EP3234699B1 - Timepiece resonator with crossed blades - Google Patents

Timepiece resonator with crossed blades Download PDF

Info

Publication number
EP3234699B1
EP3234699B1 EP15808400.4A EP15808400A EP3234699B1 EP 3234699 B1 EP3234699 B1 EP 3234699B1 EP 15808400 A EP15808400 A EP 15808400A EP 3234699 B1 EP3234699 B1 EP 3234699B1
Authority
EP
European Patent Office
Prior art keywords
resonator
angle
connecting element
strips
comprised
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15808400.4A
Other languages
German (de)
French (fr)
Other versions
EP3234699A1 (en
Inventor
Gianni Di Domenico
Baptiste Hinaux
Laurent KLINGER
Jean-Luc Helfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Publication of EP3234699A1 publication Critical patent/EP3234699A1/en
Application granted granted Critical
Publication of EP3234699B1 publication Critical patent/EP3234699B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/28Compensation of mechanisms for stabilising frequency for the effect of imbalance of the weights, e.g. tourbillon

Definitions

  • the invention relates to a clockwork resonator comprising at least one mass oscillating with respect to a connecting element which it comprises and which is arranged to be fixed directly or indirectly to a structure of a clockwork movement, said at least a mass being suspended from said connecting element by crossed blades which are elastic blades which extend at a distance from each other in two parallel planes, and whose projections of the directions on one of said parallel planes intersect at the level of a virtual pivot axis of said mass, and together define a first angle which is the angle at the vertex, from said virtual pivot axis, opposite which the part of said connecting element which is located between the fasteners extends said blades crossed on said connecting element.
  • the invention also relates to a clock movement comprising such a resonator.
  • the invention also relates to a timepiece, in particular a watch, comprising such a movement, and/or such a resonator.
  • the invention relates to the field of time bases for mechanical timepiece mechanisms, in particular for watches.
  • a cross-blade balance wheel is a resonator which can be used as a time base in a mechanical watch, instead of a balance-spring.
  • the document EP 2 911 012 A1 in the name of CSEM describes a rotary clockwork oscillator with a virtual pivot, with a balance which is connected by several flexible blades to a support, in particular in a monolithic embodiment. At least two flexible blades extend in planes perpendicular to the plane of the oscillator, and intersecting between them according to a straight line defining the geometric axis of oscillation of the oscillator, this axis crossing the two blades at seven eighths of their respective length.
  • This configuration of the crossing at seven-eighths of the length is already known as optimal, allowing to obtain a clean and frictionless rotation around the virtual axis of oscillation, by minimizing the displacement of this axis, according to the work of WH WITTRICK , University of Sydney, in February 1951.
  • the blades may originate perpendicular to the sides of an N-sided regular interior polygon, with N-order symmetry about the virtual axis of oscillation, however the only particular configuration shown is that of 'an interior square, in which the two planes comprising the blades are perpendicular to each other.
  • the number of slats and their arrangement is defined by a compromise between the size granted to the system, in particular from an aesthetic point of view, and the stability of the system.
  • EP 2 911 012 A1 Apart from the rule of seven eighths already known, there is no explicit mention in the document EP 2 911 012 A1 , specific geometric parameters to be favored for the best isochronism.
  • the inventors having noted on the one hand that the effect of the positions depends very weakly on the angle between the two crossed blades and on the other hand that the anisochronism produced by the non-linearity of the elastic restoring force depends strongly on this angle, they demonstrated by numerical simulation that it is possible to find an angular value which simultaneously optimizes the effect of positions and isochronism.
  • the invention therefore proposes to eliminate the drawbacks of the prior art by proposing an optimized geometry of the blades of the balance which cancels both the effect of the positions and the anisochronism produced by the non-linearity of the elastic restoring force.
  • the invention relates to a clockwork resonator comprising at least one oscillating mass with respect to a connecting element which it comprises and which is arranged to be fixed directly or indirectly to a structure of a clockwork movement.
  • said at least one mass being suspended from said connecting element by crossed blades which are elastic blades which extend at a distance from each other in two parallel planes, and whose direction projections on one of said planes parallel lines intersect at the level of a virtual pivot axis of said mass, and together define a first angle which is the angle at the apex, from said virtual pivot axis, opposite which extends the part of said connecting element which is located between the attachments of said blades crossed on said connecting element, characterized in that said first angle is between 68° and 76°.
  • the invention also relates to a clock movement comprising such a resonator.
  • the invention also relates to a timepiece, in particular a watch, comprising such a movement, and/or such a resonator.
  • center of mass used here can also be understood under the designation “center of inertia”.
  • the invention relates to a clockwork resonator 100 comprising at least one mass 1 oscillating with respect to a connecting element 2 that this resonator comprises.
  • This connecting element 2 is arranged to be fixed directly or indirectly to a structure of a timepiece movement 200.
  • This at least one mass 1 is suspended from the connecting element 2 by crossed blades 3, 4, which are elastic blades which extend at a distance from one on the other in two parallel planes, and whose projections of the directions on one of these parallel planes intersect at the level of a virtual pivot axis O of the mass 1, and together define a first angle a which is the angle at the top, from this virtual pivot axis O, opposite which extends the part of the connecting element 2 which is located between the attachments of the crossed blades 3, 4, on the connecting element 2.
  • crossed blades 3, 4 are elastic blades which extend at a distance from one on the other in two parallel planes, and whose projections of the directions on one of these parallel planes intersect at the level of a virtual pivot axis O of the mass 1, and together define a first angle a which is the angle at the top, from this virtual pivot axis O, opposite which extends the part of the connecting element 2 which is located between the attachments of the crossed blades 3, 4, on the connecting element 2.
  • this first angle a is between 68° and 76°.
  • the mass 1 is a pendulum, as visible on the figures 1 and 1A , which illustrate, in full line, the geometry of a resonator 100 with a cross-blade balance, in its rest position.
  • a pendulum 1 is kept fixed to a connecting element 2 by two crossed blades 3 and 4.
  • These crossed blades 3 and 4 are elastic blades which extend at a distance from each other in two parallel planes, and of which the projections of the directions on one of these parallel planes intersect at a virtual pivot axis O of this balance 1.
  • These crossed blades allow the rotation of this balance 1, and substantially prevent the translation of the balance 1 in the three directions XYZ, and also provide good resistance to small shocks.
  • There figure 1 represents a general case where the embedding of the crossed blades 3, 4 is oblique in the connecting element 2 which carries them.
  • Figure 1A represents a preferred configuration where this recess is made at a surface which is orthogonal to the end of each blade 3, 4, to its recess.
  • the origin of the coordinates O is placed at the intersection of blades 3 and 4 when resonator 100 is in its rest position.
  • the instantaneous center of rotation as well as the center of mass of the balance wheel are also located at the origin O when the balance wheel is in its rest position.
  • the bisector of the first angle a defines a direction X with which the projections of the two blades 3 and 4 in one of said parallel planes form an angle ⁇ which is half of the first angle ⁇ .
  • the resonator 100 is symmetrical with respect to the axis OX.
  • the first angle ⁇ has a value of 90°.
  • the inner radius ri is the distance between the point O and the embedding of the slats 3 and 4 in the connecting element 2.
  • the outer radius re is the distance between the point O and the embedding of the slats 3 and 4 in the pendulum 1. Note that the roles of ri and re can be exchanged depending on whether one places oneself in the referential of the connecting element or in that of the pendulum. All the following formulas remain valid since it is the relative rotational movement that counts.
  • the first angle ⁇ is the angle between the two blades 3 and 4 when the pendulum resonator 100 is in its rest position.
  • This first angle ⁇ is the apex angle (at O) which defines the opening of the blades 3 and 4 with respect to the connecting element 2, and facing which extends the part of this connecting element 2 which is located between the attachments of the cross blades 3 and 4 on the latter.
  • THE figures 1 and 1A show an instantaneous value ⁇ i of the current angle ⁇ , corresponding to the deviation of a point M towards its instantaneous position Mi, corresponding to bent positions 3i and 4i of the blades 3 and 4, shown in broken line on the figures 1 and 1A .
  • the invention sets out to determine a geometry for which such a resonator can be both isochronous and independent of the positions.
  • This characteristic of the first angle value ⁇ constitutes the essential characteristic of the invention, and is in no way fortuitous, since this value is the only one which makes it possible to simultaneously guarantee isochronism and the cancellation of the effect of the positions.
  • we have simulated the anisochronism of the crossed-blade balance that is to say the rate difference (in seconds per day) observed for two different amplitudes (we have chosen 12° and 8° which are representative of the operating domain of the system under consideration).
  • the prior art is very far from optimum isochronism, and the present invention consists in using the appropriate angle value to achieve optimum isochronism.
  • this optimal geometric configuration may vary very slightly, depending on the width of the blades 3 and 4, and the amplitude of the oscillation of the balance, as well as the manufacturing tolerances.
  • the resonator 100 is monolithic.
  • the resonator 100 is made of a micro-machinable material which can be produced using “MEMS” or “LISA” technologies, or of silicon or silicon oxide, or of at least partially amorphous metal, or of metallic glass, or of quartz, or in DLC.
  • the first angle ⁇ is between 70° and 76°.
  • the first angle ⁇ is between 70° and 74°. More particularly still, the first angle ⁇ is equal to 71.2°.
  • the invention also relates to a clock movement 200 comprising at least one such resonator 100.
  • the invention also relates to a timepiece 300, in particular a watch, comprising such a movement 200, and/or such a resonator 100.
  • the invention thus makes it possible to make a balance resonator with crossed blades simultaneously isochronous and independent of the positions.
  • the invention is applicable to other configurations of resonators with crossed blades, in particular in a structure of the tuning fork type, as visible on the figure 8 .
  • the use of several oscillating masses is advantageous since it makes it possible to minimize the losses on embedding. Indeed, a single pendulum causes a reaction force to the embedding and therefore losses. It is possible to cancel these losses by combining several oscillating masses so that the sum of their reactions to embedding is zero.
  • the resonator 100 may comprise at least two oscillating masses, in particular two as shown in this figure, the opposite movements of which cause reactions to the embedding which compensate each other.
  • two rockers 1 are each kept fixed to a common connecting element 2 by two crossed blades 3 and 4 arranged according to the characteristics described above.
  • the resonator 100 is, advantageously, entirely symmetrical with respect to the Y axis.
  • Other variant embodiments are naturally possible.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Electric Clocks (AREA)
  • Micromachines (AREA)

