EP3224205A1 - Procédé de production d'un matériau cathodique et matériau cathodique spécial - Google Patents

Procédé de production d'un matériau cathodique et matériau cathodique spécial

Info

Publication number
EP3224205A1
EP3224205A1 EP15797907.1A EP15797907A EP3224205A1 EP 3224205 A1 EP3224205 A1 EP 3224205A1 EP 15797907 A EP15797907 A EP 15797907A EP 3224205 A1 EP3224205 A1 EP 3224205A1
Authority
EP
European Patent Office
Prior art keywords
cathode material
metal
powdery
process according
primary particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15797907.1A
Other languages
German (de)
English (en)
Inventor
Stipan Katusic
Peter Kress
Michael Hagemann
Armin Wiegand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Publication of EP3224205A1 publication Critical patent/EP3224205A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/34Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of sprayed or atomised solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for the production of cathode materials for
  • EP-A-814524 discloses a spray pyrolysis process for the preparation of a lithium-manganese mixed oxide in which lithium and manganese salts dissolved in a
  • EP-A-824087 discloses an analogous process for preparing lithium-nickel mixed oxides or lithium-cobalt mixed oxides.
  • EP-A-876997 discloses that compounds such as hydrogen peroxide or nitric acid are used to produce these mixed oxides, which provide oxygen during pyrolysis.
  • EP-A-814524, EP-A-824087 and EP-A-876997 A disadvantage of the processes disclosed in EP-A-814524, EP-A-824087 and EP-A-876997 is the thermophoresis observed in many high-temperature processes to form a wall covering that reduces the energy input.
  • WO2012 / 018863 a method is disclosed in which a solution containing a lithium salt and a metal salt with Ni, Co, Mn, Al, Mg, Fe, Cu, Zn, V, Mo, Nb, Cr, Si, Ti, Zr , as metal is transferred by spraying into an aerosol and this is introduced into a pyrolysis flame. Predominantly spherical particles are obtained. A disadvantage of this method has been found that the metal components are not homogeneously distributed.
  • Taniguchi et al. (Journal of Power Sources 109 (2002) 333-339) disclose
  • the temperature is provided by an electrically heated reactor.
  • An ultrasonic nebulizer is also described by Ogihara et al. (Transactions of the Materials Research Society of Japan 32 (2007) 717-720) in the
  • Kang et al. The preparation of the latter mixed oxide via spray pyrolysis is also described by Kang et al. (Ceramics International 33 (2007) 1093-1098). In this case, solutions of the nitrates or acetates of nickel, cobalt and manganese and lithium carbonates are used. Following a similar procedure, Kang et al. (Journal of Power Sources 178 (2008) 387-392) the preparation of LiNio.sCoo.-isMno.osC ⁇ . Pratsinis et al. (Materials Chemistry and Physics 101 (2007) 372-378) describe a
  • the technical object of the present invention was to provide a method which can be carried out on a large scale and in which a
  • Cathode material is formed with high capacity. Another object of the invention was to provide high capacity cathode material.
  • the invention relates to a method for producing a powdery
  • a cathode material comprising at least one mixed oxide containing the metal components Li, at least one further selected from the group consisting of Mn, Ni and Co, which comprises reacting an ammonia-containing aerosol containing metal compounds of the metal components in a high temperature zone of a reaction space and subsequently the Separate solid.
  • the aerosol is obtained by atomizing a solution containing the metal compounds by means of a sputtering gas.
  • the atomization is best carried out by means of a single or multi-fluid nozzle, wherein the average droplet diameter of the aerosol is not more than 100 ⁇ , preferably 30 to 100 ⁇ , is.
