EP3230492B1 - Verfahren zum kaltgasspritzen mit maske - Google Patents

Verfahren zum kaltgasspritzen mit maske Download PDF

Info

Publication number
EP3230492B1
EP3230492B1 EP16700806.9A EP16700806A EP3230492B1 EP 3230492 B1 EP3230492 B1 EP 3230492B1 EP 16700806 A EP16700806 A EP 16700806A EP 3230492 B1 EP3230492 B1 EP 3230492B1
Authority
EP
European Patent Office
Prior art keywords
mask
masks
thickness
coating
openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16700806.9A
Other languages
English (en)
French (fr)
Other versions
EP3230492A1 (de
Inventor
Daniel Reznik
Oliver Stier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3230492A1 publication Critical patent/EP3230492A1/de
Application granted granted Critical
Publication of EP3230492B1 publication Critical patent/EP3230492B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the invention relates to a method for coating a carrier component by cold gas spraying.
  • a mask is placed on the carrier component prior to coating and a material is applied to the carrier component in the region of a mask opening of this mask, wherein the material completely fills the mask opening.
  • Cold gas spraying is a process known per se, in which particles intended for coating are preferably accelerated to supersonic speed by means of a convergent-divergent nozzle, so that they adhere to the surface to be coated on account of their impressed kinetic energy.
  • the kinetic energy of the particles is used, which leads to a plastic deformation of the same, wherein the coating particles are melted on impact only on their surface. Therefore, this method is referred to as cold gas spraying in comparison to other thermal spraying methods, because it is carried out at comparatively low temperatures at which the coating particles remain substantially fixed.
  • a cold gas spraying system which has a gas heater for heating a gas.
  • a stagnation chamber is connected, which is connected on the output side with the convergent-divergent nozzle, preferably a Laval nozzle.
  • Convergent-divergent nozzles have a converging section and a flared section connected by a nozzle throat.
  • the convergent-divergent nozzle produces on the output side a powder jet in the form of a gas stream with particles therein at high speed, preferably supersonic speed.
  • At least one structured, electrically insulating layer and a structured, electrically conductive layer can be formed on a heat sink.
  • masks are used whose openings are designed according to the structuring.
  • the structured layers serve as circuit structures which have to satisfy electrical requirements such as a specific conductor cross-section for this purpose.
  • the layers can be superimposed in several layer planes.
  • a support member is coated by cold gas spraying.
  • a mask is placed on the carrier component and in the region of a mask opening of this mask a material is applied to the carrier component by cold gas spraying. The material completely fills the mask opening, which mask can be removed after making the layer.
  • a mask can be used in a method for cold gas spraying.
  • the mask is shaped and the process parameters of the cold gas spraying chosen so that a deposition in the shadow area of the mask is possible.
  • undercuts can be filled with material.
  • a method for cold gas spraying can be used with a mask having a certain distance from the substrate. A part of the material is applied to the mask, whereby an application to the substrate outside the mask opening is prevented or at least reduced.
  • the object of the invention is to improve a method for cold gas spraying in such a way that a coating result can be produced in which the geometry of the flanks can be manufactured with comparatively high accuracy.
  • a removing process is performed, wherein the applied material, which is located above the level of the (the cold gas jet facing) top of the mask is removed.
  • a further mask is applied to the upper side of the mask and a material applied to the already applied material in the region of a mask opening of this mask (this material can have the same composition as the previously applied material or differ in its composition ).
  • the two last-mentioned method steps can be carried out until the material applied has reached the required (that is, structurally predetermined) thickness on the carrier component.
  • the coating is completed and the masks can be removed, leaving the coating result on the support member.
  • the main advantage in the use of multiple masks is that regardless of the thickness of the coating result, the thickness of the masks can only be designed according to aspects of a flow dynamic favorable filling by the material. In other words, multiple masks are superimposed to produce the required thickness of the coating result. Each of the masks is filled individually, whereby the complete filling is ensured by the choice of the mask thickness.
  • flanks of the produced layer layers which lie directly against the walls of the mask openings, advantageously arise.
  • This also advantageous structures by cold gas spraying to produce their lateral boundaries run exactly perpendicular to the surface of the support member.
  • columnar structures can thus also be produced if the mask openings of the adjacent masks are in each case completely superimposed on one another.
  • the mask openings of adjacent masks must overlap, at least in some areas, so that the coating result is formed in one piece.
  • several such coating results can be generated on the carrier component, which do not touch each other. If the successive masks have congruent mask openings or decreasing, completely superimposed mask openings, there is the additional advantage that the masks after completion of the coating can be easily removed from the component. These can then simply be lifted upwards (ie perpendicularly away from the carrier component), since no undercuts have formed in the produced coating results.
  • the coating result formed on the material is separated from the carrier component.
  • the coating result thus advantageously represents itself a component which, after the separation from the carrier component, can be supplied to its use.
  • the carrier component itself is therefore to be understood only as a construction platform for the coating result.
  • the method according to the invention can therefore be used as a generative manufacturing method for components.
  • provision may be made for the shape of the mask openings, taking into account the mask thickness for a component, to be determined by mathematically dividing the geometry of this component into superimposed disks.
  • the calculation methods customary for this purpose are generally known and are preferably based on CAD models of the components to be manufactured.
  • the calculated slices of the component result in the said embodiment of the method according to the invention exactly the volume of the mask openings.
  • the method according to the invention can of course also be used to provide a component with a structured layer.
  • This component which can be used, for example, in a machine, in this variant of the method according to the invention represents the carrier component.
  • the coating result in this case is the structured layer to be produced on the carrier component.
  • the masks has a thickness of at most 1 mm.
  • Masks with a thickness of 1 mm have proven to be a good compromise in order to be able to produce even finer structures with the required accuracy.
  • Portions of the coating result which have larger cross-sectional areas as seen in the direction of propagation of the cold gas jet, can also be produced with larger mask openings. In this case, larger mask thicknesses can be realized, so that overall process steps can be saved in the method according to the invention. This advantageously increases the efficiency in the application of the method.
  • At least one of the masks is filled in several steps.
  • a removing process is carried out in which the applied material, which is located above the level of the top of the mask, is removed.
  • This may be unevenness in the layering results that form, which already protrude beyond the plane of the upper side of the mask.
  • these may be deposits of particles of the material which have formed on the mask edges on the top of the mask.
  • the said deposits are also formed when using thin masks with mask openings of small width. Due to the small thickness of the mask, however, its growth during the filling of the mask openings affects comparatively small depth is not enough. It is therefore sufficient to remove these deposits after completely filling the mask opening with the material so that the subsequent mask can be placed on a flat surface that can be formed by the machined surface of the mask and the deposited material.
  • all masks whose mask openings have widths of at most 1 mm in at least one direction have a thickness of at most 1 mm.
  • a ratio between the thickness of the mask and the smallest width of the mask opening of at most 1 is maintained for all masks.
  • the permissible thickness of at least one of the masks is determined by completely filling the mask with the material to be processed.
  • the coating result formed from the applied material is then examined as to whether a required quality is achieved.
  • the required quality must be described by measurable parameters.
  • the density of the coating result can be used. This gives information about the proportion of pores in the coating result.
  • the pore size itself can also be investigated, since in particular in the wall region of the mask openings pores can accumulate and / or occur with a larger volume. This can For example, be checked by making cuts.
  • either samples or the coating result to be generated itself can be produced. If the quality requirements for the coating result are met, the examination can be repeated with a mask of greater thickness.
  • the test can thus contain several iteration steps. Alternatively, however, the method can also be used to confirm the suitability of a selected mask thickness, without exhausting any latitude in the direction of larger mask thicknesses by further iteration steps.
  • the determined suitable thicknesses of the masks are stored together with the process parameters of the coating in a database.
  • the determination of the mask thickness is simplified, since empirical knowledge can be used. This contains information on the geometry of the mask openings and the mask thicknesses as well as the processed materials and coating parameters set on the cold gas spraying system, such as powder delivery rate, powder type and gas temperature, gas pressure and type of carrier gas used.
  • a particular embodiment of the invention is obtained if at least one mask is designed in several parts, with parting lines extending from the outer edge of the mask to the mask openings. These are arranged so that the mask parts can be pulled apart parallel to their surface. This has the advantage that the mask parts can be better separated from the coating result.
  • the coating result has undercuts, it is not possible, as stated above, to lift the masks upwards from the carrier component. However, if there is enough room on the sides of the coating result, the mask parts can, so to speak, at least at low undercuts be pulled aside and thereby solve the coating result.
  • the removal of the masks up or in parts to the side has the great advantage that they can be reused for a subsequent procedure.
  • the removal of the masks in a short time is possible, so that advantageous production time is saved.
  • a removal of the masks in whole or in parts is not possible, it is also possible to destroy them. If these are made, for example, from a less noble material than the coating result, they can be dissolved chemically or electrochemically.
  • the process steps of the process according to the invention can generally be represented as follows.
  • the preparation of the method consists of the production of the masks, wherein the mask thickness of the individual masks is predetermined.
  • the process begins with the application of the first mask to the carrier component and filling by cold gas spraying with the material to be sprayed. Subsequently, excess material is removed from the resulting coating result and the top of the mask. Then the next mask is applied and filled again by cold gas spraying.
  • the thickness of the mask ensures that, on the surface left free by it (the carrier component or the preceding deposit of the material), a spray layer can be deposited defect-free up to the mask edges immediately after placement. After a renewed removal of excess material can be checked whether the mask holes are completely filled. In other words, it must be determined whether the sprayed surface within the mask opening is aligned with the mask surface everywhere after ablation. This can be ensured, for example, by an automatic optical inspection method.
  • FIG. 1 It can be seen how a first mask 12 has been placed on a carrier component 11. This has a mask opening 13, which in the method step according to FIG. 1 is being filled by a material 14. This is done by a non-illustrated cold gas spraying process.
  • a convergent-divergent spray nozzle 15 is shown, which is part of the cold gas spraying system, not shown.
  • the spray nozzle 15 is a Particle beam 16 directed to the support member 11, wherein both the mask opening 13 and the surface 18 of the mask 12 is provided at the edges of the mask opening 13 with layer deposits of the material 14.
  • FIG. 2 It can be seen that by means of a milling head 19, the excess material according to FIG. 1 was removed. For this purpose, the milling head 19 is moved in the direction of arrow over the surface 18, wherein in FIG. 2 It can also be seen that the mask opening 13 is completely filled with the material 14.
  • FIG. 3 the next two process steps are shown.
  • Another mask 12 a is placed on the first mask 12, wherein the mask opening 13 of this mask 12 a is exactly aligned with that of mask 12.
  • the spray nozzle 15 material is again deposited until the mask opening 13 is completely filled again.
  • FIG. 5 it can be seen that analogous to FIG. 3 two further process steps were carried out, which according to a first mask 12 b was placed and this was filled by means of the spray nozzle 15, not shown here with material 14.
  • the milling head 19 is now about to remove excess material 14 from the surface 18 of the mask 12b.
  • the mask opening 13 of the further mask 12b is congruent with the two preceding ones.
  • the material 14 now fills all three mask openings 13.
  • the component is now completed, which is why the masks 12, 12a, 12b can be removed according to the arrows drawn upwards.
  • the material 14 is a columnar Structure with vertical sides (in the form of a prism) has.
  • the material 14 remains as a layer 20 on the support member 11.
  • the carrier component can now be supplied to its function.
  • a possible carrier component is for example in FIG. 17 shown. It could be a tool for embossing a symbol.
  • the carrier component 11 in this case provides a surface on which the symbols to be embossed are constructed as a layer 20.
  • FIGS. 8 to 15 a method is shown in which the coating result results in a component 21 (cf. FIG. 15 ).
  • the process is essentially the same as that according to the FIGS. 1 to 7 and will be explained in more detail here only in terms of its differences.
  • FIG. 10 is unlike FIG. 3 another mask 12d placed, the mask opening 13 is greater than that of the mask 12. This creates an undercut 22 in the material, which in the FIGS. 14 and 15 is better to recognize.
  • the removal of the material according to FIG. 11 takes place analogously to FIG. 4 ,
  • FIG. 12 differs from FIG. 5 again, in that the further mask 12e is provided with a larger mask opening 13 than the mask 12d.
  • the coating result of the material 14, which is in FIG. 13 can recognize, therefore, the shape of a mushroom. This makes the removal of the masks 12, 12d, 12e difficult.
  • the respective mask halves according to FIG 13 in the direction of the two arrows indicated parallel to the surface of the support member 11 are deducted.
  • the coating result of the material 14 may also have a geometry that does not allow lateral removal of the mask parts.
  • FIG. 14 shown how the masks 12, 12a, 12b can be dissolved in an electrochemical bath 25, wherein the masks in FIG. 14 are no longer recognizable because they are already resolved.
  • the resulting component 21 can be removed, for example, by wire erosion of the support member 11, which only serves as a construction platform in this process variant.
  • the finished component 21 is in FIG. 15 shown as a side view.
  • FIG. 16 shows a mask 12f, which is constructed in two parts. For example, this could be for a in FIG. 13 serve indicated procedure.
  • the mask 12f has two half masks 23, which are divisible by a parting line 24.
  • a component which has been produced in the mask opening 13 does not interfere with removal of the mask even if overlying masks form undercuts in the component to be produced due to larger or overlapping mask openings.
  • the prerequisite is that the undercuts are not too large (that is, the "undercuts jumps" from mask to mask), if this leads to a deposition of material on a mask showing the undercut.
  • an adhesion of the mask to the coating result is achieved, which must be overcome by the peel force of the mask.

