EP3171786B1 - Vorrichtungen zur behandlung von herzinsuffizienz - Google Patents

Vorrichtungen zur behandlung von herzinsuffizienz Download PDF

Info

Publication number
EP3171786B1
EP3171786B1 EP15824456.6A EP15824456A EP3171786B1 EP 3171786 B1 EP3171786 B1 EP 3171786B1 EP 15824456 A EP15824456 A EP 15824456A EP 3171786 B1 EP3171786 B1 EP 3171786B1
Authority
EP
European Patent Office
Prior art keywords
proximal
retention
distal
region
retrieval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15824456.6A
Other languages
English (en)
French (fr)
Other versions
EP3171786A4 (de
EP3171786A1 (de
Inventor
Stephen J. Forcucci
Matthew J. Finch
Christopher J. Magnin
Edward I. Mcnamara
Carol A. Devellian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corvia Medical Inc
Original Assignee
Corvia Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corvia Medical Inc filed Critical Corvia Medical Inc
Publication of EP3171786A1 publication Critical patent/EP3171786A1/de
Publication of EP3171786A4 publication Critical patent/EP3171786A4/de
Application granted granted Critical
Publication of EP3171786B1 publication Critical patent/EP3171786B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M27/00Drainage appliance for wounds or the like, i.e. wound drains, implanted drains
    • A61M27/002Implant devices for drainage of body fluids from one part of the body to another
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2478Passive devices for improving the function of the heart muscle, i.e. devices for reshaping the external surface of the heart, e.g. bags, strips or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0218Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • A61B2017/00252Making holes in the wall of the heart, e.g. laser Myocardial revascularization for by-pass connections, i.e. connections from heart chamber to blood vessel or from blood vessel to blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00592Elastic or resilient implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00601Implements entirely comprised between the two sides of the opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00606Implements H-shaped in cross-section, i.e. with occluders on both sides of the opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00623Introducing or retrieving devices therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3966Radiopaque markers visible in an X-ray image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0063Implantable repair or support meshes, e.g. hernia meshes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0063Implantable repair or support meshes, e.g. hernia meshes
    • A61F2002/0072Delivery tools therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2478Passive devices for improving the function of the heart muscle, i.e. devices for reshaping the external surface of the heart, e.g. bags, strips or bands
    • A61F2002/249Device completely embedded in the heart wall
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/04General characteristics of the apparatus implanted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/12Blood circulatory system
    • A61M2210/125Heart

Definitions

  • the present teachings relate to devices for treating heart failures.
  • An aspect of the present teachings relates to a device that can be used to change (e.g., reduce) the blood pressure in a heart chamber, for example, by creating a shunt, and optionally regulating the flow of blood through the shunt in order to enhance the therapeutic effect of the shunt. It is also disclosed a method of utilizing such a device, for example, in treating congestive heart failure and its related conditions, for example, acute cardiogenic pulmonary edema caused by an elevated pressure in a left side chamber in the heart.
  • CHF Congestive heart failure
  • myocardial ischemia due to, e.g., myocardial infarction
  • cardiomyopathy e.g., myocarditis, amyloidosis
  • CHF causes a reduced cardiac output and inadequate blood to meet the needs of body tissues.
  • Treatments for CHF include: (1) pharmacological treatments, (2) assisting systems, and (3) surgical treatments.
  • Pharmacological treatments e.g., with diuretics, are used to reduce the workload of a heart by reducing blood volume and preload. While pharmacological treatments can improve quality of life, they have little effect on survival.
  • Assisting devices e.g., mechanical pumps, are used to reduce the load on a heart by performing all or part of the pumping function normally done by the heart. However, in a chronic ischemic heart, high-rate pacing may lead to an increased diastolic pressure, calcium overload, and damages to the muscle fibers.
  • There are at least three surgical procedures for treating a heart failure (1) heart transplant, (2) dynamic cardiomyoplasty, and (3) the Batista partial left ventriculectomy. These surgical treatments are invasive and have many limitations.
  • CHF is generally classified into systolic heart failure (SHF) or diastolic heart failure (DHF).
  • SHF the pumping action of a heart is reduced or weakened.
  • a normal ejection fraction (EF) the volume of blood ejected out of the left ventricle (stroke volume) divided by the maximum volume remaining in the left ventricle at the end of the diastole or relaxation phase, is greater than 50%.
  • EF normal ejection fraction
  • stroke volume the volume of blood ejected out of the left ventricle
  • EF is decreased to less than 50%.
  • a patient with SHF may have an enlarged left ventricle because of cardiac remodeling developed to maintain an adequate stroke-volume. This pathophysiological phenomenon is often associated with an increased atrial pressure and an increased left ventricular filling pressure.
  • DHF is a heart failure without any major valve disease even though the systolic function of the left ventricle is preserved. Generally, DHF is a failure of the ventricle to adequately relax and expand, resulting in a decrease in the stroke volume of the heart. Presently, there are very few treatment options for patients suffering from DHF. DHF afflicts between 30% and 70% of patients with CHF.
  • US 8,740,962 and US 8,460,372 both describe prostheses that may be implanted in an opening in the septal wall of the heart to provide a shunt or channel permitting blood to flow from the left atrium into the right atrium.
  • These devices collapse to a smaller configuration for delivery to the heart via a catheter and expand to a larger configuration (e.g., through self-expansion) upon deployment across an opening in the septal wall.
  • Some of these devices have central cores with sufficient radial strength to maintain the patency of the septal wall opening and flexible anchors on both sides of the central core to contact the septal wall for atraumatic anchoring of the device.
  • Some of these devices have retrieval legs and other features providing attachment points for delivery and/or retrieval for possible removal or redeployment.
  • US2012/0265296 discloses a system for treating a heart condition in a patient comprising a body element comprising a cylindrical core segment defining a passage, a first annular flange adapted to engage a first surface of an atrial septum of the patient, and a second annular flange adapted to engage a second surface of the atrial septum of the patient.
  • the clinician may be desirable for the clinician to be able to observe the deployed configuration of elements of the device within the heart, such as the anchoring or retention features, prior to releasing the device from the delivery system.
  • the portions of the prosthesis that attach to the delivery system may move out of the blood flow path through the prosthesis.
  • the prosthesis attachment elements may be movable back toward the center of the prosthesis so that the prosthesis can be collapsed and drawn into the retrieval catheter.
  • the delivery catheter may need to approach the implantation site along an acute angle with respect to the septal wall, it may be desirable for the implant attachment features to be flexible enough to permit the implant to bend away from the longitudinal axis of the catheter during deployment of the implant into the septal wall. Finally, it may be useful for any retrieval features on the device to operate in combination with a strong central core and flexible anchors or retention segments.
  • the invention provides a device for implanting into an atrial septum of a patient, the device having a core region with a plurality of core segments surrounding a central opening, the core region being adapted and configured to be disposed in an opening in the atrial septum; a distal retention region with a plurality of distal retention segments extending from the core segments, the distal retention segments being adapted to engage tissue on a left atrial side of the septal wall; a proximal retention region having a plurality of proximal retention segments extending from the core segments, the proximal retention segments being adapted to engage tissue on a right atrial side of the septal wall; and a retrieval region with a plurality (e.g., two or four) of retrieval members extending from the proximal retention segments, each retrieval member having a connector at a proximal end, the connector being adapted to connect to a delivery system.
  • a plurality e.g., two or four
  • the connectors are disposed more radially inward in the delivery configuration than in the deployed configuration.
  • the connectors may be, e.g., eyelets.
  • the connectors may extend radially inward from an end of the retrieval members in the deployed configuration. In some embodiments, the connectors may extend distally from an end of the retrieval members in the deployed configuration.
  • the device also has a retrieval configuration in which the connectors are disposed radially inward from deployed configuration positions and the proximal and distal retention segments are each in substantially same positions as in the deployed configuration.
  • the retrieval members may extend further proximally from the proximal retention region in the delivery configuration than in the retrieval configuration.
  • the device can be used to regulate the pressure in a heart chamber.
  • the device can be used to (a) change an elevated chamber pressure and (b) prevent embolization from the right to left atria in a patient who suffers from CHF or has a Patent Foramen Ovale (PFO) or an Atrial Septal Defect (ASD) but needs a residual flow between the atria so as not to traumatize the heart hemodynamics.