  • the concentration of ammonia is preferably 0.5 to 5.0 kg NH 3 / kg of the metals used, more preferably 0.8 to 2.8 kg / kg. Within these ranges, the influence on the homogeneity of the metal oxide particles to be produced is greatest.
  • the high-temperature zone into which the mixture is introduced is a flame formed by the reaction of an oxygen-containing gas and a fuel gas, preferably in the reaction with oxygen, water-forming fuel gas.
  • the fuel gas hydrogen, methane, ethane, propane, butane and mixtures thereof can be used. Preference is given to using hydrogen.
  • the oxygen-containing gas is usually air.
  • the amount of oxygen is to be selected in the inventive method so that it is sufficient at least for complete conversion of the fuel gas and all metal compounds. It is usually advantageous to use an excess of oxygen. This excess is conveniently expressed as the ratio of oxygen present / combustion of the fuel gas necessary oxygen and referred to as lambda. Lambda is preferably 1, 1 to 6.0, particularly preferably 2.0 to 4.0.
  • the inventive method also allows the production of a doped
  • the solution contains at least one doping compound which is a metal selected from the group consisting of Ag, Al, B, Ca, Cr, Cu, Fe, Ga, Ge, In, K, Mg, Mo, Na, Nb, Si, Sn, Ta, Ti, Tl, V and Zr.
  • a particularly preferred metal is Al.
  • the doping compound is preferably used in an amount such that the later
  • Cathode material contains not more than 10 wt .-% of doping component, particularly preferably 0.1 to 5 wt .-%.
  • the metal compounds are in solution.
  • the solution can be heated. In principle, all are soluble
  • Usable metal compounds that are oxidizable This may be inorganic
  • Metal compounds such as nitrates, chlorides, bromides, or organic metal compounds such as alkoxides or carboxylates act.
  • the alkoxides used may preferably be ethylates, n-propylates, isopropylates, n-butylates and / or tert-butylates.
  • carboxylates those of acetic acid, propionic acid, butanoic acid, hexanoic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, octanoic acid,
  • 2-ethylhexanoic acid, valeric acid, capric acid and / or lauric acid underlying compounds In a preferred embodiment, at least one metal nitrate is used.
  • the solvent may preferably be selected from the group consisting of water, Cs-C2o alkanes, Ci-Ci5-alkanecarboxylic acids and / or Ci-Cis-alkanols. Particular preference may be given to using water or a mixture of water and an organic solvent.
  • organic solvents or as a component of mixtures of organic solvents, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol or tert-butanol, diols such as ethanediol, pentanediol, 2-methyl-2, 4-pentanediol, Ci-Ci2-carboxylic acids such as acetic acid, propionic acid, butanoic acid, hexanoic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, octanoic acid, 2-ethylhexanoic acid, valeric acid, capric acid, lauric acid.
  • Benzene, toluene, naphtha and / or gasoline are used.
  • an aqueous solvent is used.
  • a further embodiment of the invention provides that the separated solid is thermally treated at temperatures of 850 to 1000 ° C, over a period of 2 to 36 hours.
  • the treatment can be carried out in the presence of air or oxygen-enriched air, corresponding to an oxygen content of 21-40% by volume.
  • oxygen-enriched air gives the best results.
  • Another object of the invention is a powdered cathode material in the form of aggregated primary particles comprising a mixed oxide powder having a composition corresponding to Lii + x (Ni a CobMn c ) Dd02, and H and N as a non-metal component, with
  • Primary particles are the smallest, not further decomposable particles that are detectable for example by transmission electron spectroscopy (TEM).
  • TEM transmission electron spectroscopy
