EP3416001B1 - Method for manufacturing an oscillator with flexible pivot - Google Patents

Method for manufacturing an oscillator with flexible pivot Download PDF

Info

Publication number
EP3416001B1
EP3416001B1 EP17175750.3A EP17175750A EP3416001B1 EP 3416001 B1 EP3416001 B1 EP 3416001B1 EP 17175750 A EP17175750 A EP 17175750A EP 3416001 B1 EP3416001 B1 EP 3416001B1
Authority
EP
European Patent Office
Prior art keywords
oscillator
flexible pivot
pivot
flexible
felloe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17175750.3A
Other languages
German (de)
French (fr)
Other versions
EP3416001A1 (en
Inventor
Frédéric Maier
Jean-Luc Bucaille
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Patek Philippe SA Geneve
Original Assignee
Patek Philippe SA Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe SA Geneve filed Critical Patek Philippe SA Geneve
Priority to EP17175750.3A priority Critical patent/EP3416001B1/en
Publication of EP3416001A1 publication Critical patent/EP3416001A1/en
Application granted granted Critical
Publication of EP3416001B1 publication Critical patent/EP3416001B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D7/00Measuring, counting, calibrating, testing or regulating apparatus
    • G04D7/08Measuring, counting, calibrating, testing or regulating apparatus for balance wheels
    • G04D7/082Measuring, counting, calibrating, testing or regulating apparatus for balance wheels for balancing
    • G04D7/088Measuring, counting, calibrating, testing or regulating apparatus for balance wheels for balancing by loading the balance wheel itself with material
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D7/00Measuring, counting, calibrating, testing or regulating apparatus
    • G04D7/08Measuring, counting, calibrating, testing or regulating apparatus for balance wheels
    • G04D7/082Measuring, counting, calibrating, testing or regulating apparatus for balance wheels for balancing
    • G04D7/085Measuring, counting, calibrating, testing or regulating apparatus for balance wheels for balancing by removing material from the balance wheel itself

