EP3211653B1 - Relais électromagnétique pour trois positions de commutation - Google Patents
Relais électromagnétique pour trois positions de commutation Download PDFInfo
- Publication number
- EP3211653B1 EP3211653B1 EP16398001.4A EP16398001A EP3211653B1 EP 3211653 B1 EP3211653 B1 EP 3211653B1 EP 16398001 A EP16398001 A EP 16398001A EP 3211653 B1 EP3211653 B1 EP 3211653B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- spring
- relay according
- armatures
- relay
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005291 magnetic effect Effects 0.000 claims description 50
- 239000002184 metal Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 230000000284 resting effect Effects 0.000 claims description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 230000004907 flux Effects 0.000 description 18
- 230000008901 benefit Effects 0.000 description 17
- 238000013459 approach Methods 0.000 description 14
- 238000004804 winding Methods 0.000 description 13
- 230000010287 polarization Effects 0.000 description 9
- 238000011161 development Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/64—Driving arrangements between movable part of magnetic circuit and contact
- H01H50/641—Driving arrangements between movable part of magnetic circuit and contact intermediate part performing a rectilinear movement
- H01H50/642—Driving arrangements between movable part of magnetic circuit and contact intermediate part performing a rectilinear movement intermediate part being generally a slide plate, e.g. a card
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H51/00—Electromagnetic relays
- H01H51/005—Inversing contactors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H51/00—Electromagnetic relays
- H01H51/22—Polarised relays
- H01H51/2272—Polarised relays comprising rockable armature, rocking movement around central axis parallel to the main plane of the armature
- H01H51/2281—Contacts rigidly combined with armature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H51/00—Electromagnetic relays
- H01H51/22—Polarised relays
- H01H51/26—Polarised relays with intermediate neutral position of rest
Definitions
- the present invention relates to an electromagnetic relay for motor reverse applications which has one coil to control two armatures for switching two spring arrangements coupled by a slider in to three switching positions, i.e. a center position defined as neutral or resting position corresponding to a motor brake or motor blocked situation, a right position defined as the coil being energized in a certain polarity corresponding to the application motor rotating clockwise, and a left slider position for an inversely polarized coil corresponding to the motor application rotating counter clockwise.
- the system which is disclosed in this case, has one relay with two magnetic systems, which share a frame, an armature, and NO terminal.
- the relay has two coils each having a winding and a core, which can be driven separately. The two coils are displaced on a base body.
- the relay has a common negative terminal, a single yoke and a single armature.
- This system due to the use of two coils and a spring arrangement being placed in the center, still requires more volume (two coil windings) enclosing the armature, and an increased assembly complexity when achieving smaller form factors since the armature and spring are placed in-between motors.
- JPH06283088A discloses an electromagnetic relay according to the preamble of claim 1.
- the JPH06283088A discloses a small sized three states relay.
- Two electrical contacts, decoupled from each other, can be opened and closed with a single coil and two magnetic armatures.
- the two magnetic armatures anchored with the contacts are freely rotatable around supporting points and will move only in inwards direction from the resting position to the pole when the coil is energized. Only one armature is supposed to move to the pole when the coil is energized the other armature will stay in place.
- the relay can be built at low cost.
- This electromagnetic relay has only three possible configurations instead of four, with a stable central neutral position and two additional positions controlled by a magnetic coil.
- Such relay can be used for motor reverse applications, where the main advantage is to have a printed circuit board profile of smaller size, with less weight, less connections and lower cost.
- At least one magnet of the magnetic system is a three-pole magnet.
- the magnetic system of the relay is a coil winding around a core with a magnet on the base having three-poles centered between two armatures.
- the advantage of using a single three-pole magnet is the manufacturing simplicity since we use one bigger magnet instead of two small ones or two winded coils, coil bodies and cores.
- An additional advantage is that such system can be produced at low cost.
- Another advantage is that this approach will function with a relatively weak magnet.
- the magnetic system comprises two inversely polarized magnets having the core in the middle.
- the core is centered relatively to the magnet. This assures a symmetric polarization.
- the magnets have a North South North or South North South polarization; in this case the magnetic polarization intensity is not symmetric.
- This approach combined with the coupled mechanical system makes possible to use stronger magnets to reduce coil windings meanwhile maintaining contact forces and resilience to mechanical vibration, something not possible in standard approaches like latching relays or other mono-stable non mechanically coupled systems.
