EP3555708A1 - Timepiece component with flexible pivot - Google Patents

Timepiece component with flexible pivot

Info

Publication number
EP3555708A1
EP3555708A1 EP17809039.5A EP17809039A EP3555708A1 EP 3555708 A1 EP3555708 A1 EP 3555708A1 EP 17809039 A EP17809039 A EP 17809039A EP 3555708 A1 EP3555708 A1 EP 3555708A1
Authority
EP
European Patent Office
Prior art keywords
blade
resilient blades
component
stiffness
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17809039.5A
Other languages
German (de)
French (fr)
Other versions
EP3555708B1 (en
Inventor
David Chabloz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Patek Philippe SA Geneve
Original Assignee
Patek Philippe SA Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe SA Geneve filed Critical Patek Philippe SA Geneve
Publication of EP3555708A1 publication Critical patent/EP3555708A1/en
Application granted granted Critical
Publication of EP3555708B1 publication Critical patent/EP3555708B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs

Definitions

  • the present invention relates to a watch component with a flexible pivot.
  • the flexible pivot watch components are designed to rotate without a physical axis of rotation, thus without friction, around a virtual axis of rotation, thanks to an arrangement of elastic parts.
  • the present invention relates to the first type of flexible pivots, namely the separate cross-leaf pivots. These pivots are known for their low stiffness, which allows their use in parts of a watch movement where little energy is available.
  • a separate crossed-blade pivot comprises two resilient blades which connect a fastening portion of the component to a movable portion of the component and which extend in two respective parallel planes to cross each other without contact. Examples of such pivots are described in US Patents 3,520,127 and DE 201,823 and patent applications EP 2 91 1 012, EP 2 998 800 and WO 2016/096677.
  • the patent application EP 2 91 1 012 describes a timepiece oscillator with separate crossed blades whose blades intersect at 7/8 th of their length in accordance with the theory developed by WH Wittrick. This intersection of the blades to 7/8 th of their length has the effect of minimizing the movements of the virtual axis of rotation and thus to make the frequency of the oscillator independent of the orientation of the watch relative to gravity.
  • the patent application WO 2016/096677 teaches that with an angle between the elastic blades between 68 ° and 76 °, and preferably equal to 71.2 °, the moment resulting from the action of the blades can be linear as a function of the rotation angle of the moving part, thus making the frequency of the oscillator independent of the amplitude of oscillation.
  • the present invention aims to meet this need and proposes for this purpose a flexible pivoting watch component, in particular an oscillator, comprising a fixing part, a movable part and first and second elastic strips connecting the fixing part and the moving part. , the first and second resilient blades extending in respective parallel planes and intersecting without contact to define a virtual axis of rotation of the movable portion relative to the attachment portion, characterized in that at least one of the first and second elastic blades has a stiffness that varies along the blade.
  • the present invention provides a timepiece component according to claim 1, 5 or 13, particular embodiments being defined in the dependent claims.
  • FIGS. 1 and 2 are respectively a top view and a perspective view of a pivot oscillator oscillator with split blades separated according to a particular embodiment of the invention
  • FIG. 3 is a graph, obtained by numerical simulation, showing the optimal position t of the point of intersection of the blades of the flexible pivot. (ie the position that makes the oscillator insensitive to gravity) as a function of the ratio r between the thicknesses at the ends of each blade, in the case of blades having a thickness that varies linearly;
  • FIG. 4 is a graph, obtained by numerical simulation, showing the equivalent stress exerted on the blades during a rotation of
  • FIG. 5 is a graph, obtained by numerical simulation, containing four curves representing, each for a respective angle between the blades, the pairs (r, t) for which the frequency of the oscillator is independent of the amplitude of oscillation. , and further containing the gravity-insensitivity curve already illustrated in FIG.
  • a watch oscillator with a flexible pivot 1 for a timepiece such as a wristwatch, comprises a fixing part 2 and a movable part 3 which surrounds the part of fixation 2.
  • the fixing part 2 serves to mount the oscillator 1 on a fixed or mobile support of a clock mechanism, and comprises for this purpose two fixing lugs 2a, 2b intended to be attached to this support, this support being able to for example be a plate or an exhaust member.
  • the movable portion 3 oscillates relative to the attachment portion 2 and thus plays the role of a pendulum.
  • the fixing portion 2 and the movable portion 3 are connected by first and second elastic strips 4, 5 of the same length which extend in two respective planes parallel to the plane of the oscillator 1 and which intersect without contact to define a virtual axis of rotation A of the mobile part 3 relative to the fixed part 2.
  • This virtual axis of rotation A is constituted by the line forming the intersection of the surfaces passing through the neutral fibers of the elastic strips 4, 5 and perpendicular to the plane of the oscillator 1 when the movable part 3 is in its equilibrium position. It corresponds, in top view, to the point of intersection of the elastic blades 4, 5.
  • Oscillator 1 is associated with an escapement (not shown) which may be of conventional type such as a Swiss lever escapement or any other type.
  • the resilient blades 4, 5 are typically straight in the idle state, as shown. They could nevertheless be curved.
  • the center of mass of the mobile part 3 is on the virtual axis of rotation A.
  • the fixing portion 2 comprises rigid parts
  • the attachment portion 2 could be completely rigid.
  • the two fixing lugs 2a, 2b could also be completely separated.
  • Each elastic blade 4, 5 is joined at its ends to the fixing portion 2 and to the movable part 3 either directly or, as shown, by means of connectors 6 which soften the edges between the lateral faces of the elastic strips 4, 5 and parts 2, 3. In the present invention, such connectors 6 are not considered to be part of the resilient blades 4, 5.
  • the section of each resilient blade 4, 5 varies along the blade.
  • variation of the section is meant a variation of the size and / or shape of the section.
  • Such a section variation causes a variation in stiffness along the blade and therefore changes the distribution of stresses in the blade when it works. This makes it possible to adjust certain characteristics of the oscillator.
  • the shape of the section of each elastic blade 4, 5 remains constant, typically rectangular, but its thickness e varies along the blade.
  • the thickness is the dimension of the blade in a plane parallel to the plane of the oscillator and perpendicular to the neutral fiber of the blade.
  • the height that is to say the dimension of the blade perpendicular to the plane of the oscillator (parallel to the virtual axis of rotation A), is typically constant but it can also vary.
  • the thickness e is the same for each elastic blade 4, 5 and varies linearly from one end to the other being greater at its end attached to the fixing portion 2 at its end. attached to the moving part 3.
  • the ratio between the thickness e at the end attached to the movable part 3 and the thickness e at the end attached to the fixing part 2 is called r.
  • the movable portion 3 may have a smaller diameter and the size of the oscillator 1 can be reduced.
  • the position t of the point of intersection of the elastic blades 4, 5 is at least 14%, preferably at least 15%, preferably at least 16%, preferably at least 17%, preferably at least 18%, preferably at least 19%. It may advantageously be between 17 and 21%, more particularly between 18 and 20%.
  • the graph of FIG. 4 shows the equivalent Von Mises stress (in MPa) experienced by the flexible pivot, that is to say by the combination of the two elastic strips 4, 5, for a 20 ° rotation of the movable part 3 with respect to the fixing part 2, as a function of the torques (r, t) situated on the curve of FIG. 3, the overall stiffness of the elastic blades 4, 5 being the same for each couple (r, t).
  • the elastic return moment exerted by the flexible pivot 4, 5 on the movable portion 3 must be linear depending on the angle of rotation of the movable portion 3 relative to the fixing portion 2.
  • the magnitude k be substantially constant, for example its variation in absolute value over a range of angles ⁇ ranging from 0 ° (equilibrium position of the moving part 3) to ⁇ 20 °, said variation being express by (k ( ⁇ 20 °) - k (0 °)) / k (0 °), ie less than 0.05% or even less than 0.02%.
  • the graph of Figure 5 shows the influence on the isochronism of the angle ⁇ between the elastic blades 4, 5 (this angle is measured between the neutral fibers of the blades).
  • the curve of FIG. 3 represents the pairs (r, t) for which the oscillator is insensitive to gravity, and curves J2 to J5 representing the pairs (r , t) for which the frequency of the oscillator is independent of the oscillation amplitude, more precisely for which the difference between the frequency of the oscillator at an oscillation amplitude of 20 ° and the frequency of the oscillator at an oscillation amplitude of 2 ° is minimal or zero.
  • Each of the curves J2 to J5 corresponds to a respective angle a between the elastic blades, namely, for the curve J2 an angle of 70 °, for the curve J3 an angle of 80 °, for the curve J4 an angle of 90 °, and for curve J5 an angle of 100 °.
  • the points of intersection between the curve J1 and the curves J2 to J5 define triplets (r, t, a) for which the oscillator is isochronous both with respect to gravity and with respect to oscillation amplitude.
  • the oscillator can therefore have various configurations, each having its advantages and disadvantages with respect to others, in particular in terms of size, sensitivity to manufacturing tolerances, amplitude of oscillation or impact resistance.
  • the angle ⁇ is at least 77 °, preferably at least 78 °, preferably at least 79 °.
  • the angle a is for example between 77 ° and 83 °.
  • the thickness of each resilient blade 4, 5 varies non-linearly. Preferably, however, the thickness of each resilient blade 4, 5 varies monotonically (increasing or decreasing) from one end to the other of the blade. More preferably, the thickness of each elastic blade 4, 5 varies strictly monotonically (without interruption of variation) from one end to the other or at least on a continuous portion of the blade representing 25%, preferably 30%, preferably 35%, preferably 40%, preferably 45%, preferably 50%, preferably 55%, preferably 60%, preferably 65%, preferably 70%, preferably 75%, preferably 80%, preferably 85%, preferably 90%, preferably 95%, of the length of the blade, this length being rectilinear or curvilinear according to the shape, straight or curved, resilient blades 4, 5 at rest.
  • the thickness may also vary so that it is smaller at one end than the other, but non-monotonically between the two ends.
  • the resilient blades 4, 5 may be identical or different, have the same stiffness being different, or have different stiffness.
  • the oscillator according to the invention can be manufactured in a monolithic manner, for example in silicon or in any other suitable material according to the technique of deep reactive ion etching (DRIE), nickel, nickel alloy or any other suitable material according to the LIGA technique (lithography, electroplating, molding), steel, copper-beryllium, nickel silver or other metal alloy by milling or electro-erosion, or metal glass by molding.
  • DRIE deep reactive ion etching
  • the oscillator, or only the elastic blades 4, 5 may be covered with a layer of silicon oxide (SiO 2) to increase its mechanical strength and / or to exert a function of thermal compensation.
  • SiO 2 silicon oxide
  • Such monolithic fabrication is particularly suitable for oscillators intended to operate at high frequencies.
  • the oscillator formed monolithically inertial parts, such as a serge and / or weights, made of a denser material than that of the oscillator, as described in the application EP 2 91 1 012.
  • the oscillator according to the invention may comprise more than two elastic blades.
  • it may comprise a second pair of elastic blades superimposed on the first pair of resilient blades 4, 5 and whose two blades intersect on the virtual axis of rotation A, to increase the stiffness of the flexible pivot out of the plane of rotation. the oscillator.
  • the present invention can be applied to other watch components that an oscillator, for example to an escapement anchor, a lever or a rocker, to facilitate the optimization of their characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)

