EP3792700B1 - Timepiece oscillator with flexible pivot - Google Patents

Timepiece oscillator with flexible pivot Download PDF

Info

Publication number
EP3792700B1
EP3792700B1 EP19197512.7A EP19197512A EP3792700B1 EP 3792700 B1 EP3792700 B1 EP 3792700B1 EP 19197512 A EP19197512 A EP 19197512A EP 3792700 B1 EP3792700 B1 EP 3792700B1
Authority
EP
European Patent Office
Prior art keywords
flexible
oscillator
elastic
strips
pivot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19197512.7A
Other languages
German (de)
French (fr)
Other versions
EP3792700A1 (en
Inventor
David Chabloz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Patek Philippe SA Geneve
Original Assignee
Patek Philippe SA Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe SA Geneve filed Critical Patek Philippe SA Geneve
Priority to EP19197512.7A priority Critical patent/EP3792700B1/en
Publication of EP3792700A1 publication Critical patent/EP3792700A1/en
Application granted granted Critical
Publication of EP3792700B1 publication Critical patent/EP3792700B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/02Shock-damping bearings
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/06Manufacture or mounting processes

Definitions

  • the present invention relates to a watch oscillator with a flexible pivot, that is to say a watch oscillator whose balance is guided in rotation by an arrangement of elastic parts and not by a physical axis of rotation rotating in bearings.
  • the flexible pivot exerts a restoring torque on the balance, like the hairspring of a balance-spring oscillator.
  • a flexible pivot oscillator does not produce dry friction during operation. It therefore has a better quality factor.
  • the oscillator according to EP 2975469 comprises a balance wheel assembled to a flexible pivot itself made up of an assembly of elastic blades, this assembly of elastic blades having a cross shape in top view and being located below the balance wheel.
  • the oscillator according to WO 2018/100122 is planar and comprises n inertial rigid portions connected together two by two by n elastic coupling connections, these n inertial rigid portions being connected to a support by respectively n elastic suspension connections and being arranged according to an axial symmetry of order n.
  • EP 3476748 describes a pivot mechanism which can be used in watchmaking and comprising fixed and movable annular parts superimposed and connected by flexible connections arranged in parallel, each flexible connection comprising, in series, a first elastic blade, an intermediate rigid body and a second elastic blade, the intermediate rigid bodies, located in the center of the mechanism, being separated by slots and connected together by elastic coupling elements.
  • the performance of a flexible pivot oscillator is expressed in particular in terms of quality factor, insensitivity to gravity and isochronism.
  • the present invention aims to propose a watch oscillator with a flexible pivot capable of having excellent performance with regard to at least one of the three aforementioned criteria which are the quality factor, insensitivity to gravity and isochronism.
  • a watch oscillator 1 for a timepiece such as a wristwatch or a pocket watch, comprises a shaft 2, two balances 3, 4 integral with the shaft 2, a flexible pivot 5 and a support 6.
  • Two examples of flexible pivot 5 and support 6 are shown in the drawings, respectively in figures 1 to 4 and to the figure 5 .
  • support 6 is in one part.
  • the support 6 is intended to be fixed on a fixed or mobile frame of the movement of the timepiece, typically on the plate of the movement.
  • the flexible pivot 5 is preferably made up of coplanar elements.
  • the rockers 3, 4 are located axially on either side of the flexible pivot 5, preferably in mean planes P1, P2 which are symmetrical to each other with respect to the mean plane P of the flexible pivot 5.
  • balancers 3, 4 constitute the inertial part of the oscillator 1 and the flexible pivot 5 its elastic part. Unlike a conventional flexible pivot oscillator and like a balance-spring oscillator, these inertial and elastic parts are separated in the present invention.
  • the flexible pivot 5 connects the shaft 2 to the support 6, guides the shaft 2 in rotation relative to the support 6 around the axis A of the shaft 2 and exerts an elastic return torque on the shaft 2 to recall into a rest position, namely the rest position illustrated in figures 1 And 3 .
  • the shaft 2 and balance beams 3, 4 assembly is held to the support 6 only by the flexible pivot 5. The rotation of the assembly 2, 3, 4 therefore does not generate dry friction.
  • the flexible pivot 5 includes (cf. figures 4 And 5 ) a rigid hub 7 surrounding the shaft 2 and integral with it, and a number N of elastic members 8 each connecting the hub 7 to the support 6.
  • the number N is at least equal to three. It is equal to four in the example shown in figures 1 to 4 and three in the example of figure 5 .
  • Each elastic member 8 comprises, in series, a pair of elastic blades 9, an intermediate rigid body 10 and a flexible guide 11.
  • the pair of elastic blades 9 connects the intermediate rigid body 10 to the hub 7 and the flexible guide 11 connects the support 6 to the intermediate rigid body 10.
  • each pair of elastic blades 9 extend in intersecting directions to form a pivot with an offset center of rotation also called RCC (Remote Center Compliance) pivot.
  • Each pair of elastic blades 9 defines in the plane P a pair of half-axes 12 having as their origin the same point located on axis A. These pairs of half-axes 12 are arranged around axis A according to a symmetry of order N.
  • the blades of the N pairs of elastic blades 9 all have the same stiffness.
  • the blades of the N pairs of elastic blades 9 are identical and in particular have identical dimensions.
  • the present invention takes into account the isotropic or anisotropic nature of the material from which the flexible pivot 5 is made.
  • the flexible guide 11 is arranged to allow guided movement of the intermediate rigid body 10 relative to the support 6 substantially in translation along the bisector B of the half-axes 12. This guided movement occurs during operation regular of the oscillator 1 (and therefore even in the absence of shocks or accelerations received by the watch) where the hub 7 - shaft 2 - balance wheels 3, 4 assembly rotates around the axis A.
  • the flexible guidance 11 typically comprises at least one elastic blade extending in a direction perpendicular to the bisector B, and preferably two parallel elastic blades extending in a direction perpendicular to the bisector B, as shown.
  • the flexible guides 11 have the same stiffness.
  • the pairs of elastic blades 9 guide the hub 7 and therefore the hub 7 - shaft 2 - balance beams 3, 4 assembly in rotation around the axis A and the flexible guides 11 provide degrees of freedom inside the flexible pivot 5 which prevents the latter from being hyperstatic.
  • the N order symmetry of the pairs of half-axes 12 allows the hub 7 to rotate properly around an axis A which is fixed or almost fixed, all the more so if N is even, for example equal to four as in THE figures 1 to 4 , since then the forces applied to the hub 7 cancel out.
  • the point(s) 13 of junction of the flexible guide 11 to the intermediate rigid body 10 are on the bisector B or are close to it, the quality of the rotation is further improved.
  • the pairs of elastic blades 9 have a stiffness which is very little sensitive to the direction of gravity. Indeed, in a given vertical position of the oscillator 1, the force of gravity presents, for each pair of elastic blades 9, a first component parallel to the bisector B and a second component perpendicular to the bisector B. Thanks to flexible guidance 11, the first component is not transmitted to the pair of elastic blades 9. As for the second component, it produces opposite effects on the elastic blades 9, since it stresses one of the blades in compression and the other blade in traction. The changes in stiffness of the two blades therefore compensate for each other.
  • the presence of the two balances 3, 4 on either side of the flexible pivot 5 in the direction of the axis A allows the inertial part which constitutes these balances 3, 4 to have its center of mass in the mean plane P of the flexible pivot 5, that is to say halfway up the elastic blades 9, 11. This characteristic further improves the insensitivity of the oscillator 1 to gravity.
  • the center of mass of the inertial part 3, 4 is also on axis A, to also promote insensitivity to gravity.
  • each elastic member 8 can be dimensioned so that the flexible guide 11 compensates for the non-linearity of the torque produced by the pair of elastic blades 9 as a function of the angle of rotation and thus makes the oscillator 1 isochronous, this is i.e. makes its frequency independent of the amplitude of oscillation.
  • the diagram of the Figure 6 shows by the graph G1 the stiffness of a pair of RCC blades alone and by the graph G2 the stiffness of an elastic member 8 with its pair of RCC blades 9, its intermediate rigid body 10 and its flexible guide 11, the stiffness being defined as the ratio of effort (here: torque) to displacement (here: angle of rotation).