- the electromagnetic relay described in the present invention has one motor only instead of two. It needs only one signal source (driver), uses fewer parts (no second coil winding), has less parts with complex shapes for the performance required by the application and can be reduced in size and weight compared to today's state of the art.
- the coil body and winding play a relevant role in the final relay cost, due to copper consumption and size.
- the single relay with coil-winding covered by the present invention can be built at a very low cost and size.
- the iron core can have a circular or rectangular section. Having a circular section provides better magnetic flux efficiency but may be harder to create T-Shape geometry (core/pole) in a single part.
- the rectangular shape main advantage is that it makes possible to stamp a relatively square profile in a single part.
- the core can have a T shape formed by joining two parts or by one single part.
- the bottom faces of the core are connected to a magnet if a three-pole magnet is used or if not, each magnet is placed adjacent to a center iron part.
- the coil can be single or double but winded in the same coil body; Preferably, the motor is placed centered within two armatures on each side.
- the magnetic system purpose is to generate an attractive force on the rotating armature located in front of the pole.
- the magnetic force is obtained by the resultant of a magnetic field generated by a magnet and the energizing of a coil.
- the magnets purpose is to create an imbalance of forces on the two armatures which define in which direction the coupled system will move (left or right). Position and polarization of the magnets affect the behavior of the magnetic system.
- the magnets have to be placed in a way to affect the two branches of the magnetic system, i.e. either centered in regards to the core, but in this case a three-pole magnet would be more favorable, or positioned anywhere on the magnetic flux path in one of the two branches.
- the three-pole magnet is asymmetric in terms of polarization and is placed centered to the core, generating different flux intensities in each flux path which in turn generates a flux differential when pulling the armatures to the center pole (one branch will have stronger pull forces).
- the flux differential associated to the energizing of the coil in normal or reversed polarity, generates in each case a stronger magnetic on one of the sides; the use of a three-pole magnet reduces the number of components and respective cost of the final product.
- the use of two core enclosing magnets with reverse magnetization (North - South with North - South i.e.) provides the same function but with the advantage that stronger magnets can be used, which can help reducing the number of coil windings but adds part count.
- the two armatures can only rotate towards the central pole due to the magnetic influence.
- both armatures are coupled by the card and as the magnetic field attraction is higher with approximation to the pole, for each activation they will rotate in respect to a rotation hinge at a certain angle, in clockwise or counter clockwise direction, so as to reach the rotate right or rotate left states. Consequently, one armature will move towards the pole and the other will move away from it.
- the armatures rotate around the base or, an edge of the magnet or an edge of the iron.
- the armatures can vary in dimensions, i.e. height and width and thickness.
- the armatures are coupled to the non-conductive card each by a metal connection. Coupling will ensure having a stable system.
- the card, in particular the non-conductive card, will move to the left or to the right, giving rise to a hybrid rotational/translational motion system.
- the advantage of using a metal is that it is easier to process.
- connections may have different shapes, including for example L shape, or U shape.
- L shape The L shaped connection between armature and card reduce the degrees of freedom of motion between the parts.
- U shaped connection between two armatures and the card reduce the degrees of freedom and number of parts used. Both U and L shaped parts can be molded over the card.
- the armatures are in direct contact with the non-conductive card, which will improve the manufacturing process and reduce system complexity further.
- the function of the card is to connect mechanically the two springs and magnetic systems on both sides of the coil body.
- the two systems have to be electrically isolated for the relay to function and for preventing short-circuits.
- the armatures can be shaped in such way to be thinner at the top and at the bottom faces, and around the rotation hinge.
- the non-conductive card can be rigid or flexible.
- the advantage of being flexible is that this helps to reduce the overall stiffness of the armature-card connection, especially when using an L shaped metal connection.
- the advantage of being rigid is that it is easier to produce in the case of direct contact between armature and card.
- the central spring of each spring arrangement is in contact with one terminal spring on one side in a normally closed configuration and is simultaneously not in contact with the other terminal spring on the other side in a normally open configuration.
- the central spring of each spring arrangement is a spring which can come in contact with two terminals, called change-over (CO) spring.
- CO change-over
- the CO spring of each spring arrangement is in contact with one terminal spring on one side, in a normally closed (NC) configuration or NC terminal, and is simultaneously not in contact with the other terminal spring on the other side in a normally open (NO) configuration or NO terminal, all terminals having a contact element attached to it.