Definitions

  • the present invention relates to the manufacture of an oscillator with a flexible pivot, in particular an oscillator intended to serve as a time base in a watch movement.
  • Flexible pivot oscillators for watchmaking have been described in documents EP 2911012 , EP 2998800 , EP 3037893 , EP 3035127 , EP 2990885 , WO 2012/010408 , WO 2016/096677 and WO 2017/055983 . They include a support, making it possible to fix the oscillator on a fixed or mobile frame, a flexible pivot and a serge suspended from the support by the flexible pivot.
  • the flexible pivot consists of elastic blades arranged to guide the rim in rotation with respect to the support and elastically return the rim to a rest position.
  • an adjustment of the oscillation frequency can be carried out at the level of the elastic blades by heat treatment or ablation of material using a laser beam, and at the level of the inertia of the serge by ablation material also with a laser.
  • the object of the present invention is to remedy or at least attenuate this drawback by proposing a method of manufacturing an oscillator with a flexible pivot whose dimensions are sufficiently precise not to require reworking.
  • the invention relates to an oscillator 1 with a flexible pivot.
  • the oscillator 1 comprises a support or fixing part 2, making it possible to fix the oscillator 1 to a fixed or mobile frame of a watch movement.
  • the support 2 can be in one part, as shown, or in two separate parts as described in the patent application WO 2017/055983 .
  • Oscillator 1 also includes a rim 3 suspended from support 2 by a flexible pivot 4.
  • the flexible pivot 4 consists of elastic blades 4a, 4b, two in number in the example shown. Each elastic blade 4a, 4b connects the support 2 to the rim 3. In the example shown, the elastic blades 4a, 4b intersect at a point O. They can intersect without contact, the two blades 4a, 4b extending then in two different parallel planes, or intersect with contact, the two blades 4a, 4b then extending in the same plane.
  • the first case, corresponding to a flexible pivot of the “separate crossed blades” type is preferred to the second (“non-separated crossed blades”) because it allows a greater angular travel of the rim 3 with respect to the support 2.
  • the flexible pivot 4 could be of the type with a remote center of rotation called “RCC” (Remote Center Compliance).
  • the flexible pivot 4 defines a virtual axis of rotation typically passing through the center of the rim 3 and around which the rim 3 pivots relative to the support 2.
  • the flexible pivot 4 thus guides the oscillations of the rim 3 by report to support 2. It also produces an elastic return torque as soon as rim 3 deviates from a rest position.
  • Serge 3 is typically in the form of a continuous ring, as shown, but it can alternatively be interrupted.
  • I m . r 2
  • the oscillator 1 is formed but in dimensions which are different from the dimensions necessary to obtain a predetermined oscillation frequency of the rim 3 with respect to the support 2.
  • step E1 either all the dimensions (in particular height h, thickness e and length L of the strips 4a, 4b, height and thickness of the serge 3) are different from the dimensions making it possible to obtain the predetermined oscillation frequency, or only part of these dimensions are different from the dimensions making it possible to obtain the predetermined oscillation frequency.
  • Step E1 is preferably carried out by etching a wafer of material. Several oscillators can be made simultaneously on the same wafer. Etching can be deep reactive ion etching (DRIE), chemical etching, focused ion beam (FIB) etching or laser etching, for example. According to the invention, the material is based on silicon.
  • DRIE deep reactive ion etching
  • FIB focused ion beam
  • laser etching for example.
  • the material is based on silicon.
  • the silicon-based material is monocrystalline silicon whatever its crystalline orientation, doped monocrystalline silicon whatever its crystalline orientation, amorphous silicon, porous silicon, polycrystalline silicon, silicon nitride, silicon, quartz regardless of its crystalline orientation or silicon oxide.
  • Oscillator 1 formed in step E1 is typically one-piece. It can nevertheless be in several superposed and assembled parts, as described in the patent application EP 2998800 .
  • step E2 the frequency of the oscillator formed in step E1 is measured by measurement means conventionally used in watchmaking. The measurement can be performed while the oscillator is still attached to its etching wafer or on the oscillator previously detached from the wafer, on all or on a sample of the oscillators still attached to the wafer or previously detached from the wafer .
  • Step E2 may consist in determining an average frequency of a representative sample or of all the oscillators formed on the same wafer.
  • the frequency f can be increased by increasing the stiffness K of the flexible pivot 4 and/or by reducing the moment of inertia I of the serge 3, and conversely that one can reduce the frequency f by decreasing the stiffness K of the flexible pivot 4 and/or by increasing the moment of inertia I of the rim 3.
  • the stiffness K of the flexible pivot 4 can be increased by increasing the section (height h and/or thickness e) slats 4a, 4b and/or by decreasing the length L of the slats 4a, 4b, and can be reduced by reducing the section (height h and/or thickness e) of the slats 4a, 4b and/or by increasing the length L of the blades 4a, 4b.
  • the moment of inertia I of the rim 3 can be increased by increasing the mass m and/or the radius of gyration r of the rim 3, and can be decreased by decreasing said mass m and/or said radius of gyration r.
  • step E3 a thickness of material to be added or removed is calculated which makes it possible to reduce the frequency f so that it reaches the predetermined frequency.
  • step E3 a thickness of material to be added or removed is calculated which makes it possible to increase the frequency f so that it reaches the predetermined frequency.
  • the calculated material thickness can be a thickness to be added or removed in a homogeneous manner over the entire external surface of the oscillator, a thickness to be added or removed in a non-homogeneous manner over the entire external surface of the oscillator, a thickness to adding or removing homogeneously only on a part of the outer surface of the oscillator or a thickness to add or remove in a non-homogeneous way only on a part of the outer surface of the oscillator.
  • the addition or removal of material can be provided to vary only the height h of the blades 4a, 4b of the flexible pivot 4, only the thickness e of the blades 4a, 4b or both the height h and the thickness e.
  • the thickness of material calculated at step E3 is, depending on the case, added to or removed from the oscillator formed at step E1.
  • step E3 a thickness of material to be added to the flexible pivot 4 and a thickness of material to be removed from the serge 3 to obtain the predetermined frequency are calculated, or conversely a thickness of material to be removed from the flexible pivot 4 and a thickness of material to be added to the serge 3 are calculated, and these thicknesses are, depending on the case, added or removed in the zones of the oscillator concerned in step E4.
  • Step E4 in the invention comprises a first step consisting in oxidizing the oscillator 1 in order to transform the thickness of silicon-based material to be removed into silicon dioxide, and a second step consisting in removing the layer of oxide of silicon thus formed.
  • the oscillator present after oxidation ( figure 4 ) a core 5 of material with silicon base whose dimensions are smaller than the corresponding dimensions h, e of the oscillator before oxidation ( picture 3 ), this core 5 being covered with a layer 6 of silicon oxide. After removal of layer 6 ( figure 5 ), we therefore obtain an oscillator of reduced dimensions.
  • the oxidation can be carried out thermally, for example between 800 and 1200° C. in an oxidizing atmosphere using steam or oxygen gas. It can be performed locally on the oscillator, for example only on the flexible pivot 4 or on the edge 3, by means of masks such as nitride masks.
  • the oxide formed on the silicon-based material can be removed by a chemical bath comprising, for example, hydrofluoric acid.
  • Step E4 can end the method according to the invention. However, after step E4, steps E2, E3 and E4 can be repeated one or more times to refine the dimensional quality of the oscillator.
  • the present invention makes it possible to obtain a very high dimensional precision for the oscillator and therefore to guarantee a more precise oscillation frequency.
  • the oscillator can also be processed to improve some of its properties and characteristics. It can for example be treated to make it less sensitive to thermal variations, that is to say so that the stiffness of its flexible pivot 4 or even its frequency does not vary or varies little depending on the temperature.
  • a layer of a material having a thermal coefficient of the modulus of elasticity of opposite sign to that of silicon can be formed over the entire silicon oscillator or at least over its flexible pivot 4. This layer is typically made of silicon oxide. It can be formed by thermal oxidation.

Description

La présente invention concerne la fabrication d'un oscillateur à pivot flexible, notamment d'un oscillateur destiné à servir de base de temps dans un mouvement horloger.The present invention relates to the manufacture of an oscillator with a flexible pivot, in particular an oscillator intended to serve as a time base in a watch movement.

Des oscillateurs à pivot flexible pour l'horlogerie ont été décrits dans les documents EP 2911012 , EP 2998800 , EP 3037893 , EP 3035127 , EP 2990885 , WO 2012/010408 , WO 2016/096677 et WO 2017/055983 . Ils comprennent un support, permettant de fixer l'oscillateur sur un bâti fixe ou mobile, un pivot flexible et une serge suspendue au support par le pivot flexible. Le pivot flexible est constitué de lames élastiques agencées pour guider la serge en rotation par rapport au support et rappeler élastiquement la serge dans une position de repos. Le document EP 2990885 explique qu'un réglage de la fréquence d'oscillation peut être effectué au niveau des lames élastiques par un traitement thermique ou une ablation de matière à l'aide d'un faisceau laser, et au niveau de l'inertie de la serge par ablation de matière également avec un laser.Flexible pivot oscillators for watchmaking have been described in documents EP 2911012 , EP 2998800 , EP 3037893 , EP 3035127 , EP 2990885 , WO 2012/010408 , WO 2016/096677 and WO 2017/055983 . They include a support, making it possible to fix the oscillator on a fixed or mobile frame, a flexible pivot and a serge suspended from the support by the flexible pivot. The flexible pivot consists of elastic blades arranged to guide the rim in rotation with respect to the support and elastically return the rim to a rest position. The document EP 2990885 explains that an adjustment of the oscillation frequency can be carried out at the level of the elastic blades by heat treatment or ablation of material using a laser beam, and at the level of the inertia of the serge by ablation material also with a laser.