Abstract

The timepiece component with a flexible pivot (1) comprises an attachment portion (2), a movable portion (3) and first and second resilient blades (4, 5) connecting the attachment portion (2) and the movable portion (3). The first and second resilient blades (4, 5) extend in respective parallel planes and cross each other without contact to define a virtual axis of rotation (A) of the movable portion (3) with respect to the attachment portion (2). At least one of the first and second resilient blades (4, 5) has a stiffness that varies in a strictly monotonous manner over at least one continuous portion of the blade representing 25% of the length of the blade. In one variant, at least one of the first and second resilient blades (4, 5) has a stiffness that varies in a monotonous manner from one end of the blade to the other. In another variant, at least one of the first and second resilient blades (4, 5) has a thickness that varies linearly from one end of the blade to the other.

Description

Composant horloger à pivot flexible  Flexible pivot watch component
La présente invention concerne un composant horloger à pivot flexible. Les composants horlogers à pivot flexible sont conçus pour pivoter sans axe de rotation physique, donc sans frottements, autour d'un axe de rotation virtuel, grâce à un agencement de parties élastiques. The present invention relates to a watch component with a flexible pivot. The flexible pivot watch components are designed to rotate without a physical axis of rotation, thus without friction, around a virtual axis of rotation, thanks to an arrangement of elastic parts.
Différents types de pivots flexibles existent, tels que les pivots à lames croisées séparées, les pivots à lames croisées non séparées ou les pivots à centre de rotation déporté dits « RCC >> (Remote Center Compliance).  Different types of flexible pivots exist, such as separate cross-leaf pivots, unseparated cross-swivel pivots, or remote center-of-rotation (RCC) pivots.
La présente invention concerne le premier type de pivots flexibles, à savoir les pivots à lames croisées séparées. Ces pivots sont connus pour leur faible raideur, qui permet leur utilisation dans des parties d'un mouvement horloger où peu d'énergie est disponible. Un pivot à lames croisées séparées comprend deux lames élastiques qui relient une partie de fixation du composant à une partie mobile du composant et qui s'étendent dans deux plans respectifs parallèles pour se croiser sans contact. Des exemples de tels pivots sont décrits dans les brevets US 3 520 127 et DE 201 823 et les demandes de brevet EP 2 91 1 012, EP 2 998 800 et WO 2016/096677.  The present invention relates to the first type of flexible pivots, namely the separate cross-leaf pivots. These pivots are known for their low stiffness, which allows their use in parts of a watch movement where little energy is available. A separate crossed-blade pivot comprises two resilient blades which connect a fastening portion of the component to a movable portion of the component and which extend in two respective parallel planes to cross each other without contact. Examples of such pivots are described in US Patents 3,520,127 and DE 201,823 and patent applications EP 2 91 1 012, EP 2 998 800 and WO 2016/096677.
En particulier, la demande de brevet EP 2 91 1 012 décrit un oscillateur de pièce d'horlogerie à lames croisées séparées dont les lames se croisent aux 7/8ème de leur longueur conformément à la théorie développée par W.H. Wittrick. Ce croisement des lames aux 7/8ème de leur longueur a pour effet de minimiser les déplacements de l'axe de rotation virtuel et donc de rendre la fréquence de l'oscillateur indépendante de l'orientation de la montre par rapport à la gravité. La demande de brevet WO 2016/096677 enseigne quant à elle qu'avec un angle entre les lames élastiques compris entre 68° et 76°, et de préférence égal à 71 ,2°, le moment résultant de l'action des lames peut être linéaire en fonction de l'angle de rotation de la partie mobile, rendant ainsi la fréquence de l'oscillateur indépendante de l'amplitude d'oscillation. On comprend donc à la lecture de ces deux demandes de brevet qu'un oscillateur horloger à lames croisées séparées doit, pour être isochrone, avoir ses lames qui se croisent aux 7/8ème de leur longueur et qui définissent un angle compris entre 68° et 76°. Ceci offre peu de liberté dans la conception de l'oscillateur et ne permet pas d'optimiser d'autres caractéristiques de l'oscillateur comme son encombrement, son amplitude d'oscillation ou sa résistance aux chocs. In particular, the patent application EP 2 91 1 012 describes a timepiece oscillator with separate crossed blades whose blades intersect at 7/8 th of their length in accordance with the theory developed by WH Wittrick. This intersection of the blades to 7/8 th of their length has the effect of minimizing the movements of the virtual axis of rotation and thus to make the frequency of the oscillator independent of the orientation of the watch relative to gravity. The patent application WO 2016/096677 teaches that with an angle between the elastic blades between 68 ° and 76 °, and preferably equal to 71.2 °, the moment resulting from the action of the blades can be linear as a function of the rotation angle of the moving part, thus making the frequency of the oscillator independent of the amplitude of oscillation. It is thus clear from the reading of these two patent applications that a clock oscillator with separate crossed blades must, in order to be isochronous, have its blades which intersect at 7/8 th of their length and which define an angle of between 68 ° C. and 76 °. This offers little freedom in the design of the oscillator and does not make it possible to optimize other characteristics of the oscillator such as its size, its amplitude of oscillation or its resistance to shocks.
De manière générale, il existe un besoin d'un oscillateur, ou autre composant horloger, à pivot flexible à lames croisées séparées qui offre une plus grande liberté pour l'optimisation de ses caractéristiques et performances.  In general, there is a need for an oscillator, or other timepiece component, with a flexible pivot with separate crossed blades which offers greater freedom for the optimization of its characteristics and performances.
La présente invention vise à répondre à ce besoin et propose à cette fin un composant horloger à pivot flexible, notamment un oscillateur, comprenant une partie de fixation, une partie mobile et des première et deuxième lames élastiques reliant la partie de fixation et la partie mobile, les première et deuxième lames élastiques s'étendant dans des plans respectifs parallèles et se croisant sans contact pour définir un axe de rotation virtuel de la partie mobile par rapport à la partie de fixation, caractérisé en ce que l'une au moins des première et deuxième lames élastiques présente une raideur qui varie le long de la lame.  The present invention aims to meet this need and proposes for this purpose a flexible pivoting watch component, in particular an oscillator, comprising a fixing part, a movable part and first and second elastic strips connecting the fixing part and the moving part. , the first and second resilient blades extending in respective parallel planes and intersecting without contact to define a virtual axis of rotation of the movable portion relative to the attachment portion, characterized in that at least one of the first and second elastic blades has a stiffness that varies along the blade.
Plus précisément, la présente invention propose un composant horloger selon la revendication 1 , 5 ou 13, des modes de réalisation particuliers étant définis dans les revendications dépendantes.  More specifically, the present invention provides a timepiece component according to claim 1, 5 or 13, particular embodiments being defined in the dependent claims.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée suivante faite en référence aux dessins annexés dans lesquels :  Other features and advantages of the present invention will appear on reading the following detailed description given with reference to the accompanying drawings in which:
- les figures 1 et 2 sont respectivement une vue de dessus et une vue en perspective d'un oscillateur horloger à pivot flexible à lames croisées séparées selon un mode de réalisation particulier de l'invention ;  FIGS. 1 and 2 are respectively a top view and a perspective view of a pivot oscillator oscillator with split blades separated according to a particular embodiment of the invention;
la figure 3 est un graphique, obtenu par simulation numérique, montrant la position optimale t du point de croisement des lames du pivot flexible (c'est-à-dire la position qui rend l'oscillateur insensible à la gravité) en fonction du rapport r entre les épaisseurs aux extrémités de chaque lame, dans le cas de lames ayant une épaisseur qui varie linéairement ; la figure 4 est un graphique, obtenu par simulation numérique, montrant la contrainte équivalente exercée sur les lames lors d'une rotation deFIG. 3 is a graph, obtained by numerical simulation, showing the optimal position t of the point of intersection of the blades of the flexible pivot. (ie the position that makes the oscillator insensitive to gravity) as a function of the ratio r between the thicknesses at the ends of each blade, in the case of blades having a thickness that varies linearly; FIG. 4 is a graph, obtained by numerical simulation, showing the equivalent stress exerted on the blades during a rotation of
20° de la partie mobile de l'oscillateur, en fonction du couple (r, t) ; 20 ° of the mobile part of the oscillator, as a function of the torque (r, t);