- NC normally closed
- NO normally open
- the four required NO and NC terminal springs can be reduced to one single copper strip part which is afterwards over-molded in plastic and bended in position afterwards.
- the two central springs are connected to the non-conductive card.
- the non-conductive card or slider or translational card bridging the two central springs has the function to couple together the motion of the CO springs and the motion of the armatures.
- the card is placed above the base part and the motor in between the CO springs.
- the spring arrangements make simultaneous movement in the left or right direction coupled to the armatures movement. Both armatures rotate simultaneously in the same direction but one armature will have a strong magnetic pull towards the pole face. The motion direction of the card is given by the armature which has the strongest magnetic attraction force.
- the advantage of this approach is to obtain three stable states out of one magnetic coil system.
- each spring arrangement includes one or more stopper elements to keep the contact spring in a pre-tensioned rest position.
- the stopper elements or base stoppers can be of three different types. The first stopper element is located near the two NO spring terminals and the second stopper is located near the NC spring terminal. Both stoppers have the function to prevent the spring terminals from moving inwards, towards the CO spring.
- the base stoppers are made from plastic or metal. Stoppers can either be a protrusion from the base part or independent elements built from other parts. The advantage of using plastic has to do with the easy processability, i.e. when the stopper is a protrusion of the base part, it is made out of a unitary injected part, without involvement of additional assembly process steps. Metal stoppers have increased strength resistance.
- the advantage of using independent parts is that not only the base but also the cover can be used as stoppers as well.
- the third type of base stopper in located near the two CO springs.
- This type of stopper has the effect of pre-tensioning the spring in one direction.
- This type of stopper is a protrusion from the base part that bends outwards gaining a pre-tension when the CO spring is fixed in the base part.
- Over-travel is defined by the displacement of the NO contact after the CO contact reaches it. Is the additional travel done by the CO spring to bring the NO contact out of the centered position.
- the two NC terminals can be set to be pre-tensioned against the CO spring to ensure vibration resistance. Pre-tension of CO contact on NC contact is obtained by their positioning and overall difference of stiffness between both CO springs versus both NC terminals. Terminals and spring have cuts on their surface in the bending area to help increase or decrease spring stiffness for adjusting relay performance and to improve fatigue resistance. Terminals can be flexible or stiff. In an alternative embodiment, pre-tension can also be reached with an S form element formed by a bending in the terminal itself.
- the left and right normally open terminals are connected together with a single output terminal and are stamped from a single metal strip and/or the left and right normally closed terminals are connected together with a different single output terminal, stamped from a single metal strip.
- This configuration allows having overtravel in a three state relay.
- all terminal springs can be produced in and from one single copper strip.
- Working with a single copper strip allows reducing the complexity of the process by producing four flexible terminals with a single stamping tool out of a single strip.
- a spring profile is stamped.
- the base is over-molded into the metal strip profile.
- the terminals are then folded of 90 degrees. All the parts are formed from a single stamping press. Therefore, no gluing process is needed to fix the terminals into the base.
- two metal springs are pressed against the base and glued to it.
- the electromagnetic relay described in the present invention shows significant reduction of size, i.e. up to 30% smaller than the smallest TE automotive relay, due to the fact that the volume occupied by one of two windings is omitted, reducing the overall size and PCB surface area.
- the relay 1 comprises a magnetic system consisting of a single, three-pole magnet 100 located at the base of the system.
- the core 110 is located in the middle, between the two armatures 115.
- the single coil 105 is winded around the coil body.
- the iron core in Fig.1 has a T-shape.
- the coil has to be energized, generating an asymmetric magnetic field that attracts mainly one of the armatures to the pole.
- the relay is shown in the alternative configuration with two magnets 165 or 175 which are located at the base of the system and can be inversely polarized, North South with South North (165) or not, North South with North South (175).
- the core is located in the center in respect to the two magnets.
- the armatures will rotate around a fixed axis, giving rise to a hybrid rotational/translational motion of the card 150 towards the right side, as it can be seen in Fig. 4 , or the left side, as in Fig. 5 .
- the armatures are connected to the card 150 by means of connections 155, which can be metallic connections, plastic connections, flexible or rigid. The connections can be built with different shapes.
- the card is then further connected to the spring arrangements 120.