Les oscillateurs à pivot flexible, en particulier lorsqu'ils sont monobloc, sont généralement fabriqués par des techniques de microfabrication telles que la gravure d'une plaquette de silicium. On constate néanmoins une dispersion géométrique entre les oscillateurs de différentes plaquettes et même entre les oscillateurs d'une même plaquette. Cette dispersion se traduit en une variation de la fréquence d'oscillation d'un oscillateur à l'autre.Flexible-pivot oscillators, especially when made in one piece, are typically fabricated by microfabrication techniques such as etching a silicon wafer. There is nevertheless a geometric dispersion between the oscillators of different wafers and even between the oscillators of the same wafer. This dispersion results in a variation of the oscillation frequency from one oscillator to another.

Le but de la présente invention est de remédier ou au moins atténuer cet inconvénient en proposant un procédé de fabrication d'un oscillateur à pivot flexible dont les dimensions sont suffisamment précises pour ne pas nécessiter de retouche.The object of the present invention is to remedy or at least attenuate this drawback by proposing a method of manufacturing an oscillator with a flexible pivot whose dimensions are sufficiently precise not to require reworking.

A cette fin, il est prévu un procédé selon la revendication 1.To this end, a method according to claim 1 is provided.

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée suivante faite en référence aux dessins schématiques annexés dans lesquels :

  • la figure 1 est une vue plane de dessus d'un oscillateur à pivot flexible auquel se rapporte l'invention ;
  • la figure 2 montre les différentes étapes d'un procédé de fabrication d'un oscillateur à pivot flexible ;
  • les figures 3 à 5 montrent une section droite d'une lame élastique de l'oscillateur à pivot flexible à différents moments lors de la mise en œuvre du procédé selon l'invention.
Other characteristics and advantages of the present invention will appear on reading the following detailed description given with reference to the appended schematic drawings in which:
  • the figure 1 is a top plan view of a flexible pivot oscillator to which the invention relates;
  • the figure 2 shows the different steps of a manufacturing process of a flexible pivot oscillator;
  • the figures 3 to 5 show a cross section of an elastic blade of the flexible pivot oscillator at different times during the implementation of the method according to the invention.

Comme illustré à la figure 1, l'invention se rapporte à un oscillateur 1 à pivot flexible. L'oscillateur 1 comprend un support ou partie de fixation 2, permettant de fixer l'oscillateur 1 à un bâti fixe ou mobile d'un mouvement horloger. Le support 2 peut être en une partie, comme représenté, ou en deux parties séparées comme décrit dans la demande de brevet WO 2017/055983 . L'oscillateur 1 comprend aussi une serge 3 suspendue au support 2 par un pivot flexible 4.As shown in figure 1 , the invention relates to an oscillator 1 with a flexible pivot. The oscillator 1 comprises a support or fixing part 2, making it possible to fix the oscillator 1 to a fixed or mobile frame of a watch movement. The support 2 can be in one part, as shown, or in two separate parts as described in the patent application WO 2017/055983 . Oscillator 1 also includes a rim 3 suspended from support 2 by a flexible pivot 4.

Le pivot flexible 4 est constitué de lames élastiques 4a, 4b, au nombre de deux dans l'exemple représenté. Chaque lame élastique 4a, 4b relie le support 2 à la serge 3. Dans l'exemple représenté, les lames élastiques 4a, 4b se croisent en un point O. Elles peuvent se croiser sans contact, les deux lames 4a, 4b s'étendant alors dans deux plans parallèles différents, ou se croiser avec contact, les deux lames 4a, 4b s'étendant alors dans le même plan. Le premier cas, correspondant à un pivot flexible de type « à lames croisées séparées », est préféré au second (« lames croisées non séparées ») car il permet une plus grande course angulaire de la serge 3 par rapport au support 2. Dans une autre variante, non représentée, le pivot flexible 4 pourrait être du type à centre de rotation déporté dit « RCC » (Remote Center Compliance).The flexible pivot 4 consists of elastic blades 4a, 4b, two in number in the example shown. Each elastic blade 4a, 4b connects the support 2 to the rim 3. In the example shown, the elastic blades 4a, 4b intersect at a point O. They can intersect without contact, the two blades 4a, 4b extending then in two different parallel planes, or intersect with contact, the two blades 4a, 4b then extending in the same plane. The first case, corresponding to a flexible pivot of the “separate crossed blades” type, is preferred to the second (“non-separated crossed blades”) because it allows a greater angular travel of the rim 3 with respect to the support 2. In a another variant, not shown, the flexible pivot 4 could be of the type with a remote center of rotation called “RCC” (Remote Center Compliance).

Dans tous les cas, le pivot flexible 4 définit un axe de rotation virtuel passant typiquement par le centre de la serge 3 et autour duquel la serge 3 pivote par rapport au support 2. Le pivot flexible 4 guide ainsi les oscillations de la serge 3 par rapport au support 2. Il produit en outre un couple de rappel élastique dès que la serge 3 s'écarte d'une position de repos.In all cases, the flexible pivot 4 defines a virtual axis of rotation typically passing through the center of the rim 3 and around which the rim 3 pivots relative to the support 2. The flexible pivot 4 thus guides the oscillations of the rim 3 by report to support 2. It also produces an elastic return torque as soon as rim 3 deviates from a rest position.

La serge 3 est typiquement sous la forme d'un anneau continu, comme représenté, mais elle peut en variante être interrompue.Serge 3 is typically in the form of a continuous ring, as shown, but it can alternatively be interrupted.