la figure 5 est un graphique, obtenu par simulation numérique, contenant quatre courbes représentant, chacune pour un angle respectif entre les lames, les couples (r, t) pour lesquels la fréquence de l'oscillateur est indépendante de l'amplitude d'oscillation, et contenant en outre la courbe d'insensibilité à la gravité déjà illustrée à la figure 3.  FIG. 5 is a graph, obtained by numerical simulation, containing four curves representing, each for a respective angle between the blades, the pairs (r, t) for which the frequency of the oscillator is independent of the amplitude of oscillation. , and further containing the gravity-insensitivity curve already illustrated in FIG.
En référence aux figures 1 et 2, un oscillateur horloger à pivot flexible 1 selon l'invention, pour une pièce d'horlogerie telle qu'une montre-bracelet, comprend une partie de fixation 2 et une partie mobile 3 qui entoure la partie de fixation 2. La partie de fixation 2 sert à monter l'oscillateur 1 sur un support fixe ou mobile d'un mécanisme horloger, et comprend à cet effet deux pattes de fixation 2a, 2b destinées à être attachées à ce support, ce support pouvant être par exemple une platine ou un organe d'échappement. En fonctionnement, la partie mobile 3 oscille par rapport à la partie de fixation 2 et joue ainsi le rôle d'un balancier. La partie de fixation 2 et la partie mobile 3 sont reliées par des première et deuxième lames élastiques 4, 5 de même longueur qui s'étendent dans deux plans respectifs parallèles au plan de l'oscillateur 1 et qui se croisent sans contact pour définir un axe de rotation virtuel A de la partie mobile 3 par rapport à la partie fixe 2. Cet axe de rotation virtuel A est constitué par la droite formant l'intersection des surfaces passant par les fibres neutres des lames élastiques 4, 5 et perpendiculaires au plan de l'oscillateur 1 lorsque la partie mobile 3 est dans sa position d'équilibre. Il correspond, en vue de dessus, au point de croisement des lames élastiques 4, 5. En plus de guider la partie mobile 3 autour de l'axe de rotation virtuel A, les lames élastiques 4, 5 exercent sur la partie mobile 3, par rapport à la partie de fixation 2, un moment de rappel ramenant la partie mobile 3 dans sa position d'équilibre à l'instar du spiral d'un oscillateur balancier-spiral. L'oscillateur 1 est associé à un échappement (non représenté) qui peut être de type classique tel qu'un échappement à ancre suisse ou de tout autre type. With reference to FIGS. 1 and 2, a watch oscillator with a flexible pivot 1 according to the invention, for a timepiece such as a wristwatch, comprises a fixing part 2 and a movable part 3 which surrounds the part of fixation 2. The fixing part 2 serves to mount the oscillator 1 on a fixed or mobile support of a clock mechanism, and comprises for this purpose two fixing lugs 2a, 2b intended to be attached to this support, this support being able to for example be a plate or an exhaust member. In operation, the movable portion 3 oscillates relative to the attachment portion 2 and thus plays the role of a pendulum. The fixing portion 2 and the movable portion 3 are connected by first and second elastic strips 4, 5 of the same length which extend in two respective planes parallel to the plane of the oscillator 1 and which intersect without contact to define a virtual axis of rotation A of the mobile part 3 relative to the fixed part 2. This virtual axis of rotation A is constituted by the line forming the intersection of the surfaces passing through the neutral fibers of the elastic strips 4, 5 and perpendicular to the plane of the oscillator 1 when the movable part 3 is in its equilibrium position. It corresponds, in top view, to the point of intersection of the elastic blades 4, 5. In addition to guiding the movable portion 3 around the axis of virtual rotation A, the elastic blades 4, 5 exert on the movable part 3, with respect to the fixing part 2, a moment of return bringing the movable part 3 back to its equilibrium position, like the spiral of a balance-balance oscillator. Oscillator 1 is associated with an escapement (not shown) which may be of conventional type such as a Swiss lever escapement or any other type.
Les lames élastiques 4, 5 sont typiquement de forme droite à l'état de repos, comme représenté. Elles pourraient néanmoins être courbes. De préférence, le centre de masse de la partie mobile 3 est sur l'axe de rotation virtuel A.  The resilient blades 4, 5 are typically straight in the idle state, as shown. They could nevertheless be curved. Preferably, the center of mass of the mobile part 3 is on the virtual axis of rotation A.
Dans l'exemple illustré, la partie de fixation 2 comprend des parties rigides In the illustrated example, the fixing portion 2 comprises rigid parts
2c et des parties élastiques 2d agencées pour permettre un réglage de la distance entre les pattes de fixation 2a, 2b et, par là même, un réglage de la position de l'axe de rotation virtuel A, comme décrit dans la demande de brevet WO 2017/055983 de la présente demanderesse. En variante, toutefois, la partie de fixation 2 pourrait être complètement rigide. Les deux pattes de fixation 2a, 2b pourraient également être complètement séparées. 2c and elastic portions 2d arranged to allow adjustment of the distance between the fastening tabs 2a, 2b and thereby adjustment of the position of the virtual rotation axis A, as described in the patent application WO 2017/055983 of the present applicant. Alternatively, however, the attachment portion 2 could be completely rigid. The two fixing lugs 2a, 2b could also be completely separated.
Chaque lame élastique 4, 5 est jointe par ses extrémités à la partie de fixation 2 et à la partie mobile 3 soit directement soit, comme représenté, par l'intermédiaire de raccords 6 qui adoucissent les arêtes entre les faces latérales des lames élastiques 4, 5 et les parties 2, 3. Dans la présente invention, de tels raccords 6 ne sont pas considérés comme faisant partie des lames élastiques 4, 5.  Each elastic blade 4, 5 is joined at its ends to the fixing portion 2 and to the movable part 3 either directly or, as shown, by means of connectors 6 which soften the edges between the lateral faces of the elastic strips 4, 5 and parts 2, 3. In the present invention, such connectors 6 are not considered to be part of the resilient blades 4, 5.
Conformément à la présente invention, la section de chaque lame élastique 4, 5 varie le long de la lame. Par « variation de la section >> on entend une variation de la taille et/ou de la forme de la section. Une telle variation de section entraîne une variation de raideur le long de la lame et change donc la répartition des contraintes dans la lame lorsque celle-ci travaille. Cela permet d'ajuster certaines caractéristiques de l'oscillateur. De préférence, la forme de la section de chaque lame élastique 4, 5 reste constante, typiquement rectangulaire, mais son épaisseur e varie le long de la lame. Dans la présente invention l'épaisseur est la dimension de la lame dans un plan parallèle au plan de l'oscillateur et perpendiculairement à la fibre neutre de la lame. La hauteur, c'est-à-dire la dimension de la lame perpendiculairement au plan de l'oscillateur (parallèlement à l'axe de rotation virtuel A), est typiquement constante mais elle peut aussi varier. According to the present invention, the section of each resilient blade 4, 5 varies along the blade. By "variation of the section" is meant a variation of the size and / or shape of the section. Such a section variation causes a variation in stiffness along the blade and therefore changes the distribution of stresses in the blade when it works. This makes it possible to adjust certain characteristics of the oscillator. Preferably, the shape of the section of each elastic blade 4, 5 remains constant, typically rectangular, but its thickness e varies along the blade. In the present invention the thickness is the dimension of the blade in a plane parallel to the plane of the oscillator and perpendicular to the neutral fiber of the blade. The height, that is to say the dimension of the blade perpendicular to the plane of the oscillator (parallel to the virtual axis of rotation A), is typically constant but it can also vary.
Dans l'exemple illustré, l'épaisseur e est la même pour chaque lame élastique 4, 5 et varie linéairement d'une extrémité à l'autre en étant plus grande à son extrémité rattachée à la partie de fixation 2 qu'à son extrémité rattachée à la partie mobile 3. On appelle r le rapport entre l'épaisseur e à l'extrémité rattachée à la partie mobile 3 et l'épaisseur e à l'extrémité rattachée à la partie de fixation 2.  In the example illustrated, the thickness e is the same for each elastic blade 4, 5 and varies linearly from one end to the other being greater at its end attached to the fixing portion 2 at its end. attached to the moving part 3. The ratio between the thickness e at the end attached to the movable part 3 and the thickness e at the end attached to the fixing part 2 is called r.