  • PFO Patent Foramen Ovale
  • ASD Atrial Septal Defect
  • distal and proximal refer portion of the device, they mostly refer to a device in its elongated deliver configuration.
  • proximal shall mean close to the operator (less into the body) and “distal” shall mean remote from the operator (further into the body). In positioning a medical device from a downstream access point, “distal” is more upstream and “proximal” is more downstream.
  • aperture refers to any anatomical anomalies such as PFO, ASD, VSD, or an anatomical feature (such as an opening in the septal wall) created for the purpose of creating a shunt.
  • substantially means plus or minus 10%.
  • a medical device includes an open central core region and two retention regions.
  • the medical device is positioned through an aperture in a septum, creating a shunt, for example, between the left and right atria.
  • the two retention regions of the medical device are disposed on the opposite sides of the septum.
  • a medical device according to the present teachings is extended into an elongated profile for a percutaneous delivery and resumes a preset profile in vivo after deployment.
  • An embodiment of the device in the present teaching has a distal retention portion configured to be positioned against the left atrial side of the septum, a proximal retention portion configured to be positioned against the right atrial side of the septum, and a central core portion disposed between the distal and proximal retention portions and configured to create a conduit for blood to flow through.
  • An embodiment of the device in the present teaching has an elongated configuration for delivering through a catheter system and an expanded configuration securing the device across the septum.
  • the device is configured to transition from a delivery configuration to a deployed configuration through self-expansion or mechanical actuations.
  • both the distal and proximal retention portions of the device are delivered in radially contracted configurations and expand radially while the device contracts longitudinally.
  • the central core portion is delivered in a radially contracted configuration and expands radially during deployment.
  • one or both of the distal and proximal retention portions of the device contract longitudinally.
  • one of or both of the deployed distal and proximal retention portions has a generally flange-like profile.
  • the generally flange-like profile is made of a multiple segments or elements extending in a generally radial configuration from the central core portion.
  • the deployed distal retention portion is configured to be positioned against one side of the atrial septum. In some embodiments, the deployed proximal retention portion is configured to be positioned against one side of the atrial septum. In certain embodiments, both the deployed distal retention portion and the deployed proximal retention portion are configured to be positioned against both sides of the atrial septum. According to some embodiments, both the deployed distal and proximal retention portions apply a compression force against the septum from both sides, thereby securing the device across the septum.
  • Figures 1-6 show an embodiment of a pressure regulating device 10 according to this invention.
  • Figures 1 and 2 show the device 10 in a deployed configuration.
  • Figure 3 shows device 10 in a delivery configuration.
  • a distal retention region 12 extends distally from a central core region 16 via a distal transition region 14, and a proximal retention region 20 extends proximally from core region 16 via a proximal transition region 18.
  • device 10 (including distal retention region 12, central core region 16 and proximal retention region 20) is radially compressed and axially elongated compared to the deployed configuration shown in Figures 1 and 2 .
  • Device 10 may be delivered via a delivery catheter (not shown) for deployment in the atrial septum of the patient's heart.
  • the central core region 16 includes an opening 24 to permit blood to flow through the device from the left atrium to the right atrium.
  • the radially expanded proximal retention region 20 has a plurality of flexible retention segments 60 that atraumatically engage the septal wall in the right atrium
  • the radially expanded distal retention region 12 has a plurality of flexible retention segments 46 that atraumatically engage the septal wall in the left atrium.
  • the proximal and distal retention regions may cooperate to apply a compressive force to the septal wall.
  • the proximal and distal retention regions do not apply a compressive force to the septal wall.
  • the core region may also apply a radially outward force on the portion of the septal wall through which it extends. In other embodiments, the core region does not apply a radially outward force on the portion of the septal wall through which it extends.
  • the radial span of the distal retention region 12 in the deployed configuration may be the same as the radial span of the proximal retention region 20. In other embodiments, the radial span of the distal retention region 12 may be greater than the radial span of the proximal retention region to, e.g., account for the typically greater pressure in the left atrium compared to the pressure in the right atrium.
  • the distal retention region has a general diameter of 8-20 mm upon deployment. In another embodiment, the deployed proximal retention region has a general diameter of 8-20 mm upon deployment. According to some embodiments, upon deployment, the diameter of the deployed core region of the device is about 25-50% of the overall diameter of the deployed distal retention region.
  • the retrieval region 22 includes retrieval legs 74 extending proximally and radially inwardly from the radially outward ends of the proximal retention segments 60, optionally via intermediate legs 76 disposed between the retrieval leg 74 and the proximal retention segments 60.
  • each secondary retrieval leg 76 extends proximally from the proximal end 64 of a proximal retention segment 60.
  • a distal end 78 of a secondary retrieval leg 76 joins the proximal end 64 of a proximal retention segment 60 where two adjacent proximal retention struts 66 join.
  • Loops or eyelets 72 at the proximal ends of the retrieval legs 74 serve as connectors for the delivery and/or retrieval system. As shown in Figures 1 and 2 , in the device's deployment configuration the eyelets 72 are proximal to and radially outward from the outer boundary of opening 24 and therefore out of the path of any blood flowing through opening 24. In this embodiment, eyelets 72 are oriented in a plane generally perpendicular to the longitudinal axis of the core region 16.
  • Figure 3 is a perspective view of device 10 in its collapsed delivery configuration. As shown, the radial dimensions of the proximal retention region 20, central core region 16 and distal retention region 12 are less in the delivery configuration than in the deployed configuration shown in Figures 1 and 2 .
  • the retrieval leg 74 and eyelets 72 extend proximally from the proximal retention region and connect to a delivery or retrieval system (not shown).
  • a delivery system advances device 10 through and out of a catheter.
  • the distal retention region 14 of device 10 begins to self-expand in the left atrium.
  • the core region 16 and proximal retention region 20 expand as they emerge from the catheter in the septal wall opening and right atrium, respectively, all while the eyelets 72 of the retrieval legs 74 are still connected to the delivery system.
  • distal retention segments 46, core region 16 and proximal retention segments 60 are substantially in their deployed configurations even while retrieval legs 74 extend proximally into the delivery catheter (not shown).
  • retrieval legs 74 have emerged from the delivery catheter and have begun moving toward their expanded at-rest shapes; eyelets 72 are radially inward from their at-rest positions because they are still connected to the delivery system. This position is the retrieval configuration of the device 10. After release from the delivery system, retrieval legs 74 and eyelets 72 move radially outward to their at-rest positions radially outside of the devices opening 24 (i.e., the deployed configuration shown in Figure 1 ).
  • the retrieval device grasps eyelets 72, moving them radially inward to the retrieval configuration. Device 10 is then pulled proximally into the retrieval catheter.
  • Figure 6 is a two-dimensional view of a portion of the structure of a portion of device 10 in its elongated delivery configuration and in flattened format solely for the purpose of showing various components of the device.
  • the central core region 16 of the device 10 is formed of a continuous strut 26 in a wavy profile with hairpin turns at each end of the core region 16.
  • the strut 26 extends longitudinally from a first end 28 of the core region 16 toward the second end 30.
  • the strut Upon reaching a second end of the core region 16, the strut makes a "U" turn, then extends longitudinally back to the first send 28.
  • the strut 26 Upon reaching the first end 28 of the core region 16, the strut 26 makes another "U” turn and extends longitudinally and distally toward the second end 30 of the core region 16. This wavy pattern repeats and continues throughout the tubular surface of the core region 16. The ends of the strut 26 join the beginning of the strut 26 to form a closed loop. According to some embodiments, a gap 32 exists between two adjacent portions of the strut 26. According to some embodiments, the profile, including but not limited to shape, width and thickness of the strut 26 may vary at in some locations, either for the purposes of ease of manufacturing or reduced stress concentration after implantation.
  • the gap 32 in the delivery configuration is small such that the adjacent portions of the strut 26 are packed tightly close to one another and that the gap 32 in the deployed configuration is enlarged such that the adjacent portions of the strut 26 have moved away from one another so that the core region 16 assumes a larger profile.
  • Core region 16 with a wave strut pattern can be fabricated by cutting a tube by laser or another method known to those skilled in the art.