Description

  • Die Erfindung betrifft ein Verfahren zum Beschichten eines Trägerbauteils durch Kaltgasspritzen. Bei diesem Verfahren wird vor dem Beschichten eine Maske auf das Trägerbauteil aufgelegt und in dem Bereich einer Maskenöffnung dieser Maske ein Material auf das Trägerbauteil aufgetragen, wobei das Material die Maskenöffnung vollständig ausfüllt.
  • Das Kaltgasspritzen ist ein an sich bekanntes Verfahren, bei dem für die Beschichtung vorgesehene Partikel mittels einer konvergent-divergenten Düse vorzugsweise auf Überschallgeschwindigkeit beschleunigt werden, damit diese aufgrund ihrer eingeprägten kinetischen Energie auf der zu beschichtenden Oberfläche haften bleiben. Hierbei wird die kinetische Energie der Teilchen genutzt, welche zu einer plastischen Verformung derselben führt, wobei die Beschichtungspartikel beim Auftreffen lediglich an ihrer Oberfläche aufgeschmolzen werden. Deshalb wird dieses Verfahren im Vergleich zu anderen thermischen Spritzverfahren als Kaltgasspritzen bezeichnet, weil es bei vergleichsweise tiefen Temperaturen durchgeführt wird, bei denen die Beschichtungspartikel im Wesentlichen festbleiben. Vorzugsweise wird zum Kaltgasspritzen, welches auch als kinetisches Spritzen bezeichnet wird, eine Kaltgasspritzanlage verwendet, die eine Gasheizeinrichtung zum Erhitzen eines Gases aufweist. An die Gasheizeinrichtung wird eine Stagnationskammer angeschlossen, die ausgangsseitig mit der konvergent-divergenten Düse, vorzugsweise einer Lavaldüse verbunden wird. Konvergent-divergente Düsen weisen einen zusammenlaufenden Teilabschnitt sowie einen sich aufweitenden Teilabschnitt auf, die durch einen Düsenhals verbunden sind. Die konvergent-divergente Düse erzeugt ausgangsseitig einen Pulverstrahl in Form eines Gasstroms mit darin befindlichen Partikeln mit hoher Geschwindigkeit, vorzugsweise Überschallgeschwindigkeit.
  • Ein Verfahren der eingangs angegebenen Art ist aus dem Stand der Technik bekannt. Gemäß der DE 10 2004 058 806 A1 ist beispielsweise vorgesehen, dass auf einem Kühlkörper mindestens eine strukturierte, elektrisch isolierende Schicht und eine strukturierte, elektrisch leitende Schicht ausgebildet werden kann. Hierzu werden Masken verwendet, deren Öffnungen entsprechend der Strukturierung gestaltet sind. Die strukturierten Schichten dienen als Schaltungsstrukturen, die zu diesem Zweck elektrischen Anforderungen wie beispielsweise einem bestimmten Leiterquerschnitt genügen müssen. Die Schichten können in mehreren Schichtebenen übereinanderliegen.
  • Aus D.-Y. Kim et al., "Cold Spray Deposition of Copper Electrodes on Silicon and Glass Substrates", Journal of Thermal Spray Technology, Vol. 22, October 2013 ist bekannt, dass die Herstellung von Leiterbahnen mittels Kaltgasspritzen mit Hilfe von auf dem Substrat aufliegenden Masken allerdings das Problem aufwirft, dass die hierzu notwendigen Masken Maskenöffnungen von geringer Breite aufweisen. Das Verhältnis zwischen der Breite der Maskenöffnungen und der Maskendicke führt hierbei zu Strömungsverhältnissen des Kaltgasstrahls in der Maskenöffnung, die eine Abscheidung der Partikel erschweren. An den Maskenwänden bildet sich nämlich eine Rückströmung, die zu einem dreieckigen Querschnitt des abgeschiedenen Materials führt, wobei die Spitze dieses Querschnitts in der Mitte der Maskenöffnung liegt und dem Kaltgasstrahl zugewandt ist. An den Wänden der Maskenöffnung selbst bleibt kein Material haften. Wichtig für die Erzeugung von Leiterbahnen ist, dass der Querschnitt der Leiterbahn zur Übertragung des geforderten elektrischen Stroms geeignet ist - die erzeugte Querschnittsform spielt im Vergleich hierzu eine untergeordnete Bedeutung.
  • Um die für die Abscheidung beispielsweise rechteckiger Querschnitte ungünstigen Strömungsbedingungen in der Maskenöffnung zu vermeiden, wird gemäß K.-R. Ernst et al., "Anwendungsvielfalt des Kaltgasspritzens", Tagungsband der Gemeinschaft Thermisches Spritzen e.V., Druck: Gerdfried Wolfertstetter, Gilching 2012 vorgeschlagen, dass man die Maske für das Kaltgasspritzen nicht auf das Trägerbauteil auflegen muss, sondern diese in einer gewissen Entfernung zum Trägerbauteil fixieren kann. Diese Maßnahme bewirkt jedoch, dass bei steigendem Maskenabstand vom Trägerbauteil die Flanken der gespritzten Flächen immer weiter auslaufen. Der Querschnitt der in den Maskenöffnungen hergestellten Strukturen ist damit ebenfalls nicht rechteckig, sondern näherungsweise trapezförmig.
  • Gemäß der EP 860 516 A2 ist ein Verfahren beschrieben, bei dem ein Trägerbauteil durch Kaltgasspritzen beschichtet wird. Vor dem Beschichten wird eine Maske auf das Trägerbauteil aufgelegt und in dem Bereich einer Maskenöffnung dieser Maske ein Material durch Kaltgasspritzen auf das Trägerbauteil aufgetragen. Das Material füll die Maskenöffnung vollständig aus, wobei die Maske nach dem Herstellen der Schicht entfernt werden kann.
  • Gemäß der US 2007/154641 ist beschrieben, dass eine Maske bei einem Verfahren zum Kaltgasspritzen zur Anwendung kommen kann. Die Maske ist so geformt und die Verfahrensparameter des Kaltgasspritzens so gewählt, dass eine Abscheidung auch im Schattenbereich der Maske möglich ist. Hierdurch lassen sich Hinterschneidungen mit Material ausfüllen.
  • Gemäß der US 2010/230086 A1 ist beschrieben, dass ein Verfahren zum Kaltgasspritzen mit einer Maske verwendet werden kann, die einen gewissen Abstand vom Substrat aufweist. Ein Teil des Materials wird dabei auf der Maske aufgetragen, wodurch ein Auftrag auf das Substrat außerhalb der Maskenöffnung verhindert oder zumindest vermindert wird.
  • Die Aufgabe der Erfindung besteht darin, ein Verfahren zum Kaltgasspritzen derart zu verbessern, dass sich ein Beschichtungsergebnis herstellen lässt, bei dem die Geometrie der Flanken mit vergleichsweise hoher Genauigkeit gefertigt werden kann.
  • Diese Aufgabe wird durch das eingangs angegebene Verfahren erfindungsgemäß dadurch gelöst, dass in einem Verfahrensschritt nach dem Auftragen des Materials (welches sich damit in der Maskenöffnung befindet und evtl. ebenfalls auf den Rändern der Maskenöffnung abgeschieden wurde) ein abtragendes Verfahren durchgeführt wird, bei dem das aufgetragene Material, welches sich oberhalb des Niveaus der (dem Kaltgasstrahl zugewandten) Oberseite der Maske befindet, abgetragen wird. In einem weiteren Verfahrensschritt wird erfindungsgemäß auf die Oberseite der Maske eine weitere Maske aufgelegt und in dem Bereich einer Maskenöffnung dieser Maske ein Material auf das bereits aufgetragene Material aufgetragen (dieses Material kann dieselbe Zusammensetzung haben, wie das vorher aufgebrachte Material oder sich in seiner Zusammensetzung unterscheiden). Durch das Abtragen des Materials im vorhergehenden Verfahrensschritt lässt sich die weitere Maske auf die hierdurch eingeebnete Fläche der vorhergehenden Maske auflegen. Auch im Bereich der Maskenöffnung entsteht eine ebene Fläche, die genau in der Ebene der Oberfläche der bereits ausgefüllten Maske liegt. Daher kann auch die weitere aufgelegte Maske wieder vollständig mit dem Material ausgefüllt werden.