Description

Domaine de l'inventionField of invention

L'invention concerne un résonateur d'horlogerie comportant au moins une masse oscillant par rapport à un élément de liaison qu'il comporte et qui est agencé pour être fixé directement ou indirectement à une structure d'un mouvement d'horlogerie, ladite au moins une masse étant suspendue au dit élément de liaison par des lames croisées qui sont des lames élastiques qui s'étendent à distance l'une de l'autre dans deux plans parallèles, et dont les projections des directions sur un desdits plans parallèles se croisent au niveau d'un axe de pivotement virtuel de ladite masse, et définissent ensemble un premier angle qui est l'angle au sommet, depuis ledit axe de pivotement virtuel, face auquel s'étend la partie dudit élément de liaison qui est situé entre les attaches desdites lames croisées sur ledit élément de liaison.The invention relates to a clockwork resonator comprising at least one mass oscillating with respect to a connecting element which it comprises and which is arranged to be fixed directly or indirectly to a structure of a clockwork movement, said at least a mass being suspended from said connecting element by crossed blades which are elastic blades which extend at a distance from each other in two parallel planes, and whose projections of the directions on one of said parallel planes intersect at the level of a virtual pivot axis of said mass, and together define a first angle which is the angle at the vertex, from said virtual pivot axis, opposite which the part of said connecting element which is located between the fasteners extends said blades crossed on said connecting element.

L'invention concerne encore un mouvement d'horlogerie comportant un tel résonateur.The invention also relates to a clock movement comprising such a resonator.

L'invention concerne encore une pièce d'horlogerie, notamment une montre, comportant un tel mouvement, ou/et un tel résonateur.The invention also relates to a timepiece, in particular a watch, comprising such a movement, and/or such a resonator.

L'invention concerne le domaine des bases de temps pour les mécanismes d'horlogerie mécanique, en particulier pour des montres.The invention relates to the field of time bases for mechanical timepiece mechanisms, in particular for watches.

Arrière-plan de l'inventionBackground of the invention

Un balancier à lames croisées est un résonateur qui peut être utilisé comme base de temps dans une montre mécanique, en lieu et place d'un balancier-spiral.A cross-blade balance wheel is a resonator which can be used as a time base in a mechanical watch, instead of a balance-spring.

L'utilisation de lames croisées a l'avantage d'augmenter le facteur de qualité puisqu'il n'y a plus de pivot frottant.The use of crossed blades has the advantage of increasing the quality factor since there is no longer a rubbing pivot.

Toutefois un balancier à lames croisées présente deux inconvénients importants :

  • le couple de rappel élastique est non-linéaire, ce qui rend le système anisochrone, c'est-à-dire que la fréquence du résonateur dépend de l'amplitude de l'oscillation;
  • le centre de masse du balancier subit un mouvement résiduel qui est dû au mouvement parasite de l'axe instantané de rotation. Il en résulte que la fréquence du résonateur dépend de l'orientation de la montre dans le champ gravitationnel; c'est ce qu'on appelle l'effet des positions.
However, a balance with crossed blades has two major drawbacks:
  • the elastic restoring torque is non-linear, which makes the system anisochronous, ie the frequency of the resonator depends on the amplitude of the oscillation;
  • the center of mass of the balance undergoes a residual movement which is due to the parasitic movement of the instantaneous axis of rotation. It follows that the frequency of the resonator depends on the orientation of the watch in the gravitational field; this is called the position effect.

Dans la publication F.Barrot, T. Hamaguchi, « Un nouveau régulateur mécanique pour une réserve de marche exceptionnelle », Actes de la journée d'étude 2014 de la Société Suisse de Chronométrie , les auteurs divulguent un oscillateur composé d'un balancier à lames croisées. Ils expliquent « qu'une implémentation de type pivot Wittrick est choisie » afin de « rendre la fréquence d'oscillation indépendante de l'orientation du balancier par rapport à la gravité ». Cette configuration particulière où les lames se croisent au sept huitièmes de leur longueur a été divulguée dans les travaux de W.H.Wittrick, « The properties of crossed flexure pivots and the influence of the point at which the strips cross » The Aeronautical Quarterly II(4), pages 272 à 292 (1951 ). Elle a pour avantage de minimiser les déplacements de l'axe de rotation virtuel et par conséquent de minimiser l'effet des positions. Toutefois, avec un angle de 90° entre les deux lames, le balancier à lames croisées utilisé dans ces travaux est fortement anisochrone, raison pour laquelle les auteurs ont eu recours à une compensation par un composant supplémentaire appelé correcteur d'isochronisme. Des mesures expérimentales montrent que cette compensation est très difficile à réaliser en pratique et qu'il serait donc très utile de trouver une géométrie des lames qui annule aussi bien l'effet des positions que l'anisochronisme produit par la non-linéarité de la force de rappel élastique.In the post F.Barrot, T. Hamaguchi, "A new mechanical regulator for an exceptional power reserve", Proceedings of the 2014 study day of the Swiss Society of Chronometry , the authors disclose an oscillator composed of a cross-bladed pendulum. They explain that "a Wittrick pivot type implementation is chosen" in order to "make the frequency of oscillation independent of the orientation of the pendulum with respect to gravity". This particular configuration where the blades intersect at seven-eighths of their length has been disclosed in the work of WHWittrick, “The properties of crossed flexure pivots and the influence of the point at which the strips cross” The Aeronautical Quarterly II(4), pages 272 to 292 (1951 ). It has the advantage of minimizing the displacements of the virtual axis of rotation and consequently of minimizing the effect of the positions. However, with an angle of 90° between the two blades, the cross-blade balance wheel used in this work is highly anisochronous, which is why the authors resorted to compensation by an additional component called the isochronism corrector. Experimental measurements show that this compensation is very difficult to achieve in practice and that it would therefore be very useful to find a geometry of the blades which cancels both the effect of the positions and the anisochronism produced by the non-linearity of the force. elastic return.

Le document EP 2 911 012 A1 au nom de CSEM décrit un oscillateur rotatif d'horlogerie à pivot virtuel, avec un balancier qui est relié par plusieurs lames flexibles à un support, en particulier dans une réalisation monolithique. Au moins deux lames flexibles s'étendent dans des plans perpendiculaires au plan de l'oscillateur, et sécants entre eux selon une droite définissant l'axe géométrique d'oscillation de l'oscillateur, cet axe croisant les deux lames aux sept huitièmes de leur longueur respective.The document EP 2 911 012 A1 in the name of CSEM describes a rotary clockwork oscillator with a virtual pivot, with a balance which is connected by several flexible blades to a support, in particular in a monolithic embodiment. At least two flexible blades extend in planes perpendicular to the plane of the oscillator, and intersecting between them according to a straight line defining the geometric axis of oscillation of the oscillator, this axis crossing the two blades at seven eighths of their respective length.