Dans un oscillateur de type Wittrick, insensible à la gravité, les lames élastiques ont une section constante et leur point de croisement est situé à environ 12,7% de la longueur de chaque lame au repos, la valeur théorique étant de 1 /2 - 5/6. Ceci correspond environ aux 7/8ème ou au 8ème, selon le sens choisi, mentionnés dans la demande de brevet EP 291 1012. On appelle t la position (en %) du point de croisement des lames élastiques, mesurée depuis l'extrémité de chaque lame jointe à la partie de fixation 2 lorsque la partie mobile 3 est dans sa position d'équilibre (position de repos). La demanderesse a constaté qu'il existe en fait une infinité de points de croisement possibles qui rendent l'oscillateur insensible à la gravité, si l'on fait varier la section des lames élastiques 4, 5. Le graphique de la figure 3 représente les couples (r, t) pour lesquels la fréquence de l'oscillateur 1 est indépendante de la gravité, plus précisément pour lesquels le déplacement de l'axe de rotation virtuel A parallèlement au plan de l'oscillateur pendant les rotations de la partie mobile 3 par rapport à la partie de fixation 2 est minimum. En pratique ce déplacement minimum est sensiblement nul. L'axe de rotation virtuel A reste en effet dans un cercle de rayon R, avec le rapport R/L (où L est la longueur des lames élastiques 4, 5) inférieur à 0,00125 voire inférieur à 0,00075, lorsque la partie mobile 3 est tournée de sa position d'équilibre jusqu'à un angle de ±20°. Le point B (r = 1 , t = 12,7%) sur la figure 3 correspond à l'oscillateur Wittrick. Le point C (r = 0,5, t = 19,2%) correspond à l'oscillateur 1 tel que montré aux figures 1 et 2. In a Wittrick oscillator, insensitive to gravity, the elastic blades have a constant section and their crossing point is located at about 12.7% of the length of each blade at rest, the theoretical value being 1/2 - 5/6. This corresponds approximately to the 7/8 th or 8 th , depending on the direction chosen, mentioned in the patent application EP 291 1012. The position (in%) of the point of intersection of the elastic blades, measured from the end of each blade joined to the fixing portion 2 when the movable portion 3 is in its equilibrium position (rest position). The Applicant has found that there are in fact an infinity of possible crossing points which make the oscillator insensitive to gravity, if the section of the elastic blades 4, 5 is varied. The graph of FIG. pairs (r, t) for which the frequency of the oscillator 1 is independent of gravity, more precisely for which the displacement of the virtual axis of rotation A parallel to the plane of the oscillator during the rotations of the mobile part 3 relative to the fixing portion 2 is minimum. In practice this minimum displacement is substantially zero. The virtual axis of rotation A remains indeed in a circle of radius R, with the ratio R / L (where L is the length of the elastic strips 4, 5) lower than 0.00125 or even less than 0.00075, when the movable portion 3 is rotated from its equilibrium position to an angle of ± 20 °. The point B (r = 1, t = 12.7%) in FIG. 3 corresponds to the Wittrick oscillator. The point C (r = 0.5, t = 19.2%) corresponds to the oscillator 1 as shown in FIGS. 1 and 2.
On peut ainsi choisir une valeur de r permettant d'obtenir une position souhaitée pour le point de croisement des lames élastiques 4, 5, à savoir une position plus proche de la partie de fixation 2 (r > 1 ) ou, au contraire, une position moins proche de la partie de fixation 2 (r < 1 ). Par exemple, avec un point de croisement moins proche de la partie de fixation 2, la partie mobile 3 pourra avoir un diamètre plus petit et l'encombrement de l'oscillateur 1 pourra donc être réduit. Dans des exemples de réalisation de la présente invention, la position t du point de croisement des lames élastiques 4, 5 est d'au moins 14%, de préférence d'au moins 15%, de préférence d'au moins 16%, de préférence d'au moins 17%, de préférence d'au moins 18%, de préférence d'au moins 19%. Elle peut être avantageusement comprise entre 17 et 21 %, plus particulièrement entre 18 et 20%.  It is thus possible to choose a value of r making it possible to obtain a desired position for the point of intersection of the elastic strips 4, 5, namely a position which is closer to the fixing part 2 (r> 1) or, conversely, a position less close to the attachment portion 2 (r <1). For example, with a cross point less close to the fixing portion 2, the movable portion 3 may have a smaller diameter and the size of the oscillator 1 can be reduced. In exemplary embodiments of the present invention, the position t of the point of intersection of the elastic blades 4, 5 is at least 14%, preferably at least 15%, preferably at least 16%, preferably at least 17%, preferably at least 18%, preferably at least 19%. It may advantageously be between 17 and 21%, more particularly between 18 and 20%.
De plus, des configurations particulières peuvent être trouvées conférant à l'oscillateur 1 des caractéristiques intéressantes en termes par exemple d'amplitude d'oscillation ou de sensibilité aux tolérances de fabrication.  In addition, particular configurations can be found conferring oscillator 1 interesting features in terms of eg amplitude of oscillation or sensitivity to manufacturing tolerances.
A titre d'illustration, le graphique de la figure 4 montre la contrainte équivalente de Von Mises (en MPa) subie par le pivot flexible, c'est-à-dire par l'ensemble des deux lames élastiques 4, 5, pour une rotation de 20° de la partie mobile 3 par rapport à la partie de fixation 2, en fonction des couples (r, t) situés sur la courbe de la figure 3, la raideur globale des lames élastiques 4, 5 étant la même pour chaque couple (r, t). Le point D correspond au couple (r = 1 , t = 12,7%), c'est-à-dire à l'oscillateur Wittrick. Le point E correspond au couple (r = 0,5, t = 19,2%), c'est-à-dire à l'oscillateur 1 illustré aux figures 1 et 2. On voit que la contrainte équivalente est minimale pour ce point E, et que pour des valeurs de r comprises entre 0,3 et 1 la contrainte équivalente est inférieure à celle de l'oscillateur Wittrick. La diminution des contraintes dans les lames élastiques 4, 5 permet d'augmenter l'amplitude d'oscillation de la partie mobile 3 et d'augmenter ainsi les sécurités de l'échappement qui coopère avec l'oscillateur 1 . By way of illustration, the graph of FIG. 4 shows the equivalent Von Mises stress (in MPa) experienced by the flexible pivot, that is to say by the combination of the two elastic strips 4, 5, for a 20 ° rotation of the movable part 3 with respect to the fixing part 2, as a function of the torques (r, t) situated on the curve of FIG. 3, the overall stiffness of the elastic blades 4, 5 being the same for each couple (r, t). The point D corresponds to the torque (r = 1, t = 12.7%), that is to say to the Wittrick oscillator. The point E corresponds to the torque (r = 0.5, t = 19.2%), that is to say to the oscillator 1 illustrated in FIGS. 1 and 2. It can be seen that the equivalent stress is minimal for this point E, and that for values of r between 0.3 and 1 the equivalent stress is lower than that of the Wittrick oscillator. The reduction of the stresses in the elastic blades 4, 5 makes it possible to increase the amplitude of oscillation of the mobile part 3 and thus to increase the safety of the escapement which cooperates with the oscillator 1.
En plus de l'insensibilité à la gravité, il est important de rendre la fréquence de l'oscillateur indépendante de l'amplitude d'oscillation. Pour cela, le moment de rappel élastique exercé par le pivot flexible 4, 5 sur la partie mobile 3 doit être linéaire en fonction de l'angle de rotation de la partie mobile 3 par rapport à la partie de fixation 2. En d'autres termes, la constante de rappel élastique ou raideur du pivot flexible 4, 5 doit être constante en fonction dudit angle de rotation. Si l'on désigne par k la constante de rappel élastique ou raideur, par M le moment de rappel élastique et par Θ l'angle de rotation de la partie mobile 3 par rapport à la partie de fixation 2, on a classiquement la relation M = k. Θ. On souhaite donc que la grandeur k soit sensiblement constante, par exemple que sa variation en valeur absolue sur une plage d'angles Θ allant de 0° (position d'équilibre de la partie mobile 3) à ±20°, ladite variation pouvant s'exprimer par (k(±20°) - k(0°))/k(0°), soit inférieure à 0,05% voire inférieure à 0,02%.  In addition to the insensitivity to gravity, it is important to make the frequency of the oscillator independent of the amplitude of oscillation. For this, the elastic return moment exerted by the flexible pivot 4, 5 on the movable portion 3 must be linear depending on the angle of rotation of the movable portion 3 relative to the fixing portion 2. In other In other words, the elastic return constant or stiffness of the flexible pivot 4, 5 must be constant as a function of said angle of rotation. If k is denoted by the elastic restoring constant or stiffness, by M the elastic return moment and by Θ the angle of rotation of the movable portion 3 with respect to the fixing portion 2, the relationship M is conventionally = k. Θ. It is therefore desired that the magnitude k be substantially constant, for example its variation in absolute value over a range of angles Θ ranging from 0 ° (equilibrium position of the moving part 3) to ± 20 °, said variation being express by (k (± 20 °) - k (0 °)) / k (0 °), ie less than 0.05% or even less than 0.02%.
Le graphique de la figure 5 montre l'influence sur l'isochronisme de l'angle a entre les lames élastiques 4, 5 (cet angle est mesuré entre les fibres neutres des lames). Sur ce graphique on a reporté et désigné par J1 la courbe de la figure 3 qui représente les couples (r, t) pour lesquels l'oscillateur est insensible à la gravité, et on a ajouté des courbes J2 à J5 représentant les couples (r, t) pour lesquels la fréquence de l'oscillateur est indépendante de l'amplitude d'oscillation, plus précisément pour lesquels la différence entre la fréquence de l'oscillateur à une amplitude d'oscillation de 20° et la fréquence de l'oscillateur à une amplitude d'oscillation de 2° est minimale ou nulle. Chacune des courbes J2 à J5 correspond à un angle a respectif entre les lames élastiques, à savoir, pour la courbe J2 un angle de 70°, pour la courbe J3 un angle de 80°, pour la courbe J4 un angle de 90°, et pour la courbe J5 un angle de 100°. Les points d'intersection entre la courbe J1 et les courbes J2 à J5 définissent des triplets (r, t, a) pour lesquels l'oscillateur est isochrone à la fois par rapport à la gravité et par rapport à l'amplitude d'oscillation. The graph of Figure 5 shows the influence on the isochronism of the angle α between the elastic blades 4, 5 (this angle is measured between the neutral fibers of the blades). In this graph, the curve of FIG. 3 represents the pairs (r, t) for which the oscillator is insensitive to gravity, and curves J2 to J5 representing the pairs (r , t) for which the frequency of the oscillator is independent of the oscillation amplitude, more precisely for which the difference between the frequency of the oscillator at an oscillation amplitude of 20 ° and the frequency of the oscillator at an oscillation amplitude of 2 ° is minimal or zero. Each of the curves J2 to J5 corresponds to a respective angle a between the elastic blades, namely, for the curve J2 an angle of 70 °, for the curve J3 an angle of 80 °, for the curve J4 an angle of 90 °, and for curve J5 an angle of 100 °. The points of intersection between the curve J1 and the curves J2 to J5 define triplets (r, t, a) for which the oscillator is isochronous both with respect to gravity and with respect to oscillation amplitude.