  • Die beiden letztgenannten Verfahrensschritte können so oft durchgeführt werden, bis das aufgetragene Material die erforderliche (d. h. konstruktiv vorgegebene) Dicke auf dem Trägerbauteil erreicht hat. Damit ist das Beschichten beendet und die Masken können entfernt werden, wobei das Beschichtungsergebnis auf dem Trägerbauteil zurückbleibt. Der wesentliche Vorteil in der Verwendung mehrerer Masken liegt darin, dass unabhängig von der Dicke des Beschichtungsergebnisses die Dicke der Masken nur nach Gesichtspunkten einer strömungsdynamisch günstigen Ausfüllung durch das Material gestaltet werden können. Mit anderen Worten werden mehrere Masken übereinandergelegt, um die erforderliche Dicke des Beschichtungsergebnisses herzustellen. Jede der Masken wird hierbei einzeln ausgefüllt, wobei die vollständige Ausfüllung durch die Wahl der Maskendicke sichergestellt wird. Durch das anschließende Abtragen des überschüssigen Materials wird weiterhin sichergestellt, dass die benachbarten Masken genügend eng aneinander liegen, damit eine ungestörte Ausbildung des entsprechenden Teilbereichs der Beschichtungsstruktur entstehen kann. Durch die vollständige Ausfüllung der jeweiligen Masken entstehen vorteilhaft Flanken der erzeugten Schichtlagen, die direkt an den Wänden der Maskenöffnungen anliegen. Hiermit sind vorteilhaft also auch Strukturen durch Kaltgasspritzen herstellbar, deren seitliche Begrenzungen genau senkrecht zu der Oberfläche des Trägerbauteils verlaufen. Insbesondere lassen sich damit auch säulenartige Strukturen herstellen, wenn die Maskenöffnungen der benachbarten Masken jeweils vollständig übereinanderliegen.
  • Allgemein müssen sich die Maskenöffnungen benachbarter Masken zumindest in Teilbereichen überschneiden, damit das Beschichtungsergebnis einteilig ausgebildet ist. Selbstverständlich können auf den Trägerbauteil mehrere solcher Beschichtungsergebnisse erzeugt werden, welche sich gegenseitig nicht berühren. Wenn die aufeinanderfolgenden Masken deckungsgleiche Maskenöffnungen oder sich verkleinernde, vollständig übereinanderliegende Maskenöffnungen aufweisen, ergibt sich zusätzlich der Vorteil, dass die Masken nach Abschluss der Beschichtung besonders einfach von dem Bauteil entfernt werden können. Diese können dann nämlich einfach nach oben (also senkrecht vom Trägerbauteil weg) abgehoben werden, da sich bei den hergestellten Beschichtungsergebnissen keine Hinterschneidungen ausgebildet haben.
  • Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass das auf dem Material gebildete Beschichtungsergebnis von dem Trägerbauteil abgetrennt wird. Das Beschichtungsergebnis stellt vorteilhaft somit selbst ein Bauteil dar, welches nach der Abtrennung von dem Trägerbauteil seiner Verwendung zugeführt werden kann. Das Trägerbauteil selbst ist somit nur als Bauplattform für das Beschichtungsergebnis zu verstehen.
  • Vorteilhaft kann das erfindungsgemäße Verfahren daher als generatives Herstellungsverfahren für Bauteile genutzt werden. Zur Vorbereitung eines solchen Verfahrens kann gemäß einer Ausgestaltung der Erfindung vorgesehen werden, dass die Gestalt der Maskenöffnungen unter Berücksichtigung der Maskendicke für ein Bauteil dadurch bestimmt wird, dass die Geometrie dieses Bauteils rechnerisch in übereinanderliegende Scheiben zerlegt wird. Die hierfür üblichen Rechenverfahren sind allgemein bekannt und basieren vorzugsweise auf CAD-Modellen der zu fertigenden Bauteile. Die berechneten Scheiben des Bauteils ergeben bei der genannten Ausgestaltung des erfindungsgemäßen Verfahrens genau das Volumen der Maskenöffnungen. Bei der Bestimmung der Dicke der Scheiben ist somit zu berücksichtigen, welche Dicke die Masken haben sollen.
  • Alternativ kann das erfindungsgemäße Verfahren selbstverständlich auch dazu genutzt werden, um ein Bauteil mit einer strukturierten Schicht zu versehen. Dieses Bauteil, welches beispielsweise in einer Maschine zum Einsatz kommen kann, stellt bei dieser Variante des erfindungsgemäßen Verfahrens das Trägerbauteil dar. Das Beschichtungsergebnis ist in diesem Falle die zu erzeugende strukturierte Schicht auf dem Trägerbauteil.
  • Gemäß einer besonderen Ausgestaltung der Erfindung ist vorgesehen, dass zumindest ein Teil der Masken eine Dicke von höchstens 1 mm hat. Masken mit einer Dicke von 1 mm haben sich als guter Kompromiss erwiesen, um auch feinere Strukturen mit der geforderten Genauigkeit herstellen zu können. Allerdings ist es nicht unbedingt notwendig, dass alle Masken eine Dicke von höchstens 1 mm haben. Teilbereiche des Beschichtungsergebnisses, welche gesehen in Ausbreitungsrichtung des Kaltgasstrahls größere Querschnittsflächen aufweisen, können auch mit größeren Maskenöffnungen hergestellt werden. In diesem Fall sind auch größere Maskendicken realisierbar, so dass insgesamt Verfahrensschritte bei dem erfindungsgemäßen Verfahren eingespart werden können. Hierdurch steigt vorteilhaft die Wirtschaftlichkeit bei der Anwendung des Verfahrens.
  • Gemäß einer vorteilhaften Ausgestaltung bei Verwendung von dickeren Masken kann vorgesehen werden, dass zumindest eine der Masken in mehreren Schritten ausgefüllt wird. Dabei wird nach den jeweiligen Schritten des Auftragens des Materials ein abtragendes Verfahren durchgeführt, bei dem das aufgetragene Material, welches sich oberhalb des Niveaus der Oberseite der Maske befindet, abgetragen wird. Hierbei kann es sich um Unebenheiten in sich ausbildenden Schichtergebnissen handeln, die bereits über die Ebene der Oberseite der Maske hinausragen. Außerdem kann es sich hierbei um Ablagerungen von Partikeln des Materials handeln, welche sich an den Maskenrändern auf der Oberseite der Maske ausgebildet haben. Diese können bei fortschreitendem Wachstum einen negativen Einfluss auf die Ausbildung des Schichtergebnisses erlangen, weswegen es vorteilhaft sein kann, diese zwischendurch beim Ausfüllen der Maske immer wieder zu entfernen.