Cette configuration du croisement aux sept huitièmes de la longueur est déjà connue comme optimale, permettant d'obtenir une rotation propre et sans frottement autour de l'axe virtuel d'oscillation, en minimisant le déplacement de cet axe, selon les travaux de W. H. WITTRICK, University of Sidney, en février 1951.This configuration of the crossing at seven-eighths of the length is already known as optimal, allowing to obtain a clean and frictionless rotation around the virtual axis of oscillation, by minimizing the displacement of this axis, according to the work of WH WITTRICK , University of Sydney, in February 1951.

Si, dans ce document EP 2 911 012 A1 CSEM, il est envisagé que les lames puissent prendre naissance perpendiculairement aux côtés d'un polygone intérieur régulier à N côtés, avec une symétrie d'ordre N autour de l'axe d'oscillation virtuel, la seule configuration particulière illustrée est toutefois celle d'un carré intérieur, dans laquelle les deux plans comportant les lames sont perpendiculaires entre eux. Selon ce document, le nombre des lames et leur disposition est défini par un compromis entre l'encombrement accordé au système, notamment d'un point de vue esthétique, et la stabilité du système. Abstraction faite de la règle des sept huitièmes déjà connue, il n'est pas fait mention explicite, dans le document EP 2 911 012 A1 , de paramètres géométriques particuliers à privilégier pour le meilleur isochronisme.If in this document EP 2 911 012 A1 CSEM, it is contemplated that the blades may originate perpendicular to the sides of an N-sided regular interior polygon, with N-order symmetry about the virtual axis of oscillation, however the only particular configuration shown is that of 'an interior square, in which the two planes comprising the blades are perpendicular to each other. According to this document, the number of slats and their arrangement is defined by a compromise between the size granted to the system, in particular from an aesthetic point of view, and the stability of the system. Apart from the rule of seven eighths already known, there is no explicit mention in the document EP 2 911 012 A1 , specific geometric parameters to be favored for the best isochronism.

L'article de F. Barrot et T. Hamaguchi: "Un nouveau régulateur mécanique pour une réserve de marche exceptionnelle", Actes de la Journée d'Etude, Société Suisse de Chronométrie, 17 septembre 2014, pages 43-48 , divulgue un résonateur avec masse oscillante et deux lames croisées la reliant à un élément de liaison relié à son tour à la structure d'un mouvement d'horlogerie.The article of F. Barrot and T. Hamaguchi: "A new mechanical regulator for an exceptional power reserve", Proceedings of the Study Day, Swiss Society of Chronometry, September 17, 2014, pages 43-48 , discloses a resonator with oscillating mass and two crossed blades connecting it to a connecting element connected in turn to the structure of a clock movement.

Résumé de l'inventionSummary of the invention

Les inventeurs ayant constaté d'une part que l'effet des positions dépend très faiblement de l'angle entre les deux lames croisées et d'autre part que l'anisochronisme produit par la non-linéarité de la force de rappel élastique dépend fortement de cet angle, ils ont démontré par simulation numérique qu'il est possible de trouver une valeur angulaire qui optimise simultanément l'effet des positions et l'isochronisme.The inventors having noted on the one hand that the effect of the positions depends very weakly on the angle between the two crossed blades and on the other hand that the anisochronism produced by the non-linearity of the elastic restoring force depends strongly on this angle, they demonstrated by numerical simulation that it is possible to find an angular value which simultaneously optimizes the effect of positions and isochronism.

L'invention se propose donc d'éliminer les inconvénients de l'art antérieur en proposant une géométrie optimisée des lames du balancier qui annule aussi bien l'effet des positions que l'anisochronisme produit par la non-linéarité de la force de rappel élastique. A cet effet, l'invention concerne un résonateur d'horlogerie comportant au moins une masse oscillant par rapport à un élément de liaison qu'il comporte et qui est agencé pour être fixé directement ou indirectement à une structure d'un mouvement d'horlogerie, ladite au moins une masse étant suspendue au dit élément de liaison par des lames croisées qui sont des lames élastiques qui s'étendent à distance l'une de l'autre dans deux plans parallèles, et dont les projections des directions sur un desdits plans parallèles se croisent au niveau d'un axe de pivotement virtuel de ladite masse, et définissent ensemble un premier angle qui est l'angle au sommet, depuis ledit axe de pivotement virtuel, face auquel s'étend la partie dudit élément de liaison qui est située entre les attaches desdites lames croisées sur ledit élément de liaison, caractérisé en ce que ledit premier angle est compris entre 68° et 76°.The invention therefore proposes to eliminate the drawbacks of the prior art by proposing an optimized geometry of the blades of the balance which cancels both the effect of the positions and the anisochronism produced by the non-linearity of the elastic restoring force. . To this end, the invention relates to a clockwork resonator comprising at least one oscillating mass with respect to a connecting element which it comprises and which is arranged to be fixed directly or indirectly to a structure of a clockwork movement. , said at least one mass being suspended from said connecting element by crossed blades which are elastic blades which extend at a distance from each other in two parallel planes, and whose direction projections on one of said planes parallel lines intersect at the level of a virtual pivot axis of said mass, and together define a first angle which is the angle at the apex, from said virtual pivot axis, opposite which extends the part of said connecting element which is located between the attachments of said blades crossed on said connecting element, characterized in that said first angle is between 68° and 76°.

L'invention concerne encore un mouvement d'horlogerie comportant un tel résonateur.The invention also relates to a clock movement comprising such a resonator.

L'invention concerne encore une pièce d'horlogerie, notamment une montre, comportant un tel mouvement, ou/et un tel résonateur.The invention also relates to a timepiece, in particular a watch, comprising such a movement, and/or such a resonator.

Description sommaire des dessinsBrief description of the drawings

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui va suivre, en référence aux dessins annexés, où :