  • the core region could adopt either open-cell or closed-cell designs of any patterns known to those skilled in the art.
  • the diameter of the core region increases and the core region reduces in length, sometimes slightly.
  • the overall length of the core region remains the same.
  • the device 10 in its delivery configuration is configured to be delivered and deployed through a 5 French - 12 French catheter.
  • the elongated device 10 has a diameter ranging from about 1 mm to about 4 mm
  • the central core region 16 in a deployed configuration has a diameter ranging from about 3 mm to about 12 mm, or from about 100% to about 300% of that of the core region 16 in its delivery configuration.
  • the strut 26 of the shunt portion 16 has a width of about 0.005 inch to about 0.030 inch (0.013cm to about 0.076cm).
  • the gap 32 between two adjacent portions of the strut 26 is from about 0" to about 0.010"" (about 0cm to about 0.025cm), and upon deployment, the gap 32 between two adjacent portions of the strut 26 is up to about 0.075" (0.191cm).
  • the device 10 in its delivery configuration has an overall length of about 5-25 mm, with the length of the core region 16 being 0.5-5mm.
  • the length of the core region 16 ranges from about 1 mm to about 7 mm, with the overall length of the device 10 ranging from about 3mm to about 12mm.
  • the length of the core region 16 of a deployed device ranges from about 30 to about 70% of the length of the device in the deployed profile.
  • the distal end 28 of the core region 16 of the device 10 extends from a distal transition portion 14.
  • the distal transition portion 14 includes a plurality of distal transition struts 34 each extending from the distal ends 28 of the core region 16 and terminating at the proximal ends 42 of the distal retention segment 46 of the device 10.
  • a proximal end 38 of each distal transition strut 34 joins the core region 16 at the distal end 28 of each hairpin turn
  • a distal end 36 of each distal transition struts 34 joins the distal retention segments 46 as shown in Figure 6 .
  • the distal transition portion 14 When the device 10 is at its delivery configuration, such as illustrated in Figure 3 , the distal transition portion 14 has a small generally tubular profile with adjacent struts 34 packed closely and parallel to one another. The distal transition portion 14 is also configured to transform from a delivery configuration to a deployed configuration. During such a transition, a distal section of the struts 34 extends radially outwardly, and a proximal section of the struts 34 expands, as the core region 16 expands radially into its deployed profile.
  • the distal transition struts 34 bend at a location so that the core region 16 of the device 10 has a tubular profile at or near the proximal end 28 of the distal transition struts 34, and at least a part of the distal retention region 12 of the device 10 has a radially outwardly relatively disc-like profile that is at an angle, sometimes perpendicular, to the longitudinal axis of the core region 16 at the distal end 30 of the distal transition struts 34.
  • the bending location on the distal transition struts 34 has a narrower width ("waist") than another portion, sometimes the remaining portions, of the struts 34.
  • the lead-ins from both directions generally have a curved configuration.
  • the bending location has curved lead-ins from both ends, other geometries, shapes, or profiles for narrowing the strut width at the bending location could also be used.
  • what has been disclosed should not be viewed as limiting to the scope of the present teaching.
  • the waist has a width from about 0.003" to about 0.015" (about 0.008cm to about 0.038cm), or from about 30% to about 100% of the width of the widest portion of the distal transition struts 34. Additionally, in order to control the bending direction, the width of the distal transition struts 34 can be greater than the thickness. Additionally, the length of the distal transition portion, as well as the width of the waist could vary according to the overall size of the device and design criteria.
  • the device 10 includes a distal retention region 12.
  • the distal retention region 12 of the device 10 has an expanded disc-like profile when the device is deployed, as illustrated in Figure 1 , and a collapsed generally tubular profile during delivery, as illustrated in Figure 3 .
  • the distal retention region 12 includes multiple retention segments 46 each including or formed by two adjacent distal retention struts 40. As shown, two separate struts 40 extend distally from the distal ends 36 of distal transition struts 34. The proximal ends 42 of the two distal retention struts 40 are side by side from each other, with a gap 48 in between.
  • the distal ends 44 of two distal retention struts 40 extend from the distal end 36 of two adjacent distal transition struts 34 connected to each other, forming a distal retention segment 46.
  • the distal retention segment 46 formed by two adjacent distal retention struts 44 in delivery configuration, is relatively elongated with two adjacent distal retention struts 44 extending close to each other, and in the deployed configuration, the distal retention segment 46 formed by two adjacent distal retention struts 44 is expanded in width with the proximal ends 42 of the two distal retention struts 40 spreading apart and shortened in overall length, with the gap 48 between the two adjacent distal retention struts 44 widening.
  • the distal retention region 12 radially collapses with each distal retention segment 46 orienting longitudinally along the longitudinal axis of the core region 16.
  • the distal retention segments 46 expand radially with each distal retention segment 46 forming a plane at an angle, for example, perpendicular, to the longitudinal axis of the core region 16.
  • the distal retention region 12 is configured to be deployed inside the left atrium with each of the distal retention segments 46 located at the left atrial side of the atrial septum. In certain embodiments, the distal retention opposes the left atrial side of the atrial septum.
  • the distal retention region 12 upon deployment, forms a disc-like configuration, with at least a portion, sometimes a substantial portion, of the surface area of each retention segment 46 contacting the atrial septum.
  • the distal retention region 12 forms an umbrella-like configuration with at least a portion, sometimes a substantial portion, of the surface area of each retention segment 46 doming away from the atrial septum.
  • one or more distal ends of the distal retention segments 46 can contact the atrial septum.
  • the distal retention region 12 forms a generally straight slope profile with at least a portion, sometimes a substantial portion, of the surface area of each distal retention segment 46 not contacting the atrial septum.
  • one or more distal ends of the distal retention segments 46 remain furthest away from the atrial septum.
  • One skilled in the art should understand that other suitable profile could also be used.
  • the exemplary embodiments discussed, shown, or mentioned herein should not be viewed as limiting.
  • the distal ends 50 of each distal retention segment 46 includes a foot 52, as illustrated in Figure 6 .
  • the foot 52 is configured to prevent the distal ends 50 of the distal retention segments 46 from penetrating, piercing, or eroding into the septal tissues.
  • the foot 52 is configured to provide a larger surface area for contacting the tissues and/or reducing the force that the distal retention segments 46 apply onto the tissues.
  • the foot 52 is also configured to incorporate a radiopaque marker. For example, as illustrated in Figure 6 , a radiopaque marker can be wedged into a hole on each of the feet 52.
  • the device 10 includes a proximal transition portion 18. Similar to the distal transition portion 14, the proximal transition portion 18 includes a plurality of proximal transition struts 54 each extending from the proximal end 30 of the core region 16 and terminating at the distal end 62 of the proximal transition strut 66 of the device 10. As illustrated in Figure 6 , a distal end 56 of each proximal transition strut 54 joins the core region 16 at the proximal end 30 of each hairpin turn and joins the proximal retention segments 60 at the distal end 62 of the proximal transition strut 66.
  • the proximal transition portion 18 When the device 10 is at its delivery configuration, the proximal transition portion 18 has a small generally tubular profile, such as illustrated in Figure 3 , with adjacent struts 54 packing closely and parallel to each other.
  • the proximal transition portion 18 is also configured to transform from a delivery configuration to a deployed configuration. During such transition, a proximal section of the struts 54 extends radially outwardly, and a distal section of the struts 54 expands as the core region 16 expands radially into its deployed configuration.
  • the proximal transition struts 54 bend at a location so that the core region 16 of the device has a tubular profile at the distal end 56 of the proximal transition struts 54, and the proximal retention region 20 of the device 10 have a radially outward umbrella-shaped profile that is generally at an angle, sometimes perpendicular, to the longitudinal axis of the core region 16 at the proximal end 58 of the proximal transition struts 54.
  • the bending location on the proximal transition struts 54 has a narrower width ("waist") than another portion, sometimes the remaining portions, of the struts 54.
  • the lead-ins from both directions have a generally curved configuration.
  • the bending location has a generally curved lead-ins from both ends of the waist, other geometries, shapes, or profiles for narrowing the strut width at the bending location could also be used. Thus what has been disclosed should not be viewed as limiting.