On observe qu'en faisant varier les valeurs r, t et a une multitude de solutions existent, en plus de celle proposée dans la demande de brevet WO 2016/096677, pour rendre la fréquence de l'oscillateur indépendante de la gravité et de l'amplitude d'oscillation. L'oscillateur peut donc avoir diverses configurations, présentant chacune ses avantages et ses inconvénients par rapport aux autres, en particulier en termes d'encombrement, de sensibilité aux tolérances de fabrication, d'amplitude d'oscillation ou de résistance aux chocs. Par exemple, outre l'avantage, déjà mentionné, de minimiser les contraintes, le triplet (r = 0,5, t = 19,2%, a = 79°) par son angle a plus grand que celui proposé dans la demande de brevet WO 2016/096677, et en particulier plus proche de 90°, rend l'oscillateur moins sensible aux chocs. Dans des exemples de réalisation de la présente invention, l'angle a est d'au moins 77°, de préférence d'au moins 78°, de préférence d'au moins 79°. L'angle a est par exemple compris entre 77° et 83°.  It is observed that by varying the values r, t and a multitude of solutions exist, in addition to that proposed in the patent application WO 2016/096677, to make the frequency of the oscillator independent of gravity and humidity. amplitude of oscillation. The oscillator can therefore have various configurations, each having its advantages and disadvantages with respect to others, in particular in terms of size, sensitivity to manufacturing tolerances, amplitude of oscillation or impact resistance. For example, in addition to the advantage, already mentioned, of minimizing the constraints, the triplet (r = 0.5, t = 19.2%, a = 79 °) by its angle α greater than that proposed in the application of Patent WO 2016/096677, and in particular closer to 90 °, makes the oscillator less sensitive to shocks. In exemplary embodiments of the present invention, the angle α is at least 77 °, preferably at least 78 °, preferably at least 79 °. The angle a is for example between 77 ° and 83 °.
Dans des variantes de l'invention, l'épaisseur de chaque lame élastique 4, 5 varie de manière non linéaire. De préférence, toutefois, l'épaisseur de chaque lame élastique 4, 5 varie de manière monotone (croissante ou décroissante) d'une extrémité à l'autre de la lame. De préférence encore, l'épaisseur de chaque lame élastique 4, 5 varie de manière strictement monotone (sans interruption de la variation) d'une extrémité à l'autre ou au moins sur une portion continue de la lame représentant 25%, de préférence 30%, de préférence 35%, de préférence 40%, de préférence 45%, de préférence 50%, de préférence 55%, de préférence 60%, de préférence 65%, de préférence 70%, de préférence 75%, de préférence 80%, de préférence 85%, de préférence 90%, de préférence 95%, de la longueur de la lame, cette longueur étant rectiligne ou curviligne selon la forme, droite ou courbe, des lames élastiques 4, 5 au repos. L'épaisseur peut aussi varier de telle sorte qu'elle soit plus petite à une extrémité qu'à l'autre, mais de manière non monotone entre les deux extrémités. On pourrait en outre faire varier la raideur de chaque lame élastique 4, 5 ou de l'une seulement des lames élastiques 4, 5 d'une autre façon qu'en faisant varier sa section, par exemple par un traitement thermique, par dopage ou implantation ionique ou par des dépôts de matériaux de rigidités différentes le long de la lame. In variants of the invention, the thickness of each resilient blade 4, 5 varies non-linearly. Preferably, however, the thickness of each resilient blade 4, 5 varies monotonically (increasing or decreasing) from one end to the other of the blade. More preferably, the thickness of each elastic blade 4, 5 varies strictly monotonically (without interruption of variation) from one end to the other or at least on a continuous portion of the blade representing 25%, preferably 30%, preferably 35%, preferably 40%, preferably 45%, preferably 50%, preferably 55%, preferably 60%, preferably 65%, preferably 70%, preferably 75%, preferably 80%, preferably 85%, preferably 90%, preferably 95%, of the length of the blade, this length being rectilinear or curvilinear according to the shape, straight or curved, resilient blades 4, 5 at rest. The thickness may also vary so that it is smaller at one end than the other, but non-monotonically between the two ends. In addition, it would be possible to vary the stiffness of each elastic blade 4, 5 or only one of the elastic blades 4, 5 in another way than by varying its section, for example by a heat treatment, by doping or by ion implantation or by deposits of materials of different stiffness along the blade.
Par ailleurs, on pourrait faire varier la raideur d'une seule des lames élastiques 4, 5, l'autre lame élastique gardant une raideur (par exemple une section) constante, ou faire varier la raideur (par exemple la section) des deux lames différemment.  Moreover, it would be possible to vary the stiffness of only one of the elastic blades 4, 5, the other elastic blade keeping a stiffness (for example a section) constant, or to vary the stiffness (for example the section) of the two blades differently.
De manière générale, les lames élastiques 4, 5 peuvent être identiques ou différentes, avoir la même raideur en étant différentes, ou avoir des raideurs différentes.  In general, the resilient blades 4, 5 may be identical or different, have the same stiffness being different, or have different stiffness.
L'oscillateur selon l'invention peut être fabriqué de manière monolithique, par exemple en silicium ou dans toute autre matière appropriée selon la technique de gravure ionique réactive profonde dite « DRIE >> (Deep Reactive Ion Etching), en nickel, alliage de nickel ou toute autre matière appropriée selon la technique LIGA (lithographie, galvanoplastie, moulage), en acier, cuivre-béryllium, maillechort ou autre alliage métallique par fraisage ou par électroérosion, ou en verre métallique par moulage. Dans le cas d'un oscillateur en silicium, l'oscillateur, ou seulement les lames élastiques 4, 5, peut être recouvert d'une couche d'oxyde de silicium (S1O2) pour augmenter sa résistance mécanique et/ou exercer une fonction de compensation thermique.  The oscillator according to the invention can be manufactured in a monolithic manner, for example in silicon or in any other suitable material according to the technique of deep reactive ion etching (DRIE), nickel, nickel alloy or any other suitable material according to the LIGA technique (lithography, electroplating, molding), steel, copper-beryllium, nickel silver or other metal alloy by milling or electro-erosion, or metal glass by molding. In the case of a silicon oscillator, the oscillator, or only the elastic blades 4, 5, may be covered with a layer of silicon oxide (SiO 2) to increase its mechanical strength and / or to exert a function of thermal compensation.
Une telle fabrication monolithique convient particulièrement à des oscillateurs destinés à fonctionner à des fréquences élevées. Pour des fréquences de fonctionnement plus basses, on peut rapporter sur l'oscillateur formé monolithiquement des pièces inertielles, telles qu'une serge et/ou des masselottes, réalisées dans un matériau plus dense que celui de l'oscillateur, comme décrit dans la demande de brevet EP 2 91 1 012. L'oscillateur selon l'invention peut comprendre plus de deux lames élastiques. Par exemple, il peut comprendre une deuxième paire de lames élastiques superposée à la première paire de lames élastiques 4, 5 et dont les deux lames se croisent sur l'axe de rotation virtuel A, pour augmenter la raideur du pivot flexible hors du plan de l'oscillateur. Such monolithic fabrication is particularly suitable for oscillators intended to operate at high frequencies. For lower operating frequencies, it is possible to relate to the oscillator formed monolithically inertial parts, such as a serge and / or weights, made of a denser material than that of the oscillator, as described in the application EP 2 91 1 012. The oscillator according to the invention may comprise more than two elastic blades. For example, it may comprise a second pair of elastic blades superimposed on the first pair of resilient blades 4, 5 and whose two blades intersect on the virtual axis of rotation A, to increase the stiffness of the flexible pivot out of the plane of rotation. the oscillator.
La présente invention peut s'appliquer à d'autres composants horlogers qu'un oscillateur, par exemple à une ancre d'échappement, un levier ou une bascule, pour faciliter l'optimisation de leurs caractéristiques.  The present invention can be applied to other watch components that an oscillator, for example to an escapement anchor, a lever or a rocker, to facilitate the optimization of their characteristics.