  • Graphs G1 and G2 were obtained with the following parameters: angle between the RCC 9 blades: 30°; hub external diameter 7: 1 mm; length of RCC 9 blades: 3 mm; length of the blades flexible guide 11: 3 mm; spacing of the blades of the flexible guide 11: 0.8 mm; distance between the straight line joining the junction points of the RCC blades 9 to the intermediate rigid body 10 and the nearest elastic blade of the flexible guide 11: 1.58 mm.
  • the balances 3, 4 can be of the same type as those of traditional balance-spring oscillators, and can thus comprise a rim 3a, 4a, a hub 3b, 4b surrounding the shaft 2 and rigid arms 3c, 4c connecting the rim 3a , 4a to hub 3b, 4b.
  • the serge 3a, 4a can have the shape of a continuous ring, as shown, or interrupted.
  • the balances 3, 4 can be fixed on the shaft 2 in a conventional manner by riveting. They are typically made of a dense material such as beryllium copper, gold, platinum or silicon carrying masses of dense metal. The balances 3, 4 can therefore have a small diameter for a given moment of inertia. In this way, friction with the air will be reduced, thus increasing the quality factor.
  • the flexible pivot 5 is preferably monolithic, and preferably monolithic with the support 6 as in the examples illustrated.
  • Its material is chosen for the manufacturing precision it allows and for its elastic properties. It may for example be silicon, silicon covered with silicon dioxide, glass, sapphire, quartz, metallic glass, a metal or alloy.
  • the flexible pivot 5 can be obtained by engraving (in particular deep reactive ion engraving known as DRIE), LIGA, milling, electroerosion, molding or other.
  • the hub 7 can be fixed to the shaft 2 by gluing, welding, soldering, driving or tightening by means of elastic arms, for example.
  • the separation of the inertial part 3, 4 and the flexible pivot 5 implemented by the invention facilitates adjustment of the frequency of the oscillator 1.
  • the moment of inertia and the unbalance of the balances 3, 4 can in fact be measured and corrected easily while the torque of the flexible pivot 5 can be measured without prior assembly with the balances 3, 4 and modified independently of the balances 3, 4.
  • the oscillator 1 is relatively easy to manufacture since the flexible pivot 5 is a single-level structure and that the balances 3, 4 can be conventional and assembled in a conventional manner to the shaft 2.
  • the ease of manufacture is all the more obvious if we compare oscillator 1 to the oscillators with separate crossed blades described in the documents EP 2911012 And WO 2016/096677 , for example, which require the use of specific techniques to make the blades and separate them.
  • the present invention does not, however, exclude that the blades of each pair of elastic blades 9 are non-coplanar nor that the pairs of elastic blades 9 are non-coplanar.
  • the flexible pivot 5 can be made indifferently in an isotropic material or in an anisotropic material presenting, with regard to the modulus of elasticity, a quaternary symmetry, without it being necessary to give the elastic blades 9, likewise than the elastic blades 11, different dimensions.
  • the isotropic material can for example be monocrystalline silicon cut according to a plane of the ⁇ 111 ⁇ family or polycrystalline silicon.
  • the anisotropic material can for example be monocrystalline silicon cut according to a plane of the ⁇ 100 ⁇ family.
  • the flexible pivot 5 is made of an anisotropic material with quaternary symmetry, it will be oriented relative to the crystal structure of the material so that the quaternary symmetry of the material and that of the flexible pivot 5 correspond.
  • the flexible pivot 5 can be oriented relative to the structure crystalline of the material such that two pairs of opposite elastic blades 9 are arranged along the crystallographic axis [-110] and the other two pairs of opposite elastic blades 9 are arranged along the crystallographic axis [110] , or such that two pairs of opposite elastic blades 9 are arranged along the crystallographic axis [010] and that the other two pairs of opposite elastic blades 9 are arranged along the crystallographic axis [100].
  • the flexible pivot 5 will be made of an isotropic material such as silicon ⁇ 111 ⁇ or polycrystalline silicon if it is desired that all the elastic blades 9 are identical and that all the elastic blades 11 are identical.
  • an anisotropic material such as silicon ⁇ 100 ⁇ , which is more available on the market, is chosen, the elastic blades 9 will be given different dimensions so that they have the same stiffness. Likewise, we will give the elastic blades 11 different dimensions so that they have the same stiffness.
  • the flexible pivot 5 can be oriented relative to the crystal structure of silicon ⁇ 100 ⁇ such that the blades designated by 9a have identical dimensions, that the blades designated by 9b have identical dimensions, that the blades 9a and 9b have different dimensions, for example different lengths and/or thicknesses, that the blades designated by 11a have identical dimensions, that the blades designated by 11b have identical dimensions and that the blades 11a and 11b have different dimensions, for example different lengths and/or thicknesses.
  • the blades of the pairs of elastic blades 9 and flexible guides 11 it is however advantageous for the blades of the pairs of elastic blades 9 and flexible guides 11 to all have the same section (same quadratic moment) in order to limit the effect of manufacturing tolerances on isochronism and on insensitivity to gravity .
  • the flexible pivot 5 is made of silicon by a DRIE etching process, etching defects such as that the clearance angle will change the stiffness of all blades in the same way.
  • any layer of silicon dioxide formed on the flexible silicon pivot 5, for example to make the frequency of the oscillator 1 independent of the temperature and/or increase the mechanical resistance, will modify the stiffness of all the blades of the same way.
  • FIG. 7 shows an oscillator 1' according to a second embodiment of the invention.
  • the oscillator 1' according to this second embodiment comprises a single balance 3 secured to a shaft 2 and two flexible pivots 5 located on either side of the balance 3, preferably in average planes which are symmetrical to each other. on the other relative to the average plane of the balance wheel.
  • the flexible pivots 5 hold the shaft 2 - balance 3 assembly in relation to the support 6 which is here in two separate parts.
  • the oscillator 1" comprises a single balance 3 and a single flexible pivot 5, in other words the balance 4 of the figure 1 or one of the two flexible pivots 5 of the Figure 7 is deleted.
  • stops 14 are provided to protect the flexible pivot(s) 5 in the event of acceleration or significant impact.
  • the stops 14 are fixed relative to the support 6 and each have a bore which receives one end of the shaft 2, but they remain out of contact with the moving elements (shaft 2, balance wheel(s) 3, 4, pivot(s) ) flexible(s) 5) of the oscillator 1, 1', 1" during regular operation thereof in order to avoid any friction.
  • the ends of the shaft 2 can come into contact with the wall of the bore of the stops 14 to limit the deformation of the elastic blades 9, 11 of the flexible pivot(s) 5 in the plane of the latter(s).
  • the hub(s) 7 - shaft 2 - balance wheel(s) 3, 4 assembly or an integral part of this assembly can come into contact with one of the stops 14, thus limiting the deformation of the elastic blades 9, 11 of the or flexible pivots 5 outside the plane of this or these latter.
  • the oscillator 1, 1', 1" according to the invention can be maintained by a conventional escapement, in particular a Swiss anchor escapement.
  • the anchor 15 of such an exhaust can cooperate with a pin 16 secured to the hub 7 of the flexible pivot 5 or to one of the flexible pivots 5.
  • the shaft or rod 17 of the anchor 15 passes through the central opening which defines the serge 3a, 4a of the balance(s) 3, 4, in other words is surrounded by the serge(s) 3a, 4a.
  • the arrangement of the flexible guides 11 as shown in figures 3 to 5 leaves room for the anchor 15, the height of which can thus overlap with the height of the or one of the flexible pivots 5.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)

Description

La présente invention concerne un oscillateur horloger à pivot flexible, c'est-à-dire un oscillateur horloger dont le balancier est guidé en rotation par un agencement de parties élastiques et non pas par un axe de rotation physique tournant dans des paliers. En plus de sa fonction de guidage en rotation, le pivot flexible exerce un couple de rappel sur le balancier à l'instar du spiral d'un oscillateur balancier-spiral.The present invention relates to a watch oscillator with a flexible pivot, that is to say a watch oscillator whose balance is guided in rotation by an arrangement of elastic parts and not by a physical axis of rotation rotating in bearings. In addition to its rotational guiding function, the flexible pivot exerts a restoring torque on the balance, like the hairspring of a balance-spring oscillator.

