-temperature-resistant aluminum oxide layer. After the heat treatment, anodic oxidation is also provided.
  • German patent specification DE 198 53 285 C1 presents a process for producing a protective layer on martensitic steel. Under a protective gas atmosphere (argon with 5% H 2 ), the steel to be coated is dipped into a melt made of aluminum or an aluminum alloy, cooled and then hot isostatically pressed at the austenitizing temperature.
  • the aluminum protective layer created in this way is between 100 and 200 ⁇ m thick and should contain an approx. 1 ⁇ m thick aluminum oxide layer on its surface, about the creation or maintenance of which no further information is provided.
  • the advantage of aluminum-based coatings over zinc-based coatings is that, in addition to a larger process window (e.g. with regard to heating parameters), the finished components do not need to be processed before further processing need to be blasted.
  • the finished components do not need to be processed before further processing need to be blasted.
  • there is no risk of liquid metal embrittlement and no microcracks can form in the substrate area near the surface at the former austenite grain boundaries, which can have a negative effect on fatigue strength at depths of over 10 ⁇ m.
  • the alloying of the coating with iron and the formation of a paintable surface topography require a correspondingly long residence time in the commonly used roller hearth furnace, which significantly extends the cycle times and reduces the economic efficiency of press mold hardening.
  • the minimum residence time is therefore determined by the coating and not by the base material, for which only the necessary austenitization temperature would be necessary.
  • the corrosion resistance is reduced by the increased alloying with iron, as the aluminum content in the alloy layer decreases with the furnace residence time and the iron content increases.
  • longer ovens are usually used for AS boards in order to achieve high cycle rates despite the necessary oven dwell time. However, these are more expensive to purchase and operate and also require a lot of space.
  • AS coatings Another disadvantage of AS coatings is that with very short annealing times, weldability using the spot welding process is extremely poor. This is expressed, for example, in only a very small welding area. The reason for this is, among other things, a very low contact resistance with short glow times.
  • the object of the invention is therefore to provide a method for producing a component from a press-hardened, aluminum-based steel sheet, which is cost-effective and leads to a component that has excellent paintability and weldability, in particular resistance spot weldability.
  • aluminum-based coatings are understood to mean metallic coatings in which aluminum is the main component (in mass percent).
  • examples of possible aluminum-based coatings are aluminum-silicon (AS), aluminum-zinc-silicon (AZ), as well as the same coatings with admixtures of additional elements such as magnesium, transition metals such as manganese, titanium and rare earths.
  • a coating of the steel sheet according to the invention is produced, for example, in a melt pool with an Si content of 8 to 12% by weight, an Fe content of 1 to 4% by weight, and the balance being aluminum.
  • the cover layers containing aluminum oxide and/or hydroxide act as ideal adhesion promoters for subsequent painting, in particular cathodic dip painting (KTL), on the component formed by press-hardening.
  • KTL cathodic dip painting
  • oven time increases accordingly due to the lower heating rate of the steel material.
  • the typical ones Oven temperatures between 900 and 950 °C should also be maintained here.
  • oven temperatures between 930 and 950 °C are advantageous.
  • the cover layer according to the invention made of aluminum oxides and/or hydroxides has an advantageous effect on the resistance spot weldability with short furnace times, since the contact resistance is increased and good resistance heating is thus achieved.
  • a thickness of this cover layer of at least 0.05 ⁇ m has proven to be positive.
  • the thicker the top layer containing aluminum oxide and/or hydroxide the better the paint adhesion and the less infiltration due to corrosive attack.
  • this cover layer is too thick, the contact resistance during resistance spot welding is too high, which in turn would worsen the weldability. Therefore, a maximum thickness of the top layer of 5 ⁇ m should not be exceeded.
  • a thickness of between 0.10 and 3 ⁇ m was found for the top layer as a good compromise between weldability and paint adhesion.
  • top layers with an average thickness of between 0.15 and 1 ⁇ m are particularly advantageous.
  • the term is to be understood at least in some areas in the sense of local sections of the treated steel sheet or steel strip, so that a steel sheet or steel strip is created with structures and properties that differ from one another in a targeted manner.
  • the top layer is preferably applied to the surface of the coating in a continuous process.
  • the treatment advantageously takes place in an atmosphere which also contains proportions of basic components, preferably ammonia (NH 3 ), primary, secondary or tertiary aliphatic amines (NH 2 R, NHR 2 ), NR 3 ).
  • basic components preferably ammonia (NH 3 ), primary, secondary or tertiary aliphatic amines (NH 2 R, NHR 2 ), NR 3 ).
  • a thin oxide cover layer can advantageously be achieved by anodic oxidation (thin-film anodization), plasma oxidation and a cover layer containing hydroxide by means of a hot water treatment of the aluminum-based coating at temperatures of at least 90 ° C, advantageously at least 95 ° C and / or a treatment in steam at temperatures of at least 90 °C, advantageously at least 95 °C.
  • gas phase treatment of the AS surface also achieves the same goal.