  • Die genannten Ablagerungen bilden sich auch bei der Verwendung von dünnen Masken mit Maskenöffnungen geringer Breite aus. Durch die geringe Dicke der Maske wirkt sich deren Wachstum jedoch während der Ausfüllung der Maskenöffnungen vergleichsweise geringer Tiefe nicht aus. Es reicht daher, diese Ablagerungen nach dem vollständigen Ausfüllen der Maskenöffnung mit dem Material zu beseitigen, damit die nachfolgende Maske auf eine ebene Unterlage gelegt werden kann, die durch die bearbeitete Oberfläche der Maske und des abgeschiedenen Materials gebildet werden kann.
  • Gemäß einer weiteren Ausgestaltung der Erfindung ist vorgesehen, dass alle Masken, deren Maskenöffnungen zumindest in einer Richtung Breiten von höchstens 1 mm aufweisen, eine Dicke von höchstens 1 mm aufweisen. Alternativ kann auch vorgesehen werden, dass bei allen Masken ein Verhältnis zwischen Dicke der Maske und kleinster Breite der Maskenöffnung von höchstens 1 eingehalten wird. Hierbei handelt es sich um vorteilhafte Auslegungsregeln für die Masken, die der bereits genannten Ausbildung ungünstiger Strömungsverhältnisse in der Maskenöffnung und damit verbunden einer fehlerhaften Ausfüllung der Maskenöffnung mit dem Material entgegenwirken. Es sind die Qualitätsvorgaben des Beschichtungsergebnisses zu berücksichtigen. Konkret darf die Ausbildung von Poren bei dem auszubildenden Schichtergebnis einen festzulegenden Wert nicht überschreiten, damit das Schichtergebnis den Qualitätsanforderungen des Einzelfalls genügt.
  • Um in einem Anwendungsfall die Eignung einer gewählten Maskendicke überprüfen zu können, kann vorteilhaft vorgesehen werden, dass die zulässige Dicke zumindest einer der Masken dadurch ermittelt wird, dass die Maske mit dem zu verarbeitenden Material vollständig ausgefüllt wird. Das aus dem aufgetragenen Material gebildete Beschichtungsergebnis wird anschließend daraufhin untersucht, ob eine geforderte Qualität erreicht wird. Hierbei muss die geforderte Qualität durch messbare Parameter beschrieben werden. Als Beispiel kann die Dichte des Beschichtungsergebnisses verwendet werden. Diese gibt Aufschluss über den Anteil an Poren im Beschichtungsergebnis. Auch die Porengröße selbst kann untersucht werden, da insbesondere im Wandbereich der Maskenöffnungen Poren gehäuft und/oder mit größerem Volumen auftreten können. Dies kann beispielsweise durch Herstellung von Schliffen überprüft werden.
  • Für die Untersuchungen können entweder Proben oder das zu erzeugende Beschichtungsergebnis selbst hergestellt werden. Sind die Qualitätsanforderungen bei dem Beschichtungsergebnis erfüllt, kann die Untersuchung mit einer Maske größerer Dicke wiederholt werden. Die Prüfung kann insofern mehrere Iterationsschritte enthalten. Alternativ kann das Verfahren allerdings auch angewendet werden, um die Eignung einer gewählten Maskendicke zu bestätigen, ohne eventuellen Spielraum in Richtung größerer Maskendicken durch weitere Iterationsschritte auszuschöpfen.
  • Vorteilhaft ist es, wenn die ermittelten geeigneten Dicken der Masken zusammen mit den Verfahrensparametern des Beschichtens in einer Datenbank gespeichert werden. Hierdurch wird in nachfolgenden Verfahren die Ermittlung der Maskendicke vereinfacht, da auf Erfahrungswissen zurückgegriffen werden kann. Dieses beinhaltet Informationen über die Geometrie der Maskenöffnungen und die Maskendicken sowie die verarbeiteten Materialien und an der Kaltgasspritzanlage eingestellten Beschichtungsparameter, wie Pulverförderrate, Pulverart sowie Gastemperatur, Gasdruck und Art des verwendeten Trägergases.
  • Eine besondere Ausgestaltung der Erfindung wird erhalten, wenn mindestens eine Maske mehrteilig ausgeführt ist, wobei Trennfugen von der Außenkante der Maske zu den Maskenöffnungen verlaufen. Diese sind derart angeordnet, dass sich die Maskenteile parallel zu ihrer Oberfläche auseinanderziehen lassen. Dies hat den Vorteil, dass sich die Maskenteile besser von dem Beschichtungsergebnis trennen lassen. Insbesondere, wenn das Beschichtungsergebnis Hinterschneidungen aufweist, ist es nicht möglich, wie oben angegeben, die Masken vom Trägerbauteil nach oben abzuheben. Wenn allerdings zu den Seiten des Beschichtungsergebnisses genug Platz ist, können die Maskenteile zumindest bei geringen Hinterschneidungen sozusagen zur Seite gezogen werden und lösen sich dadurch von dem Beschichtungsergebnis.
  • Die Entfernung der Masken nach oben oder in Teilen zur Seite hat den großen Vorteil, dass diese für einen nachfolgenden Ablauf des Verfahrens wieder verwendet werden können. Außerdem ist das Entfernen der Masken in kurzer Zeit möglich, so dass vorteilhaft Produktionszeit eingespart wird. Sollte allerdings eine Entfernung der Masken im Ganzen oder in Teilen nicht möglich sein, besteht auch die Möglichkeit, diese zu zerstören. Sind diese beispielsweise aus einem unedleren Material gefertigt, als das Beschichtungsergebnis, lassen diese sich chemisch oder elektrochemisch auflösen.
  • Weitere Einzelheiten der Erfindung werden nachfolgend anhand der Zeichnung beschrieben. Gleiche oder sich entsprechende Zeichnungselemente sind jeweils mit den gleichen Bezugszeichen versehen und werden nur insoweit mehrfach erläutert, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen
  • Figur 1 bis 7
    ausgewählte Verfahrensschritte eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens zur Erzeugung einer säulenartigen Struktur schematisch geschnitten,
    Figur 8 bis 15
    ausgewählte Verfahrensschritte eines anderen Ausführungsbeispiels des erfindungsgemäßen Verfahrens zur Erzeugung eines Bauteils mit Hinterschneidungen schematisch geschnitten,
    Figur 16
    die Aufsicht auf eine Maske mit Trennfuge und
    Figur 17
    ein Ausführungsbeispiel eines möglichen Bauteils in dreidimensionaler Ansicht.
  • Die Verfahrensschritte des erfindungsgemäßen Verfahrens können allgemein wie folgt dargestellt werden. Die Vorbereitung des Verfahrens besteht aus der Herstellung der Masken, wobei die Maskendicke der einzelnen Masken vorher bestimmt wird.