Contrairement aux oscillateurs balancier-spiral, un oscillateur à pivot flexible ne produit pas de frottements secs pendant son fonctionnement. Il présente donc un meilleur facteur de qualité.Unlike hairspring oscillators, a flexible pivot oscillator does not produce dry friction during operation. It therefore has a better quality factor.

Des oscillateurs horlogers à pivot flexible sont décrits par exemple dans les documents EP 2911012 , WO 2016/096677 , EP 2975469 et WO 2018/100122 . En particulier, l'oscillateur selon EP 2975469 comprend un balancier assemblé à un pivot flexible lui-même constitué d'un assemblage de lames élastiques, cet assemblage de lames élastiques ayant en vue de dessus une forme de croix et étant situé au-dessous du balancier. L'oscillateur selon WO 2018/100122 est plan et comprend n portions rigides inertielles reliées entre elles deux à deux par n liaisons élastiques de couplage, ces n portions rigides inertielles étant reliées à un support par respectivement n liaisons élastiques de suspension et étant agencées selon une symétrie axiale d'ordre n. Un autre document, EP 3476748 , décrit un mécanisme pivot pouvant être utilisé dans l'horlogerie et comprenant des pièces annulaires fixe et mobile superposées et reliées par des liaisons flexibles agencées en parallèle, chaque liaison flexible comprenant, en série, une première lame élastique, un corps rigide intermédiaire et une deuxième lame élastique, les corps rigides intermédiaires, situés au centre du mécanisme, étant séparés par des fentes et reliés entre eux par des éléments de couplage élastiques.Watch oscillators with flexible pivot are described for example in the documents EP 2911012 , WO 2016/096677 , EP 2975469 And WO 2018/100122 . In particular, the oscillator according to EP 2975469 comprises a balance wheel assembled to a flexible pivot itself made up of an assembly of elastic blades, this assembly of elastic blades having a cross shape in top view and being located below the balance wheel. The oscillator according to WO 2018/100122 is planar and comprises n inertial rigid portions connected together two by two by n elastic coupling connections, these n inertial rigid portions being connected to a support by respectively n elastic suspension connections and being arranged according to an axial symmetry of order n. Another document, EP 3476748 , describes a pivot mechanism which can be used in watchmaking and comprising fixed and movable annular parts superimposed and connected by flexible connections arranged in parallel, each flexible connection comprising, in series, a first elastic blade, an intermediate rigid body and a second elastic blade, the intermediate rigid bodies, located in the center of the mechanism, being separated by slots and connected together by elastic coupling elements.

Comme pour tout oscillateur horloger, les performances d'un oscillateur à pivot flexible s'expriment notamment en termes de facteur de qualité, d'insensibilité à la gravité et d'isochronisme.As with any watch oscillator, the performance of a flexible pivot oscillator is expressed in particular in terms of quality factor, insensitivity to gravity and isochronism.

La présente invention vise à proposer un oscillateur horloger à pivot flexible pouvant avoir des performances excellentes en ce qui concerne l'un au moins des trois critères précités que sont le facteur de qualité, l'insensibilité à la gravité et l'isochronisme.The present invention aims to propose a watch oscillator with a flexible pivot capable of having excellent performance with regard to at least one of the three aforementioned criteria which are the quality factor, insensitivity to gravity and isochronism.

A cette fin, il est prévu un oscillateur horloger comprenant

  • un balancier,
  • un arbre dont le balancier est solidaire, l'arbre définissant un axe,
  • un support, et
  • un pivot flexible agencé pour guider l'arbre en rotation par rapport au support autour de l'axe et exercer sur l'arbre un couple de rappel,
    et dans lequel
  • le pivot flexible comprend un moyeu solidaire de l'arbre et, en parallèle entre le moyeu et le support, au moins trois organes élastiques,
  • chaque organe élastique comprend, en série, une paire de lames élastiques, un corps rigide intermédiaire et un guidage flexible,
  • les lames des paires de lames élastiques ont la même raideur et s'étendent le long de demi-axes qui partent de l'axe,
  • les paires de demi-axes correspondant respectivement aux paires de lames élastiques sont agencées autour de l'axe selon une symétrie d'ordre N, où N est le nombre d'organes élastiques, en projection orthogonale dans un plan perpendiculaire à l'axe, et
  • dans chaque organe élastique, le guidage flexible est agencé pour permettre un déplacement guidé du corps rigide intermédiaire par rapport au support sensiblement en translation le long de la bissectrice de la paire de demi-axes, en projection orthogonale dans ledit plan perpendiculaire à l'axe, pendant le fonctionnement régulier de l'oscillateur.
To this end, a watch oscillator is provided comprising
  • a pendulum,
  • a shaft whose balance wheel is integral, the shaft defining an axis,
  • support, and
  • a flexible pivot arranged to guide the shaft in rotation relative to the support around the axis and exert a restoring torque on the shaft,
    and in which
  • the flexible pivot comprises a hub secured to the shaft and, in parallel between the hub and the support, at least three elastic members,
  • each elastic member comprises, in series, a pair of elastic blades, an intermediate rigid body and a flexible guide,
  • the blades of the pairs of elastic blades have the same stiffness and extend along half-axes which start from the axis,
  • the pairs of half-axes corresponding respectively to the pairs of elastic blades are arranged around the axis according to a symmetry of order N, where N is the number of elastic members, in orthogonal projection in a plane perpendicular to the axis, And
  • in each elastic member, the flexible guide is arranged to allow guided movement of the intermediate rigid body relative to the support substantially in translation along the bisector of the pair of half-axes, in orthogonal projection in said plane perpendicular to the axis, during regular operation of the oscillator.

Des modes de réalisation particuliers de l'invention sont définis dans les revendications dépendantes annexées.Particular embodiments of the invention are defined in the appended dependent claims.

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée suivante faite en référence aux dessins annexés dans lesquels :

  • les figures 1 à 3 sont respectivement des vues en perspective, en coupe et de dessus d'un oscillateur horloger selon un premier mode de réalisation de l'invention ;
  • la figure 4 est une vue de dessus d'un pivot flexible et d'un support faisant partie de l'oscillateur illustré aux figures 1 à 3 ;
  • la figure 5 est une vue de dessus d'une variante du pivot flexible et du support faisant partie de l'oscillateur illustré aux figures 1 à 3 ;
  • la figure 6 est un diagramme montrant la raideur d'un pivot à centre de rotation déporté et la raideur d'un organe élastique faisant partie du pivot flexible illustré à la figure 4 ou 5 ;
  • la figure 7 est une vue en perspective d'un oscillateur horloger selon un deuxième mode de réalisation de l'invention ; et
  • la figure 8 est une vue en perspective d'un oscillateur horloger selon un troisième mode de réalisation de l'invention.
Other characteristics and advantages of the present invention will appear on reading the following detailed description given with reference to the appended drawings in which:
  • THE figures 1 to 3 are respectively perspective, sectional and top views of a watch oscillator according to a first embodiment of the invention;
  • there Figure 4 is a top view of a flexible pivot and support forming part of the oscillator shown in figures 1 to 3 ;
  • there figure 5 is a top view of a variant of the flexible pivot and the support forming part of the oscillator illustrated in figures 1 to 3 ;
  • there Figure 6 is a diagram showing the stiffness of a pivot with an offset center of rotation and the stiffness of an elastic member forming part of the flexible pivot illustrated in figure 4 Or 5 ;
  • there Figure 7 is a perspective view of a watch oscillator according to a second embodiment of the invention; And
  • there figure 8 is a perspective view of a watch oscillator according to a third embodiment of the invention.

Dans tout ce qui suit, les caractéristiques géométriques et dimensionnelles de l'oscillateur horloger sont définies en référence à sa position de repos.In all that follows, the geometric and dimensional characteristics of the watch oscillator are defined with reference to its rest position.