  • the AS surface is treated with an atmosphere which can contain at least variable proportions of oxygen, water vapor, and optionally also proportions of basic components, in particular ammonia, primary, secondary or tertiary aliphatic amines.
  • This treatment leads to a time- or temperature-controlled growth of a top layer containing aluminum oxide and/or hydroxide.
  • the composition of the gas phase can be used to control the growth of the layer thickness of this top layer.
  • the treatment is carried out at a temperature of 40 °C to 100 °C, preferably 90 °C to 100 °C. Lower treatment temperatures extend the treatment time; treatment temperatures above 100 °C may require pressure vessels.
  • Both anodization and gas phase treatment lead to a cover layer containing aluminum oxide and/or hydroxide, which has network or needle-like structures on its surface.
  • the associated increase in surface area improves the adhesion of subsequent KT painting. Since longer heating times are no longer necessary to form a surface topography that can be painted, the corrosion protection of the coating is also increased. This can be explained by the fact that with only a short annealing time required in the roller hearth furnace, less diffusion of aluminum and iron takes place. This also leads, among other things, to a relatively small interdiffusion zone. This is an example for an AS layer of the starting material of 150 g/m 2 (AS150) below 7 ⁇ m.
  • the thicknesses of the interdiffusion layers I according to the invention for a layer layer of the starting material result from the linear relationship according to the following formulas for various sheet thickness-dependent Heating times: I ⁇ m ⁇ 1 35 ⁇ edition bilaterally G / m 2 + 19 7 (short heating time ) I ⁇ m ⁇ 1 35 ⁇ edition bilaterally G / m 2 + 5 7 (very short heating time ) I ⁇ m ⁇ 1 35 ⁇ edition bilaterally G / m 2 ⁇ 2 7 (extremely short heating time )
  • the necessary heating time in the oven depends only on the sheet thickness, since the coating according to the invention does not require any holding time in the oven to produce a surface that can be painted. Thicker sheets therefore require longer heating times than thinner sheets.
  • Table 1 lists short (220 seconds), very short (180 seconds) and extremely short (150 seconds) heating times compared to usual heating times (360 seconds) in the roller hearth furnace.
  • Another positive effect of the short heating time is a significantly reduced proportion of pores in the alloy layer and in the diffusion zone. Pores arise during longer annealing times, for example due to the Kirkendall effect. Tests have shown that short-term annealing can reduce the total pore content to values of less than 6% and even to values of less than 4% or 2%. Which, for example, can have a beneficial effect on the suitability for welding.
  • Figure 1 shows schematically the layer structure of the coating on a press-hardened component with a coating made of AS and the usual long heating time according to the prior art to achieve alloying of the coating with iron.
  • An interdiffusion zone Fe(Al,Si) with a thickness of 7 to 14 ⁇ m is formed on the martensitic steel base material, on which a zone with different intermetallic phases (e.g. Fe 2 SiAl 2 and FeAl 2 ) has formed, the individual phases being in This zone can occur in rows or clusters.
  • intermetallic phases e.g. Fe 2 SiAl 2 and FeAl 2
  • Figure 2 shows the layer structure of a coating according to the invention on a press-hardened component with an AS coating on which a cover layer according to the invention containing aluminum oxide and / or hydroxide of at least 0.05 ⁇ m is formed and which is produced with shortened heating times compared to the prior art became.
  • an interdiffusion zone is formed in which aluminum and silicon have diffused into the steel Fe(Al, Si). Due to the very short heating time required in the oven to the austenitization temperature, this layer, for example for AS150, has an average thickness of less than 7 ⁇ m.
  • a further layer with different intermetallic phases forms on this layer, whereby the individual phases in this zone can appear in rows or clusters and on which an aluminum oxide and/or -hydroxide-containing cover layer is arranged with an average thickness of at least 0.05 ⁇ m to a maximum of 5 ⁇ m.
  • Figure 3 graphically shows the thickness I of the interdiffusion zone according to the invention for a layer of the starting material between 50 g/m 2 and 180 g/m 2 according to the following relationship: I ⁇ m ⁇ 1 35 ⁇ edition bilaterally G / m 2 + 19 7
  • Table 1 summarizes tests on paint adhesion (phosphating treatment typical for automobiles and cathodic dip painting; testing after 72 hours of condensation water constant climate according to DIN EN ISO 6270-2:2005 CH) and weldability (resistance spot welding) of press-hardened AS150 samples at 940 °C oven temperature and various heating times.
  • the sheet thickness of the samples is 1.5 mm. It can be seen that good paint adhesion and weldability are only achieved with heating times of 220 s and less a cover layer containing aluminum oxide and/or hydroxide according to the invention is present. Short heating times of 220 s and less also resulted in interdiffusion layers of less than 7 ⁇ m on the press-hardened component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Articles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
EP17721056.4A 2016-04-18 2017-04-13 Verfahren zur herstellung eines bauteils aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech Active EP3250727B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016107152.8A DE102016107152B4 (de) 2016-04-18 2016-04-18 Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech und Verfahren zur Herstellung eines solchen Bauteils und dessen Verwendung
PCT/EP2017/058918 WO2017182382A1 (de) 2016-04-18 2017-04-13 Bauteil aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech und verfahren zur herstellung eines solchen bauteils