  • Primary particle diameter can be determined, for example, by counting the particles in TEM images. Several primary particles grow together at their contact points to aggregates. The determination of the aggregate dimensions can be done for example by laser diffractometry.
  • the cathode material according to the invention has an average particle size of 1 to 10 ⁇ m after an optional heat treatment.
  • the powdery invention is characterized
  • Cathode material characterized in that the average relative concentration of the elements Ni, Mn and Co, which is determined by TEM-EDX from 18 randomly selected areas each comprising a volume of about 500 nm 3 of the cathode material, not more than 5% of the means ICP-OES, inductively coupled plasma optical emission spectrometry, deviates from certain concentration of the powdered cathode material.
  • the powdery invention is characterized
  • Cathode material characterized in that the standard deviation of the relative concentration of the elements Ni, Mn and Co, which is determined by TEM-EDX from 18 randomly selected areas each comprising a volume of about 500 nm 3 of the cathode material per element is at most 5%.
  • Another object of the invention the use of the powdery cathode material according to the invention as a component of lithium ion batteries.
  • TEM-EDX The samples are analyzed at 18 different representative sites using EDX analysis. The analyzed volume is about 500 nm 3 per measuring point. The analyzes were carried out with a transmission electron microscope Jeol 2010F at 200 kV
  • ICP-OES Metal concentrations are determined by ICP-OES. The samples were measured with the ICP-OES Optima, PerkinElmer. The uncertainty of results for the metals is 0.5 - 2% relative.
  • H, N The hydrogen and nitrogen content is determined by means of the elemental analyzer TCH600, LECO. The result uncertainty is 0.8 - 1, 0%.
  • the BET surface area is determined according to DIN ISO 9277.
  • Electrochemical Characterization The cathode materials are converted into a common
  • Atomizing air is generated by means of a nozzle, an aerosol, which is atomized into a reaction space.
  • a blast gas flame burns out of hydrogen and air, in which the aerosol is brought to the reaction.
  • the cathode material is separated on a filter of gaseous substances.
  • the solid product is heated in a rotary kiln to a temperature of 875 to 1000 ° C within 3 to 10 hours. It is then held at this temperature for a period of 4 to 10 hours and then cooled to room temperature over a period of about 12 hours.
  • Table 1 lists all relevant parameters for the preparation of the cathode material as well as important material properties of the powders obtained, together with their electrochemical properties.
  • Table 2 shows the homogeneous distribution of a comparison material which was obtained without obtaining ammonia, with a cathode material prepared by the process according to the invention.
  • Table 1 Preparation of Lii + x (Ni a CobMn c ) DdO 2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Procédé de production d'un matériau cathodique pulvérulent, comprenant au moins un oxyde mixte, contenant les constituants métalliques suivants : Li, au moins un autre constituant sélectionné dans le groupe comprenant Mn, Ni et Co, procédé selon lequel on fait réagir un aérosol, contenant de l'ammoniac et des composés métalliques des constituants métalliques, dans une zone à haute température d'une chambre de réaction puis l'on sépare la matière solide.
EP15797907.1A 2014-11-25 2015-11-12 Procédé de production d'un matériau cathodique et matériau cathodique spécial Withdrawn EP3224205A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14194628.5A EP3026019A1 (fr) 2014-11-25 2014-11-25 Procédé de fabrication d'un matériau de cathode et matériau de cathode spécial
PCT/EP2015/076430 WO2016083142A1 (fr) 2014-11-25 2015-11-12 Procédé de production d'un matériau cathodique et matériau cathodique spécial