  • la figure 1 représente, de façon schématisée et en plan, un résonateur à balancier à lames croisées, dans une position de repos en trait plein, et dans une position instantanée (en trait interrompu des lames croisées) où le balancier est écarté de sa position de repos ; cette figure 1 représente un cas général où l'encastrement des lames croisées est oblique dans l'élément de liaison qui les porte, lequel est fixé à la structure d'un mouvement d'horlogerie. La figure 1A représente une configuration préférée où cet encastrement est réalisé au niveau d'une surface qui est orthogonale à l'extrémité de chaque lame au niveau de son encastrement dans cet élément de liaison;
  • la figure 2 est un graphique représentatif de l'art antérieur, où les lames croisées sont perpendiculaires dans la position de repos du résonateur, illustrant la variation de la constante de rappel élastique k en ordonnée, en fonction de l'angle courant θ que fait le balancier avec sa position de repos en abscisse ;
  • la figure 3 et la figure 4 sont des graphiques également représentatifs du même art antérieur, et illustrent la variation des coordonnées du centre de masse, respectivement selon X, ΔX, sur la figure 3, et selon Y, ΔY, sur la figure 4 en fonction de l'angle courant θ que fait le balancier avec sa position de repos en abscisse. Ces variations des coordonnées ΔX et ΔY sont normalisées par rapport à la longueur des lames L pour que les graphiques soient sans unités;
  • la figure 5 est un graphique représentatif de l'invention, où les lames croisées font entre elles un premier angle α voisin de 72° dans la position de repos du résonateur, illustrant la variation de la constante de rappel élastique k en ordonnée, en fonction de l'angle courant θ que fait le balancier avec sa position de repos en abscisse ;
  • la figure 6 et la figure 7 sont des graphiques également représentatifs de l'invention, où les lames croisées font entre elles un premier angle α voisin de 72° dans la position de repos du résonateur, et illustrent la variation des coordonnées du centre de masse, respectivement selon X, ΔX, sur la figure 6, et selon Y, ΔY, sur la figure 7 en fonction de l'angle courant θ que fait le balancier avec sa position de repos en abscisse. Ces variations des coordonnées ΔX et ΔY sont normalisées par rapport à la longueur des lames L pour que les graphiques soient sans unités;
  • la figure 8 illustre une variante où le résonateur à lames croisées est un résonateur à diapason ;
  • la figure 9 est un détail montrant, en trait interrompu, la profondeur de la zone d'influence d'une flexion d'une lame élastique monolithique avec un élément de liaison en matériau micro-usinable dans le cas de la figure 1. La figure 9A est l'équivalent pour la figure 1A ;
  • la figure 10 est un schéma-blocs représentant une pièce d'horlogerie ou une montre comportant un mouvement comportant lui-même un tel résonateur.
  • la figure 11A est un graphique illustrant l'anisochronisme du balancier à lames croisées en fonction du paramètre Q = ri/L qui permet de comparer les performances de la présente invention (α = 71.2°) à l'art antérieur (α = 90°). L'anisochronisme, mesuré en secondes par jour (s/j) est la différence de marche observée pour deux amplitudes différentes (les valeurs choisies de 12° et 8° sont représentatives du domaine de fonctionnement du système considéré).
  • la figure 11B est un graphique illustrant l'effet des positions sur la marche du balancier à lames croisées en fonction du paramètre Q = ri/L pour la présente invention (α = 71.2°) ainsi que pour l'art antérieur (α = 90°).
Other characteristics and advantages of the invention will appear on reading the detailed description which follows, with reference to the appended drawings, where:
  • there figure 1 represents, schematically and in plan, a resonator with a balance beam with crossed blades, in a rest position in solid line, and in an instantaneous position (in broken line of the crossed blades) where the balance wheel is moved away from its rest position; this figure 1 represents a general case where the embedding of the crossed blades is oblique in the connecting element which carries them, which is fixed to the structure of a clock movement. There Figure 1A represents a preferred configuration where this embedding is carried out at the level of a surface which is orthogonal to the end of each blade at the level of its embedding in this connecting element;
  • there picture 2 is a graph representative of the prior art, where the crossed blades are perpendicular in the rest position of the resonator, illustrating the variation of the elastic spring constant k on the ordinate, as a function of the current angle θ that the balance wheel makes with its rest position on the abscissa;
  • there picture 3 and the figure 4 are graphs also representative of the same prior art, and illustrate the variation of the coordinates of the center of mass, respectively according to X, ΔX, on the picture 3 , and according to Y, ΔY, on the figure 4 as a function of the current angle θ that the balance makes with its rest position on the abscissa. These variations of the ΔX and ΔY coordinates are normalized with respect to the length of the blades L so that the graphs are unitless;
  • there figure 5 is a graph representative of the invention, where the crossed blades make between them a first angle α close to 72° in the rest position of the resonator, illustrating the variation of the elastic spring constant k on the ordinate, as a function of the current angle θ that the balance makes with its rest position on the abscissa;
  • there figure 6 and the figure 7 are graphs also representative of the invention, where the crossed blades make between them a first angle α close to 72° in the rest position of the resonator, and illustrate the variation of the coordinates of the center of mass, respectively according to X, ΔX, on the figure 6 , and according to Y, ΔY, on the figure 7 as a function of the current angle θ that the balance makes with its rest position on the abscissa. These variations of the ΔX and ΔY coordinates are normalized with respect to the length of the blades L so that the graphs are unitless;
  • there figure 8 illustrates a variant where the resonator with crossed blades is a tuning fork resonator;
  • there figure 9 is a detail showing, in broken line, the depth of the zone of influence of a bending of a monolithic elastic blade with a connecting element in micro-machinable material in the case of the figure 1 . There figure 9A is the equivalent for Figure 1A ;
  • there figure 10 is a block diagram representing a timepiece or a watch comprising a movement itself comprising such a resonator.
  • there figure 11A is a graph illustrating the anisochronism of the cross-blade balance as a function of the parameter Q=ri/L which makes it possible to compare the performances of the present invention (α=71.2°) with the prior art (α=90°). The anisochronism, measured in seconds per day (s/d) is the rate difference observed for two different amplitudes (the chosen values of 12° and 8° are representative of the operating range of the system considered).
  • there figure 11B is a graph illustrating the effect of the positions on the rate of the cross-blade balance as a function of the parameter Q=ri/L for the present invention (α=71.2°) as well as for the prior art (α=90°).

Description détaillée des modes de réalisation préférésDetailed Description of Preferred Embodiments

L'appellation « centre de masse » utilisée ici peut aussi se comprendre sous l'appellation « centre d'inertie ».The designation “center of mass” used here can also be understood under the designation “center of inertia”.

L'invention concerne un résonateur d'horlogerie 100 comportant au moins une masse 1 oscillant par rapport à un élément de liaison 2 que comporte ce résonateur. Cet élément de liaison 2 est agencé pour être fixé directement ou indirectement à une structure d'un mouvement d'horlogerie 200.The invention relates to a clockwork resonator 100 comprising at least one mass 1 oscillating with respect to a connecting element 2 that this resonator comprises. This connecting element 2 is arranged to be fixed directly or indirectly to a structure of a timepiece movement 200.

Cette au moins une masse 1 est suspendue à l'élément de liaison 2 par des lames croisées 3, 4, qui sont des lames élastiques qui s'étendent à distance l'une de l'autre dans deux plans parallèles, et dont les projections des directions sur un de ces plans parallèles se croisent au niveau d'un axe de pivotement virtuel O de la masse 1, et définissent ensemble un premier angle a qui est l'angle au sommet, depuis cet axe de pivotement virtuel O, face auquel s'étend la partie de l'élément de liaison 2 qui est située entre les attaches des lames croisées 3, 4, sur l'élément de liaison 2.This at least one mass 1 is suspended from the connecting element 2 by crossed blades 3, 4, which are elastic blades which extend at a distance from one on the other in two parallel planes, and whose projections of the directions on one of these parallel planes intersect at the level of a virtual pivot axis O of the mass 1, and together define a first angle a which is the angle at the top, from this virtual pivot axis O, opposite which extends the part of the connecting element 2 which is located between the attachments of the crossed blades 3, 4, on the connecting element 2.

Selon l'invention, comme il sera expliqué plus loin, ce premier angle a est compris entre 68° et 76°.According to the invention, as will be explained below, this first angle a is between 68° and 76°.

Plus particulièrement, et de façon non limitative, la masse 1 est un balancier, tel que visible sur les figures 1 et 1A, qui illustrent, en trait plein, la géométrie d'un résonateur 100 à balancier à lames croisées, dans sa position de repos.More particularly, and in a non-limiting way, the mass 1 is a pendulum, as visible on the figures 1 and 1A , which illustrate, in full line, the geometry of a resonator 100 with a cross-blade balance, in its rest position.

Un balancier 1 est maintenu fixé à un élément de liaison 2 par deux lames croisées 3 et 4. Ces lames croisées 3 et 4 sont des lames élastiques qui s'étendent à distance l'une de l'autre dans deux plans parallèles, et dont les projections des directions sur un de ces plans parallèles se croisent au niveau d'un axe de pivotement virtuel O de ce balancier 1. Ces lames croisées permettent la rotation de ce balancier 1, et empêchent sensiblement la translation du balancier 1 dans les trois directions XYZ, et assurent de plus une bonne tenue aux petits chocs. La figure 1 représente un cas général où l'encastrement des lames croisées 3, 4, est oblique dans l'élément de liaison 2 qui les porte. La figure 1A représente une configuration préférée où cet encastrement est réalisé au niveau d'une surface qui est orthogonale à l'extrémité de chaque lame 3, 4, à son encastrement.A pendulum 1 is kept fixed to a connecting element 2 by two crossed blades 3 and 4. These crossed blades 3 and 4 are elastic blades which extend at a distance from each other in two parallel planes, and of which the projections of the directions on one of these parallel planes intersect at a virtual pivot axis O of this balance 1. These crossed blades allow the rotation of this balance 1, and substantially prevent the translation of the balance 1 in the three directions XYZ, and also provide good resistance to small shocks. There figure 1 represents a general case where the embedding of the crossed blades 3, 4 is oblique in the connecting element 2 which carries them. There Figure 1A represents a preferred configuration where this recess is made at a surface which is orthogonal to the end of each blade 3, 4, to its recess.

L'origine des coordonnées O est placée au croisement des lames 3 et 4 lorsque le résonateur 100 est dans sa position de repos. Le centre instantané de rotation ainsi que le centre de masse du balancier sont aussi situés à l'origine O lorsque le balancier est dans sa position de repos. La bissectrice du premier angle a définit une direction X avec laquelle les projections des deux lames 3 et 4 dans un desdits plans parallèles font un angle β qui est la moitié du premier angle α.The origin of the coordinates O is placed at the intersection of blades 3 and 4 when resonator 100 is in its rest position. The instantaneous center of rotation as well as the center of mass of the balance wheel are also located at the origin O when the balance wheel is in its rest position. The bisector of the first angle a defines a direction X with which the projections of the two blades 3 and 4 in one of said parallel planes form an angle β which is half of the first angle α.