La fréquence f de l'oscillateur 1 est donnée par la formule suivante : f = 1 2 π K I

Figure imgb0001
où K est la raideur du pivot flexible 4 et I est le moment d'inertie de la serge 3.The frequency f of oscillator 1 is given by the following formula: f = 1 2 π K I
Figure imgb0001
where K is the stiffness of the flexible pivot 4 and I is the moment of inertia of the serge 3.

La raideur K dépend du type du pivot flexible 4. Pour un pivot flexible de type à lames croisées séparées, elle répond à la formule : K = 1 6 . E . he 3 L

Figure imgb0002
où E est le module d'élasticité du matériau utilisé, h est la hauteur de chaque lame (dimension dans la direction de l'axe de rotation), e est l'épaisseur de chaque lame et L est la longueur de chaque lame. Pour un pivot flexible de type à lames croisées non séparées, la raideur K répond à la formule : K = 2 3 . E . he 3 L
Figure imgb0003
où les paramètres E, h, e et L sont les mêmes que ci-dessus. Enfin, pour un pivot flexible de type RCC, la raideur K répond à la formule : K = 2 3 . E . he 3 L 1 + 3 p L + 3 p 2 L 2
Figure imgb0004
où les paramètres E, h, e et L sont les mêmes que ci-dessus et p est la distance entre le point de croisement fictif des lames et l'extrémité de chaque lame la plus proche de ce point de croisement.The stiffness K depends on the type of flexible pivot 4. For a flexible pivot of the type with separated crossed blades, it corresponds to the formula: K = 1 6 . E . Hey 3 L
Figure imgb0002
where E is the modulus of elasticity of the material used, h is the height of each blade (dimension in the direction of the axis of rotation), e is the thickness of each blade and L is the length of each blade. For a flexible pivot of the type with non-separated crossed blades, the stiffness K corresponds to the formula: K = 2 3 . E . Hey 3 L
Figure imgb0003
where the parameters E, h, e and L are the same as above. Finally, for a flexible pivot of the RCC type, the stiffness K corresponds to the formula: K = 2 3 . E . Hey 3 L 1 + 3 p L + 3 p 2 L 2
Figure imgb0004
where the parameters E, h, e and L are the same as above and p is the distance between the fictitious crossing point of the blades and the end of each blade closest to this crossing point.

Les formules ci-dessus peuvent en outre être adaptées à des pivots flexibles dont les lames ont une section variable. Ainsi, par exemple, dans le cas d'un pivot flexible à lames croisées séparées la raideur K peut s'exprimer de la manière suivante : K = E 6 . 1 0 L 1 h l . e 3 l . dl

Figure imgb0005
The above formulas can also be adapted to flexible pivots whose blades have a variable section. Thus, for example, in the case of a flexible pivot with separate crossed blades, the stiffness K can be expressed as follows: K = E 6 . 1 0 L 1 h I . and 3 I . dl
Figure imgb0005

Le moment d'inertie I de la serge 3 est, lui, donné par la formule : I = m . r 2

Figure imgb0006
où m est la masse de la serge et r est le rayon de giration de la serge.The moment of inertia I of the serge 3 is given by the formula: I = m . r 2
Figure imgb0006
where m is the mass of the serge and r is the radius of gyration of the serge.

Un procédé de fabrication de l'oscillateur 1 à pivot flexible va maintenant être décrit en référence à la figure 2.A method of manufacturing the oscillator 1 with flexible pivot will now be described with reference to the figure 2 .

A une première étape E1, l'oscillateur 1 est formé mais dans des dimensions qui sont différentes des dimensions nécessaires pour obtenir une fréquence d'oscillation prédéterminée de la serge 3 par rapport au support 2.At a first step E1, the oscillator 1 is formed but in dimensions which are different from the dimensions necessary to obtain a predetermined oscillation frequency of the rim 3 with respect to the support 2.

A l'étape E1, soit toutes les dimensions (notamment hauteur h, épaisseur e et longueur L des lames 4a, 4b, hauteur et épaisseur de la serge 3) sont différentes des dimensions permettant d'obtenir la fréquence d'oscillation prédéterminée, soit une partie seulement de ces dimensions sont différentes des dimensions permettant d'obtenir la fréquence d'oscillation prédéterminée.At step E1, either all the dimensions (in particular height h, thickness e and length L of the strips 4a, 4b, height and thickness of the serge 3) are different from the dimensions making it possible to obtain the predetermined oscillation frequency, or only part of these dimensions are different from the dimensions making it possible to obtain the predetermined oscillation frequency.

L'étape E1 est réalisée de préférence par gravure d'une plaquette de matériau. Plusieurs oscillateurs peuvent être réalisés simultanément sur une même plaquette. La gravure peut être une gravure ionique réactive profonde (DRIE), une gravure chimique, une gravure par faisceaux d'ions focalisés (FIB) ou une gravure par laser, par exemple. Selon l'invention, le matériau est à base de silicium.Step E1 is preferably carried out by etching a wafer of material. Several oscillators can be made simultaneously on the same wafer. Etching can be deep reactive ion etching (DRIE), chemical etching, focused ion beam (FIB) etching or laser etching, for example. According to the invention, the material is based on silicon.

Préférentiellement, le matériau à base de silicium est du silicium monocristallin quelle que soit son orientation cristalline, du silicium monocristallin dopé quelle que soit son orientation cristalline, du silicium amorphe, du silicium poreux, du silicium polycristallin, du nitrure de silicium, du carbure de silicium, du quartz quelle que soit son orientation cristalline ou de l'oxyde de silicium.Preferably, the silicon-based material is monocrystalline silicon whatever its crystalline orientation, doped monocrystalline silicon whatever its crystalline orientation, amorphous silicon, porous silicon, polycrystalline silicon, silicon nitride, silicon, quartz regardless of its crystalline orientation or silicon oxide.