Publications (1)

Publication Number Publication Date
EP3224205A1 true EP3224205A1 (fr) 2017-10-04

Family

ID=52000653

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14194628.5A Withdrawn EP3026019A1 (fr) 2014-11-25 2014-11-25 Procédé de fabrication d'un matériau de cathode et matériau de cathode spécial
EP15797907.1A Withdrawn EP3224205A1 (fr) 2014-11-25 2015-11-12 Procédé de production d'un matériau cathodique et matériau cathodique spécial

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP14194628.5A Withdrawn EP3026019A1 (fr) 2014-11-25 2014-11-25 Procédé de fabrication d'un matériau de cathode et matériau de cathode spécial

Country Status (7)

Country Link
US (1) US20170338487A1 (fr)
EP (2) EP3026019A1 (fr)
JP (1) JP2017538262A (fr)
KR (1) KR20170088924A (fr)
CN (1) CN107001039A (fr)
TW (1) TW201631827A (fr)
WO (1) WO2016083142A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015216901A1 (de) 2015-09-03 2017-03-09 Evonik Degussa Gmbh Mit einer Hülle umgebenes Lithium und Mangan enthaltendes Mischoxid
DE102016214590A1 (de) 2016-08-05 2018-02-08 Evonik Degussa Gmbh Verfahren zur Herstellung eines Kathodenmateriales mit niedriger BET-Oberfläche und hoher Stampfdichte und spezielles Kathodenmaterial
WO2018127414A1 (fr) 2017-01-09 2018-07-12 Evonik Degussa Gmbh Procédé de production d'oxydes métalliques par pyrolyse par pulvérisation
EP3495321A1 (fr) * 2017-12-07 2019-06-12 Evonik Degussa GmbH Préparation de silicates de métal en poudre, cristallins et poreux par pyrolyse par projection à la flamme
US20210359300A1 (en) * 2020-05-14 2021-11-18 Nano One Materials Corp. Alternative Method for Making Lithium Battery Cathode Materials
CN116514546A (zh) * 2023-07-04 2023-08-01 乌镇实验室 一种铌酸钾钠基无铅压电陶瓷粉体及无铅压电陶瓷的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221352B2 (ja) 1996-06-17 2001-10-22 株式会社村田製作所 スピネル型リチウムマンガン複合酸化物の製造方法
DE69700687T2 (de) 1996-08-13 2000-03-16 Murata Manufacturing Co Verfahren zur Herstellung von Kobalt oder Nickel enthaltendem Lithiumkomplex
JP3384280B2 (ja) 1997-05-08 2003-03-10 株式会社村田製作所 リチウム二次電池用正極活物質の製造方法
WO2012018863A2 (fr) 2010-08-02 2012-02-09 Washington University Synthèse de matériaux de cathode de taille sub-micrométrique à micrométrique
US8932481B2 (en) * 2010-08-31 2015-01-13 Samsung Sdi Co., Ltd. Cathode active material, method of preparing the same, and cathode and lithium battery including the cathode active material
JP2013220967A (ja) * 2012-04-14 2013-10-28 Sumitomo Chemical Co Ltd 複合金属酸化物の製造方法
CN102881890B (zh) * 2012-10-15 2014-11-12 福建师范大学 通过氧化性气体氧化法制备富锂固溶体正极材料的方法
CN102881876B (zh) * 2012-10-15 2014-12-17 福建师范大学 还原共沉淀法制备富锂固溶体正极材料的方法

Also Published As

Publication number Publication date
KR20170088924A (ko) 2017-08-02
WO2016083142A1 (fr) 2016-06-02
TW201631827A (zh) 2016-09-01
US20170338487A1 (en) 2017-11-23
EP3026019A1 (fr) 2016-06-01
CN107001039A (zh) 2017-08-01
JP2017538262A (ja) 2017-12-21

Similar Documents

Publication Publication Date Title
WO2016083142A1 (fr) Procédé de production d'un matériau cathodique et matériau cathodique spécial
EP2399867B1 (fr) Procédé de fabrication d'oxydes mixtes contenant du lithium
EP2399869B1 (fr) Poudre d'oxyde mixte contenant les éléments lithium, manganèse, nickel et cobalt et leur procédé de fabrication
EP1791785B1 (fr) Procédé pour produire des composés d'oxydes métalliques, à plusieurs constituants, renfermant des métaux alcalins
DE60202373T2 (de) Verfahren zur herstellung von lithiumtitanat
EP3337764B1 (fr) Particules d'oxyde de métaux de transition à base de lithium-nickel-manganèse, leur production ainsi que leur utilisation en tant que matériau d'électrode
DE10235758A1 (de) Dotiertes Zinkoxidpulver, Verfahren zu seiner Herstellung und Verwendung
EP3224200B1 (fr) Procédé de fabrication d'oxydes métalliques par pyrolyse par pulvérisation
WO2015173114A1 (fr) Procédé de production de poudre d'oxyde mixte contenant du lithium, du lanthane et du zirconium
WO2018024661A1 (fr) Procédé de fabrication d'un matériau de cathode à faible surface bet et à masse volumique tassée élevée et matériau de cathode spécial
EP3565784B1 (fr) Procédé de fabrication d'oxydes métalliques au moyen de pyrolyse par pulvérisation
EP2944611A1 (fr) Procédé de fabrication d'un systèmes d'oxydes mixtes cristallins cubiques, contenant de l'aluminium, du lithium, du lanthane et du zircon ayant une structure à grenat
DE102004039139A1 (de) Yttrium-Zirkon-Mischoxidpulver
WO2016169842A1 (fr) Procédé de fabrication d'une matière de cathode à faible surface bet et à haute densité de la matière tassée
WO2017037179A1 (fr) Oxyde mixte revêtu d'une enveloppe, contenant du lithium et du manganèse
WO2013092110A1 (fr) Oxyde mixte contenant les éléments lithium, nickel, cobalt et manganèse et son procédé de fabrication
EP2556028B1 (fr) Particules d'oxyde de fer-silicium de type janus
CN114364638A (zh) 通过喷雾热解制备纳米结构的混合锂锆氧化物

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180116