Dans la réalisation préférée de la figure 1, le résonateur 100 est symétrique par rapport à l'axe OX.In the preferred embodiment of the figure 1 , the resonator 100 is symmetrical with respect to the axis OX.

Dans l'art antérieur, le premier angle α a une valeur de 90°.In the prior art, the first angle α has a value of 90°.

Sur la figure 1, le rayon intérieur ri est la distance entre le point O et l'encastrement des lames 3 et 4 dans l'élément de liaison 2. Le rayon extérieur re est la distance entre le point O et l'encastrement des lames 3 et 4 dans le balancier 1. Notons que les rôles de ri et re peuvent être échangés suivant que l'on se place dans le référentiel de l'élément de liaison ou dans celui du balancier. Toutes les formules qui suivent restent valables puisque c'est le mouvement relatif de rotation qui compte.On the figure 1 , the inner radius ri is the distance between the point O and the embedding of the slats 3 and 4 in the connecting element 2. The outer radius re is the distance between the point O and the embedding of the slats 3 and 4 in the pendulum 1. Note that the roles of ri and re can be exchanged depending on whether one places oneself in the referential of the connecting element or in that of the pendulum. All the following formulas remain valid since it is the relative rotational movement that counts.

La longueur totale L de chacune des lames est, dans cette construction symétrique, L = ri + re.The total length L of each of the blades is, in this symmetrical construction, L = ri + re.

Le premier angle α est l'angle entre les deux lames 3 et 4 lorsque le résonateur 100 à balancier est dans sa position de repos. Ce premier angle α est l'angle au sommet (en O) qui définit l'ouverture des lames 3 et 4 par rapport à l'élément de liaison 2, et face auquel s'étend la partie de cet élément de liaison 2 qui est située entre les attaches des lames croisées 3 et 4 sur ce dernier.The first angle α is the angle between the two blades 3 and 4 when the pendulum resonator 100 is in its rest position. This first angle α is the apex angle (at O) which defines the opening of the blades 3 and 4 with respect to the connecting element 2, and facing which extends the part of this connecting element 2 which is located between the attachments of the cross blades 3 and 4 on the latter.

Le couple de rappel élastique que les lames exercent sur le balancier peut s'écrire M = k.θ, où k est la constante de rappel élastique et θ est l'angle courant que fait le balancier 1 par rapport à sa position de repos. Les figures 1 et 1A montrent une valeur instantanée θi de l'angle courant θ, correspondant à la déviation d'un point M vers sa position instantanée Mi, correspondant à des positions fléchies 3i et 4i des lames 3 et 4, représentées en trait interrompu sur les figures 1 et 1A.The elastic return torque that the blades exert on the balance can be written M=k.θ, where k is the elastic return constant and θ is the current angle that the balance 1 makes with respect to its rest position. THE figures 1 and 1A show an instantaneous value θi of the current angle θ, corresponding to the deviation of a point M towards its instantaneous position Mi, corresponding to bent positions 3i and 4i of the blades 3 and 4, shown in broken line on the figures 1 and 1A .

Comme le couple est non-linéaire, la constante de rappel élastique varie avec l'angle du balancier k(θ) = M/θ.As the torque is non-linear, the elastic spring constant varies with the angle of the pendulum k(θ) = M/θ.

La variation de la constante de rappel élastique k en fonction de l'angle courant du balancier θ est représentée à la figure 2 pour l'art antérieur. On voit que la force de rappel élastique est linéaire pour le rapport Q= ri/L = 0.10.The variation of the elastic spring constant k as a function of the current angle of the balance wheel θ is represented at figure 2 for the prior art. We see that the elastic restoring force is linear for the ratio Q= ri/L = 0.10.

Le déplacement du centre de masse du balancier (ΔX, ΔY) en fonction de l'angle du balancier θ est représenté aux figures 3 et 4 pour le même art antérieur. Les différentes courbes correspondent à des rapports Q = ri/L différents. On voit que, dans l'art antérieur, le déplacement selon X est minimum pour ri/L compris entre 0.12 et 0.13.The displacement of the center of mass of the balance wheel (ΔX, ΔY) as a function of the angle of the balance wheel θ is shown in figures 3 and 4 for the same prior art. The different curves correspond to different Q=ri/L ratios. It can be seen that, in the prior art, the displacement along X is minimum for ri/L comprised between 0.12 and 0.13.

On observe donc, sur l'ensemble des figures 2 à 4 représentatives de l'art antérieur, qu'il n'y a pas de valeur du rapport Q = ri/L pour laquelle on a simultanément un couple de rappel linéaire et un déplacement ΔX sensiblement nul.We therefore observe, on all the figures 2 to 4 representative of the prior art, that there is no value of the ratio Q = ri/L for which we have simultaneously a linear return torque and a substantially zero displacement ΔX.

Par conséquent, dans les constructions de l'art antérieur, pour α = 90°, il n'est pas possible d'avoir un système simultanément isochrone (force de rappel élastique linéaire) et indépendant des positions (déplacement nul du centre de masse selon X).Consequently, in the constructions of the prior art, for α = 90°, it is not possible to have a system that is simultaneously isochronous (linear elastic restoring force) and independent of the positions (zero displacement of the center of mass according to X).

L'invention s'attache à déterminer une géométrie pour laquelle un tel résonateur puisse être à la fois isochrone et indépendant des positions.The invention sets out to determine a geometry for which such a resonator can be both isochronous and independent of the positions.

L'étude réalisée dans le cadre de l'invention permet de déterminer des valeurs convenables.The study carried out within the framework of the invention makes it possible to determine suitable values.

Pour un premier angle a voisin de 72°, et pour un rapport Q = ri/L compris entre 0.12 et 0.13, le système est simultanément isochrone et indépendant des positions.For a first angle a close to 72°, and for a ratio Q=ri/L comprised between 0.12 and 0.13, the system is simultaneously isochronous and independent of the positions.

En effet, pour un premier angle α voisin de 72°, la variation de la constante de rappel élastique k en fonction de l'angle courant θ du balancier est représentée à la figure 5. On voit que la force de rappel élastique est linéaire pour Q = ri/L compris entre 0.12 et 0.13.Indeed, for a first angle α close to 72°, the variation of the elastic spring constant k as a function of the current angle θ of the balance wheel is represented at figure 5 . We see that the elastic restoring force is linear for Q = ri/L between 0.12 and 0.13.

De même, pour un premier angle α voisin de 72°, le déplacement du centre de masse du balancier selon X en fonction de l'angle courant θ du balancier est représenté à la figure 6. Les différentes courbes correspondent à des rapports ri / L différents. On voit que le déplacement selon X s'annule pour Q = ri/L compris entre 0.12 et 0.13.Similarly, for a first angle α close to 72°, the displacement of the center of mass of the balance according to X as a function of the current angle θ of the balance is shown in figure 6 . The different curves correspond to different ri / L ratios. We see that the displacement along X is canceled for Q = ri/L between 0.12 and 0.13.

On observe donc que pour un premier angle α voisin de 72°, et un rapport Q = ri/L compris entre 0.12 et 0.13 on a simultanément un couple de rappel linéaire et un déplacement nul du centre de masse selon X, ce qui est un avantage considérable.We therefore observe that for a first angle α close to 72°, and a ratio Q = ri/L between 0.12 and 0.13 we simultaneously have a linear return torque and a zero displacement of the center of mass along X, which is a considerable advantage.