  • the waist has a width from about 0.006" to about 0.030" (about 0.015cm to about 0.076cm), or from about 25 to about 80% of the width of the widest portion of the proximal transition struts 54.
  • the width of the proximal transition struts 54 can be greater than the thickness of the proximal transition struts.
  • the proximal transition struts 54 are shorter and narrower than the distal transition struts 34 of the device.
  • the proximal transition struts 54 can have the same length and/or width as the distal transition struts 34.
  • the device 10 can also have a proximal retention region 20.
  • the proximal retention region 20 of the device 10 has an expanded umbrella-like profile when deployed, as illustrated in Figure 1 , and a collapsed generally tubular profile during delivery, as illustrated in Figure 3 .
  • the proximal retention region 20 includes multiple proximal retention segments 60.
  • each of the proximal retention segments is formed by two adjacent proximal retention struts 66. As shown in the figure, two separate struts 66 extend proximally from the proximal end 58 of a proximal transition strut 54.
  • the distal ends 62 of the two proximal retention struts 66 are located side by side from each other with a gap 70 in between. According to one embodiment, the distal ends 62 of two proximal retention struts 66 extended from the proximal end 58 of two adjacent proximal transition struts 54 connects to each other, forming a proximal retention segment 60.
  • the proximal retention segment 60 formed by two adjacent proximal retention struts 66 are relatively elongated with two adjacent proximal retention struts 66 extending close to each other; and in deployed configuration, the proximal retention segment 60 formed by two adjacent proximal retention struts 66 are expanded in width and shortened in the overall length with the gap 70 between two adjacent proximal retention struts 66 widened.
  • the proximal retention portion 20 when the device 10 is in its delivery configuration, the proximal retention portion 20 radially collapses with the proximal retention segments 60 orienting longitudinally along the longitudinal axis of the core region 16, and when the device 10 is in its deployed configuration, the proximal retention portion 20 radially expands with the proximal retention segment 60 curving distally, for example as illustrated in Figure 1 .
  • a first section of each proximal retention segment 60 curves distally toward the atrial septum forming a first curve
  • a second section of each proximal retention segment 60 curves proximally away from the atrial septum forming a second curve, with a portion of each proximal retention segment 60 between the first and second sections of each proximal retention segment 60 contacting the septal tissue.
  • the curved deployment configuration of the proximal retention region 20 allows the device to accommodate various atrial septum thickness.
  • the curved proximal retention segments 60 can fully assume its pre-defined curved deployment configuration.
  • the curved proximal retention segments 60 can oppose the atrial septum, and when the septum pushes back, the curved proximal retention segments 60 can deflect at their first curve while maintaining the device 10 in place.
  • curving the second section of the deployed proximal retention region 20 away from the atrial septum enlarges the contacting surface area with the septal tissue, thereby preventing any trauma to the tissue.
  • the second curve of the proximal retention segments 60 can start at any location near or at the proximal ends 64 of each retention segment 60.
  • the proximal retention region struts 66 in a delivery configuration, have a similar width as the distal retention struts 40. In other embodiments, the proximal retention struts 66 have a different width than the distal retention struts 40. In yet another embodiment, the width of the strut 26 of the core region 16 is greater than that of the proximal retention struts 66 and that of the distal retention struts 40, so that the core region 16 is more rigid than the proximal and distal retention portions 12, 20.
  • the stiff core region 16 pushes the surrounding tissue radially outwardly, thereby maintaining the size of the opening for the treatment, while the relative pliable proximal and distal retention portions 12, 20 gently contact the septal tissue without penetration.
  • the proximal retention struts 66 are longer than some of the distal retention struts 40. In some embodiments, all of the proximal retention struts are longer than the distal retention struts. In some embodiments, the distal retention struts 40 have a length of about 2-7mm. In some embodiments, the proximal retention struts 66 have a length of about 2-14mm.
  • the specific length of the distal retention struts 40 and/or proximal retention struts 66 should be determined by, inter alia, the overall size of the device, which in turn is determined by the needs of a patient.
  • the proximal retention struts 66 are configured so that, upon full deployment, its first section curves toward the septum, forming a space between a portion of the strut and septum, and the most radially outward portion of the proximal retention struts 66 is at or near the most radially outward portion of the distal retention struts 40 on the opposite side of the septum.
  • the device 10 is fabricated from a tube.
  • all portions of the device 10, such as the distal retention portion 12, the distal transitional portion 14, the core region 16, the proximal transitional portion 18, the proximal retention portion 20, and proximal retrieval portion 22, have a same thickness.
  • the thickness of the tube, and thus the thickness of each portion of the device is from 0.005-0.007 inch (0.013 cm to 0.018cm).
  • at least one portion of the device 10 has a different thickness than the rest of the device. This, in some circumstances, can be achieved by removing material from other portions.
  • the secondary retrieval legs 76 orient longitudinally along the longitudinal axis of the core region 16. In some embodiments, two adjacent secondary retrieval legs 76 extend close to each other.
  • the secondary retrieval strut 76 extends radially inwardly, forming a curved profile with the distal ends of the secondary retrieval legs 76 located at a radially outward location, and the proximal of the secondary retrieval legs 76 located at a radially inward location relative to the distal end of the secondary retrieval legs 76.
  • the distal ends of the secondary retrieval legs 76 are separate from one another, as each of the distal ends connecting to the proximal end of a deployed proximal retention segment 60.
  • the proximal ends of the secondary retrieval legs 76 are configured to be at locations radially inward from the distal ends of the secondary retrieval legs 76 and radially outward from the opening 24 of the deployed core region 16.
  • the deployed secondary retrieval legs 76 are proximal to the deployed proximal retention segments 60. Looking from the proximal end of a deployed device, as illustrated in Figure 1 , every two joined deployed secondary retrieval legs 76 are located between two deployed proximal retention segments 60.
  • the width of each portion, such as the distal retention portion 12, the distal transitional portion 14, the core region 16, the proximal transitional portion 18, the proximal retention portion 20, and proximal retrieval portion 22, of the device 10 is the same as the thickness of the portion.
  • the width of the distal retention portion 12, the distal transitional portion 14, the core region 16, the proximal transitional portion 18, and the proximal retention portion 20, are greater than the thickness of these portions.
  • the width of the proximal retrieval portion 22 is the same as the thickness.
  • the curving and bending of such portions can be achieved in a controlled manner, without risking the struts being twisted during the process.
  • the thickness and width can be the same.
  • the thickness of each portion of the device ranges from about 0.003" to about 0.09" (0.008cm to 0.23cm).
  • the retrieval eyelets 72 are configured to be attached to a flexible delivery mechanism.
  • a delivery filament such as a wire or a suture, extends through one or more retrieval attachment mechanisms with both ends of the filament being controlled by a clinician. Upon deployment, one end of the delivery filament is loosened and the other end of the delivery filament is retracted proximally so that the entire flexible delivery filament is removed from the body.
  • a flexible delivery filament allows the device fully deploy at a treatment location, while still under the control of the clinician, so that the deployment can be assessed and the device can be retrieved if necessary.
  • the retrieval eyelets 72 are configured to be attached to a relatively rigid delivery mechanism.
  • a delivery shaft with notches at its distal end for hosting the retrieval eyelets 72.
  • the retrieval eyelets 72 is secured inside the notch, and upon deployment, the retrieval eyelets 72 are released from the notch.
  • a relatively rigid delivery shaft can push the device distally inside the delivery catheter and to deploy device.
  • the device 10 includes eight proximal retention segments 60, eight secondary retrieval legs 76, four primary retrieval legs 74, and two retrieval attachment mechanisms 72.
  • Each retrieval attachment mechanism 72 joins a proximal junction formed by two adjacent primary retrieval legs 74.
  • Each distal end 82 of the two adjacent primary retrieval legs 74 further joins a proximal junction 80 formed by two adjacent secondary retrieval legs 76.
  • Each distal end 78 of the said two adjacent secondary retrieval legs 76 joins a proximal end 64 of a proximal retention segment 60.
  • Figure 6 illustrates the proximal ends 84 of two adjacent primary retrieval legs 74 joining each other first and then joining the retrieval attachment mechanism 72
  • proximal ends 84 of two adjacent primary retrieval legs 74 could join a retrieval attachment mechanism 72 individually, without joining to each other first.