Claims

REVENDICATIONS
1 . Composant horloger (1 ) à pivot flexible comprenant une partie de fixation (2), une partie mobile (3) et des première et deuxième lames élastiques (4, 5) reliant la partie de fixation (2) et la partie mobile (3), les première et deuxième lames élastiques (4, 5) s'étendant dans des plans respectifs parallèles et se croisant sans contact pour définir un axe de rotation virtuel (A) de la partie mobile (3) par rapport à la partie de fixation (2), caractérisé en ce qu'au moins une des première et deuxième lames élastiques (4, 5) présente une raideur qui varie de manière strictement monotone sur au moins une portion continue de la lame représentant 25% de la longueur de la lame. 1. Watch component (1) with flexible pivot comprising a fixing part (2), a movable part (3) and first and second elastic strips (4, 5) connecting the fixing part (2) and the mobile part (3) the first and second resilient blades (4, 5) extending in respective parallel planes and intersecting without contact to define a virtual axis of rotation (A) of the movable portion (3) with respect to the attachment portion ( 2), characterized in that at least one of the first and second resilient blades (4, 5) has a stiffness which varies strictly monotonically on at least a continuous portion of the blade representing 25% of the length of the blade.
2. Composant horloger (1 ) selon la revendication 1 , caractérisé en ce que la raideur d'au moins ladite une des première et deuxième lames élastiques (4, 5) varie de manière strictement monotone sur au moins une portion continue de la lame représentant 30%, de préférence 35%, de préférence 40%, de préférence 45%, de préférence 50%, de préférence 55%, de préférence 60%, de préférence 65%, de préférence 70%, de préférence 75%, de préférence 80%, de préférence 85%, de préférence 90%, de préférence 95%, de la longueur de la lame. 2. Watchmaking component (1) according to claim 1, characterized in that the stiffness of at least one of the first and second resilient blades (4, 5) varies strictly monotonically on at least one continuous portion of the blade representing 30%, preferably 35%, preferably 40%, preferably 45%, preferably 50%, preferably 55%, preferably 60%, preferably 65%, preferably 70%, preferably 75%, preferably 80%, preferably 85%, preferably 90%, preferably 95%, of the length of the blade.
3. Composant horloger (1 ) selon la revendication 1 ou 2, caractérisé en ce que la raideur d'au moins ladite une des première et deuxième lames élastiques (4, 5) varie de telle sorte qu'elle soit plus grande à une extrémité qu'à l'autre. 3. watch component (1) according to claim 1 or 2, characterized in that the stiffness of at least one of the first and second resilient blades (4, 5) varies so that it is larger at one end. than the other.
4. Composant horloger (1 ) selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la raideur d'au moins ladite une des première et deuxième lames élastiques (4, 5) varie de manière monotone d'une extrémité à l'autre de la lame. 4. Watchmaking component (1) according to any one of claims 1 to 3, characterized in that the stiffness of at least one of the first and second resilient blades (4, 5) varies monotonously from one end to the other of the blade.
5. Composant horloger (1 ) à pivot flexible comprenant une partie de fixation (2), une partie mobile (3) et des première et deuxième lames élastiques (4, 5) reliant la partie de fixation (2) et la partie mobile (3), les première et deuxième lames élastiques (4, 5) s'étendant dans des plans respectifs parallèles et se croisant sans contact pour définir un axe de rotation virtuel (A) de la partie mobile (3) par rapport à la partie de fixation (2), caractérisé en ce qu'au moins une des première et deuxième lames élastiques (4, 5) présente une raideur qui varie de manière monotone d'une extrémité à l'autre de la lame. A watch component (1) with a flexible pivot comprising a fixing part (2), a movable part (3) and first and second elastic strips (4, 5) connecting the fixing part (2) and the mobile part ( 3), the first and second resilient blades (4, 5) extending in respective parallel planes and intersecting without contact to define a virtual axis of rotation (A) of the movable portion (3) relative to the portion of fixation (2), characterized in that at least one of the first and second resilient blades (4, 5) has a stiffness that varies monotonically from one end to the other of the blade.
6. Composant horloger (1 ) selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les première et deuxième lames élastiques (4, 5) présentent la même raideur et la même variation de raideur. 6. Watchmaking component (1) according to any one of claims 1 to 5, characterized in that the first and second resilient blades (4, 5) have the same stiffness and the same variation in stiffness.
7. Composant horloger (1 ) selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la raideur d'au moins ladite une des première et deuxième lames élastiques (4, 5) varie de telle sorte qu'elle soit plus grande à l'extrémité de la lame jointe à la partie de fixation (2) qu'à l'extrémité de la lame jointe à la partie mobile (3). 7. Watchmaking component (1) according to any one of claims 1 to 6, characterized in that the stiffness of at least one of the first and second resilient blades (4, 5) varies so that it is more large at the end of the blade joined to the attachment portion (2) at the end of the blade joined to the movable portion (3).
8. Composant horloger (1 ) selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la raideur d'au moins ladite une des première et deuxième lames élastiques (4, 5) varie de manière strictement monotone d'une extrémité à l'autre de la lame. 8. Horological component (1) according to any one of claims 1 to 7, characterized in that the stiffness of at least one of the first and second resilient blades (4, 5) varies strictly monotonously from one end to the other of the blade.
9. Composant horloger (1 ) selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'au moins ladite une des première et deuxième lames élastiques (4, 5) présente une section qui varie le long de la lame, cette variation de section permettant d'obtenir ladite variation de raideur. 9. Watchmaking component (1) according to any one of claims 1 to 8, characterized in that at least one of the first and second resilient blades (4, 5) has a section that varies along the blade, this section variation for obtaining said stiffness variation.
10. Composant horloger (1 ) selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'au moins ladite une des première et deuxième lames élastiques (4, 5) présente une section dont la taille varie le long de la lame, cette variation de taille permettant d'obtenir ladite variation de raideur. 10. watch component (1) according to any one of claims 1 to 9, characterized in that at least said one of the first and second resilient blades (4, 5) has a section whose size varies along the blade , this size variation making it possible to obtain said variation in stiffness.
1 1 . Composant horloger (1 ) selon l'une quelconque des revendications 1 à 10, caractérisé en ce que l'épaisseur d'au moins ladite une des première et deuxième lames élastiques (4, 5) varie le long de la lame, cette variation d'épaisseur permettant d'obtenir ladite variation de raideur. 1 1. Watchmaking component (1) according to any one of claims 1 to 10, characterized in that the thickness of at least one of the first and second resilient blades (4, 5) varies along the blade, this variation of thickness for obtaining said stiffness variation.