Cette caractéristique de la valeur de premier angle α constitue la caractéristique essentielle de l'invention, et n'est nullement fortuite, puisque cette valeur est la seule qui permette de garantir simultanément l'isochronisme et l'annulation de l'effet des positions. Pour clairement illustrer ces propos, nous avons simulé l'anisochronisme du balancier à lames croisées c'est-à-dire la différence de marche (en secondes par jour) observée pour deux amplitudes différentes (nous avons choisi 12° et 8° qui sont représentatives du domaine de fonctionnement du système considéré). Les résultats sont représentés dans le graphique de la figure 11A en fonction du paramètre Q = ri/L, aussi bien pour l'art antérieur (α = 90°) que pour la présente invention (α = 71.2°). On constate que l'anisochronisme dépend fortement de l'angle a ainsi que du paramètre Q = ri/L. L'art antérieur, avec un paramètre Q = 0.125 et un angle α = 90°, est fortement anisochrone puisque la variation de marche vaut environ 17 s/j. En revanche, selon la présente invention, le balancier à lames croisées est isochrone pour α = 71.2°. Pour être complets, nous avons aussi simulé l'effet des positions sur le balancier à lames croisées, c'est-à-dire la différence de marche observée entre la position horizontale (axes X et Y horizontaux) et la position verticale (axe Y horizontal et axe X aligné avec la gravitation). Les résultats sont représentés dans le graphique de la figure 11B en fonction du paramètre Q = ri/L, aussi bien pour l'art antérieur (α = 90°) que pour la présente invention (α = 71.2°). On constate que l'effet des positions dépend faiblement de l'angle a et fortement du paramètre Q = ri/L. Ceci explique notre démarche qui consiste à utiliser a pour optimiser l'isochronisme et Q pour minimiser l'effet des positions. Notons que la valeur optimale de Q = ri/L dépend faiblement de l'angle α, elle vaut 0.1264 pour la présente invention (α = 71.2°) et 0.1270 pour l'art antérieur (α = 90°). Finalement, il est important de remarquer que le choix de α = 71.2° est le seul qui permette de rendre le système aussi bien isochrone que indépendant des positions.This characteristic of the first angle value α constitutes the essential characteristic of the invention, and is in no way fortuitous, since this value is the only one which makes it possible to simultaneously guarantee isochronism and the cancellation of the effect of the positions. To clearly illustrate these remarks, we have simulated the anisochronism of the crossed-blade balance, that is to say the rate difference (in seconds per day) observed for two different amplitudes (we have chosen 12° and 8° which are representative of the operating domain of the system under consideration). The results are represented in the graph of the figure 11A as a function of the parameter Q=ri/L, both for the prior art (α=90°) and for the present invention (α=71.2°). It can be seen that the anisochronism strongly depends on the angle a as well as on the parameter Q=ri/L. The prior art, with a parameter Q=0.125 and an angle α=90°, is highly anisochronous since the rate variation is approximately 17 s/d. On the other hand, according to the present invention, the cross-blade balance is isochronous for α=71.2°. For completeness, we have also simulated the effect of the positions on the cross-blade balance, i.e. the difference in rate observed between the horizontal position (X and Y axes horizontal) and the vertical position (Y axis horizontal and X axis aligned with gravitation). The results are represented in the graph of the figure 11B as a function of the parameter Q=ri/L, both for the prior art (α=90°) and for the present invention (α=71.2°). It can be seen that the effect of the positions depends weakly on the angle a and strongly on the parameter Q = ri/L. This explains our approach which consists in using a to optimize the isochronism and Q to minimize the effect of the positions. Note that the optimal value of Q=ri/L depends weakly on the angle α, it is 0.1264 for the present invention (α=71.2°) and 0.1270 for the prior art (α=90°). Finally, it is important to note that the choice of α = 71.2° is the only one which makes it possible to make the system both isochronous and independent of the positions.

En résumé, l'art antérieur est très loin de l'optimum d'isochronisme, et la présente invention consiste à utiliser la valeur d'angle adéquate pour atteindre l'optimum d'isochronisme.In summary, the prior art is very far from optimum isochronism, and the present invention consists in using the appropriate angle value to achieve optimum isochronism.

Dans la pratique, cette configuration géométrique optimale peut varier très légèrement, en fonction de la largeur des lames 3 et 4, et de l'amplitude de l'oscillation du balancier, ainsi que des tolérances de réalisation.In practice, this optimal geometric configuration may vary very slightly, depending on the width of the blades 3 and 4, and the amplitude of the oscillation of the balance, as well as the manufacturing tolerances.

Les figures 9 et 9A illustrent un phénomène qui, selon la nature du matériau des lames croisées, peut modifier très légèrement l'estimation de la longueur totale L des lames 3 et 4: quand l'influence de la flexion des lames se manifeste en profondeur dans l'élément de liaison (dans le cas par exemple d'une exécution monolithique en silicium ou similaire), on peut estimer que cette profondeur correspond environ à la demi-épaisseur de la lame. Il y a alors lieu de corriger la valeur ri en la remplaçant par la valeur rim = ri + e/2, e étant l'épaisseur de la lame 3 ou 4 considérée.THE figures 9 and 9A illustrate a phenomenon which, depending on the nature of the material of the crossed blades, can very slightly modify the estimate of the total length L of blades 3 and 4: when the influence of the bending of the blades manifests itself deep in the element of connection (in the case for example of a monolithic execution in silicon or similar), it can be estimated that this depth corresponds approximately to half the thickness of the blade. It is then necessary to correct the value ri by replacing it with the value rim=ri+e/2, e being the thickness of the blade 3 or 4 considered.

La longueur totale est à corriger en conséquence : Lm = ri + e/2 + re, et le rapport Q est à corriger de la même façon : Qm =(ri+e/2)/(ri+e/2+re), qui doit être compris entre 0.12 et 0.13.The total length is to be corrected accordingly: Lm = ri + e/2 + re, and the ratio Q is to be corrected in the same way: Qm = (ri+e/2)/(ri+e/2+re) , which must be between 0.12 and 0.13.

Dans la pratique, les valeurs convenables du premier angle α sont comprises entre 68° et 76°, et de préférence au plus près de 71.2°, et celles du rapport Q = ri/L sont comprises entre 0.12 et 0.13.In practice, the suitable values of the first angle α are between 68° and 76°, and preferably as close as possible to 71.2°, and those of the ratio Q=ri/L are between 0.12 and 0.13.

Dans une variante particulière, le résonateur 100 est monolithique.In a particular variant, the resonator 100 is monolithic.

Plus particulièrement, le résonateur 100 est en matériau micro-usinable réalisable par technologies « MEMS » ou « LISA », ou en silicium ou en oxyde de silicium, ou en métal au moins partiellement amorphe, ou en verre métallique, ou en quartz, ou en DLC.More particularly, the resonator 100 is made of a micro-machinable material which can be produced using “MEMS” or “LISA” technologies, or of silicon or silicon oxide, or of at least partially amorphous metal, or of metallic glass, or of quartz, or in DLC.

Dans l'un de ces cas, c'est le rapport Qm =(ri+e/2)/(ri+e/2+re), qui doit être compris entre 0.12 et 0.13. Plus particulièrement, ce rapport Qm est choisi égal à 0.1264.In one of these cases, it is the ratio Qm =(ri+e/2)/(ri+e/2+re), which must be between 0.12 and 0.13. More particularly, this ratio Qm is chosen equal to 0.1264.

Dans une variante avantageuse le premier angle α est compris entre 70° et 76°.In an advantageous variant, the first angle α is between 70° and 76°.

Plus particulièrement encore, le premier angle α est compris entre 70° et 74°. Plus particulièrement encore, le premier angle α est égal à 71.2°.More particularly still, the first angle α is between 70° and 74°. More particularly still, the first angle α is equal to 71.2°.

On note encore que le déplacement du centre de masse selon Y n'affecte pas la marche du résonateur, pour des raisons de parité de la fonction ΔY(θ), tel que visible sur la figure 7. Autrement-dit, pour ce résonateur à balancier à lames croisées, il suffit d'annuler le déplacement ΔX pour que la marche soit indépendante des positions.We also note that the displacement of the center of mass along Y does not affect the resonator's operation, for reasons of parity of the function ΔY(θ), as visible on the figure 7 . In other words, for this cross-bladed balance resonator, it suffices to cancel the displacement ΔX for the operation to be independent of the positions.

L'invention concerne encore un mouvement d'horlogerie 200 comportant au moins un tel résonateur 100.The invention also relates to a clock movement 200 comprising at least one such resonator 100.

L'invention concerne encore une pièce d'horlogerie 300, notamment une montre, comportant un tel mouvement 200, ou/et un tel résonateur 100.The invention also relates to a timepiece 300, in particular a watch, comprising such a movement 200, and/or such a resonator 100.

L'invention permet, ainsi, de rendre un résonateur à balancier à lames croisées simultanément isochrone et indépendant des positions.The invention thus makes it possible to make a balance resonator with crossed blades simultaneously isochronous and independent of the positions.