  • the exemplary illustration should not be viewed as limiting.
  • the device 10 is pre-set into its deployed profile and stretched into an elongated profile, such as shown in Figure 3 , for percutaneous delivery. Upon deployment, the device will recover to its pre-set deployed configuration once free from constraint of the delivery catheter.
  • the maximum ratio of the thickness (t) of a curved portion of the device e.g., the transition from proximal retention segments 60 to secondary retrieval legs 76
  • the radius "R" of that curved portion is 0.12, i.e., t/2R ⁇ 12%. Maintaining this ratio will ensure the maximum recovery of the intended curvature.
  • Figures 7-13 illustrate another exemplary pressure regulating device 100 for, e.g., treating elevated left atrial pressure in a patient's heart.
  • Figure 7 is an end view of the deployed configuration of the device 100.
  • Figure 8 is an exemplary deployed configuration of the device 100.
  • Figure 9 is a side view of the deployed configuration of the device 100.
  • Figure 10 shows device 100 in a delivery configuration in which all portions of the device 100 are aligned in a generally linear profile and the retrieval attachment mechanisms overlap with each other.
  • Figure 11 is an illustrative view of a portion of the device 100 in flattened format solely for the purpose of showing various components of the device.
  • Device 100 may be delivered via a delivery catheter (not shown) for deployment in the atrial septum of the patient's heart.
  • the device 100 includes a distal retention portion 112, a distal transition portion 114, a core region 116, a proximal transition portion 118, a proximal retention portion 120, and a proximal retrieval portion 122.
  • Core region 116, distal transition struts 134, and distal retention portion 112, proximal transition portion 118, proximal retention portion 120, and secondary retrieval struts 176 and retrieval attachment mechanisms 172 shown in Figures 7-11 share some similarity to those illustrated with respect to the device 10 described in connection with Figures 1-6 .
  • the central core region 116 includes an opening 124 to permit blood to flow through the device from the left atrium to the right atrium.
  • the proximal retention region 120 has a plurality of flexible retention segments 160 that atraumatically engage the septal wall in the right atrium
  • the distal retention region 112 has a plurality of flexible retention segments 146 that atraumatically engage the septal wall in the left atrium.
  • the proximal and distal retention regions may cooperate to apply a compressive force to the septal wall.
  • the proximal and distal retention regions do not apply a compressive force to the septal wall.
  • the core region may also apply a radially outward force on the portion of the septal wall through which it extends. In other embodiments, the core region does not apply a radially outward force on the portion of the septal wall through which it extends.
  • the radial span of the distal retention region 112 in the deployed configuration may be the same as the radial span of the proximal retention region 120. In other embodiments, the radial span of the distal retention region 112 may be greater than the radial span of the proximal retention region to, e.g., account for the typically greater pressure in the left atrium compared to the pressure in the right atrium.
  • the distal retention region has a general diameter of 8-20 mm upon deployment. In another embodiment, the deployed proximal retention region has a general diameter of 8-20 mm upon deployment. According to some embodiments, upon deployment, the diameter of the deployed core region of the device is about 25-50% of the overall diameter of the deployed distal retention region.
  • the retrieval region 122 includes retrieval legs 174 extending proximally and radially inwardly from the radially outward ends of the proximal retention segments 160 via intermediate legs 176 disposed between the retrieval leg 174 and the proximal retention segments 160.
  • each secondary retrieval leg 176 extends proximally from the proximal end of a proximal retention segment 160.
  • a distal end of a secondary retrieval leg joins the proximal end of a proximal retention segment 160 where two adjacent proximal retention struts join.
  • Loops or eyelets 172 at the ends of the retrieval legs 174 serve as connectors for the delivery and/or retrieval system.
  • eyelets 172 are proximal to and radially outward from the outer boundary of the opening 124 and therefore out of the path of any blood flowing through opening 124.
  • eyelets 172 are oriented in a plane generally parallel to the longitudinal axis of the core region 116.
  • Figure 10 is a side view of device 100 in its collapsed delivery configuration. As shown, the radial dimensions of the proximal retention region 120, central core region 116 and distal retention region 112 are less in the delivery configuration than in the deployed configuration shown in Figures 7-9 .
  • the retrieval legs 174 and eyelets 172 extend proximally from the proximal retention region and connect to a delivery or retrieval system (not shown).
  • a delivery system advances device 100 through and out of a catheter.
  • the distal retention region 114 of device 100 begins to self-expand in the left atrium.
  • the core region 116 and proximal retention region 120 expand as they emerge from the catheter in the septal wall opening and right atrium, respectively, while the eyelets 172 of the retrieval legs 174 are still connected to the delivery system.
  • distal retention segments 146, core region 116 and proximal retention segments 160 are substantially in their deployed configurations even while retrieval legs 174 extend proximally in an elongated profile into the delivery catheter (not shown) with the eyelets 172 overlapping each other and connected to a delivery system (not shown).
  • retrieval legs 174 have emerged from the delivery catheter and have begun moving toward their expanded at-rest shapes; eyelets 172 are radially inward from their at-rest positions because they are still connected to the delivery system. This position is the retrieval configuration of device 100. After release from the delivery system, eyelets 172 move radially outward to their at-rest positions radially outside of the devices opening 124 (i.e., the deployed configuration shown in Figure 7 ).
  • the retrieval device grasps eyelets 172, moving them radially inward. Device 100 is then pulled proximally into the retrieval catheter.
  • portions of device 100 are arranged and configured to provide the desired bending behavior as device 100 emerges from and is drawn back into a delivery catheter, as shown in Figure 11 .
  • Device 100 may be made with wavy patterns with hairpin turns, "V" shaped turns, open-cell or closed-cell designs.
  • the diameter of the core region increases and the core region reduces in length, sometimes slightly.
  • the overall length of the core region remains the same.
  • the device 100 in its delivery configuration is configured to be delivered and deployed through a 5 French - 12 French catheter.
  • the elongated device 100 has a diameter ranging from about 1 mm to about 4 mm
  • the central core region 116 in a deployed configuration has a diameter ranging from about 3 mm to about 12 mm, or from about 110% to about 300% of that of the core region 116 in its delivery configuration.
  • the struts of the shunt portion 116 have a width of about 0.005 inch to about 0.030 inch (0.013cm to 0.076cm).
  • the gap between two adjacent portions of the core portion struts is from about 0" to about 0.01 0" (0cm to 0.025cm), and upon deployment, the gap between two adjacent portions of the struts is up to about 0.075" (0.191cm).
  • the device 100 in its delivery configuration has an overall length of about 5-25 mm, with the length of the core region 116 being 0.5-5mm.
  • the length of the core region 116 ranges from about 1 mm to about 7 mm, with the overall length of the device 100 ranging from about 3 mm to about 12mm.
  • the length of the core region 116 of a deployed device ranges from about 30 to about 70% of the length of the device in the deployed profile.
  • the bending location of device struts has a narrower width ("waist") than another portion, sometimes the remaining portions of the struts.
  • the lead-ins from both directions generally have a curved configuration.
  • the bending location has curved lead-ins from both ends, other geometries, shapes, or profiles for narrowing the strut width at the bending location could also be used.
  • what has been disclosed should not be viewed as limiting to the scope of the present teaching.
  • the waist has a width from about 0.003" to about 0.015" (0.008cm to 0.038cm), or from about 30% to about 110% of the width of the widest portion of the struts. Additionally, in order to control the bending direction, the width of the struts can be greater than the thickness. Additionally, the length of the distal transition portion, as well as the width of the waist could vary according to the overall size of the device and design criteria.
  • the distal retention region 112 of device 100 Upon deployment in vivo, the distal retention region 112 of device 100 is configured to be deployed inside the left atrium with each of the distal retention segments 146 located at the left atrial side of the atrial septum. In certain embodiments, the distal retention opposes the left atrial side of the atrial septum. According to some embodiments, upon deployment, the distal retention region 112 forms a disc-like configuration, with at least a portion, sometimes a substantial portion, of the surface area of each retention segment 146 contacting the atrial septum. In another embodiments, the distal retention region 112 forms an umbrella-like configuration with at least a portion, sometimes a substantial portion, of the surface area of each retention segment 146 doming away from the atrial septum.