L'oscillateur 1 formé à l'étape E1 est typiquement monobloc. Il peut néanmoins être en plusieurs parties superposées et assemblées, comme décrit dans la demande de brevet EP 2998800 .Oscillator 1 formed in step E1 is typically one-piece. It can nevertheless be in several superposed and assembled parts, as described in the patent application EP 2998800 .

Parmi les techniques mentionnées ci-dessus, la plus précise est la gravure ionique réactive profonde. Des phénomènes qui interviennent pendant la gravure ou entre deux gravures successives peuvent néanmoins induire des variations géométriques.Of the techniques mentioned above, the most accurate is deep reactive ion etching. Phenomena that occur during etching or between two successive etchings can nevertheless induce geometric variations.

A une deuxième étape E2, la fréquence de l'oscillateur formé à l'étape E1 est mesurée par des moyens de mesure classiquement utilisés dans l'horlogerie. La mesure peut être effectuée alors que l'oscillateur est encore attaché à sa plaquette de gravure ou sur l'oscillateur préalablement détaché de la plaquette, sur l'ensemble ou sur un échantillon des oscillateurs encore attachés à la plaquette ou préalablement détachés de la plaquette. L'étape E2 peut consister à déterminer une fréquence moyenne d'un échantillon représentatif ou de l'ensemble des oscillateurs formés sur une même plaquette.In a second step E2, the frequency of the oscillator formed in step E1 is measured by measurement means conventionally used in watchmaking. The measurement can be performed while the oscillator is still attached to its etching wafer or on the oscillator previously detached from the wafer, on all or on a sample of the oscillators still attached to the wafer or previously detached from the wafer . Step E2 may consist in determining an average frequency of a representative sample or of all the oscillators formed on the same wafer.

A une troisième étape E3 est calculée, à l'aide des formules précitées, une épaisseur de matériau à ajouter sur tout ou partie de l'oscillateur formé à l'étape E1 ou à retirer de tout ou partie de l'oscillateur formé à l'étape E1, pour obtenir la fréquence d'oscillation prédéterminée.At a third step E3 is calculated, using the aforementioned formulas, a thickness of material to be added to all or part of the oscillator formed in step E1 or to be removed from all or part of the oscillator formed in step E1, to obtain the predetermined oscillation frequency.

On déduit en effet des formules précitées que l'on peut augmenter la fréquence f en augmentant la raideur K du pivot flexible 4 et/ou en diminuant le moment d'inertie I de la serge 3, et inversement que l'on peut diminuer la fréquence f en diminuant la raideur K du pivot flexible 4 et/ou en augmentant le moment d'inertie I de la serge 3. La raideur K du pivot flexible 4 peut être augmentée en augmentant la section (hauteur h et/ou épaisseur e) des lames 4a, 4b et/ou en diminuant la longueur L des lames 4a, 4b, et peut être diminuée en diminuant la section (hauteur h et/ou épaisseur e) des lames 4a, 4b et/ou en augmentant la longueur L des lames 4a, 4b. Le moment d'inertie I de la serge 3 peut être augmenté en augmentant la masse m et/ou le rayon de giration r de la serge 3, et peut être diminué en diminuant ladite masse m et/ou ledit rayon de giration r.It is in fact deduced from the aforementioned formulas that the frequency f can be increased by increasing the stiffness K of the flexible pivot 4 and/or by reducing the moment of inertia I of the serge 3, and conversely that one can reduce the frequency f by decreasing the stiffness K of the flexible pivot 4 and/or by increasing the moment of inertia I of the rim 3. The stiffness K of the flexible pivot 4 can be increased by increasing the section (height h and/or thickness e) slats 4a, 4b and/or by decreasing the length L of the slats 4a, 4b, and can be reduced by reducing the section (height h and/or thickness e) of the slats 4a, 4b and/or by increasing the length L of the blades 4a, 4b. The moment of inertia I of the rim 3 can be increased by increasing the mass m and/or the radius of gyration r of the rim 3, and can be decreased by decreasing said mass m and/or said radius of gyration r.

Dès lors, si à l'étape E1 on a choisi des dimensions qui rendent la fréquence f supérieure à la fréquence prédéterminée, on calcule à l'étape E3 une épaisseur de matériau à ajouter ou retirer qui permette de diminuer la fréquence f pour qu'elle atteigne la fréquence prédéterminée. Par analogie, si à l'étape E1 on a choisi des dimensions qui rendent la fréquence f inférieure à la fréquence prédéterminée, on calcule à l'étape E3 une épaisseur de matériau à ajouter ou retirer qui permette d'augmenter la fréquence f pour qu'elle atteigne la fréquence prédéterminée.Consequently, if in step E1 dimensions have been chosen which make the frequency f greater than the predetermined frequency, in step E3 a thickness of material to be added or removed is calculated which makes it possible to reduce the frequency f so that it reaches the predetermined frequency. By analogy, if in step E1 dimensions have been chosen which make the frequency f lower than the predetermined frequency, in step E3 a thickness of material to be added or removed is calculated which makes it possible to increase the frequency f so that it reaches the predetermined frequency.

L'épaisseur de matériau calculée peut être une épaisseur à ajouter ou retirer de manière homogène sur toute la surface externe de l'oscillateur, une épaisseur à ajouter ou retirer de manière non homogène sur toute la surface externe de l'oscillateur, une épaisseur à ajouter ou retirer de manière homogène seulement sur une partie de la surface externe de l'oscillateur ou une épaisseur à ajouter ou retirer de manière non homogène seulement sur une partie de la surface externe de l'oscillateur.The calculated material thickness can be a thickness to be added or removed in a homogeneous manner over the entire external surface of the oscillator, a thickness to be added or removed in a non-homogeneous manner over the entire external surface of the oscillator, a thickness to adding or removing homogeneously only on a part of the outer surface of the oscillator or a thickness to add or remove in a non-homogeneous way only on a part of the outer surface of the oscillator.