En référence aux figures 1 à 5, un oscillateur horloger 1 selon un premier mode de réalisation de l'invention, pour une pièce d'horlogerie telle qu'une montre-bracelet ou une montre de poche, comprend un arbre 2, deux balanciers 3, 4 solidaires de l'arbre 2, un pivot flexible 5 et un support 6. Deux exemples de pivot flexible 5 et de support 6 sont représentés dans les dessins, respectivement aux figures 1 à 4 et à la figure 5. Aux figures 1 à 4, le support 6 est en une seule partie. A la figure 5, il est en deux parties séparées. Le support 6 est destiné à être fixé sur un bâti fixe ou mobile du mouvement de la pièce d'horlogerie, typiquement sur la platine du mouvement.With reference to figures 1 to 5 , a watch oscillator 1 according to a first embodiment of the invention, for a timepiece such as a wristwatch or a pocket watch, comprises a shaft 2, two balances 3, 4 integral with the shaft 2, a flexible pivot 5 and a support 6. Two examples of flexible pivot 5 and support 6 are shown in the drawings, respectively in figures 1 to 4 and to the figure 5 . To figures 1 to 4 , support 6 is in one part. To the Figure 5 , it is in two separate parts. The support 6 is intended to be fixed on a fixed or mobile frame of the movement of the timepiece, typically on the plate of the movement.

Le pivot flexible 5 est de préférence constitué d'éléments coplanaires. Les balanciers 3, 4 sont situés axialement de part et d'autre du pivot flexible 5, de préférence dans des plans moyens P1, P2 qui sont symétriques l'un de l'autre par rapport au plan moyen P du pivot flexible 5. Les balanciers 3, 4 constituent la partie inertielle de l'oscillateur 1 et le pivot flexible 5 sa partie élastique. A la différence d'un oscillateur à pivot flexible classique et à l'instar d'un oscillateur balancier-spiral, ces parties inertielle et élastique sont séparées dans la présente invention.The flexible pivot 5 is preferably made up of coplanar elements. The rockers 3, 4 are located axially on either side of the flexible pivot 5, preferably in mean planes P1, P2 which are symmetrical to each other with respect to the mean plane P of the flexible pivot 5. balancers 3, 4 constitute the inertial part of the oscillator 1 and the flexible pivot 5 its elastic part. Unlike a conventional flexible pivot oscillator and like a balance-spring oscillator, these inertial and elastic parts are separated in the present invention.

Le pivot flexible 5 relie l'arbre 2 au support 6, guide l'arbre 2 en rotation par rapport au support 6 autour de l'axe A de l'arbre 2 et exerce un couple de rappel élastique sur l'arbre 2 pour le rappeler dans une position de repos, à savoir la position de repos illustrée aux figures 1 et 3. L'ensemble arbre 2 et balanciers 3, 4 n'est tenu au support 6 que par le pivot flexible 5. La rotation de l'ensemble 2, 3, 4 ne génère donc pas de frottements secs.The flexible pivot 5 connects the shaft 2 to the support 6, guides the shaft 2 in rotation relative to the support 6 around the axis A of the shaft 2 and exerts an elastic return torque on the shaft 2 to recall into a rest position, namely the rest position illustrated in figures 1 And 3 . The shaft 2 and balance beams 3, 4 assembly is held to the support 6 only by the flexible pivot 5. The rotation of the assembly 2, 3, 4 therefore does not generate dry friction.

Le pivot flexible 5 comprend (cf. figures 4 et 5) un moyeu 7 rigide entourant l'arbre 2 et solidaire de celui-ci, et un nombre N d'organes élastiques 8 reliant chacun le moyeu 7 au support 6. Le nombre N est au moins égal à trois. Il est égal à quatre dans l'exemple représenté aux figures 1 à 4 et à trois dans l'exemple de la figure 5. Chaque organe élastique 8 comprend, en série, une paire de lames élastiques 9, un corps rigide intermédiaire 10 et un guidage flexible 11. La paire de lames élastiques 9 relie le corps rigide intermédiaire 10 au moyeu 7 et le guidage flexible 11 relie le support 6 au corps rigide intermédiaire 10.The flexible pivot 5 includes (cf. figures 4 And 5 ) a rigid hub 7 surrounding the shaft 2 and integral with it, and a number N of elastic members 8 each connecting the hub 7 to the support 6. The number N is at least equal to three. It is equal to four in the example shown in figures 1 to 4 and three in the example of figure 5 . Each elastic member 8 comprises, in series, a pair of elastic blades 9, an intermediate rigid body 10 and a flexible guide 11. The pair of elastic blades 9 connects the intermediate rigid body 10 to the hub 7 and the flexible guide 11 connects the support 6 to the intermediate rigid body 10.

Les lames de chaque paire de lames élastiques 9 s'étendent dans des directions qui se croisent pour former un pivot à centre de rotation déporté dit également pivot RCC (Remote Center Compliance). Chaque paire de lames élastiques 9 définit dans le plan P une paire de demi-axes 12 ayant pour origine un même point situé sur l'axe A. Ces paires de demi-axes 12 sont agencées autour de l'axe A selon une symétrie d'ordre N. Les lames des N paires de lames élastiques 9 ont toutes la même raideur. Dans les exemples illustrés aux figures 1 à 5, en plus d'avoir la même raideur, les lames des N paires de lames élastiques 9 sont identiques et ont en particulier des dimensions identiques. Comme il sera expliqué plus loin, la présente invention tient compte du caractère isotrope ou anisotrope du matériau dans lequel est fabriqué le pivot flexible 5.The blades of each pair of elastic blades 9 extend in intersecting directions to form a pivot with an offset center of rotation also called RCC (Remote Center Compliance) pivot. Each pair of elastic blades 9 defines in the plane P a pair of half-axes 12 having as their origin the same point located on axis A. These pairs of half-axes 12 are arranged around axis A according to a symmetry of order N. The blades of the N pairs of elastic blades 9 all have the same stiffness. In the examples illustrated in figures 1 to 5 , in addition to having the same stiffness, the blades of the N pairs of elastic blades 9 are identical and in particular have identical dimensions. As will be explained later, the present invention takes into account the isotropic or anisotropic nature of the material from which the flexible pivot 5 is made.

Dans chaque organe élastique 8, le guidage flexible 11 est agencé pour permettre un déplacement guidé du corps rigide intermédiaire 10 par rapport au support 6 sensiblement en translation le long de la bissectrice B des demi-axes 12. Ce déplacement guidé se produit pendant le fonctionnement régulier de l'oscillateur 1 (et donc même en l'absence de chocs ou d'accélérations reçus par la montre) où l'ensemble moyeu 7 - arbre 2 - balanciers 3, 4 tourne autour de l'axe A. Le guidage flexible 11 comprend typiquement au moins une lame élastique s'étendant dans une direction perpendiculaire à la bissectrice B, et de préférence deux lames élastiques parallèles s'étendant dans une direction perpendiculaire à la bissectrice B, comme représenté. De préférence, les guidages flexibles 11 ont la même raideur.In each elastic member 8, the flexible guide 11 is arranged to allow guided movement of the intermediate rigid body 10 relative to the support 6 substantially in translation along the bisector B of the half-axes 12. This guided movement occurs during operation regular of the oscillator 1 (and therefore even in the absence of shocks or accelerations received by the watch) where the hub 7 - shaft 2 - balance wheels 3, 4 assembly rotates around the axis A. The flexible guidance 11 typically comprises at least one elastic blade extending in a direction perpendicular to the bisector B, and preferably two parallel elastic blades extending in a direction perpendicular to the bisector B, as shown. Preferably, the flexible guides 11 have the same stiffness.