  • one or more distal ends of the distal retention segments 146 can contact the atrial septum.
  • the distal retention region 112 forms a generally straight slope profile with at least a portion, sometimes a substantial portion, of the surface area of each distal retention segment 146 not contacting the atrial septum.
  • one or more distal ends of the distal retention segments 146 remain furthest away from the atrial septum.
  • suitable profile could also be used.
  • each distal retention segment 146 include a foot 152.
  • the foot 152 is configured to prevent the distal ends of the distal retention segments 146 from penetrating, piercing, or eroding into the septal tissues.
  • the foot is configured to provide a larger surface area for contacting the tissues and/or reducing the force that the distal retention segments 146 apply onto the tissues.
  • the foot 152 is also configured to incorporate a radiopaque marker.
  • the proximal transition portion 118 When the device 100 is at its delivery configuration, the proximal transition portion 118 has a small generally tubular profile, such as illustrated in Figure 10 , with adjacent struts packed closely and parallel to each other. The proximal transition portion 118 is also configured to transform from a delivery configuration to a deployed configuration. During such transition, a proximal section of the struts extends radially outwardly, and a distal section of the struts expands as the core region 116 expands radially into its deployed configuration.
  • the proximal transition struts bend at a location so that the core region 116 of the device has a tubular profile at the distal end of the proximal transition struts, and the proximal retention region 120 of the device 100 have a radially outward umbrella-shaped profile that is generally at an angle, sometimes perpendicular, to the longitudinal axis of the core region 116 at the proximal end of the proximal transition struts.
  • the bending location on the proximal transition struts has a narrower width ("waist") than another portion, sometimes the remaining portions, of the struts.
  • the lead-ins from both direction have a generally curved configuration.
  • the bending location has a generally curved led-ins from both ends of the waist, other geometries, shapes, or profiles for narrowing the strut width at the bending location could also be used. Thus what has been disclosed should not be viewed as limiting.
  • the waist has a width from about 0.006" to about 0.0310" (0.015cm to 0.076cm), or from about 25 to about 80% of the width of the widest portion of the proximal transition struts.
  • the width of the proximal transition struts can be greater than the thickness of the proximal transition struts.
  • the proximal transition struts are shorter and narrower than the distal transition struts of the device.
  • the proximal transition struts can have the same length and/or width as the distal transition struts.
  • the device 100 can also have a proximal retention region 120.
  • the proximal retention region 120 of the device 100 has an expanded umbrella-like profile when deployed, as illustrated in Figure 7 , and a collapsed generally tubular profile during delivery, as illustrated in Figure 10 .
  • the proximal retention region 120 includes multiple proximal retention segments 160.
  • each of the proximal retention segments is formed by two adjacent proximal retention struts extending proximally from the proximal end of a proximal transition strut. The distal ends of the two proximal retention struts are located side by side from each other with a gap in between.
  • the distal ends of two proximal retention struts extend from the proximal end of two adjacent proximal transition struts to connect to each other, forming a proximal retention segment 160.
  • the proximal retention segment 160 formed by two adjacent proximal retention struts are relatively elongated with two adjacent proximal retention struts extending close to each other; and in deployed configuration, the proximal retention segment 160 formed by two adjacent proximal retention struts are expanded in width and shortened in the overall length with the gap between two adjacent proximal retention struts widened.
  • the proximal retention portion 120 when the device 100 is in its delivery configuration, the proximal retention portion 120 radially collapses with the proximal retention segments 160 orienting longitudinally along the longitudinal axis of the core region 116, and when the device 100 is in its deployed configuration, the proximal retention portion 120 radially expands with the proximal retention segment 160 curving distally.
  • a first section of each proximal retention segment 160 curves distally toward the atrial septum forming a first curve
  • a second section of each proximal retention segment 160 curves proximally away from the atrial septum forming a second curve, with a portion of each proximal retention segment 160 between the first and second sections of each proximal retention segment 160 contacting the septal tissue.
  • the curved deployment configuration of the proximal retention region 120 allows the device to accommodate various atrial septum thickness.
  • the curved proximal retention segments 160 can fully assume its pre-defined curved deployment configuration.
  • the curved proximal retention segments 160 can oppose the atrial septum, and when the septum pushes back, the curved proximal retention segments 160 can deflect at their first curve while maintaining the device 100 in place.
  • curving the second section of the deployed proximal retention region 120 away from the atrial septum enlarges the contacting surface area with the septal tissue, thereby preventing any trauma to the tissue.
  • the second curve of the proximal retention segments 160 can start at any location near or at the proximal ends of each retention segment 160.
  • the proximal retention region struts in a delivery configuration, have a similar width as the distal retention struts. In other embodiments, the proximal retention struts have a different width than the distal retention struts. In yet another embodiment, the width of the strut of the core region 116 is greater than that of the proximal retention struts and that of the distal retention struts, so that the core region 116 is more rigid than the proximal and distal retention portions 112, 120.
  • the stiff core region 116 pushes the surrounding tissue radially outwardly, thereby maintaining the size of the opening for the treatment, while the relative pliable proximal and distal retention portions 112, 120 gently contact the septal tissue without penetration.
  • the proximal retention struts are longer than some of the distal retention struts. In some embodiments, all of the proximal retention struts are longer than the distal retention struts. In some embodiments, the distal retention struts have a length of about 2-7mm. In some embodiments, the proximal retention struts have a length of about 2-14mm.
  • the specific length of the distal retention struts and/or proximal retention struts should be determined by, inter alia, the overall size of the device, which in turn is determined by the needs of a patient.
  • the proximal retention struts are configured so that, upon full deployment, its first section curves toward the septum, forming a space between a portion of the strut and septum, and the most radially outward portion of the proximal retention struts is at or near the most radially outward portion of the distal retention struts on the opposite side of the septum.
  • the device 100 is fabricated from a tube.
  • all portions of the device 100 such as the distal retention portion 112, the distal transitional portion 114, the central core region 116, the proximal transitional portion 118, the proximal retention portion 120, and proximal retrieval portion 122, have a same thickness.
  • the thickness of the tube, and thus the thickness of each portion of the device is from 0.005-0.007 inch (0.013cm to 0.018cm).
  • at least one portion of the device 100 has a different thickness than the rest of the device. This, in some circumstances, can be achieved by removing material from other portions.
  • each portion such as the distal retention portion 112, the distal transitional portion 114, the core region 116, the proximal transitional portion 118, the proximal retention portion 120, and proximal retrieval portion 122, of the device 100 is the same as the thickness of the portion.
  • the width of the distal retention portion 112, the distal transitional portion 114, the core region 116, the proximal transitional portion 118, and the proximal retention portion 120 are greater than the thickness of these portions.
  • the width of the proximal retrieval portion 122 is the same as the thickness.
  • the curving and bending of such portions can be achieved in a controlled manner, without risking the struts being twisted during the process.
  • the thickness and width can be the same.
  • the thickness of each portion of the device ranges from about 0.003" to about 0.09" (0.008cm to 0.23cm).
  • the retrieval eyelets 172 are configured to be attached to a flexible delivery mechanism.
  • a delivery filament such as a wire or a suture, extends through one or more retrieval attachment mechanisms with both ends of the filament being controlled by a clinician. Upon deployment, one end of the delivery filament is loosened and the other end of the delivery filament is retracted proximally so that the entire flexible delivery filament is removed from the body.
  • a flexible delivery filament allows the device fully deploy at a treatment location, while still under the control of the clinician, so that the deployment can be assessed and the device can be retrieved if necessary.
  • the retrieval eyelets 172 are configured to be attached to a relatively rigid delivery mechanism.
  • a delivery shaft with notches at its distal end for hosting the retrieval eyelets 172.
  • the retrieval eyelets 172 is secured inside the notch, and upon deployment, the retrieval eyelets 172 are released from the notch.
  • a relatively rigid delivery shaft can push the device distally inside the delivery catheter and to deploy device.
  • the device 100 is pre-set into its deployed profile and stretched into an elongated profile, such as shown in Figure 10 , for percutaneous delivery. Upon deployment, the device will recover to its pre-set deployed configuration once free from constraint of the delivery catheter.