- the central spring or CO spring 125 of the arrangement is in contact with the card.
- the central spring is located within the two terminal springs 130 and 135.
- Fig. 1 shows the relay in the resting position. When the relay is in a resting position, the CO spring is in contact with the terminal spring 130, to establish a NC configuration or connection, while the other terminal 135 is in a NO configuration.
- the elements 140 and 145 are stopper elements, or base stoppers, which help to prevent terminals from bouncing back at the CO spring.
- the element 140 and 145 acts as a stopper preventing the terminal springs from moving towards the CO spring.
- a further detail of a stopper element is shown in Fig 8 .
- the element 147 is a plastic element located at the base of the CO spring that increases the spring global stiffness, therefore helping maintaining the CO in a central position.
- the element 147 protrudes from the base and acts as support when the CO spring is in a pre-tensioned state.
- the dimension and shape of the element 147 can be modified in dependence of the desired overall system stiffness.
- FIG. 4 A situation in which the card moves to the right is illustrated in Fig. 4 .
- the coil When the coil is energized, a magnetic field is generated that adds up to the magnetic field generated by the magnets in the magnetic circuit.
- the polarity of the coil operation affects the direction of the flux added to the magnet generated flux, when using a three-pole approach the magnet polarization intensity has to be different on each side of the flux path to generate an offset in the force between the two armatures.
- Using a different approach with two magnets and aligned polarity North to South aligned with North to South means asymmetric
- the aim is to generate a differential in the attraction force from the magnet, resulting in the armature 115 on the left side to be attracted to the pole.
- the armature is connected to the card 150, this causes a shift of the card in the right direction which further pushes the CO spring 125 on the right side up to the point of getting in contact with the NO right terminal 135.
- the armature is also moved away from the pole on this side to reduce even further the attraction on this branch of the magnetic circuit.
- the plastic stopper 140 at this point ensures that the NO terminal spring 135 will come back to the initial resting position.
- the armature will have a weaker magnetic force since the corresponding flux is less intense.
- the CO spring will push furthermore the NC terminal 130 increasing the distance from to NO terminal 135.
- This situation translates in a movement of the slider 150 to the right, towards the right side NO terminal.
- the two contacts on the right side i.e. CO and NO
- a situation of over-travel zone is reached, meaning that the armature on the left side still has to travel a certain distance until a full contact to the core/pole part is established.
- the stiffness of the over-travel zone is generated by the design of the NO spring terminal; the travel will end by contact to a fixed plastic stopper.
- the magnetic system When the coil is reversely energized the card will lean to the left side as shown in Fig. 5 , corresponding to the inversion of the motor rotation. To move the card to the left or right side, the magnetic system has to be stronger than the two coupled mechanical contact arrangements.
- Fig. 4 shows the three-pole magnet configuration and the related generated magnetic flux path.
- the magnetic flux generated by the coil polarization is stronger on the left side and, as result the force will be stronger in the path aligned with the generated flux.
- the armatures on the opposite side will have a weaker magnetic force since the corresponding flux is less intense due to the increased distance, thus moving the card sideways, opening more on one side the magnetic circuit and closing it on the other. Both armatures will have a residual attraction to the pole, but as they are connected together by the card the system will remain stable due to the stiffness of the mechanical spring elements.
- the magnetic flux behavior has been also verified by magnetic simulation.
- Fig 6 is the graph representing the force vs distance curves.
- the initial distance between the armatures and the core corresponds to a neutral position.
- the distance between the right armature and the core decreases, the distance between the left armature and the core increases.
- To a decrease of the distance between armature and core on the right side corresponds an increase of the magnetic force acting on the right armature.
- the magnetic force on the right side will reach the highest values, on the left side there will be a residual magnetization.
- Fig. 7 shows two NO terminal springs (135), two NC terminals springs (130) and two CO terminal springs (125).
- the two NO and NC terminal springs are formed in a single copper alloy sheet. The shape is stamped, and afterwards over-molded in plastic to make the base part in an un-bended state. Afterwards, the contacts are soldered to the terminals and finally the terminals are bended towards their final shape.
- the main advantages of this approach are that we don't have to assemble several individual parts independently, the copper alloy strip is optimized since we don't need to cut off material to extract four spring terminals out of the sheet and handle them, and it is possible to obtain a single solid part instead of having four very small loose parts.