Par exemple, l'ajout ou le retrait de matériau peut être prévu pour faire varier uniquement la hauteur h des lames 4a, 4b du pivot flexible 4, uniquement l'épaisseur e des lames 4a, 4b ou à la fois la hauteur h et l'épaisseur e. Il en va de même pour la serge 3. On peut aussi ajouter ou retirer du matériau sur le support 2 et/ou sur la serge 3 pour faire varier la longueur L des lames 4a, 4b.For example, the addition or removal of material can be provided to vary only the height h of the blades 4a, 4b of the flexible pivot 4, only the thickness e of the blades 4a, 4b or both the height h and the thickness e. The same goes for the serge 3. It is also possible to add or remove material from the support 2 and/or from the serge 3 to vary the length L of the strips 4a, 4b.

On notera en particulier qu'un ajout de matériau sur le pivot flexible 4 augmentera sa raideur donc la fréquence, alors qu'un enlèvement de matériau sur le pivot flexible 4 diminuera sa raideur donc la fréquence. Un ajout homogène de matériau sur toute la surface externe de la serge 3 augmentera le moment d'inertie donc diminuera la fréquence, alors qu'un enlèvement homogène de matériau sur toute la surface externe de la serge 3 diminuera le moment d'inertie donc augmentera la fréquence. Les effets d'un ajout ou d'un retrait de matériau sur le pivot flexible 4 et sur la serge 3 sont donc opposés mais d'ampleurs différentes, si bien qu'on peut obtenir la fréquence prédéterminée même avec l'ajout ou le retrait d'une épaisseur de matériau homogène sur toute la surface externe de l'oscillateur.It will be noted in particular that adding material to the flexible pivot 4 will increase its stiffness and therefore the frequency, whereas removing material from the flexible pivot 4 will decrease its stiffness and therefore the frequency. A homogeneous addition of material over the entire outer surface of the serge 3 will increase the moment of inertia therefore will decrease the frequency, while a homogeneous removal of material over the entire outer surface of the serge 3 will decrease the moment of inertia therefore will increase frequency. The effects of an addition or removal of material on the flexible pivot 4 and on the rim 3 are therefore opposite but of different magnitudes, so that the predetermined frequency can be obtained even with the addition or removal of a uniform thickness of material over the entire external surface of the oscillator.

A l'étape suivante E4, l'épaisseur de matériau calculée à l'étape E3 est, selon le cas, ajoutée ou retirée de l'oscillateur formé à l'étape E1.At the next step E4, the thickness of material calculated at step E3 is, depending on the case, added to or removed from the oscillator formed at step E1.

Dans une variante, à l'étape E3 une épaisseur de matériau à ajouter sur le pivot flexible 4 et une épaisseur de matériau à retirer de la serge 3 pour obtenir la fréquence prédéterminée sont calculées, ou inversement une épaisseur de matériau à retirer du pivot flexible 4 et une épaisseur de matériau à ajouter sur la serge 3 sont calculées, et ces épaisseurs sont, selon le cas, ajoutées ou retirées dans les zones de l'oscillateur concernées à l'étape E4.Alternatively, in step E3 a thickness of material to be added to the flexible pivot 4 and a thickness of material to be removed from the serge 3 to obtain the predetermined frequency are calculated, or conversely a thickness of material to be removed from the flexible pivot 4 and a thickness of material to be added to the serge 3 are calculated, and these thicknesses are, depending on the case, added or removed in the zones of the oscillator concerned in step E4.

La présente invention met en œuvre les étapes E1 à E4 décrites ci-dessus mais le matériau choisi pour former l'oscillateur 1 à l'étape E1 est un matériau à base de silicium et du matériau est retiré à l'étape E4. L'étape E4 dans l'invention comprend une première étape consistant à oxyder l'oscillateur 1 afin de transformer l'épaisseur de matériau à base de silicium à retirer en dioxyde de silicium, et une deuxième étape consistant à retirer la couche d'oxyde de silicium ainsi formée. Comme montré aux figures 3 à 5, qui illustrent une section droite de l'une des lames 4a, 4b, l'oscillateur présente après oxydation (figure 4) une âme 5 en matériau à base de silicium dont les dimensions sont inférieures aux dimensions correspondantes h, e de l'oscillateur avant oxydation (figure 3), cette âme 5 étant recouverte d'une couche 6 d'oxyde de silicium. Après enlèvement de la couche 6 (figure 5), on obtient donc un oscillateur de dimensions réduites.The present invention implements the steps E1 to E4 described above but the material chosen to form the oscillator 1 in step E1 is a silicon-based material and material is removed in step E4. Step E4 in the invention comprises a first step consisting in oxidizing the oscillator 1 in order to transform the thickness of silicon-based material to be removed into silicon dioxide, and a second step consisting in removing the layer of oxide of silicon thus formed. As shown at figures 3 to 5 , which illustrate a cross section of one of the blades 4a, 4b, the oscillator present after oxidation ( figure 4 ) a core 5 of material with silicon base whose dimensions are smaller than the corresponding dimensions h, e of the oscillator before oxidation ( picture 3 ), this core 5 being covered with a layer 6 of silicon oxide. After removal of layer 6 ( figure 5 ), we therefore obtain an oscillator of reduced dimensions.