  • Das Verfahren beginnt mit dem Auflegen der ersten Maske auf das Trägerbauteil und Ausfüllen durch Kaltgasspritzen mit dem zu spritzenden Material. Anschließend wird überschüssiges Material von dem in Entstehung befindlichen Beschichtungsergebnis und der Oberseite der Maske abgetragen. Dann wird die nächste Maske aufgelegt und wieder durch Kaltgasspritzen ausgefüllt. Hierbei stellt die Dicke der Maske sicher, dass auf der von ihr freigelassenen Oberfläche (des Trägerbauteils oder der vorhergehenden Ablagerung des Materials) unmittelbar nach dem Auflegen eine Spritzlage bis zu den Maskenrändern hin defektfrei abgeschieden werden kann. Nach einem erneuten Abtragen überschüssigen Materials kann nachgesehen werden, ob die Maskenlöcher vollständig ausgefüllt sind. Mit anderen Worten ist zu ermitteln, ob die gespritzte Oberfläche innerhalb der Maskenöffnung nach dem Abtragen überall mit der Maskenoberfläche fluchtet. Dies kann beispielsweise auch durch ein automatisches optisches Inspektionsverfahren gewährleistet werden. Wenn dies nicht der Fall ist, kann ein weiteres Kaltgasspritzen und Überfräsen durchgeführt werden, bevor die nächste Maske aufgelegt wird. Erst wenn das Beschichtungsergebnis befriedigend ist, d.h. alle Maskenlöcher vollständig ausgefüllt sind, wird die nächste Maske aufgelegt, wenn die Struktur noch nicht fertig ist. Nach dem Ausfüllen der letzten Maske und dem Abtragen überschüssigen Materials ist die Frage einer Fertigstellung des Beschichtungsergebnisses zu bejahen.
  • In Figur 1 ist zu erkennen, wie auf ein Trägerbauteil 11 eine erste Maske 12 aufgelegt wurde. Diese weist eine Maskenöffnung 13 auf, die in dem Verfahrensschritt gemäß Figur 1 gerade durch ein Material 14 ausgefüllt wird. Dies erfolgt durch ein nicht näher dargestelltes Kaltgasspritzverfahren. In Figur 1 ist lediglich eine konvergent-divergente Spritzdüse 15 dargestellt, die Teil der nicht dargestellten Kaltgasspritzanlage ist. Mit der Spritzdüse 15 wird ein Partikelstrahl 16 auf das Trägerbauteil 11 gerichtet, wobei sowohl die Maskenöffnung 13 als auch die Oberfläche 18 der Maske 12 an den Rändern der Maskenöffnung 13 mit Schichtablagerungen des Materials 14 versehen wird.
  • In Figur 2 ist zu erkennen, dass mittels eines Fräskopfes 19 das überschüssige Material gemäß Figur 1 abgetragen wurde. Hierzu wird der Fräskopf 19 in Pfeilrichtung über die Oberfläche 18 bewegt, wobei in Figur 2 auch zu erkennen ist, dass die Maskenöffnung 13 vollständig mit dem Material 14 ausgefüllt ist.
  • In Figur 3 sind die nächsten beiden Prozessschritte dargestellt. Eine weitere Maske 12a wird auf die erste Maske 12 aufgelegt, wobei die Maskenöffnung 13 dieser Maske 12a mit derjenigen von Maske 12 genau fluchtet. Mittels der Spritzdüse 15 wird wieder Material abgeschieden, bis die Maskenöffnung 13 wieder vollständig aufgefüllt ist.
  • In Figur 4 ist zu sehen, dass das überschüssige Material mittels des Fräskopfes 19 wieder entfernt wurde (analog zu dem in Figur 2 dargestellten Verfahrensschritt).
  • In Figur 5 ist zu erkennen, dass analog zu Figur 3 zwei weitere Verfahrensschritte durchgeführt wurden, denen gemäß zunächst eine Maske 12b aufgelegt wurde und diese mittels der hier nicht dargestellten Spritzdüse 15 mit Material 14 ausgefüllt wurde. Der Fräskopf 19 ist nun gerade dabei, überschüssiges Material 14 von der Oberfläche 18 der Maske 12b zu entfernen. Auch die Maskenöffnung 13 der weiteren Maske 12b ist deckungsgleich mit den beiden vorhergehenden.
  • Gemäß Figur 6 ist zu erkennen, dass das Material 14 nun alle drei Maskenöffnungen 13 ausfüllt. Das Bauteil ist nun fertiggestellt, weswegen die Masken 12, 12a, 12b entsprechend der eingezeichneten Pfeile nach oben abgenommen werden können. Dies ist leicht möglich, da das Material 14 eine säulenartige Struktur mit senkrechten Seiten (in Form eines Prismas) aufweist.
  • Der Figur 7 ist zu entnehmen, dass das Material 14 als Schicht 20 auf dem Trägerbauteil 11 verbleibt. Das Trägerbauteil kann nun seiner Funktion zugeführt werden. Ein mögliches Trägerbauteil ist beispielsweise in Figur 17 dargestellt. Es könnte ein Werkzeug zum Prägen eines Symbols darstellen. Das Trägerbauteil 11 stellt hierbei eine Fläche zur Verfügung, auf der die zu prägenden Symbole als Schicht 20 aufgebaut sind.
  • In den Figuren 8 bis 15 ist ein Verfahren dargestellt, bei dem das Beschichtungsergebnis ein Bauteil 21 ergibt (vergleiche Figur 15). Das Verfahren läuft im Wesentlichen wie dasjenige gemäß den Figuren 1 bis 7 ab und wird hier nur hinsichtlich seiner Unterschiede noch einmal näher erläutert.
  • Die Verfahrensschritte gemäß Figur 8 und Figur 9 verlaufen analog zu den Verfahrensschritten gemäß Figur 1 und Figur 2.
  • Gemäß Figur 10 wird im Unterschied zu Figur 3 eine weitere Maske 12d aufgelegt, deren Maskenöffnung 13 größer ist als diejenige der Maske 12. Hierdurch entsteht in dem Material eine Hinterschneidung 22, die in den Figuren 14 und 15 besser zu erkennen ist. Das Abtragen des Materials gemäß Figur 11 erfolgt analog zu Figur 4.
  • Figur 12 unterscheidet sich von Figur 5 wieder darin, dass die weitere Maske 12e mit einer größeren Maskenöffnung 13 ausgestattet ist, als die Maske 12d. Insgesamt weist das Beschichtungsergebnis aus dem Material 14, welches man in Figur 13 erkennen kann, daher die Form eines Pilzes auf. Dies erschwert die Entfernung der Masken 12, 12d, 12e. Haben diese senkrecht zur Zeichenebene eine nicht näher dargestellte Trennfuge, so dass diese zweiteilig ausgeführt sind (vergleiche Figur 16), können die jeweiligen Maskenhälften gemäß Figur 13 in Richtung der beiden angedeuteten Pfeile parallel zur Oberfläche des Trägerbauteils 11 abgezogen werden.
  • Allerdings kann das Beschichtungsergebnis aus dem Material 14 auch eine Geometrie haben, die ein seitliches Abziehen der Maskenteile nicht ermöglicht. In diesem Fall ist in Figur 14 dargestellt, wie die Masken 12, 12a, 12b in einem elektrochemischen Bad 25 auch aufgelöst werden können, wobei die Masken in Figur 14 nicht mehr zu erkennen sind, da diese bereits aufgelöst sind. In einem nachfolgenden, nicht näher dargestellten Schritt kann das so entstandene Bauteil 21 beispielsweise durch Drahterodieren von dem Trägerbauteil 11 entfernt werden, welches bei dieser Verfahrensvariante lediglich als Bauplattform dient. Das fertige Bauteil 21 ist in Figur 15 als Seitenansicht dargestellt.
  • Figur 16 zeigt eine Maske 12f, die zweiteilig aufgebaut ist. Diese könnte beispielsweise für ein in Figur 13 angedeutetes Verfahren dienen. Die Maske 12f weist zwei Halbmasken 23 auf, die durch eine Trennfuge 24 teilbar sind. Ein Bauteil, welches in der Maskenöffnung 13 hergestellt wurde, stört ein Entfernen der Maske auch dann nicht, wenn darüber liegende Masken aufgrund größerer oder überlappender Maskenöffnungen Hinterschneidungen in dem herzustellenden Bauteil ausbilden. Voraussetzung ist aber, dass die Hinterschneidungen nicht zu groß sind (das heißt, die "Hinterschneidungssprünge" von Maske zu Maske), wenn dies zu einem Abscheiden von Material auf einer die Hinterschneidung abbildenden Maske führt. Hierdurch kommt nämlich eine Haftung der Maske am Beschichtungsergebnis zustande, die durch die Abziehkraft der Maske überwunden werden muss.