Publications (3)

Publication Number Publication Date
EP3250727A1 EP3250727A1 (de) 2017-12-06
EP3250727B1 EP3250727B1 (de) 2021-07-07
EP3250727B2 true EP3250727B2 (de) 2024-01-17

Family

ID=58668836

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17721056.4A Active EP3250727B2 (de) 2016-04-18 2017-04-13 Verfahren zur herstellung eines bauteils aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech

Country Status (7)

Country Link
US (1) US11339479B2 (zh)
EP (1) EP3250727B2 (zh)
KR (1) KR102189424B1 (zh)
CN (1) CN109477197B (zh)
DE (1) DE102016107152B4 (zh)
RU (1) RU2704339C1 (zh)
WO (1) WO2017182382A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171157A1 (en) * 2018-03-09 2019-09-12 Arcelormittal A manufacturing process of press hardened parts with high productivity
EP4151770A4 (en) * 2020-05-13 2023-10-04 Nippon Steel Corporation HOT STAMPING ELEMENT
JP7269525B2 (ja) * 2020-05-13 2023-05-09 日本製鉄株式会社 ホットスタンプ用鋼板
JP7269526B2 (ja) * 2020-05-13 2023-05-09 日本製鉄株式会社 ホットスタンプ用鋼板
DE102020120580A1 (de) * 2020-08-04 2022-02-10 Muhr Und Bender Kg Verfahren zum herstellen von beschichtetem stahlband, und verfahren zum herstellen eines gehärteten stahlprodukts
DE102021118766A1 (de) * 2021-07-20 2023-01-26 Kamax Holding Gmbh & Co. Kg Bauteil mit integrierter Aluminiumdiffusionsschicht und Aluminiumoxidschicht

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2836878C2 (de) 1978-08-23 1984-05-30 Siemens AG, 1000 Berlin und 8000 München Verfahren zur anodischen Herstellung hydrophober Oxidschichten auf Aluminium- Folien für Elektrolytkondensatoren
WO2015098653A1 (ja) 2013-12-25 2015-07-02 新日鐵住金株式会社 自動車部品及び自動車部品の製造方法
EP2993248A1 (de) 2014-09-05 2016-03-09 ThyssenKrupp Steel Europe AG Stahlflachprodukt mit einer Al-Beschichtung, Verfahren zu seiner Herstellung, Stahlbauteil und Verfahren zu dessen Herstellung
US20190301983A1 (en) 2018-03-28 2019-10-03 Ford Global Technologies, Llc Quality control process to assess the aluminized coating characteristics of hot stamped parts