- the two NO terminals are connected together and the two NC terminals are also connected together. The advantage of this is that we use only one output connection for each pair (NO and NC).
- Coil energizing was performed with a standard voltage drop of 12V. After proving the functionality of the concept in general, the design work was initiated to fit everything into a smaller, more marketable size. The resulting design is about 30% smaller than the motor reverse relay available in the market and has considerably less components as it is using one magnetic system only instead of two.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Electromagnets (AREA)
Claims (16)
- Relais électromagnétique, spécialement pour les applications inversées de moteur ayant un système magnétique unique pour obtenir trois positions de commutation, le système magnétique comprenant :deux armatures (115), au moins un aimant (100 ; 165 ; 175), un coeur/pôle (110) et un système mécanique constitué de deux configurations de ressort (120), chaque configuration de ressort (120) comprenant un ressort central,caractérisé en ce quechaque configuration de ressort comprend en outre deux ressorts de borne,le relais ayant une carte non conductrice (150) utilisée pour ponter ensemble les deux ressorts centraux et ayant la fonction d'accouplement du mouvement des deux ressorts centraux et du mouvement des deux armatures (115), etledit au moins un aimant (100 ; 165 ; 175) du système magnétique étant configuré pour créer un déséquilibre de forces sur les deux armatures qui définissent le sens de mouvement des ressorts centraux accouplés et des armatures.
- Relais selon la revendication 1, caractérisé en ce que ledit aimant du système magnétique est un aimant à trois pôles (100).
- Relais selon la revendication 1 ou revendication 2, caractérisé en ce que le système magnétique comprend deux aimants polarisés inversement (165) ayant le coeur (110) au milieu.
- Relais selon la revendication 3, caractérisé en ce que les aimants ont un axe nord-sud avec une configuration sud-nord (165) ou un axe nord-sud avec une configuration nord-sud (175).
- Relais selon les revendications 1 à 4, caractérisé en ce que le coeur (110) du système magnétique peut avoir une section circulaire ou rectangulaire.
- Relais selon les revendications 1 à 5, caractérisé en ce que les armatures (115) tournent par rapport à une charnière de rotation sous un certain angle dans le sens des aiguilles d'une montre ou dans le sens contraire des aiguilles d'une montre.
- Relais selon les revendications 1 à 6, caractérisé en ce que chacune des armatures (115) est couplée à la carte non conductrice (150) par une connexion métallique.
- Relais selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les armatures (115) se trouvent en contact direct avec la carte non conductrice (150).
- Relais selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la carte non conductrice (150) peut être rigide ou souple.
- Relais selon les revendications 1 à 9, caractérisé en ce que le ressort central (125) de chaque configuration de ressort (120) est un ressort qui peut entrer en contact avec deux bornes.
- Relais selon les revendications 1 à 10, caractérisé en ce que lorsque le relais se trouve en position de repos, le ressort central (125) de chaque configuration de ressort (120) se trouve en contact avec l'un du ressort de borne (130 ou 135) sur un côté dans une configuration normalement fermée et ne se trouve simultanément pas en contact avec l'autre ressort de borne (130 ou 135) sur l'autre côté dans une configuration normalement ouverte.
- Relais selon les revendications 1 à 11, caractérisé en ce que les deux ressort centraux (125) sont connectés à la carte non conductrice (150).
- Relais selon les revendications 1 à 12, caractérisé en ce que les configurations de ressort (120) effectuent un mouvement simultané vers la gauche ou la droite accouplé au mouvement des armatures (115).
- Relais selon les revendications 1 à 13, caractérisé en ce que chaque configuration de ressort (120) comprend un élément d'arrêt pour maintenir le ressort de contact dans une position de repos en pré-tension.
- Relais selon les revendications 1 à 14, caractérisé en ce que les bornes gauche et droite normalement ouvertes (130, 135) sont reliées ensemble par une borne de sortie unique et sont estampées à partir d'une bande métallique unique et/ou en ce que les bornes gauche et droite normalement fermées (130, 135) sont reliées ensemble avec une borne de sortie unique différente et sont estampées à partir d'une bande métallique unique.