Ainsi, les paires de lames élastiques 9 guident le moyeu 7 et donc l'ensemble moyeu 7 - arbre 2 - balanciers 3, 4 en rotation autour de l'axe A et les guidages flexibles 11 apportent des degrés de liberté à l'intérieur du pivot flexible 5 qui évitent à ce dernier d'être hyperstatique. La symétrie d'ordre N des paires de demi-axes 12 permet au moyeu 7 de tourner proprement autour d'un axe A qui est fixe ou quasiment fixe, ceci d'autant plus si N est pair, par exemple égal à quatre comme dans les figures 1 à 4, puisqu'alors les forces appliquées au moyeu 7 s'annulent. En faisant en sorte que le ou les points 13 de jonction du guidage flexible 11 au corps rigide intermédiaire 10 soient sur la bissectrice B ou soient proches de celle-ci, on améliore encore la qualité de la rotation.Thus, the pairs of elastic blades 9 guide the hub 7 and therefore the hub 7 - shaft 2 - balance beams 3, 4 assembly in rotation around the axis A and the flexible guides 11 provide degrees of freedom inside the flexible pivot 5 which prevents the latter from being hyperstatic. The N order symmetry of the pairs of half-axes 12 allows the hub 7 to rotate properly around an axis A which is fixed or almost fixed, all the more so if N is even, for example equal to four as in THE figures 1 to 4 , since then the forces applied to the hub 7 cancel out. By ensuring that the point(s) 13 of junction of the flexible guide 11 to the intermediate rigid body 10 are on the bisector B or are close to it, the quality of the rotation is further improved.

Cette rotation propre autour de l'axe A favorise le facteur de qualité et l'indépendance de la fréquence de l'oscillateur 1 vis-à-vis de la direction de la gravité. De plus, les paires de lames élastiques 9 ont une raideur qui est très peu sensible à la direction de la gravité. En effet, dans une position verticale donnée de l'oscillateur 1, la force de gravité présente, pour chaque paire de lames élastiques 9, une première composante parallèle à la bissectrice B et une seconde composante perpendiculaire à la bissectrice B. Grâce au guidage flexible 11, la première composante n'est pas transmise à la paire de lames élastiques 9. Quant à la deuxième composante, elle produit des effets opposés sur les lames élastiques 9, puisqu'elle sollicite l'une des lames en compression et l'autre lame en traction. Les changements de raideur des deux lames se compensent donc.This proper rotation around the A axis favors the quality factor and the independence of the frequency of oscillator 1 with respect to the direction of gravity. In addition, the pairs of elastic blades 9 have a stiffness which is very little sensitive to the direction of gravity. Indeed, in a given vertical position of the oscillator 1, the force of gravity presents, for each pair of elastic blades 9, a first component parallel to the bisector B and a second component perpendicular to the bisector B. Thanks to flexible guidance 11, the first component is not transmitted to the pair of elastic blades 9. As for the second component, it produces opposite effects on the elastic blades 9, since it stresses one of the blades in compression and the other blade in traction. The changes in stiffness of the two blades therefore compensate for each other.

La présence des deux balanciers 3, 4 de part et d'autre du pivot flexible 5 dans la direction de l'axe A permet à la partie inertielle que constituent ces balanciers 3, 4 d'avoir son centre de masse dans le plan moyen P du pivot flexible 5, c'est-à-dire à mi-hauteur des lames élastiques 9, 11. Cette caractéristique améliore encore l'insensibilité de l'oscillateur 1 à la gravité. De préférence, le centre de masse de la partie inertielle 3, 4 est aussi sur l'axe A, pour favoriser également l'insensibilité à la gravité.The presence of the two balances 3, 4 on either side of the flexible pivot 5 in the direction of the axis A allows the inertial part which constitutes these balances 3, 4 to have its center of mass in the mean plane P of the flexible pivot 5, that is to say halfway up the elastic blades 9, 11. This characteristic further improves the insensitivity of the oscillator 1 to gravity. Preferably, the center of mass of the inertial part 3, 4 is also on axis A, to also promote insensitivity to gravity.

En outre, chaque organe élastique 8 peut être dimensionné pour que le guidage flexible 11 compense la non linéarité du couple produit par la paire de lames élastiques 9 en fonction de l'angle de rotation et rende ainsi l'oscillateur 1 isochrone, c'est-à-dire rende sa fréquence indépendante de l'amplitude d'oscillation. Le diagramme de la figure 6 montre par le graphe G1 la raideur d'une paire de lames RCC seule et par le graphe G2 la raideur d'un organe élastique 8 avec sa paire de lames RCC 9, son corps rigide intermédiaire 10 et son guidage flexible 11, la raideur étant définie comme le rapport de l'effort (ici : couple) sur le déplacement (ici : angle de rotation). Les graphes G1 et G2 ont été obtenus avec les paramètres suivants : angle entre les lames RCC 9 : 30° ; diamètre externe du moyeu 7 : 1 mm ; longueur des lames RCC 9 : 3 mm ; longueur des lames du guidage flexible 11 : 3 mm ; écartement des lames du guidage flexible 11 : 0,8 mm ; distance entre la droite joignant les points de jonction des lames RCC 9 au corps rigide intermédiaire 10 et la lame élastique du guidage flexible 11 la plus proche : 1,58 mm. On constate à la figure 6 que la raideur d'un pivot RCC seul varie grandement, ce qui se traduit par une forte non linéarité du couple, et qu'en revanche la raideur d'un organe élastique 8 peut, elle, être rendue sensiblement constante.In addition, each elastic member 8 can be dimensioned so that the flexible guide 11 compensates for the non-linearity of the torque produced by the pair of elastic blades 9 as a function of the angle of rotation and thus makes the oscillator 1 isochronous, this is i.e. makes its frequency independent of the amplitude of oscillation. The diagram of the Figure 6 shows by the graph G1 the stiffness of a pair of RCC blades alone and by the graph G2 the stiffness of an elastic member 8 with its pair of RCC blades 9, its intermediate rigid body 10 and its flexible guide 11, the stiffness being defined as the ratio of effort (here: torque) to displacement (here: angle of rotation). Graphs G1 and G2 were obtained with the following parameters: angle between the RCC 9 blades: 30°; hub external diameter 7: 1 mm; length of RCC 9 blades: 3 mm; length of the blades flexible guide 11: 3 mm; spacing of the blades of the flexible guide 11: 0.8 mm; distance between the straight line joining the junction points of the RCC blades 9 to the intermediate rigid body 10 and the nearest elastic blade of the flexible guide 11: 1.58 mm. We see at the Figure 6 that the stiffness of a single RCC pivot varies greatly, which results in a strong non-linearity of the torque, and that on the other hand the stiffness of an elastic member 8 can be made substantially constant.

Les balanciers 3, 4 peuvent être du même type que ceux des oscillateurs balancier-spiral traditionnels, et peuvent comprendre ainsi une serge 3a, 4a, un moyeu 3b, 4b entourant l'arbre 2 et des bras rigides 3c, 4c reliant la serge 3a, 4a au moyeu 3b, 4b. La serge 3a, 4a peut avoir la forme d'un anneau continu, comme représenté, ou interrompu. Les balanciers 3, 4 peuvent être fixés sur l'arbre 2 de manière classique par rivetage. Ils sont typiquement réalisés dans un matériau dense tel que le cuivre au béryllium, l'or, le platine ou du silicium portant des masses de métal dense. Les balanciers 3, 4 peuvent donc présenter un petit diamètre pour un moment d'inertie donné. De la sorte, les frottements avec l'air seront réduits, augmentant ainsi le facteur de qualité.The balances 3, 4 can be of the same type as those of traditional balance-spring oscillators, and can thus comprise a rim 3a, 4a, a hub 3b, 4b surrounding the shaft 2 and rigid arms 3c, 4c connecting the rim 3a , 4a to hub 3b, 4b. The serge 3a, 4a can have the shape of a continuous ring, as shown, or interrupted. The balances 3, 4 can be fixed on the shaft 2 in a conventional manner by riveting. They are typically made of a dense material such as beryllium copper, gold, platinum or silicon carrying masses of dense metal. The balances 3, 4 can therefore have a small diameter for a given moment of inertia. In this way, friction with the air will be reduced, thus increasing the quality factor.

Le pivot flexible 5 est de préférence monolithique, et de préférence monolithique avec le support 6 comme dans les exemples illustrés. Son matériau est choisi pour la précision de fabrication qu'il autorise et pour ses propriétés élastiques. Il peut être par exemple du silicium, du silicium recouvert de dioxyde de silicium, du verre, du saphir, du quartz, un verre métallique, un métal ou alliage. Selon le matériau choisi, le pivot flexible 5 peut être obtenu par gravure (notamment gravure ionique réactive profonde dite DRIE), LIGA, fraisage, électroérosion, moulage ou autre. Selon le matériau, également, le moyeu 7 peut être fixé à l'arbre 2 par collage, soudage, brasage, chassage ou serrage au moyen de bras élastiques, par exemple.The flexible pivot 5 is preferably monolithic, and preferably monolithic with the support 6 as in the examples illustrated. Its material is chosen for the manufacturing precision it allows and for its elastic properties. It may for example be silicon, silicon covered with silicon dioxide, glass, sapphire, quartz, metallic glass, a metal or alloy. Depending on the material chosen, the flexible pivot 5 can be obtained by engraving (in particular deep reactive ion engraving known as DRIE), LIGA, milling, electroerosion, molding or other. Depending on the material, also, the hub 7 can be fixed to the shaft 2 by gluing, welding, soldering, driving or tightening by means of elastic arms, for example.