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546051A (en) * 1982-07-08 1985-10-08 Nisshin Steel Co., Ltd. Aluminum coated steel sheet and process for producing the same
EP0760399B1 (en) * 1995-02-24 2003-05-14 Nisshin Steel Co., Ltd. Hot-dip aluminized sheet, process for producing the sheet, and alloy layer control device
DE19853285C1 (de) * 1998-11-19 2000-06-15 Karlsruhe Forschzent Verfahren zur Herstellung einer Schutzschicht auf einem martensitischen Stahl und Verwendung des mit der Schutzschicht versehenen Stahls
FR2787735B1 (fr) 1998-12-24 2001-02-02 Lorraine Laminage Procede de realisation d'une piece a partir d'une bande de tole d'acier laminee et notamment laminee a chaud
FR2807447B1 (fr) 2000-04-07 2002-10-11 Usinor Procede de realisation d'une piece a tres hautes caracteristiques mecaniques, mise en forme par emboutissage, a partir d'une bande de tole d'acier laminee et notamment laminee a chaud et revetue
CA2387322C (en) * 2001-06-06 2008-09-30 Kawasaki Steel Corporation High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same
HUE036195T2 (hu) * 2006-10-30 2018-06-28 Arcelormittal Bevonatolt acélszalagok, eljárások azok elõállítására, eljárások azok alkalmazására, azokból készített nyersdarabok, azokból készített sajtolt termékek, továbbá ilyen sajtolt terméket tartalmazó késztermékek
EP2017074A3 (de) * 2007-06-13 2009-07-01 TI Automotive (Heidelberg) GmbH Aluminiumbeschichtete Kraftfahrzeugrohrleitung aus Metall und Verfahren zur Herstellung einer Kraftfahrzeugrohrleitung mittels Schmelztauchbeschichten
WO2009090443A1 (en) * 2008-01-15 2009-07-23 Arcelormittal France Process for manufacturing stamped products, and stamped products prepared from the same
KR101008042B1 (ko) * 2009-01-09 2011-01-13 주식회사 포스코 내식성이 우수한 알루미늄 도금강판, 이를 이용한 열간 프레스 성형 제품 및 그 제조방법
DE102010024664A1 (de) 2009-06-29 2011-02-17 Salzgitter Flachstahl Gmbh Verfahren zum Herstellen eines Bauteils aus einem lufthärtbaren Stahl und ein damit hergestelltes Bauteil
FR2947566B1 (fr) 2009-07-03 2011-12-16 Snecma Procede d'elaboration d'un acier martensitique a durcissement mixte
EP2312011A1 (de) * 2009-10-15 2011-04-20 Georg Fischer Automotive AG Verfahren zur metallischen Beschichtung eines Gussformteiles und aluminisiertes Gussformteil hergestellt durch das Verfahren
DE102009053260B4 (de) 2009-11-05 2011-09-01 Salzgitter Flachstahl Gmbh Verfahren zum Beschichten von Stahlbändern und beschichtetes Stahlband
JP5263258B2 (ja) 2010-10-25 2013-08-14 新日鐵住金株式会社 高強度自動車部品の製造方法および高強度部品
DE102011001140A1 (de) * 2011-03-08 2012-09-13 Thyssenkrupp Steel Europe Ag Stahlflachprodukt, Verfahren zum Herstellen eines Stahlflachprodukts und Verfahren zum Herstellen eines Bauteils
KR101829854B1 (ko) * 2011-04-01 2018-02-20 신닛테츠스미킨 카부시키카이샤 도장 후 내식성이 우수한 핫 스탬핑 성형된 고강도 부품 및 그 제조 방법
US9677145B2 (en) * 2011-08-12 2017-06-13 GM Global Technology Operations LLC Pre-diffused Al—Si coatings for use in rapid induction heating of press-hardened steel
DE102012002079B4 (de) 2012-01-30 2015-05-13 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines kalt- oder warmgewalzten Stahlbandes aus einem höchstfesten Mehrphasenstahl
DE102013004905A1 (de) 2012-03-23 2013-09-26 Salzgitter Flachstahl Gmbh Zunderarmer Vergütungsstahl und Verfahren zur Herstellung eines zunderarmen Bauteils aus diesem Stahl
DE102012006941B4 (de) 2012-03-30 2013-10-17 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils aus Stahl durch Warmumformen
DE102013005301A1 (de) 2013-03-21 2014-09-25 Salzgitter Flachstahl Gmbh Verfahren zur Verbesserung der Schweißbarkeit von hochmanganhaltigen Stahlbändern und beschichtetes Stahlband
DE102013009232A1 (de) 2013-05-28 2014-12-04 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils durch Warmumformen eines Vorproduktes aus Stahl
JP5873465B2 (ja) * 2013-08-14 2016-03-01 日新製鋼株式会社 全反射特性と耐食性に優れたAl被覆鋼板およびその製造法
DE102013015032A1 (de) 2013-09-02 2015-03-05 Salzgitter Flachstahl Gmbh Zinkbasierte Korrosionsschutzbeschichtung für Stahlbleche zur Herstellung eines Bauteils bei erhöhter Temperatur durch Presshärten
WO2015150848A1 (fr) 2014-03-31 2015-10-08 Arcelormittal Investigación Y Desarrollo Sl Procede de fabrication a haute productivite de pieces d'acier revêtues et durcies a la presse
DE102014016614A1 (de) 2014-10-31 2016-05-04 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils durch Umformen einer Platine aus Stahl
JP2016101911A (ja) * 2014-11-18 2016-06-02 株式会社シマノ 自転車用チェーン
DE102016215709A1 (de) * 2015-08-28 2017-03-02 Tsubakimoto Chain Co. Kettenkomponente und Kette