  • the maximum ratio of the thickness (t) of a curved portion of the device e.g., the transition from proximal retention segments 60 to secondary retrieval legs 76
  • the radius "R" of that curved portion is 0.12, i.e., t/2R ⁇ 12%. Maintaining this ratio will ensure the maximum recovery of the intended curvature.
  • Figures 14-17 show another embodiment of a pressure regulating device 410 for, e.g., treating elevated left atrial pressure in a patient's heart according to this invention.
  • Figures 14-16 show the device 410 in a deployed configuration. In its delivery configuration (not shown), device 410 is collapsed into a generally tube-like configuration, such as shown in Figures 3 and 10 with respect to embodiments discussed above.
  • a distal retention region 412 extends distally from a central core region 416 via a distal transition region 414, and a proximal retention region 420 extends proximally from core region 416 via a proximal transition region 418.
  • the proximal transition portion 418 has a relatively longer overall length, and greater overall width, than prior embodiments.
  • the geometrical center of the strut is hollowed out resulting a two adjacent struts 452, 454 in between the distal and proximal ends of the proximal transition portion 418.
  • device 410 (including distal retention region 412, central core region 416 and proximal retention region 420) is radially compressed and axially elongated compared to the deployed configuration shown in Figures 14-16 .
  • Device 410 may be delivered via a delivery catheter (not shown) for deployment in the atrial septum of the patient's heart.
  • the central core region 416 includes an opening 424 to permit blood to flow through the device from the left atrium to the right atrium.
  • the radially expanded proximal retention region 420 has a plurality of flexible retention segments 460 that atraumatically engage the septal wall in the right atrium
  • the radially expanded distal retention region 412 has a plurality of flexible retention segments 446 that atraumatically engage the septal wall in the left atrium.
  • the proximal and distal retention regions may cooperate to apply a compressive force to the septal wall.
  • the proximal and distal retention regions do not apply a compressive force to the septal wall.
  • the core region may also apply a radially outward force on the portion of the septal wall through which it extends. In other embodiments, the core region does not apply a radially outward force on the portion of the septal wall through which it extends.
  • the radial span of the distal retention region 412 in the deployed configuration may be the same as the radial span of the proximal retention region 420. In other embodiments, the radial span of the distal retention region 412 may be greater than the radial span of the proximal retention region to, e.g., account for the typically greater pressure in the left atrium compared to the pressure in the right atrium.
  • the distal retention region has a general diameter of 8-20 mm upon deployment. In another embodiment, the deployed proximal retention region has a general diameter of 8-20 mm upon deployment. According to some embodiments, upon deployment, the diameter of the deployed core region of the device is about 25-50% of the overall diameter of the deployed distal retention region.
  • the retrieval region 422 includes retrieval legs 474 extending proximally and radially inwardly from the radially outward ends of the proximal retention segments 460, optionally via intermediate legs 476 disposed between the retrieval legs 474 and a junction 464, and the proximal retention segments 460.
  • junction 464 has a relatively greater overall length and greater overall width. Similar to proximal transition portion 418, in order to reduce the mass of the junction 464, as well as reducing the size of the delivery profile, geometrical center of the junction 464 is hollowed out resulting a two adjacent struts 462, 460 in between the distal and proximal ends of the junction 464.
  • Loops or eyelets 472 at the proximal ends of the retrieval legs 474 serve as connectors for the delivery and/or retrieval system. As shown in Figures 14-16 , in the device's deployed configuration the eyelets 472 are proximal to and radially outward from the outer boundary of the opening 424 and therefore out of the path of any blood flowing through opening 424. In this embodiment, eyelets 472 are oriented in a plane generally perpendicular to the longitudinal axis of the core region 416.
  • a delivery system advances device 410 through and out of a catheter.
  • the distal retention region 414 of device 410 begins to self-expand in the left atrium.
  • the core region 416 and proximal retention region 420 expand as they emerge from the catheter in the septal wall opening and right atrium, respectively, all while the eyelets 472 of the retrieval legs 474 are still connected to the delivery system.
  • Distal retention segments 446, core region 416 and proximal retention segments 460 are substantially in their deployed configurations even while retrieval legs 474 and 476 extend proximally into the delivery catheter (not shown).
  • retrieval legs 474 and 476 begin moving toward their expanded at-rest shapes, while eyelets 472 remain radially inward (in the device's retrieval configuration) from their at-rest positions because they are still connected to the delivery system. After release from the delivery system, eyelets 472 move radially outward to their at-rest positions radially outside of the device's opening 424 (i.e., the deployed configuration shown in Figure 16 ).
  • the retrieval device grasps eyelets 472, moving them radially inward. Device 410 is then pulled proximally into the retrieval catheter.
  • portions of device 410 are arranged and configured to provide the desired bending behavior as device 410 emerges from and is drawn back into a delivery catheter, as shown in Figure 17 .
  • Device 410 may be made with wavy patterns with hairpin turns, "V" shaped turns, open-cell or closed-cell designs.
  • the diameter of the core region increases and the core region reduces in length, sometimes slightly.
  • the overall length of the core region remains the same.
  • the device 410 in its delivery configuration is configured to be delivered and deployed through a 5 French - 12 French catheter.
  • the elongated device 410 has a diameter ranging from about 1 mm to about 4 mm
  • the central core region 416 in a deployed configuration has a diameter ranging from about 3 mm to about 12 mm, or from about 110% to about 300% of that of the core region 416 in its delivery configuration.
  • the struts of the shunt portion 416 have a width of about 0.005 inch to about 0.030 inch (0.001cm to 0.076cm).
  • the gap between two adjacent portions of the core portion struts is from about 0" to about 0.01 0" (0cm to 0.025cm), and upon deployment, the gap between two adjacent portions of the struts is up to about 0.075 "(0.191cm).
  • the device 410 in its delivery configuration has an overall length of about 5-25 mm, with the length of the core region 416 being 0.5-5mm.
  • the length of the core region 416 ranges from about 1 mm to about 7 mm, with the overall length of the device 410 ranging from about 3 mm to about 12mm.
  • the length of the core region 416 of a deployed device ranges from about 30 to about 70% of the length of the device in the deployed profile.
  • the bending location of distal transition region 414 has a narrower width ("waist") than another portion, sometimes the remaining portions of the struts.
  • the lead-ins from both directions generally have a curved configuration.
  • the bending location has curved lead-ins from both ends, other geometries, shapes, or profiles for narrowing the strut width at the bending location could also be used.
  • what has been disclosed should not be viewed as limiting to the scope of the present teaching.
  • the waist has a width from about 0.003" to about 0.015" (0.008cm to 0.038cm), or from about 30% to about 110% of the width of the widest portion of the struts. Additionally, in order to control the bending direction, the width of the struts can be greater than the thickness. Additionally, the length of the distal transition portion, as well as the width of the waist could vary according to the overall size of the device and design criteria.
  • the distal retention region 412 of device 410 Upon deployment in vivo, the distal retention region 412 of device 410 is configured to be deployed inside the left atrium with each of the distal retention segments 446 located at the left atrial side of the atrial septum. In certain embodiments, the distal retention opposes the left atrial side of the atrial septum. According to some embodiments, upon deployment, the distal retention region 412 forms a disc-like configuration, with at least a portion, sometimes a substantial portion, of the surface area of each retention segment 446 contacting the atrial septum. In another embodiments, the distal retention region 412 forms an umbrella-like configuration with at least a portion, sometimes a substantial portion, of the surface area of each retention segment 446 doming away from the atrial septum.
  • one or more distal ends of the distal retention segments 446 can contact the atrial septum.
  • the distal retention region 412 forms a generally straight slope profile with at least a portion, sometimes a substantial portion, of the surface area of each distal retention segment 446 not contacting the atrial septum.
  • one or more distal ends of the distal retention segments 446 remain furthest away from the atrial septum.
  • suitable profile could also be used.
  • each distal retention segment 446 include a foot 451.
  • the foot 451 is configured to prevent the distal ends of the distal retention segments 446 from penetrating, piercing, or eroding into the septal tissues.
  • the foot is configured to provide a larger surface area for contacting the tissues and/or reducing the force that the distal retention segments 446 apply onto the tissues.
  • the foot 451 is also configured to incorporate a radiopaque marker.