L'oxydation peut être réalisée thermiquement, par exemple entre 800 et 1200°C sous atmosphère oxydante à l'aide de vapeur d'eau ou de gaz de dioxygène. Elle peut être réalisée de manière localisée sur l'oscillateur, par exemple uniquement sur le pivot flexible 4 ou sur la serge 3, au moyen de masques tels que des masques en nitrure. L'oxyde formé sur le matériau à base de silicium peut être retiré par un bain chimique comportant par exemple de l'acide fluorhydrique.The oxidation can be carried out thermally, for example between 800 and 1200° C. in an oxidizing atmosphere using steam or oxygen gas. It can be performed locally on the oscillator, for example only on the flexible pivot 4 or on the edge 3, by means of masks such as nitride masks. The oxide formed on the silicon-based material can be removed by a chemical bath comprising, for example, hydrofluoric acid.

L'étape E4 peut finir le procédé selon l'invention. Toutefois, après l'étape E4, les étapes E2, E3 et E4 peuvent être répétées une ou plusieurs fois pour affiner la qualité dimensionnelle de l'oscillateur.Step E4 can end the method according to the invention. However, after step E4, steps E2, E3 and E4 can be repeated one or more times to refine the dimensional quality of the oscillator.

La présente invention permet d'obtenir une très haute précision dimensionnelle pour l'oscillateur et donc de garantir une fréquence d'oscillation plus précise.The present invention makes it possible to obtain a very high dimensional precision for the oscillator and therefore to guarantee a more precise oscillation frequency.

Après l'étape E4 du procédé selon l'invention, l'oscillateur peut aussi être traité pour améliorer certaines de ses propriétés et caractéristiques. On peut par exemple le traiter pour le rendre moins sensible aux variations thermiques, c'est-à-dire pour que la raideur de son pivot flexible 4 voire sa fréquence ne varie pas ou peu en fonction de la température. Pour ce faire, une couche d'un matériau présentant un coefficient thermique du module d'élasticité de signe opposé à celui du silicium peut être formée sur tout l'oscillateur en silicium ou au moins sur son pivot flexible 4. Cette couche est typiquement en oxyde de silicium. Elle peut être formée par oxydation thermique.After step E4 of the method according to the invention, the oscillator can also be processed to improve some of its properties and characteristics. It can for example be treated to make it less sensitive to thermal variations, that is to say so that the stiffness of its flexible pivot 4 or even its frequency does not vary or varies little depending on the temperature. To do this, a layer of a material having a thermal coefficient of the modulus of elasticity of opposite sign to that of silicon can be formed over the entire silicon oscillator or at least over its flexible pivot 4. This layer is typically made of silicon oxide. It can be formed by thermal oxidation.

Claims (8)

  1. Method for manufacturing an oscillator (1) with a flexible pivot of a predetermined frequency, the oscillator (1) with a flexible pivot comprising a support (2), a flexible pivot (4) and a felloe (3) which is suspended on the support (2) by the flexible pivot (4), the flexible pivot (4) being arranged to guide the felloe (3) in rotation with respect to the support (2) and to elastically return the felloe (3) to a rest position, the method comprising the following steps:
    a) forming, in a silicon-based material, an oscillator with a flexible pivot comprising said support (2), said flexible pivot (4) and said felloe (3) but having dimensions different from the dimensions necessary to obtain said oscillator with a flexible pivot of a predetermined frequency,
    b) measuring the frequency of the oscillator formed in step a),
    c) from the measurement effected in step b), calculating at least one thickness of material to be removed from the oscillator formed in step a) in order to obtain said oscillator with a flexible pivot of a predetermined frequency,
    d) from the calculation effected in step c), modifying the oscillator formed in step a) in order to obtain said oscillator with a flexible pivot of a predetermined frequency, this step d) comprising the following steps;
    - oxidising all or part of the outer surface of the oscillator formed in step a) in order to transform said thickness of material to be removed into silicon dioxide, and
    - removing the silicon dioxide.
  2. Method as claimed in claim 1, characterised in that in step d), only the flexible pivot (4) is modified.
  3. Method as claimed in claim 1, characterised in that in step d), only the felloe (3) is modified.
  4. Method as claimed in claim 1, characterised in that in step d), the flexible pivot (4) and the felloe (3) are modified.
  5. Method as claimed in any one of the preceding claims, characterised in that step a) comprises an etching step, e.g. deep reactive ion etching, chemical etching, focussed ion beam etching or laser etching.
  6. Method as claimed in any one of the preceding claims, characterised in that steps b), c) and d) are repeated one or more times in order to refine the dimensional quality of the oscillator obtained in step d).
  7. Method as claimed in any one of the preceding claims, characterised in that the flexible pivot (4) is of the type with separate crossed strips, non-separate crossed strips or remote center compliance.
  8. Method as claimed in any one of the preceding claims, characterised in that the oscillator formed in step a) is of one piece.
EP17175750.3A 2017-06-13 2017-06-13 Method for manufacturing an oscillator with flexible pivot Active EP3416001B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17175750.3A EP3416001B1 (en) 2017-06-13 2017-06-13 Method for manufacturing an oscillator with flexible pivot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17175750.3A EP3416001B1 (en) 2017-06-13 2017-06-13 Method for manufacturing an oscillator with flexible pivot

Publications (2)

Publication Number Publication Date
EP3416001A1 EP3416001A1 (en) 2018-12-19
EP3416001B1 true EP3416001B1 (en) 2022-04-13

Family

ID=59055102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17175750.3A Active EP3416001B1 (en) 2017-06-13 2017-06-13 Method for manufacturing an oscillator with flexible pivot

Country Status (1)

Country Link
EP (1) EP3416001B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3882714A1 (en) 2020-03-19 2021-09-22 Patek Philippe SA Genève Method for manufacturing a silicon clock component
EP3882710A1 (en) 2020-03-19 2021-09-22 Patek Philippe SA Genève Method for manufacturing a silicon-based clock component
EP3982205A1 (en) 2020-10-06 2022-04-13 Patek Philippe SA Genève Method for manufacturing a timepiece spring with precise stiffness