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2836878C2 (de) 1978-08-23 1984-05-30 Siemens AG, 1000 Berlin und 8000 München Verfahren zur anodischen Herstellung hydrophober Oxidschichten auf Aluminium- Folien für Elektrolytkondensatoren
WO2015098653A1 (ja) 2013-12-25 2015-07-02 新日鐵住金株式会社 自動車部品及び自動車部品の製造方法
EP2993248A1 (de) 2014-09-05 2016-03-09 ThyssenKrupp Steel Europe AG Stahlflachprodukt mit einer Al-Beschichtung, Verfahren zu seiner Herstellung, Stahlbauteil und Verfahren zu dessen Herstellung
US20190301983A1 (en) 2018-03-28 2019-10-03 Ford Global Technologies, Llc Quality control process to assess the aluminized coating characteristics of hot stamped parts

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. BENGTSON: "Quantitative depth profile analysis by glow discharge", SPECTROCHIMICA ACTA PART B: ATOMIC SPECTROSCOPY, vol. 49, no. 4, 1994, DOI: 10.1016/0584-8547(94)80034-0
CHANG, Y.Y. TSAUR, C.C. ROCK, J.C.: "Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperature oxidation", SURFACE AND COATINGS TECHNOLOGY, vol. 200, no. 22-23, 20 June 2006 (2006-06-20), NL , pages 6588 - 6593, ISSN: 0257-8972, DOI: 10.1016/j.surfcoat.2005.11.038
M WINDMANN ET AL: "Phase formation at the interface between a boron alloyed steel substrate and an Al-rich coating", SURFACE & COATINGS TECHNOLOGY, ELSEVIER B.V, 15 July 2013 (2013-07-15), pages 130 - 139, DOI: 10.1016/j.surfcoat.2013.03.045
RICHARDS, R. W.; JONES, R. D.; CLEMENTS, P. D.; CLARKE, H.: "Metallurgy of continuous hot dip aluminizing.", INTERNATIONAL MATERIALS REVIEWS, vol. 39, no. 5, 1 January 1994 (1994-01-01), US , pages 191 - 212, ISSN: 0950-6608, DOI: 10.1179/imr.1994.39.5.191
SPIESS LOTHAR, ET AL: "Materialcharakterisierungsverfahren Röntgenfluoreszenzanalyse (RFA) und Glimmentladungsspektroskopie (GDOES) im Alltag eines Werkstoffprüflabors", DGZFP-JAHRESTAGUNG 2010, 1 January 2010 (2010-01-01), pages 1 - 8