L'invention est applicable à d'autres configurations de résonateurs à lames croisées, notamment dans une structure de type diapason, tel que visible sur la figure 8. L'utilisation de plusieurs masses oscillantes est avantageuse puisqu'elle permet de minimiser les pertes à l'encastrement. En effet, un balancier unique provoque un effort de réaction à l'encastrement donc des pertes. Il est possible d'annuler ces pertes en combinant plusieurs masses oscillantes de sorte que la somme de leurs réactions à l'encastrement soit nulle. Tout particulièrement, le résonateur 100 peut comporter au moins deux masses oscillantes, notamment deux tel que visible sur cette figure, dont les mouvements opposés provoquent des réactions à l'encastrement qui se compensent. Dans cette réalisation particulière non limitative, deux balanciers 1 sont chacun maintenu fixé à un élément de liaison 2 commun par deux lames croisées 3 et 4 agencées selon les caractéristiques décrites ci-dessus. Ici, le résonateur 100 est, avantageusement, entièrement symétrique par rapport à l'axe Y. D'autres variantes de réalisation sont naturellement possibles.The invention is applicable to other configurations of resonators with crossed blades, in particular in a structure of the tuning fork type, as visible on the figure 8 . The use of several oscillating masses is advantageous since it makes it possible to minimize the losses on embedding. Indeed, a single pendulum causes a reaction force to the embedding and therefore losses. It is possible to cancel these losses by combining several oscillating masses so that the sum of their reactions to embedding is zero. In particular, the resonator 100 may comprise at least two oscillating masses, in particular two as shown in this figure, the opposite movements of which cause reactions to the embedding which compensate each other. In this particular non-limiting embodiment, two rockers 1 are each kept fixed to a common connecting element 2 by two crossed blades 3 and 4 arranged according to the characteristics described above. Here, the resonator 100 is, advantageously, entirely symmetrical with respect to the Y axis. Other variant embodiments are naturally possible.

Claims (15)

  1. Timepiece resonator (100) comprising at least one weight (1) oscillating with respect to a connecting element (2) comprised in said resonator and which is arranged to be directly or indirectly secured to a structure of a timepiece movement (200), said at least one weight (1) being suspended from said connecting element (2) by crossed strips (3, 4) which are resilient strips that extend at a distance from each other in two parallel planes, and the projections of the directions of said strips on one of said parallel planes intersect at a virtual pivot axis (O) of said weight (1), and define together a first angle (α) which is the apex angle, from said virtual pivot axis (O), opposite which there extends the portion of said connecting element (2) that is located between the attachments of said crossed strips (3, 4) to said connecting element (2), characterized in that said first angle (α) is comprised between 68° and 76°.
  2. Resonator (100) according to claim 1, characterized in that said first angle (α) is comprised between 70° and 76°.
  3. Resonator (100) according to claim 2, characterized in that said first angle (α) is comprised between 70° and 74°.
  4. Resonator (100) according to claim 3, characterized in that said first angle (α) is equal to 71.2°.
  5. Resonator (100) according to one of claims 1 to 4, characterized in that said strips (3, 4) are dimensioned with an inner radius (ri) between said virtual pivot axis (O) and the point of attachment of said strips to said connecting element (2), with an outer radius (re) between said virtual pivot axis (O) and the point of attachment of said strips to said weight (1), and with a total length (L) such that L = ri + re, so that a ratio (Q) such as Q = ri/L, is comprised between 0.12 and 0.13.
  6. Resonator (100) according to one of claims 1 to 4, characterized in that said strips (3, 4) are dimensioned with an inner radius (ri) between said virtual pivot axis (O) and the point of attachment of said strips to said connecting element (2), with an outer radius (re) between said virtual pivot axis (O) and the point of attachment of said strips to said weight (1), with a thickness (e) in the plane of each said strip (3, 4), such that a ratio (Qm) such as Qm = (ri+e/2)/(ri+e/2+re), is comprised between 0.12 and 0.13.
  7. Resonator (100) according to claim 5 or 6, characterized in that said ratio (Qm) is equal to 0.1264.
  8. Resonator (100) according to one of claims 1 to 7, characterized in that, in projection on one of said parallel planes, said resonator (100) is symmetrical with respect to the bisector (OX) of said first angle (α) when the resonator is in the rest position.
  9. Resonator (100) according to one of claims 1 to 8, characterized in that said at least one weight (1) is a balance wheel.
  10. Resonator (100) according to one of claims 1 to 9, characterized in that said crossed strips (3, 4) are each anchored in said connecting element (2) on a surface of said connecting element (2) which is orthogonal to the end of said strip (3, 4) concerned at the anchoring point thereof.
  11. Resonator (100) according to one of claims 1 to 10, characterized in that said resonator (100) includes at least two oscillating weights, each being fixed to a said common connecting element (2) by two crossed strips (3, 4), the resonator being entirely symmetrical with respect to an axis Y, in a tuning fork structure.
  12. Resonator (100) according to one of claims 1 to 11, characterized in that said resonator (100) is in one-piece.
  13. Resonator (100) according to claim 12, characterized in that said resonator (100) is made of silicon or of silicon oxide or of metallic glass or of quartz or of DLC.
  14. Timepiece movement (200) comprising a structure to which is fixed, directly or indirectly, a least one connecting element (2) comprised in a said resonator (100) according to one of claims 1 to 13.
  15. Timepiece (300) or watch, including a movement (200) according to claim 14, and/or at least one said resonator (100) according to one of claims 1 to 13.
EP15808400.4A 2014-12-18 2015-12-14 Timepiece resonator with crossed blades Active EP3234699B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14199039.0A EP3035126B1 (en) 2014-12-18 2014-12-18 Timepiece resonator with crossed blades
PCT/EP2015/079515 WO2016096677A1 (en) 2014-12-18 2015-12-14 Timepiece resonator with crossed blades

Publications (2)

Publication Number Publication Date
EP3234699A1 EP3234699A1 (en) 2017-10-25
EP3234699B1 true EP3234699B1 (en) 2023-03-08

Family

ID=59886172

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14199039.0A Active EP3035126B1 (en) 2014-12-18 2014-12-18 Timepiece resonator with crossed blades
EP15808400.4A Active EP3234699B1 (en) 2014-12-18 2015-12-14 Timepiece resonator with crossed blades

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP14199039.0A Active EP3035126B1 (en) 2014-12-18 2014-12-18 Timepiece resonator with crossed blades

Country Status (6)