12. Composant horloger (1 ) selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce que l'épaisseur d'au moins ladite une des première et deuxième lames élastiques (4, 5) varie de manière linéaire d'une extrémité à l'autre de la lame. 12. watch component (1) according to any one of claims 1 to 1 1, characterized in that the thickness of at least said one of the first and second resilient blades (4, 5) varies linearly from a end to the other of the blade.
13. Composant horloger (1 ) à pivot flexible comprenant une partie de fixation (2), une partie mobile (3) et des première et deuxième lames élastiques (4, 5) reliant la partie de fixation (2) et la partie mobile (3), les première et deuxième lames élastiques (4, 5) s'étendant dans des plans respectifs parallèles et se croisant sans contact pour définir un axe de rotation virtuel (A) de la partie mobile (3) par rapport à la partie de fixation (2), caractérisé en ce qu'au moins une des première et deuxième lames élastiques (4, 5) présente une épaisseur qui varie linéairement d'une extrémité à l'autre de la lame. 13. Flexible pivoting watch component (1) comprising a fixing part (2), a movable part (3) and first and second elastic strips (4, 5) connecting the fixing part (2) and the moving part (2). 3), the first and second resilient blades (4, 5) extending in respective parallel planes and intersecting without contact to define a virtual axis of rotation (A) of the movable portion (3) relative to the portion of fastener (2), characterized in that at least one of the first and second resilient blades (4, 5) has a thickness that varies linearly from one end to the other of the blade.
14. Composant horloger (1 ) selon la revendication 12 ou 13, caractérisé en ce que l'épaisseur (e) d'au moins ladite une des première et deuxième lames élastiques (4, 5) est plus grande à l'extrémité de la lame jointe à la partie de fixation (2) qu'à l'extrémité de la lame jointe à la partie mobile (3). 14. Watchmaking component (1) according to claim 12 or 13, characterized in that the thickness (e) of at least one of the first and second resilient blades (4, 5) is greater at the end of the blade joined to the attachment portion (2) at the end of the blade joined to the movable portion (3).
15. Composant horloger (1 ) selon l'une quelconque des revendications 12 à 14, caractérisé en ce que les première et deuxième lames élastiques (4, 5) ont la même épaisseur (e) et la même variation d'épaisseur (e). 15. watch component (1) according to any one of claims 12 to 14, characterized in that the first and second resilient blades (4, 5) have the same thickness (e) and the same thickness variation (e) .
16. Composant horloger (1 ) selon la revendication 15, caractérisé en ce que l'épaisseur (e) de chacune des première et deuxième lames élastiques (4, 5) est deux fois plus grande à l'extrémité de la lame jointe à la partie de fixation (2) qu'à l'extrémité de la lame jointe à la partie mobile (3). 16. Watchmaking component (1) according to claim 15, characterized in that the thickness (e) of each of the first and second resilient blades (4, 5) is twice as great at the end of the blade joined to the fixing part (2) at the end of the blade joined to the movable part (3).
17. Composant horloger (1 ) selon l'une quelconque des revendications 1 à 16, caractérisé en ce que les première et deuxième lames élastiques (4, 5) se croisent à au moins 14%, de préférence au moins 15%, de préférence au moins 16%, de préférence au moins 17%, de préférence au moins 18%, de préférence au moins 19% de leur longueur, ladite longueur étant mesurée depuis l'extrémité de chaque lame jointe à la partie de fixation (2). 17. Watchmaking component (1) according to any one of claims 1 to 16, characterized in that the first and second resilient blades (4, 5) intersect at least 14%, preferably at least 15%, preferably at least 16%, preferably at least 17%, preferably at least 18%, preferably at least 19% of their length, said length being measured from the end of each blade joined to the fixing portion (2).
18. Composant horloger (1 ) selon l'une quelconque des revendications 1 à 17, caractérisé en ce que les première et deuxième lames élastiques (4, 5) se croisent à X% de leur longueur, ladite longueur étant mesurée depuis l'extrémité de chaque lame jointe à la partie de fixation (2), X étant compris entre 17 et 21 , de préférence entre 18 et 20, et étant de préférence égal à environ 19,2. 18. Watchmaking component (1) according to any one of claims 1 to 17, characterized in that the first and second resilient blades (4, 5) intersect at X% of their length, said length being measured from the end of each blade attached to the attachment portion (2), X being included between 17 and 21, preferably between 18 and 20, and preferably being about 19.2.
19. Composant horloger (1 ) selon l'une quelconque des revendications 1 à 18, caractérisé en ce que l'angle (a) entre les première et deuxième lames élastiques (4, 5) est d'au moins 77°, de préférence d'au moins 78°, de préférence d'au moins 79°. 19. Watchmaking component (1) according to any one of claims 1 to 18, characterized in that the angle (a) between the first and second resilient blades (4, 5) is at least 77 °, preferably at least 78 °, preferably at least 79 °.
20. Composant horloger (1 ) selon l'une quelconque des revendications 1 à 19, caractérisé en ce que l'angle (a) entre les première et deuxième lames élastiques (4, 5) est compris entre 77° et 83° et est de préférence d'environ 79°. 20. watch component (1) according to any one of claims 1 to 19, characterized in that the angle (a) between the first and second resilient blades (4, 5) is between 77 ° and 83 ° and is preferably about 79 °.
21 . Composant horloger (1 ) selon l'une quelconque des revendications 1 à 20, caractérisé en ce que la position du point de croisement des première et deuxième lames élastiques (4, 5) et ladite variation sont telles que le déplacement de l'axe de rotation virtuel (A) pendant les rotations de la partie mobile (3) par rapport à la partie de fixation (2) est sensiblement nul. 21. Watch component (1) according to any one of claims 1 to 20, characterized in that the position of the point of intersection of the first and second elastic blades (4, 5) and said variation are such that the displacement of the axis of virtual rotation (A) during rotations of the movable portion (3) relative to the attachment portion (2) is substantially zero.
22. Composant horloger (1 ) selon l'une quelconque des revendications 1 à 21 , caractérisé en ce que l'angle (a) entre les première et deuxième lames élastiques (4, 5) et ladite variation sont tels que le moment de rappel élastique exercé par les première et deuxième lames élastiques (4, 5) sur la partie mobile (3) est sensiblement linéaire en fonction de l'angle de rotation de la partie mobile (3) par rapport à la partie de fixation (2). 22. Watchmaking component (1) according to any one of claims 1 to 21, characterized in that the angle (a) between the first and second resilient blades (4, 5) and said variation are such that the moment of recall elastic force exerted by the first and second resilient blades (4, 5) on the movable portion (3) is substantially linear depending on the angle of rotation of the movable portion (3) relative to the attachment portion (2).
23. Composant horloger selon l'une quelconque des revendications 1 à 22, caractérisé en ce qu'il est, ou comprend, un oscillateur (1 ), un levier, une bascule ou une ancre. 23. Horological component according to any one of claims 1 to 22, characterized in that it is, or comprises, an oscillator (1), a lever, a rocker or an anchor.
EP17809039.5A 2016-12-16 2017-11-17 Timepiece component with a flexible pivot Active EP3555708B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16204655 2016-12-16
PCT/IB2017/057209 WO2018109584A1 (en) 2016-12-16 2017-11-17 Timepiece component with flexible pivot