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213628A1 (en) * 2000-12-07 2002-06-12 Eta SA Fabriques d'Ebauches Method for adjusting the oscillation frequence of a sprung balance for a mechanical timepiece
WO2012010408A1 (en) * 2010-07-19 2012-01-26 Nivarox-Far S.A. Oscillating mechanism with elastic pivot and mobile for the transmission of energy
EP2796944A2 (en) * 2010-07-16 2014-10-29 ETA SA Manufacture Horlogère Suisse Method for adjusting oscillation frequency, adjusting inertia, or balancing a mobile component of a clock movement or a clock balance wheel-hairspring assembly
EP2990885A1 (en) * 2013-12-23 2016-03-02 ETA SA Manufacture Horlogère Suisse Mechanical clock movement with magnetic escapement
CH710308A2 (en) * 2014-10-23 2016-04-29 Richemont Int Sa Thermocompensated silicon resonator.
EP3035126A1 (en) * 2014-12-18 2016-06-22 The Swatch Group Research and Development Ltd. Timepiece resonator with crossed blades

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2277822A1 (en) * 2009-07-23 2011-01-26 Montres Breguet S.A. Method for manufacturing a micromechanical element from reinforced silicon
CH704149B1 (en) * 2010-11-18 2020-10-30 Nivarox Sa Method for pairing the components of a timepiece sub-assembly, and for adjusting the inertia and / or the oscillation frequency of said components
EP2911012B1 (en) 2014-02-20 2020-07-22 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Timepiece oscillator
EP2937311B1 (en) * 2014-04-25 2019-08-21 Rolex Sa Method for manufacturing a reinforced timepiece component, corresponding timepiece component and timepiece
EP3457221B1 (en) 2014-09-16 2022-08-10 Patek Philippe SA Genève Timepiece oscillator with flexible pivot
EP3035127B1 (en) * 2014-12-18 2017-08-23 The Swatch Group Research and Development Ltd. Clock oscillator with tuning fork
EP3037893B1 (en) * 2014-12-22 2018-02-28 Patek Philippe SA Genève Micromechanical or clock component with flexible guidance
WO2017055983A1 (en) 2015-09-29 2017-04-06 Patek Philippe Sa Geneve Flexible-pivot mechanical component and timekeeping device including same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213628A1 (en) * 2000-12-07 2002-06-12 Eta SA Fabriques d'Ebauches Method for adjusting the oscillation frequence of a sprung balance for a mechanical timepiece
EP2796944A2 (en) * 2010-07-16 2014-10-29 ETA SA Manufacture Horlogère Suisse Method for adjusting oscillation frequency, adjusting inertia, or balancing a mobile component of a clock movement or a clock balance wheel-hairspring assembly
WO2012010408A1 (en) * 2010-07-19 2012-01-26 Nivarox-Far S.A. Oscillating mechanism with elastic pivot and mobile for the transmission of energy
EP2990885A1 (en) * 2013-12-23 2016-03-02 ETA SA Manufacture Horlogère Suisse Mechanical clock movement with magnetic escapement
CH710308A2 (en) * 2014-10-23 2016-04-29 Richemont Int Sa Thermocompensated silicon resonator.
EP3035126A1 (en) * 2014-12-18 2016-06-22 The Swatch Group Research and Development Ltd. Timepiece resonator with crossed blades

Also Published As

Publication number Publication date
EP3416001A1 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
EP3416001B1 (en) Method for manufacturing an oscillator with flexible pivot
EP1519250B1 (en) Thermally compensated balance-hairspring resonator
EP3181939B1 (en) Method for manufacturing a hairspring with predetermined stiffness by adding material
EP2215531B1 (en) Mechanical oscillator having an optimized thermoelastic coefficient
EP3181938A1 (en) Method for manufacturing a hairspring with a predetermined stiffness by removing material
EP3326963B1 (en) Flexible blade for watchmaking and method of manufacturing
EP3181940B2 (en) Method for manufacturing a hairspring with a predetermined stiffness by localised removal of material
EP3543795A1 (en) Method for manufacturing silicon clock components
EP3769161B1 (en) Method for manufacturing thermocompensated hairsprings with precise stiffness
EP3543796A1 (en) Method for manufacturing a silicon hairspring
EP3845770B1 (en) Method for manufacturing timepiece hairsprings
EP3159746A1 (en) Heavily doped silicon hairspring for timepiece
EP2784600A2 (en) Method for producing a substantially planar micro-mechanical component, and micromechanical component comprising at least a portion made of silicon oxide
EP3707565B1 (en) Device for guiding the rotation of a mobile component
EP3982205A1 (en) Method for manufacturing a timepiece spring with precise stiffness
EP3285124B1 (en) Mechanical resonator for timepiece and method for manufacturing such a resonator
EP3916481A1 (en) Pellicle intermediate, pellicle, method for manufacturing pellicle intermediate, and method for manufacturing pellicle
CH717124A2 (en) A method of manufacturing a device with one-piece flexible silicon blades, in particular for watchmaking.
EP3865954A1 (en) Method for manufacturing a device with flexible single-piece silicon sheets, for timepieces
CH716696A2 (en) Manufacturing process for watch balance springs.
EP3534222A1 (en) Method for producing a thermally compensated oscillator
EP2579321B1 (en) Method of manufacturing a structured semi-conductor substrate
EP4030242A1 (en) Method for manufacturing timepiece hairsprings
EP4273632A1 (en) Method for manufacturing timepiece components
EP4293428A1 (en) Hairspring for timepiece resonator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190402

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190614

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1260734

Country of ref document: HK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017055809

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1483866

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220413

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1483866

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220816

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220714

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017055809

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

26N No opposition filed

Effective date: 20230116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220613

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220613

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230418

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 7

Ref country code: CH

Payment date: 20230702

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170613