En plus d'augmenter le facteur de qualité, la séparation de la partie inertielle 3, 4 et du pivot flexible 5 mise en oeuvre par l'invention facilite le réglage de la fréquence de l'oscillateur 1. Le moment d'inertie et le balourd des balanciers 3, 4 peuvent en effet être mesurés et corrigés facilement tandis que le couple du pivot flexible 5 peut être mesuré sans assemblage préalable avec les balanciers 3, 4 et modifié indépendamment des balanciers 3, 4. De surcroît, il est possible d'appairer les balanciers 3, 4 et le pivot flexible 5, en d'autres termes d'associer des balanciers 3, 4 ayant un moment d'inertie choisi avec un pivot flexible 5 produisant un couple choisi afin d'obtenir une fréquence souhaitée.In addition to increasing the quality factor, the separation of the inertial part 3, 4 and the flexible pivot 5 implemented by the invention facilitates adjustment of the frequency of the oscillator 1. The moment of inertia and the unbalance of the balances 3, 4 can in fact be measured and corrected easily while the torque of the flexible pivot 5 can be measured without prior assembly with the balances 3, 4 and modified independently of the balances 3, 4. In addition, it is possible to pair the balances 3, 4 and the flexible pivot 5, in other words to associate balances 3, 4 having a moment of inertia chosen with a flexible pivot 5 producing a chosen torque in order to obtain a desired frequency.

On notera que l'oscillateur 1 est relativement facile à fabriquer puisque le pivot flexible 5 est une structure à un seul niveau et que les balanciers 3, 4 peuvent être classiques et assemblés de manière classique à l'arbre 2. La facilité de fabrication est d'autant plus flagrante si l'on compare l'oscillateur 1 aux oscillateurs à lames croisées séparées décrits dans les documents EP 2911012 et WO 2016/096677 , par exemple, qui nécessitent l'emploi de techniques particulières pour réaliser les lames et les séparer. La présente invention n'exclut toutefois pas que les lames de chaque paire de lames élastiques 9 soient non coplanaires ni que les paires de lames élastiques 9 soient non coplanaires.It will be noted that the oscillator 1 is relatively easy to manufacture since the flexible pivot 5 is a single-level structure and that the balances 3, 4 can be conventional and assembled in a conventional manner to the shaft 2. The ease of manufacture is all the more obvious if we compare oscillator 1 to the oscillators with separate crossed blades described in the documents EP 2911012 And WO 2016/096677 , for example, which require the use of specific techniques to make the blades and separate them. The present invention does not, however, exclude that the blades of each pair of elastic blades 9 are non-coplanar nor that the pairs of elastic blades 9 are non-coplanar.

Lorsque le nombre N d'organes élastiques 8 est égal à quatre (figures 1 à 4), le pivot flexible 5 peut être réalisé indifféremment dans un matériau isotrope ou dans un matériau anisotrope présentant, en ce qui concerne le module d'élasticité, une symétrie quaternaire, sans qu'il soit nécessaire de donner aux lames élastiques 9, de même qu'aux lames élastiques 11, des dimensions différentes. Le matériau isotrope peut être par exemple du silicium monocristallin découpé selon un plan de la famille {111} ou du silicium polycristallin. Le matériau anisotrope peut être par exemple du silicium monocristallin découpé selon un plan de la famille {100}. Si le pivot flexible 5 est réalisé dans un matériau anisotrope à symétrie quaternaire, on l'orientera par rapport à la structure cristalline du matériau de façon que la symétrie quaternaire du matériau et celle du pivot flexible 5 correspondent. Dans le cas par exemple d'un matériau tel que le silicium découpé dans le plan (100), le pivot flexible 5 peut être orienté par rapport à la structure cristalline du matériau de telle sorte que deux paires de lames élastiques 9 opposées soient disposées le long de l'axe cristallographique [-110] et que les deux autres paires de lames élastiques 9 opposées soient disposées le long de l'axe cristallographique [110], ou de telle sorte que deux paires de lames élastiques 9 opposées soient disposées le long de l'axe cristallographique [010] et que les deux autres paires de lames élastiques 9 opposées soient disposées le long de l'axe cristallographique [100].When the number N of elastic members 8 is equal to four ( figures 1 to 4 ), the flexible pivot 5 can be made indifferently in an isotropic material or in an anisotropic material presenting, with regard to the modulus of elasticity, a quaternary symmetry, without it being necessary to give the elastic blades 9, likewise than the elastic blades 11, different dimensions. The isotropic material can for example be monocrystalline silicon cut according to a plane of the {111} family or polycrystalline silicon. The anisotropic material can for example be monocrystalline silicon cut according to a plane of the {100} family. If the flexible pivot 5 is made of an anisotropic material with quaternary symmetry, it will be oriented relative to the crystal structure of the material so that the quaternary symmetry of the material and that of the flexible pivot 5 correspond. In the case for example of a material such as silicon cut in the plane (100), the flexible pivot 5 can be oriented relative to the structure crystalline of the material such that two pairs of opposite elastic blades 9 are arranged along the crystallographic axis [-110] and the other two pairs of opposite elastic blades 9 are arranged along the crystallographic axis [110] , or such that two pairs of opposite elastic blades 9 are arranged along the crystallographic axis [010] and that the other two pairs of opposite elastic blades 9 are arranged along the crystallographic axis [100].

Avec un nombre N d'organes élastiques 8 égal à trois (figure 5), le pivot flexible 5 sera réalisé dans un matériau isotrope tel que le silicium {111} ou le silicium polycristallin si l'on souhaite que toutes les lames élastiques 9 soient identiques et que toutes les lames élastiques 11 soient identiques. En revanche, dans le cas où un matériau anisotrope tel que le silicium {100}, qui est davantage disponible sur le marché, est choisi, on donnera aux lames élastiques 9 des dimensions différentes pour qu'elles aient la même raideur. De même, on donnera aux lames élastiques 11 des dimensions différentes pour qu'elles aient la même raideur. Par exemple, en référence à la figure 5, le pivot flexible 5 pourra être orienté par rapport à la structure cristalline du silicium {100} de telle sorte que les lames désignées par 9a aient des dimensions identiques, que les lames désignées par 9b aient des dimensions identiques, que les lames 9a et 9b aient des dimensions différentes, par exemple des longueurs et/ou épaisseurs différentes, que les lames désignées par 11a aient des dimensions identiques, que les lames désignées par 11b aient des dimensions identiques et que les lames 11a et 11b aient des dimensions différentes, par exemple des longueurs et/ou épaisseurs différentes.With a number N of elastic members 8 equal to three ( Figure 5 ), the flexible pivot 5 will be made of an isotropic material such as silicon {111} or polycrystalline silicon if it is desired that all the elastic blades 9 are identical and that all the elastic blades 11 are identical. On the other hand, in the case where an anisotropic material such as silicon {100}, which is more available on the market, is chosen, the elastic blades 9 will be given different dimensions so that they have the same stiffness. Likewise, we will give the elastic blades 11 different dimensions so that they have the same stiffness. For example, with reference to the Figure 5 , the flexible pivot 5 can be oriented relative to the crystal structure of silicon {100} such that the blades designated by 9a have identical dimensions, that the blades designated by 9b have identical dimensions, that the blades 9a and 9b have different dimensions, for example different lengths and/or thicknesses, that the blades designated by 11a have identical dimensions, that the blades designated by 11b have identical dimensions and that the blades 11a and 11b have different dimensions, for example different lengths and/or thicknesses.