Publications (2)

Publication Number Publication Date
EP3555708A1 true EP3555708A1 (en) 2019-10-23
EP3555708B1 EP3555708B1 (en) 2021-03-03

Family

ID=57570379

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17809039.5A Active EP3555708B1 (en) 2016-12-16 2017-11-17 Timepiece component with a flexible pivot

Country Status (2)

Country Link
EP (1) EP3555708B1 (en)
WO (1) WO2018109584A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6843191B2 (en) 2018-07-24 2021-03-17 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Timekeeping oscillator with flexor bearings with long square strokes
EP3936946A1 (en) 2020-07-10 2022-01-12 Patek Philippe SA Genève Timepiece oscillator with flexible pivot
EP4163735A1 (en) 2021-10-05 2023-04-12 Patek Philippe SA Genève Methods for producing and adjusting an oscillator with flexible guide and timepiece movement comprising such an oscillator
EP4286959A1 (en) 2022-06-02 2023-12-06 Patek Philippe SA Genève Timepiece oscillator with flexible pivot

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE201823C (en) 1907-12-22 1908-09-17 STORAGE FOR ROCKERS FOR WATCH LOCKINGS
CH1089267A4 (en) 1967-08-02 1970-01-30
FR2754577B1 (en) * 1996-10-11 1998-12-11 Suisse Electronique Microtech PLANAR FLEXIBLE PIVOT WITH MONOLITHIC UNIT MODULES
EP2911012B1 (en) 2014-02-20 2020-07-22 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Timepiece oscillator
EP3457221B1 (en) 2014-09-16 2022-08-10 Patek Philippe SA Genève Timepiece oscillator with flexible pivot
CH710278B1 (en) * 2014-10-24 2024-02-15 Richemont Int Sa Regulating organ for a mechanical watch movement.
EP3035126B1 (en) 2014-12-18 2017-12-13 The Swatch Group Research and Development Ltd. Timepiece resonator with crossed blades
JP6895977B2 (en) 2015-09-29 2021-06-30 パテック フィリップ ソシエテ アノニム ジュネーブ Flexible pivot mechanical component and watch device with flexible pivot mechanical component

Also Published As

Publication number Publication date
EP3555708B1 (en) 2021-03-03
WO2018109584A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
EP3356690B1 (en) Mechanical component with flexible pivot, in particular for clockmaking
EP3555708B1 (en) Timepiece component with a flexible pivot
EP3561607B1 (en) Collision protection of a resonator mechanism with rotatable flexible guiding
EP3548973B1 (en) Device for timepiece, clockwork mechanism and timepiece comprising such a device.
EP4009115A1 (en) Hairspring for timepiece resonator mechanism provided with a means for adjusting rigidity
EP2407831A1 (en) Hairspring for oscillator balance of a clock piece and method for manufacturing same
EP2761380A2 (en) Integral assembly of a hairspring and a collet
WO2017102916A1 (en) Mechanism for adjusting an average speed in a clock movement and clock movement
EP3324246B1 (en) Protection of a resonator mechanism with axial impact blades
EP3502784A1 (en) Timepiece resonator with flexible guide
CH704906B1 (en) Spiral spring in silicon for mechanical watch.
EP2690506B1 (en) Anti-tripping clock hairspring
CH715526A2 (en) Shock protection of a resonator mechanism with flexible rotary guide.
EP3382470A1 (en) Timepiece oscillator with a flexible pivot
EP3792700B1 (en) Timepiece oscillator with flexible pivot
EP3430479B1 (en) Device for a timepiece, timepiece movement and timepiece comprising a device of said type
EP3037893B1 (en) Micromechanical or clock component with flexible guidance
CH714165B1 (en) Device for a timepiece, watch movement and timepiece comprising such a device.
EP3997525B1 (en) Method for adjusting a timepiece oscillator with flexible pivot
EP3839651B1 (en) Mechanical timepiece oscillator with flexible guide
EP3451073B1 (en) Timepiece oscillator having flexible guides with wide angular travel
CH718113A2 (en) Hairspring for clock resonator mechanism provided with means for adjusting the rigidity.
WO2022009102A1 (en) Timepiece oscillator with flexible pivot
EP4191346B1 (en) Shock protection of a resonator mechanism with rotatable flexible guiding
CH715641A2 (en) Clock resonator comprising at least one flexible guide.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190418

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1367888

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017033964

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210604

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210303

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1367888

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210703

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210705

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017033964

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

26N No opposition filed

Effective date: 20211206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210703

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017033964

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211117

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211117

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231202

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303