Claims (11)

  1. Verfahren zum Beschichten eines Trägerbauteils (11) durch Kaltgasspritzen, bei dem vor dem Beschichten eine Maske (12) auf das Trägerbauteil (11) aufgelegt wird und in dem Bereich einer Maskenöffnung (13) dieser Maske (12) ein Material (14) auf das Trägerbauteil (11) aufgetragen wird, wobei das Material (14) die Maskenöffnung (13) vollständig ausfüllt,
    dadurch gekennzeichnet,
    dass
    • in einem Verfahrensschritt nach dem Auftragen des Materials (14) ein abtragendes Verfahren durchgeführt wird, bei dem das aufgetragene Material (14), welches sich oberhalb des Niveaus der Oberseite der Maske (12) befindet, abgetragen wird und sich eine ebene Fläche im Bereich der Maskenöffnung (13) und auf der Maske (12) ausbildet,
    • in einem weiteren Verfahrensschritt auf die Oberseite der Maske eine weitere Maske (12a,12b,12c,12d) aufgelegt wird und in dem Bereich einer Maskenöffnung (13) dieser Maske (12a, 12b, 12c, 12d) ein Material (14) auf das bereits aufgetragene Material (14) aufgetragen wird,
    wobei die beiden vorgenannten Verfahrensschritte so oft durchgeführt werden, bis das aufgetragene Material (14) die erforderliche Dicke auf dem Trägerbauteil (11) erreicht hat und dass nach Beendigung des Beschichtens die Masken entfernt werden.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass das aus dem aufgetragenen Material (14) gebildete Beschichtungsergebnis von dem Trägerbauteil (11) abgetrennt wird.
  3. Verfahren nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass zumindest ein Teil der Masken (12, 12a, 12b, 12c, 12d) eine Dicke von höchstens 1 mm hat.
  4. Verfahren nach Anspruch 3,
    dadurch gekennzeichnet,
    dass alle Masken (12, 12a, 12b, 12c, 12d), deren Maskenöffnungen (13) zumindest in einer Richtung Breiten von höchstens 1 mm aufweisen, eine Dicke von höchstens 1 mm aufweisen.
  5. Verfahren nach Anspruch 1 bis 3,
    dadurch gekennzeichnet,
    dass bei allen Masken (12, 12a, 12b, 12c, 12d) ein Verhältnis zwischen Dicke der Maske und kleinster Breite der Maskenöffnung (13) von höchstens 1 eingehalten wird.
  6. Verfahren nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass aufeinanderfolgende Masken (12, 12a, 12b) deckungsgleiche Maskenöffnungen (13) oder sich verkleinernde, vollständig übereinanderliegende Maskenöffnungen (13) aufweisen.
  7. Verfahren nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass mindestens eine Maske (12f) mehrteilig ausgeführt ist, wobei Trennfugen (24) von der Außenkante der Maske zu den Maskenöffnungen verlaufen, derart, dass sich die Maskenteile (23) parallel zu ihrer Oberseite auseinander ziehen lassen.
  8. Verfahren nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass zumindest eine der Masken (12, 12a, 12b, 12c, 12d) in mehreren Schritten ausgefüllt wird, wobei nach den jeweiligen Schritten des Auftragens des Materials (14) ein abtragendes Verfahren durchgeführt wird, bei dem das aufgetragene Material (14), welches sich oberhalb des Niveaus der Oberseite der Maske befindet, abgetragen wird.
  9. Verfahren nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die zulässige Dicke zumindest einer der Masken (12, 12a, 12b, 12c, 12d) dadurch ermittelt wird, dass die Maske mit dem zu verarbeitenden Material (14) vollständig ausgefüllt wird und das aus dem aufgetragenen Material (14) gebildete Beschichtungsergebnis daraufhin untersucht wird, ob eine geforderte Qualität erreicht wird.
  10. Verfahren nach Anspruch 9,
    dadurch gekennzeichnet,
    dass die ermittelte, geeignete Dicke der Masken (12, 12a, 12b, 12c, 12d) zusammen mit den Verfahrensparametern des Beschichtens in einer Datenbank gespeichert wird.
  11. Verfahren nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Gestalt der Maskenöffnungen (13) unter Berücksichtigung der Maskendicke für ein Bauteil (21) dadurch bestimmt wird, dass die Geometrie des Bauteils (21) rechnerisch in übereinanderliegende Scheiben, die das Volumen der Maskenöffnungen (13) bestimmen, zerlegt wird.
EP16700806.9A 2015-02-04 2016-01-13 Verfahren zum kaltgasspritzen mit maske Active EP3230492B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015201927.6A DE102015201927A1 (de) 2015-02-04 2015-02-04 Verfahren zum Kaltgasspritzen mit Maske
PCT/EP2016/050533 WO2016124362A1 (de) 2015-02-04 2016-01-13 Verfahren zum kaltgasspritzen mit maske