Country Link
US (1) US9836024B2 (en)
EP (2) EP3035126B1 (en)
JP (3) JP6231686B2 (en)
CN (1) CN105980938B (en)
CH (1) CH710524A2 (en)
WO (1) WO2016096677A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10324419B2 (en) * 2009-02-06 2019-06-18 Domasko GmbH Mechanical oscillating system for a clock and functional element for a clock
US9983549B2 (en) * 2015-02-03 2018-05-29 Eta Sa Manufacture Horlogere Suisse Isochronous timepiece resonator
WO2017055983A1 (en) * 2015-09-29 2017-04-06 Patek Philippe Sa Geneve Flexible-pivot mechanical component and timekeeping device including same
EP3206089B1 (en) 2016-02-10 2018-12-19 The Swatch Group Research and Development Ltd. Timepiece resonator mechanism
EP3312682B1 (en) * 2016-10-18 2019-02-20 ETA SA Manufacture Horlogère Suisse Resonator with a high quality factor for a mechanical watch
EP3324247B1 (en) * 2016-11-16 2019-11-27 The Swatch Group Research and Development Ltd Protection of blades of a mechanical watch resonator
CH713137A2 (en) * 2016-11-16 2018-05-31 Swatch Group Res & Dev Ltd Protection of a resonator mechanism with blades against axial shocks.
CH713150A2 (en) 2016-11-23 2018-05-31 Eta Sa Mft Horlogere Suisse Rotary resonator regulator mechanism with flexible guidance maintained by a free anchor escapement.
WO2018109584A1 (en) 2016-12-16 2018-06-21 Patek Philippe Sa Geneve Timepiece component with flexible pivot
EP3382470B1 (en) 2017-03-29 2020-05-06 Patek Philippe SA Genève Timepiece oscillator with a flexible pivot
EP3410229B1 (en) 2017-05-30 2021-07-14 Patek Philippe SA Genève Timepiece component with a flexible pivot
EP3410230B1 (en) 2017-06-02 2019-11-13 Patek Philippe SA Genève Method for manufacturing a mechanical component with flexible pivot having separate crossed blades
EP3416001B1 (en) * 2017-06-13 2022-04-13 Patek Philippe SA Genève Method for manufacturing an oscillator with flexible pivot
EP3425458A1 (en) * 2017-07-07 2019-01-09 ETA SA Manufacture Horlogère Suisse Cleavable piece of a clock oscillator
US10216146B2 (en) * 2017-07-18 2019-02-26 Patek Philippe Sa Geneve Indicator actuating organ for a timepiece
EP3435170B1 (en) * 2017-07-28 2021-06-30 The Swatch Group Research and Development Ltd Timepiece oscillator having flexible guides with wide angular travel
EP3451072B1 (en) * 2017-08-29 2023-10-25 The Swatch Group Research and Development Ltd Isochronous pivot for timepiece resonator
US11638716B2 (en) 2017-08-31 2023-05-02 F-star Therapeutics, Inc. Compounds, compositions, and methods for the treatment of disease
USD853879S1 (en) * 2017-09-15 2019-07-16 Patek Philippe Sa Geneve Corrector for timepieces
NL2020384B1 (en) * 2018-02-06 2019-08-14 Flexous Mech Ip B V Mechanical watch oscillator
EP3561603B1 (en) * 2018-04-25 2021-01-06 The Swatch Group Research and Development Ltd Timepiece regulator mechanism with hinged resonators
US10895845B2 (en) * 2018-06-25 2021-01-19 The Swatch Group Research And Development Ltd Timepiece oscillator with flexure bearings having a long angular stroke
JP6843191B2 (en) * 2018-07-24 2021-03-17 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Timekeeping oscillator with flexor bearings with long square strokes
EP3627242B1 (en) 2018-09-19 2021-07-21 The Swatch Group Research and Development Ltd Optimised magneto-mechanical timepiece escapement mechanism
EP3667432B1 (en) 2018-12-13 2022-05-11 ETA SA Manufacture Horlogère Suisse Timepiece resonator comprising at least one flexible guide
EP3997525B1 (en) 2019-07-12 2024-09-25 Patek Philippe SA Genève Method for adjusting a timepiece oscillator with flexible pivot
EP3792700B1 (en) 2019-09-16 2023-10-04 Patek Philippe SA Genève Timepiece oscillator with flexible pivot
EP3812842B1 (en) * 2019-10-24 2023-11-29 The Swatch Group Research and Development Ltd Device for guiding the pivoting of a pivoting mass and timepiece resonator mechanism
EP3812843A1 (en) * 2019-10-25 2021-04-28 ETA SA Manufacture Horlogère Suisse Flexible guide and set of stacked flexible guides for rotary resonator mechanism, in particular for a clock movement
EP3936946A1 (en) 2020-07-10 2022-01-12 Patek Philippe SA Genève Timepiece oscillator with flexible pivot
EP3982204A1 (en) 2020-10-08 2022-04-13 The Swatch Group Research and Development Ltd Timepiece resonator comprising at least one flexible guide
EP3992730A1 (en) * 2020-10-29 2022-05-04 The Swatch Group Research and Development Ltd Flexible guide with adjustable translation table for rotary resonator mechanism, in particular for a timepiece movement
EP4009113A1 (en) * 2020-12-02 2022-06-08 The Swatch Group Research and Development Ltd Flexible guide assembly for rotary resonator mechanism, in particular for a timepiece movement
EP4012506A1 (en) * 2020-12-14 2022-06-15 The Swatch Group Research and Development Ltd Timepiece resonator mechanism provided with a translation frame
EP4160323A1 (en) 2021-10-04 2023-04-05 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Mechanical timepiece regulator comprising a self-starting semi-free escapement with low angle of lift
JP7062324B1 (en) 2022-01-09 2022-05-06 康浩 竹中 Slab-type polyacrylamide gel for electrophoresis and its method for analyzing multi-specimen samples containing lipid-protein complexes
EP4286959A1 (en) 2022-06-02 2023-12-06 Patek Philippe SA Genève Timepiece oscillator with flexible pivot
WO2024100597A1 (en) 2022-11-09 2024-05-16 Ecole Polytechnique Federale De Lausanne (Epfl) Pivot, process for manufacturing such a pivot, oscillator comprising such a pivot, watch movement and timepiece comprising such an oscillator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH985967A4 (en) * 1967-07-11 1969-08-29
US3628781A (en) * 1969-10-03 1971-12-21 Philamon Inc Compound tine for tuning fork or the like
JP2011030095A (en) * 2009-07-28 2011-02-10 Seiko Instruments Inc Piezoelectric vibrator, method for manufacturing piezoelectric vibrator, oscillator, electronic equipment, and radio wave clock
EP2574994A1 (en) * 2011-09-29 2013-04-03 Asgalium Unitec SA Resonator with tuning fork for mechanical timepiece movement
CN104220940B (en) 2012-03-29 2017-02-22 尼瓦洛克斯-法尔股份有限公司 Flexible lever-free escapement mechanism
WO2013144238A1 (en) 2012-03-29 2013-10-03 Nivarox-Far S.A. Flexible escapement mechanism having a plate-free balance
EP2645189B1 (en) * 2012-03-29 2016-02-03 Nivarox-FAR S.A. Flexible escapement mechanism
US9075394B2 (en) 2012-03-29 2015-07-07 Nivarox-Far S.A. Flexible escapement mechanism with movable frame
EP2911012B1 (en) * 2014-02-20 2020-07-22 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Timepiece oscillator
EP3054357A1 (en) * 2015-02-03 2016-08-10 ETA SA Manufacture Horlogère Suisse Clock oscillator mechanism
CH711402A2 (en) * 2015-08-04 2017-02-15 Eta Sa Mft Horlogere Suisse Magnetically synchronized rotary arm clock regulator mechanism.

Also Published As

Publication number Publication date
US20170010586A1 (en) 2017-01-12
US9836024B2 (en) 2017-12-05
EP3035126A1 (en) 2016-06-22
JP2017503155A (en) 2017-01-26
WO2016096677A1 (en) 2016-06-23
EP3234699A1 (en) 2017-10-25
JP6401354B2 (en) 2018-10-10
EP3035126B1 (en) 2017-12-13
CN105980938B (en) 2018-04-03
JP2017223702A (en) 2017-12-21
CH710524A2 (en) 2016-06-30
JP6231686B2 (en) 2017-11-15
JP6449951B2 (en) 2019-01-09
CN105980938A (en) 2016-09-28
JP2017223701A (en) 2017-12-21

Similar Documents

Publication Publication Date Title
EP3234699B1 (en) Timepiece resonator with crossed blades
EP3355130B1 (en) Timepiece resonator mechanism
EP2911012B1 (en) Timepiece oscillator
EP3200029B1 (en) Timepiece resonator mechanism
EP3182216B1 (en) Coupled timepiece oscillators
EP3254158A1 (en) Isochronous timepiece resonator
EP3001257B1 (en) Paraxial, isochronous timepiece resonator
EP3206091B1 (en) Isochronous clock resonator
EP3336613B1 (en) Timepiece resonator with two balances arranged to oscillate in a single plane
EP3555708A1 (en) Timepiece component with flexible pivot
EP3792700A1 (en) Timepiece oscillator with flexible pivot
EP2889701A2 (en) Clock synchronisation mechanism
EP3265879B1 (en) Time-keeping movement comprising a regulator with three-dimensional magnetic resonance
EP3451073B1 (en) Timepiece oscillator having flexible guides with wide angular travel
CH708038A1 (en) watch movement in three-dimensional resonant controller.
CH715024A2 (en) Mechanical clock oscillator.
CH715641B1 (en) Clockwork resonator comprising at least one flexible guide.
EP3812842B1 (en) Device for guiding the pivoting of a pivoting mass and timepiece resonator mechanism
EP4391347A1 (en) Piezoelectric resonator with flexible guide, in particular for rotary motors in horology
CH717997A2 (en) Flexible guide with translation table for a rotary resonator mechanism, in particular a clock movement.
CH702176A2 (en) Balance spring for resonator in mechanical timepiece movement of watch, has narrowed part arranged in manner such that deformation of narrowed part modifies inertia of spring to adjust daily operation of timepiece movement
CH720388A2 (en) Piezoelectric resonator, piezoelectric motor and timepiece

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210604

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602015082754

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G04B0017040000

Ipc: G04B0017280000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G04B 17/04 20060101ALI20221121BHEP

Ipc: G04B 17/28 20060101AFI20221121BHEP

INTG Intention to grant announced

Effective date: 20221208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1552998

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015082754

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230308

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1552998

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230609

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230710

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015082754

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 9

Ref country code: DE

Payment date: 20231121

Year of fee payment: 9

26N No opposition filed

Effective date: 20231211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240102

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231214

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231