Also Published As

Publication number Publication date
EP3250727B1 (de) 2021-07-07
CN109477197B (zh) 2021-10-26
KR20190003502A (ko) 2019-01-09
RU2704339C1 (ru) 2019-10-28
EP3250727A1 (de) 2017-12-06
WO2017182382A1 (de) 2017-10-26
DE102016107152B4 (de) 2017-11-09
US20200308708A1 (en) 2020-10-01
US11339479B2 (en) 2022-05-24
KR102189424B1 (ko) 2020-12-11
CN109477197A (zh) 2019-03-15
DE102016107152A1 (de) 2017-10-19

Similar Documents

Publication Publication Date Title
EP3250727B2 (de) Verfahren zur herstellung eines bauteils aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech
EP3041969B1 (de) Zinkbasierte korrosionsschutzbeschichtung für stahlbleche zur herstellung eines bauteils bei erhöhter temperatur durch presshärten
EP2655673B1 (de) Verfahren zum erzeugen gehärteter bauteile
EP2848709B1 (de) Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils und Stahlbauteil
EP2553133B1 (de) Stahl, stahlflachprodukt, stahlbauteil und verfahren zur herstellung eines stahlbauteils
EP3215656B1 (de) Verfahren zum herstellen einer korrosionsschutzbeschichtung für härtbare stahlbleche und korrosionsschutzschicht für härtbare stahlbleche
DE102010017354A1 (de) Verfahren zum Herstellen eines warmgeformten und gehärteten, mit einer metallischen Korrosionsschutzbeschichtung überzogenen Stahlbauteils aus einem Stahlflachprodukt
EP2513346B1 (de) Verfahren zum herstellen eines gut umformbaren stahlflachprodukts
DE102010056265B3 (de) Verfahren zum Erzeugen gehärteter Bauteile
DE102010056264B4 (de) Verfahren zum Erzeugen gehärteter Bauteile
DE102015202642A1 (de) Verfahren zum Herstellen eines Erzeugnisses aus gewalztem Bandmaterial
WO2016026885A1 (de) Oberflächenveredeltes stahlblech und verfahren zu dessen herstellung
EP4038215B1 (de) Verfahren zur herstellung eines pressgehärteten stahlblechbauteils mit einem aluminiumbasierten überzug sowie eine ausgangsplatine und ein pressgehärtetes stahlblechbauteil hieraus
EP3303647B1 (de) Umformgehärtetes bauteil aus verzinktem stahl, herstellverfahren hierzu und verfahren zur herstellung eines stahlbandes geeignet zur umformhärtung von bauteilen
EP3585917B1 (de) Verfahren zum beschichten von stahlblechen oder stahlbändern und verfahren zur herstellung von pressgehärteten bauteilen hieraus
WO2022106561A1 (de) Stahlmaterial und verfahren zu seiner herstellung
WO2021148312A1 (de) Stahlbauteil mit einer manganhaltigen korrosionsschutzschicht

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SALZGITTER FLACHSTAHL GMBH

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GRAUL, MATTHIAS

Inventor name: KOLL, THOMAS

Inventor name: FRITZSCHE, CHRISTIAN

Inventor name: HARTMANN, HAUCKE-FREDERIK

Inventor name: LUTHER, FRIEDRICH

Inventor name: BEIER, FRANK

Inventor name: LASS, JAN-FREDERIK

Inventor name: MUETZE, STEFAN

Inventor name: DEBEAUX, MARC

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190418

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210325

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1408678

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010846

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211007

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211007

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502017010846

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

26 Opposition filed

Opponent name: THYSSENKRUPP STEEL EUROPE AG

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220413

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220413

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220413

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220413

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1408678

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220413

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220413

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230424

Year of fee payment: 7

Ref country code: DE

Payment date: 20230420

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: TITEL

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20240117

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502017010846

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707