- Relais selon les revendications 1 à 15, caractérisé en ce que tous les ressorts de borne (130, 135), normalement ouverts et normalement fermés, peuvent être produits à partir d'une bande de cuivre unique.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16398001.4A EP3211653B1 (fr) | 2016-02-23 | 2016-02-23 | Relais électromagnétique pour trois positions de commutation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16398001.4A EP3211653B1 (fr) | 2016-02-23 | 2016-02-23 | Relais électromagnétique pour trois positions de commutation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3211653A1 EP3211653A1 (fr) | 2017-08-30 |
EP3211653B1 true EP3211653B1 (fr) | 2019-08-14 |
Family
ID=55484941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16398001.4A Active EP3211653B1 (fr) | 2016-02-23 | 2016-02-23 | Relais électromagnétique pour trois positions de commutation |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3211653B1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3678158B1 (fr) * | 2019-01-04 | 2021-07-21 | Tyco Electronics Components Electromecânicos, Lda. | Actionneur magnétique et relais electromagnétique |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE924873C (de) * | 1952-04-20 | 1955-03-10 | Zahnradfabrik Friedrichshafen | Schaltanlage fuer einen umsteuerbaren Elektromotor, insbesondere zur Verwendung in Kraftfahrzeugen |
FR2568056B1 (fr) * | 1984-07-20 | 1987-01-23 | Telemecanique Electrique | Electroaimant polarise a trois etats et circuit pour sa commande |
CA2113092A1 (fr) | 1991-07-09 | 1993-01-21 | Horst Hendel | Relais de permutation electromagnetique |
JPH06283088A (ja) * | 1993-03-26 | 1994-10-07 | Matsushita Electric Works Ltd | 電磁継電器 |
JPH09102258A (ja) * | 1995-10-05 | 1997-04-15 | Saitama Nippon Denki Kk | リレー |
KR20000069919A (ko) * | 1997-01-06 | 2000-11-25 | 지멘스 일렉트로미케니컬 컴포넌츠, 인코포레이티드 | 계전기 자석 유지 장치 |
DE19957805B4 (de) * | 1999-12-01 | 2005-07-28 | Tyco Electronics Logistics Ag | Elektrische Umschaltvorrichtung |
US8330564B2 (en) * | 2010-05-04 | 2012-12-11 | Tyco Electronics Corporation | Switching devices configured to control magnetic fields to maintain an electrical connection |
-
2016
- 2016-02-23 EP EP16398001.4A patent/EP3211653B1/fr active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3211653A1 (fr) | 2017-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104467341B (zh) | 电动致动器 | |
EP2673793B1 (fr) | Relais électromagnétique bistable équipé d'un moteur d'entraînement x | |
US9275815B2 (en) | Relay having two switches that can be actuated in opposite directions | |
JP4424260B2 (ja) | 電磁リレー | |
JP4190379B2 (ja) | 複合型電磁継電器 | |
CA2751585C (fr) | Ensemble relais electromagnetique | |
US9368304B2 (en) | Polarized electromagnetic relay and method for production thereof | |
JP5991778B2 (ja) | 電磁継電器 | |
WO2010008530A1 (fr) | Relais électromagnétique | |
EP2328165B1 (fr) | Relais électromagnétique | |
JP5821030B2 (ja) | 電磁リレー | |
EP3211653B1 (fr) | Relais électromagnétique pour trois positions de commutation | |
JP5549642B2 (ja) | 継電器 | |
CN111295729B (zh) | 电磁继电器和电磁装置 | |
KR970004308B1 (ko) | 2조의 전자계전기부를 갖는 소형, 경제적이고 안정한 유극전자계전기 | |
JP4289301B2 (ja) | 電磁継電器 | |
CN221596301U (zh) | 引出结构及磁保持继电器 | |
JP5995078B2 (ja) | 電磁リレー | |
CN117174534A (zh) | 引出结构及磁保持继电器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180228 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20181019 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20190322 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TYCO ELECTRONICS COMPONENTES ELECTROMECANICOS LDA Owner name: TYCO ELECTRONICS AUSTRIA GMBH |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TYCO ELECTRONICS AUSTRIA GMBH Owner name: TYCO ELECTRONICS COMPONENTES ELECTROMECANICOS LDA |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1168014 Country of ref document: AT Kind code of ref document: T Effective date: 20190815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016018542 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190814 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191216 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191114 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191114 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1168014 Country of ref document: AT Kind code of ref document: T Effective date: 20190814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191214 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016018542 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20211230 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20211230 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220118 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602016018542 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230223 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230901 |