Publications (2)

Publication Number Publication Date
EP3230492A1 EP3230492A1 (de) 2017-10-18
EP3230492B1 true EP3230492B1 (de) 2018-11-07

Family

ID=55173829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16700806.9A Active EP3230492B1 (de) 2015-02-04 2016-01-13 Verfahren zum kaltgasspritzen mit maske

Country Status (8)

Country Link
US (1) US10648085B2 (de)
EP (1) EP3230492B1 (de)
JP (1) JP6538862B2 (de)
CN (1) CN107208274B (de)
CA (1) CA2975774C (de)
DE (1) DE102015201927A1 (de)
DK (1) DK3230492T3 (de)
WO (1) WO2016124362A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11662300B2 (en) 2019-09-19 2023-05-30 Westinghouse Electric Company Llc Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing
US11898986B2 (en) 2012-10-10 2024-02-13 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015201927A1 (de) 2015-02-04 2016-08-04 Siemens Aktiengesellschaft Verfahren zum Kaltgasspritzen mit Maske
CN111344840B (zh) * 2017-11-22 2023-07-07 三菱电机株式会社 半导体装置以及半导体装置的制造方法
DE102018127774A1 (de) * 2018-11-07 2020-05-07 Bayerische Motoren Werke Aktiengesellschaft Bauteil sowie Verfahren zum Herstellen eines Bauteils
EP3772546B1 (de) * 2019-08-05 2022-01-26 Siemens Aktiengesellschaft Herstellen einer struktur mittels eines kaltgasspritzverfahrens
US11629412B2 (en) * 2020-12-16 2023-04-18 Rolls-Royce Corporation Cold spray deposited masking layer