Il est toutefois avantageux que les lames des paires de lames élastiques 9 et des guidages flexibles 11 aient toutes la même section (même moment quadratique) afin de limiter l'effet des tolérances de fabrication sur l'isochronisme et sur l'insensibilité à la gravité. En effet, si par exemple le pivot flexible 5 est réalisé en silicium par un procédé de gravure DRIE, les défauts de gravure tels que l'angle de dépouille modifieront la raideur de toutes les lames de la même manière. De façon analogue, toute couche de dioxyde de silicium formée sur le pivot flexible 5 en silicium, par exemple pour rendre la fréquence de l'oscillateur 1 indépendante de la température et/ou augmenter la résistance mécanique, modifiera la raideur de toutes les lames de la même manière.It is however advantageous for the blades of the pairs of elastic blades 9 and flexible guides 11 to all have the same section (same quadratic moment) in order to limit the effect of manufacturing tolerances on isochronism and on insensitivity to gravity . Indeed, if for example the flexible pivot 5 is made of silicon by a DRIE etching process, etching defects such as that the clearance angle will change the stiffness of all blades in the same way. Analogously, any layer of silicon dioxide formed on the flexible silicon pivot 5, for example to make the frequency of the oscillator 1 independent of the temperature and/or increase the mechanical resistance, will modify the stiffness of all the blades of the same way.

La figure 7 montre un oscillateur 1' selon un deuxième mode de réalisation de l'invention. Dans cette figure, les mêmes repères qu'aux figures 1 à 5 sont utilisés pour désigner les mêmes éléments ou des éléments similaires. L'oscillateur 1' selon ce deuxième mode de réalisation comprend un seul balancier 3 solidaire d'un arbre 2 et deux pivots flexibles 5 situés de part et d'autre du balancier 3, de préférence dans des plans moyens qui sont symétriques l'un de l'autre par rapport au plan moyen du balancier. Les pivots flexibles 5 tiennent l'ensemble arbre 2 - balancier 3 par rapport au support 6 qui est ici en deux parties séparées.There Figure 7 shows an oscillator 1' according to a second embodiment of the invention. In this figure, the same marks as in figures 1 to 5 are used to refer to the same or similar elements. The oscillator 1' according to this second embodiment comprises a single balance 3 secured to a shaft 2 and two flexible pivots 5 located on either side of the balance 3, preferably in average planes which are symmetrical to each other. on the other relative to the average plane of the balance wheel. The flexible pivots 5 hold the shaft 2 - balance 3 assembly in relation to the support 6 which is here in two separate parts.

Dans un troisième mode de réalisation de l'invention, représenté à la figure 8, l'oscillateur 1" comprend un seul balancier 3 et un seul pivot flexible 5, en d'autres termes le balancier 4 de la figure 1 ou l'un des deux pivots flexibles 5 de la figure 7 est supprimé.In a third embodiment of the invention, represented in figure 8 , the oscillator 1" comprises a single balance 3 and a single flexible pivot 5, in other words the balance 4 of the figure 1 or one of the two flexible pivots 5 of the Figure 7 is deleted.

Avantageusement, dans les différents modes de réalisation de l'invention, des butées 14 sont prévues pour protéger le ou les pivots flexibles 5 en cas d'accélération ou de choc important. Les butées 14 sont fixes par rapport au support 6 et présentent chacune un alésage qui reçoit une extrémité de l'arbre 2, mais elles restent hors de contact avec les éléments mobiles (arbre 2, balancier(s) 3, 4, pivot(s) flexible(s) 5) de l'oscillateur 1, 1', 1" pendant le fonctionnement régulier de celui-ci afin d'éviter tout frottement. Lors d'une accélération ou choc déplaçant l'arbre 2 radialement, les extrémités de l'arbre 2 peuvent venir en contact avec la paroi de l'alésage des butées 14 pour limiter la déformation des lames élastiques 9, 11 du ou des pivots flexibles 5 dans le plan de ce ou ces derniers. Lors d'une accélération ou choc déplaçant l'arbre 2 axialement, l'ensemble moyeu(x) 7 - arbre 2 - balancier(s) 3, 4 ou une pièce solidaire de cet ensemble peut venir en contact avec l'une des butées 14, limitant ainsi la déformation des lames élastiques 9, 11 du ou des pivots flexibles 5 hors du plan de ce ou ces derniers.Advantageously, in the different embodiments of the invention, stops 14 are provided to protect the flexible pivot(s) 5 in the event of acceleration or significant impact. The stops 14 are fixed relative to the support 6 and each have a bore which receives one end of the shaft 2, but they remain out of contact with the moving elements (shaft 2, balance wheel(s) 3, 4, pivot(s) ) flexible(s) 5) of the oscillator 1, 1', 1" during regular operation thereof in order to avoid any friction. During acceleration or impact moving the shaft 2 radially, the ends of the shaft 2 can come into contact with the wall of the bore of the stops 14 to limit the deformation of the elastic blades 9, 11 of the flexible pivot(s) 5 in the plane of the latter(s). During acceleration or impact moving shaft 2 axially, the hub(s) 7 - shaft 2 - balance wheel(s) 3, 4 assembly or an integral part of this assembly can come into contact with one of the stops 14, thus limiting the deformation of the elastic blades 9, 11 of the or flexible pivots 5 outside the plane of this or these latter.

L'oscillateur 1, 1', 1" selon l'invention peut être entretenu par un échappement classique, en particulier un échappement à ancre suisse. Comme l'illustrent les figures 1 à 3 et 8, l'ancre 15 d'un tel échappement peut coopérer avec une cheville 16 solidaire du moyeu 7 du pivot flexible 5 ou de l'un des pivots flexibles 5. De préférence, afin d'obtenir un angle de levée adéquat, l'arbre ou tige 17 de l'ancre 15 traverse l'ouverture centrale que définit la serge 3a, 4a du ou des balanciers 3, 4, en d'autres termes est entouré par la ou les serges 3a, 4a. La disposition des guidages flexibles 11 telle que représentée aux figures 3 à 5 laisse de la place pour l'ancre 15 dont la hauteur peut ainsi se chevaucher avec la hauteur du ou d'un des pivots flexibles 5.The oscillator 1, 1', 1" according to the invention can be maintained by a conventional escapement, in particular a Swiss anchor escapement. As illustrated by the figures 1 to 3 And 8 , the anchor 15 of such an exhaust can cooperate with a pin 16 secured to the hub 7 of the flexible pivot 5 or to one of the flexible pivots 5. Preferably, in order to obtain an adequate lifting angle, the shaft or rod 17 of the anchor 15 passes through the central opening which defines the serge 3a, 4a of the balance(s) 3, 4, in other words is surrounded by the serge(s) 3a, 4a. The arrangement of the flexible guides 11 as shown in figures 3 to 5 leaves room for the anchor 15, the height of which can thus overlap with the height of the or one of the flexible pivots 5.

Claims (19)

  1. Timepiece oscillator (1; 1'; 1") comprising
    - a balance (3),
    - a shaft (2) to which the balance (3) is fixedly attached, the shaft (2) defining an axis (A),
    - a support (6), and
    - a flexible pivot (5) arranged to guide the shaft (2) in rotation with respect to the support (6) about the axis (A) and to exert a return force on the shaft (2),
    and wherein
    - the flexible pivot (5) comprises a hub (7) fixedly attached to the shaft (2) and, in parallel between the hub (7) and the support (6), at least three elastic members (8),
    - each elastic member (8) comprises, in series, a pair of elastic strips (9), a rigid intermediate body (10) and a flexible guide (11),
    - the strips of the pairs of elastic strips (9) are of the same stiffness and extend along semi-axes (12) which start from the axis (A),
    - the pairs of semi-axes (12) corresponding respectively to the pairs of elastic strips (9) are arranged about the axis (A) with symmetry of order N, where N is the number of elastic members (8), in orthogonal projection in a plane perpendicular to the axis (A), and
    - in each elastic member (8), the flexible guide (11) is arranged to enable guided movement of the rigid intermediate body (10) with respect to the support (6) substantially in translation along the bisecting line (B) of the pair of semi-axes (12), in orthogonal projection in said plane perpendicular to the axis (A), during regular operation of the oscillator (1).
  2. Timepiece oscillator (1; 1'; 1") as claimed in claim 1, characterised in that in each elastic member (8), the strips of the pair of elastic strips (9) are coplanar.
  3. Timepiece oscillator (1; 1'; 1") as claimed in claim 1 or 2, characterised in that the flexible pivot (5) is formed from coplanar elements.
  4. Timepiece oscillator (1; 1'; 1") as claimed in any one of claims 1 to 3, characterised in that the flexible pivot (5) is formed from one piece.
  5. Timepiece oscillator (1; 1'; 1") as claimed in any one of claims 1 to 4, characterised in that the flexible pivot (5) is produced from an isotropic material and in that the strips of the pairs of elastic strips (9) are identical.
  6. Timepiece oscillator (1; 1'; 1") as claimed in any one of claims 1 to 4, characterised in that the flexible pivot (5) is produced from an anisotropic material having, as far as the modulus of elasticity is concerned, symmetry of order N, where N is the number of elastic members (8), and in that the strips of the pairs of elastic strips (9) are identical.
  7. Timepiece oscillator (1; 1'; 1") as claimed in any one of claims 1 to 4, characterised in that the flexible pivot (5) is produced from an anisotropic material and in that the strips of the pairs of elastic strips (9) are not all identical.
  8. Timepiece oscillator (1; 1'; 1") as claimed in any one of claims 1 to 7, characterised in that the flexible pivot (5) comprises at least four said elastic members (8).
  9. Timepiece oscillator (1; 1'; 1") as claimed in any one of claims 1 to 8, characterised in that the flexible pivot (5) comprises an even number of said elastic members (8).
  10. Timepiece oscillator (1; 1'; 1") as claimed in any one of claims 1 to 9, characterised in that the flexible guides (11) are of the same stiffness.
  11. Timepiece oscillator (1; 1'; 1") as claimed in any one of claims 1 to 10, characterised in that the flexible guide (11) of each elastic member (8) comprises at least one elastic strip extending in a direction perpendicular to the bisecting line (B).
  12. Timepiece oscillator (1; 1'; 1") as claimed in any one of claims 1 to 11, characterised in that the flexible guide (11) of each elastic member (8) comprises parallel elastic strips extending in a direction perpendicular to the bisecting line (B).
  13. Timepiece oscillator (1; 1'; 1") as claimed in claim 11 or 12, characterised in that the strips of the pairs of elastic strips (9) and of the flexible guides (11) have the same cross-section.
  14. Timepiece oscillator (1; 1'; 1") as claimed in any one of claims 1 to 13, characterised in that in each elastic member (8), the point or points (13) where the flexible guide (11) is joined to the rigid intermediate body (10) are substantially on the bisecting line (B) in orthogonal projection in said plane perpendicular to the axis (A).
  15. Timepiece oscillator (1; 1'; 1") as claimed in any one of claims 1 to 14, characterised in that the flexible guides (11) are arranged to compensate for the non-linearity of the force exerted by the pairs of elastic strips (9) on the shaft (2) depending on the angle of rotation.
  16. Timepiece oscillator (1; 1'; 1") as claimed in any one of claims 1 to 15, characterised in that the balance (3) and the flexible pivot (5) are produced from different materials.
  17. Timepiece oscillator (1; 1'; 1") as claimed in any one of claims 1 to 16, characterised in that it further comprises at least one stop (14) which is fixed with respect to the support (6) and receives an end of the shaft (2), this stop (14) not touching any movable element of the oscillator (1) during regular operation of this oscillator but being able to bear against such a movable element (2, 3, 4, 7) in the event of shock or acceleration received by the oscillator (1; 1'; 1") in order to limit the deformation of the flexible pivot (5).
  18. Timepiece oscillator (1) as claimed in any one of claims 1 to 17, characterised in that it comprises a second balance (4) located on the other side of the flexible pivot (5) with respect to said balance (3).
  19. Timepiece oscillator (1') as claimed in any one of claims 1 to 17, characterised in that it comprises a second flexible pivot (5) located on the other side of the balance (3) with respect to said flexible pivot (5).
EP19197512.7A 2019-09-16 2019-09-16 Timepiece oscillator with flexible pivot Active EP3792700B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19197512.7A EP3792700B1 (en) 2019-09-16 2019-09-16 Timepiece oscillator with flexible pivot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19197512.7A EP3792700B1 (en) 2019-09-16 2019-09-16 Timepiece oscillator with flexible pivot

Publications (2)

Publication Number Publication Date
EP3792700A1 EP3792700A1 (en) 2021-03-17
EP3792700B1 true EP3792700B1 (en) 2023-10-04

Family

ID=67981937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19197512.7A Active EP3792700B1 (en) 2019-09-16 2019-09-16 Timepiece oscillator with flexible pivot

Country Status (1)

Country Link
EP (1) EP3792700B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4163735A1 (en) 2021-10-05 2023-04-12 Patek Philippe SA Genève Methods for producing and adjusting an oscillator with flexible guide and timepiece movement comprising such an oscillator
EP4250019A1 (en) 2022-03-21 2023-09-27 Patek Philippe SA Genève Timepiece oscillator for extra-flat movement
EP4310603A1 (en) 2022-07-18 2024-01-24 Patek Philippe SA Genève Timepiece movement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2911012B1 (en) 2014-02-20 2020-07-22 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Timepiece oscillator
EP2975469B1 (en) * 2014-07-14 2017-07-05 Nivarox-FAR S.A. Flexible clock guide
EP3035126B1 (en) 2014-12-18 2017-12-13 The Swatch Group Research and Development Ltd. Timepiece resonator with crossed blades
FR3059792B1 (en) * 2016-12-01 2019-05-24 Lvmh Swiss Manufactures Sa DEVICE FOR WATCHMAKING PART, CLOCK MOVEMENT AND TIMEPIECE COMPRISING SUCH A DEVICE
EP3476748B1 (en) * 2017-10-24 2020-07-15 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Pivot mechanism with flexible elements

Also Published As

Publication number Publication date
EP3792700A1 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
EP2911012B1 (en) Timepiece oscillator
EP3792700B1 (en) Timepiece oscillator with flexible pivot
EP2998800B1 (en) Timepiece component with flexible pivot
EP3548973B1 (en) Device for timepiece, clockwork mechanism and timepiece comprising such a device.
EP4009115A1 (en) Hairspring for timepiece resonator mechanism provided with a means for adjusting rigidity
EP3382470B1 (en) Timepiece oscillator with a flexible pivot
EP3502784B1 (en) Timepiece resonator with flexible guide
EP2196868A1 (en) Hairspring with curve elevation made from a silicon-based material
WO2011026725A1 (en) Spiral spring
EP2690506B1 (en) Anti-tripping clock hairspring
EP3555708B1 (en) Timepiece component with a flexible pivot
EP3430479B1 (en) Device for a timepiece, timepiece movement and timepiece comprising a device of said type
EP3021173A1 (en) Annular oscillating mass and timepiece comprising such an oscillating mass
EP3037893B1 (en) Micromechanical or clock component with flexible guidance
EP3839651B1 (en) Mechanical timepiece oscillator with flexible guide
EP3997525B1 (en) Method for adjusting a timepiece oscillator with flexible pivot
EP4179391A1 (en) Timepiece oscillator with flexible pivot
EP4047424A1 (en) Component with flexible pivot, in particular for clockmaking
EP3812842B1 (en) Device for guiding the pivoting of a pivoting mass and timepiece resonator mechanism
CH716725A2 (en) Pivoting guide device for a pivoting mass and clockwork resonator mechanism.
EP3534222A1 (en) Method for producing a thermally compensated oscillator
EP4191346B1 (en) Shock protection of a resonator mechanism with rotatable flexible guiding
CH717059B1 (en) Adjustment weight.
EP4432020A1 (en) Clock movement
WO2023170161A1 (en) Bridge for guiding a balance of a timepiece

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210915

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: G04B 31/02 20060101ALI20230411BHEP

Ipc: G04B 31/06 20060101ALI20230411BHEP

Ipc: G04B 17/04 20060101AFI20230411BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230524

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019038536

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231004

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1618358

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240204

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240105

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240104

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240104

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019038536

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240705