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992006797A1 (en) 1990-10-18 1992-04-30 United States Department Of Energy A low temperature process of applying high strength metal coatings to a substrate and article produced thereby
US5203944A (en) * 1991-10-10 1993-04-20 Prinz Fritz B Method for fabrication of three-dimensional articles by thermal spray deposition using masks as support structures
JPH10195676A (ja) * 1997-01-10 1998-07-28 Jiibetsuku Internatl Corp:Kk 三次元構造体の製造方法
EP0860516A3 (de) 1997-02-04 1999-05-19 Fuji Kihan Co., Ltd. Verfahren zum Aufbringen einer metallischen Beschichtung
JP4248037B2 (ja) 1997-02-04 2009-04-02 株式会社不二機販 金属被膜の形成方法
DE19715582B4 (de) * 1997-04-15 2009-02-12 Ederer, Ingo, Dr. Verfahren und System zur Erzeugung dreidimensionaler Körper aus Computerdaten
US6251488B1 (en) 1999-05-05 2001-06-26 Optomec Design Company Precision spray processes for direct write electronic components
WO2002026419A1 (de) 2000-09-25 2002-04-04 Generis Gmbh Verfahren zum herstellen eines bauteils in ablagerungstechnik
US20050194348A1 (en) 2001-12-03 2005-09-08 University Of Southern California Electrochemical fabrication methods incorporating dielectric materials and/or using dielectric substrates
DE10222609B4 (de) 2002-04-15 2008-07-10 Schott Ag Verfahren zur Herstellung strukturierter Schichten auf Substraten und verfahrensgemäß beschichtetes Substrat
US20040000489A1 (en) 2002-05-07 2004-01-01 University Of Southern California Methods and apparatus for monitoring deposition quality during conformable contact mask plating operations
US7476422B2 (en) * 2002-05-23 2009-01-13 Delphi Technologies, Inc. Copper circuit formed by kinetic spray
CN1669177A (zh) 2002-06-27 2005-09-14 微制造公司 小型射频和微波构件以及这些构件的制造方法
JP2006179856A (ja) 2004-11-25 2006-07-06 Fuji Electric Holdings Co Ltd 絶縁基板および半導体装置
DE102004058806B4 (de) 2004-12-07 2013-09-05 Robert Bosch Gmbh Verfahren zur Herstellung von Schaltungsstrukturen auf einem Kühlkörper und Schaltungsstruktur auf einem Kühlkörper
JP4595665B2 (ja) * 2005-05-13 2010-12-08 富士電機システムズ株式会社 配線基板の製造方法
DE102005031101B3 (de) 2005-06-28 2006-08-10 Siemens Ag Verfahren zum Herstellen von keramischen Schichten
JP4793261B2 (ja) * 2005-12-30 2011-10-12 ブラザー工業株式会社 薄膜の形成方法およびそれに用いるマスク
US20070154641A1 (en) 2005-12-30 2007-07-05 Brother Kogyo Kabushiki Kaisha Thin-film forming method and mask used therefor
JP5077529B2 (ja) 2006-11-10 2012-11-21 富士電機株式会社 絶縁基板の製造方法、ならびに半導体装置の製造方法
JP4241859B2 (ja) 2007-07-19 2009-03-18 トヨタ自動車株式会社 パワーモジュールの製造方法、パワーモジュール、車両用インバータ、及び車両
JP2009127086A (ja) 2007-11-22 2009-06-11 Toyota Motor Corp 伝熱部材及びその製造方法
DE102008056652A1 (de) 2008-11-10 2010-05-12 Mtu Aero Engines Gmbh Maske für das kinetische Kaltgaskompaktieren
CN102893389B (zh) * 2010-05-12 2015-05-20 丰田自动车株式会社 半导体装置
CN102652357B (zh) 2010-05-21 2015-09-09 丰田自动车株式会社 半导体装置
DE102011114832A1 (de) 2011-10-05 2013-04-11 Eads Deutschland Gmbh Ribletfolie und verfahren zu deren herstellung
US20140120195A1 (en) * 2012-09-26 2014-05-01 Yamandu Zavish Ploskonka Three Dimensional Contour Shaping Apparatus
US9156194B2 (en) * 2013-03-14 2015-10-13 Palo Alto Research Center Incorporated Digital 3D fabrication using multi-layered mold
DE102015201927A1 (de) 2015-02-04 2016-08-04 Siemens Aktiengesellschaft Verfahren zum Kaltgasspritzen mit Maske

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11898986B2 (en) 2012-10-10 2024-02-13 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
US11662300B2 (en) 2019-09-19 2023-05-30 Westinghouse Electric Company Llc Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing

Also Published As

Publication number Publication date
EP3230492A1 (de) 2017-10-18
US20180274104A1 (en) 2018-09-27
JP2018507555A (ja) 2018-03-15
JP6538862B2 (ja) 2019-07-03
CN107208274B (zh) 2020-12-11
DE102015201927A1 (de) 2016-08-04
CA2975774A1 (en) 2016-08-11
CA2975774C (en) 2019-03-19
DK3230492T3 (en) 2019-02-04
WO2016124362A1 (de) 2016-08-11
US10648085B2 (en) 2020-05-12
CN107208274A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
EP3230492B1 (de) Verfahren zum kaltgasspritzen mit maske
DE69734625T2 (de) Fluidum gekühlter Gegenstand und seine Herstellungsweise
EP2885441B1 (de) Verfahren zum beschichten durch thermisches spritzen mit geneigtem partikelstrahl
DE102011057170A1 (de) Verfahren zur Erzeugung eines filmgekühlten Gegenstands
EP2301707A1 (de) Verfahren zur Herstellung eines Lochs und Vorrichtung
DE2723465C2 (de) Maske zum Aufbringen eines Musters auf ein Substrat und Verfahren zu ihrer Herstellung
DE102009011913A1 (de) Wärmedämmschichtsystem
WO2013167643A2 (de) Verfahren zum elektrischen kontaktieren eines elektronischen bauelements als stapel und elektronisches bauelement mit einer kontaktierungsstruktur
DE102006044416A1 (de) Verfahren zum elektrochemischen Be- oder Entschichten von Bauteilen
DE102012217766B4 (de) Verfahren und Vorrichtung zum Dampfdruck-Abtragschneiden eines metallischen Werkstücks
DE102010005389A1 (de) Strukturierte Oberflächenbeschichtung mittels kinetischem Kaltgasspritzen
DE102018222377A1 (de) Verfahren zum Ätzen einer Opferschicht für die Herstellung einer mikromechanischen Struktur und mikromechanische Vorrichtung
DE102015204798A1 (de) Verfahren zur Auslegung und/oder zur Überprüfung einer Elektrode zum elektrochemischen Abtragen und Elektrode zum elektrochemischen Abtragen
DE102010024226A1 (de) Verfahren und Vorrichtung zur Herstellung oder Reparatur von Bauteilen, insbesondere Bauteilen von Strömungsmaschinen, mittels eines generativen Herstellungsverfahrens
DE102007006640A1 (de) Verfahren zum Aufbringen einer Struktur auf ein Halbleiterbauelement
EP1042792A1 (de) Verfahren und einrichtung zum ablösen eines ausschnitts einer materialschicht
WO2004062841A1 (de) Verfahren zur erzeugung eines lochs
DE102009049811A1 (de) Verfahren zum Herstellen einer Elektrode
DE102019213342A1 (de) Verfahren und Vorrichtung zum elektrochemischen Bearbeiten von Bauteilen
DE102010013348A1 (de) Technik zur Herstellung von Druckschablonen
DE102011002083A1 (de) Verfahren zum Herstellen eines Kunststoffurformwerkzeuges sowie Kunststoffurformwerkzeug
WO2017167534A1 (de) Verfahren zum elektrochemischen erzeugen von partikeln
EP3538315B1 (de) Verfahren zur herstellung eines hohlraums in einer schaufelplattform ; entsprechender schaufel
WO2007134620A1 (de) Verfahren zum vorbereiten eines bauteils aus einem elektrisch leitenden basismaterial auf das durchführen eines erodierprozesses
DE102016207893A1 (de) Bauplattform für die additive Herstellung und Verfahren

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180607

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1062152

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016002435

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190129

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016002435

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190113

26N No opposition filed

Effective date: 20190808

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160113

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1062152

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230113

Year of fee payment: 8

Ref country code: DK

Payment date: 20230123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230202

Year of fee payment: 8

Ref country code: DE

Payment date: 20220620

Year of fee payment: 8

Ref country code: BE

Payment date: 20230119

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230102

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230412

Year of fee payment: 8