  • the proximal transition portion 418 When the device 410 is at its delivery configuration, the proximal transition portion 418 has a small generally tubular profile, with adjacent struts packed closely and parallel to each other. The proximal transition portion 418 is also configured to transform from a delivery configuration to a deployed configuration. During such transition, a proximal section of the struts extends radially outwardly, and a distal section of the struts expands as the core region 416 expands radially into its deployed configuration.
  • the proximal transition struts bend at a location so that the core region 416 of the device has a tubular profile at the distal end of the proximal transition struts, and the proximal retention region 420 of the device 410 have a radially outward umbrella-shaped profile that is generally at an angle, sometimes perpendicular, to the longitudinal axis of the core region 416 at the proximal end of the proximal transition struts.
  • the device 410 can also have a proximal retention region 420.
  • the proximal retention region 420 of the device 410 has an expanded umbrella-like profile when deployed, as illustrated in Figures 14-16 , and a collapsed generally tubular profile during delivery.
  • the proximal retention region 420 includes multiple proximal retention segments 460.
  • each of the proximal retention segments is formed by two adjacent proximal retention struts extending proximally from the proximal end of a proximal transition strut. The distal ends of the two proximal retention struts are located side by side from each other with a gap in between.
  • the distal ends of two proximal retention struts extend from the proximal end of two adjacent proximal transition struts to connect to each other, forming a proximal retention segment 460.
  • the proximal retention segment 460 formed by two adjacent proximal retention struts are relatively elongated with two adjacent proximal retention struts extending close to each other; and in deployed configuration, the proximal retention segment 460 formed by two adjacent proximal retention struts are expanded in width and shortened in the overall length with the gap between two adjacent proximal retention struts widened.
  • the proximal retention portion 420 when the device 410 is in its delivery configuration, the proximal retention portion 420 radially collapses with the proximal retention segments 460 orienting longitudinally along the longitudinal axis of the core region 416, and when the device 410 is in its deployed configuration, the proximal retention portion 420 radially expands with the proximal retention segment 460 curving distally.
  • a first section of each proximal retention segment 460 curves distally toward the atrial septum forming a first curve
  • a second section of each proximal retention segment 460 curves proximally away from the atrial septum forming a second curve, with a portion of each proximal retention segment 460 between the first and second sections of each proximal retention segment 460 contacting the septal tissue.
  • the curved deployment configuration of the proximal retention region 420 allows the device to accommodate various atrial septum thickness.
  • the curved proximal retention segments 460 can fully assume its pre-defined curved deployment configuration.
  • the curved proximal retention segments 460 can oppose the atrial septum, and when the septum pushes back, the curved proximal retention segments 460 can deflect at their first curve while maintaining the device 410 in place.
  • curving the second section of the deployed proximal retention region 420 away from the atrial septum enlarges the contacting surface area with the septal tissue, thereby preventing any trauma to the tissue.
  • the second curve of the proximal retention segments 460 can start at any location near or at the proximal ends of each retention segment 460.
  • the proximal retention region struts in a delivery configuration, have a similar width as the distal retention struts. In other embodiments, the proximal retention struts have a different width than the distal retention struts. In yet another embodiment, the width of the strut of the core region 416 is greater than that of the proximal retention struts and that of the distal retention struts, so that the core region 416 is more rigid than the proximal and distal retention portions 412, 420.
  • the stiff core region 416 pushes the surrounding tissue radially outwardly, thereby maintaining the size of the opening for the treatment, while the relative pliable proximal and distal retention portions 412, 420 gently contact the septal tissue without penetration.
  • the proximal retention struts are longer than some of the distal retention struts. In some embodiments, all of the proximal retention struts are longer than the distal retention struts. In some embodiments, the distal retention struts have a length of about 2-7mm. In some embodiments, the proximal retention struts have a length of about 2-14mm.
  • the specific length of the distal retention struts and/or proximal retention struts should be determined by, inter alia, the overall size of the device, which in turn is determined by the needs of a patient.
  • the proximal retention struts are configured so that, upon full deployment, its first section curves toward the septum, forming a space between a portion of the strut and septum, and the most radially outward portion of the proximal retention struts is at or near the most radially outward portion of the distal retention struts on the opposite side of the septum.
  • the device 410 is fabricated from a tube.
  • all portions of the device 410 such as the distal retention portion 412, the distal transitional portion 414, the central core region 416, the proximal transitional portion 418, the proximal retention portion 420, and proximal retrieval portion 422, have a same thickness.
  • the thickness of the tube, and thus the thickness of each portion of the device is from 0.005-0.007 inch (0.013cm to 0.018cm).
  • at least one portion of the device 410 has a different thickness than the rest of the device. This, in some circumstances, can be achieved by removing material from other portions.
  • the width of the distal retention portion 412, the distal transitional portion 414, the core region 416, the proximal transitional portion 418, and the proximal retention portion 420 are greater than the thickness of these portions.
  • the width of the proximal retrieval portion 422 is the same as the thickness. According to some embodiments, for portions of the device having a width greater than the thickness, the curving and bending of such portions can be achieved in a controlled manner, without risking the struts being twisted during the process. For other portions of the device where twisting is expected, or less concerning, such as the proximal retrieval portion, the thickness and width can be the same. According to some embodiments, the thickness of each portion of the device ranges from about 0.003" to about 009" (0.008cm to 0.23cm).
  • the retrieval eyelets 472 are configured to be attached to a flexible delivery mechanism.
  • a delivery filament such as a wire or a suture, extends through one or more retrieval attachment mechanisms with both ends of the filament being controlled by a clinician. Upon deployment, one end of the delivery filament is loosened and the other end of the delivery filament is retracted proximally so that the entire flexible delivery filament is removed from the body.
  • a flexible delivery filament allows the device fully deploy at a treatment location, while still under the control of the clinician, so that the deployment can be assessed and the device can be retrieved if necessary.
  • the retrieval eyelets 472 are configured to be attached to a relatively rigid delivery mechanism.
  • a delivery shaft with notches at its distal end for hosting the retrieval eyelets 472.
  • the retrieval eyelets 472 is secured inside the notch, and upon deployment, the retrieval eyelets 472 are released from the notch.
  • a relatively rigid delivery shaft can push the device distally inside the delivery catheter and to deploy device.
  • the device 410 is pre-set into its deployed profile and stretched into an elongated profile for percutaneous delivery. Upon deployment, the device will recover to its pre-set deployed configuration once free from constraint of the delivery catheter.
  • the maximum ratio of the thickness (t) of a curved portion of the device e.g., the transition from proximal retention segments 460 to secondary retrieval legs 476) over two times of the radius "R" of the curved portion is 0.12, i.e., t/2R ⁇ 12%. Maintaining this ratio will ensure the maximum recovery of the intended curvature.
  • FIGS. 18 and 19 illustrate two different configurations.
  • struts 564 forming proximal retention segment 560 meet retrieval strut 576 proximal to curve between the tissue contact surface of retention segment 560 and strut 576, as shown by the arrow in Figure 18 .
  • struts 664 forming proximal retention segment 660 meet retrieval strut 676 at the tissue contact surface of retention segment 660, as shown by the arrow in Figure 19 .
  • Device 510 shown in Figure 18 is less likely to twist during retrieval than the device 610 shown in Figure 19 due at least in part to the different locations of these connection points.
  • the device of the present teachings is manufactured by laser cutting a biocompatible metal tube.
  • the device is made of a biocompatible metal or polymer.
  • the entire device is made of a biocompatible metal or polymer.
  • the device in its entirely or portion(s) thereof, for example, those with curved/bent deployment configuration is made of an elastic material, a super-elastic material, or a shape-memory alloy so that the above portions can be distorted into a generally straightened profile during the delivery process and resume and maintain its intended profile in vivo once it is deployed from a delivery catheter.
  • the device is made of stainless steel, nitinol, Titanium, Elgiloy, Vitalium, Mobilium, Ticonium, Platinore, Stellite, Tantalum, Platium, Hastelloy, CoCrNi alloys (e.g., trade name Phynox), MP35N, or CoCrMo alloys, any other metallic alloys, or a mixture thereof.
  • a part of the device or the entire device is made of a polymer, such as PTFE, UHMPE, HDPE, polypropylene, polysulfone, or other biocompatible plastic.
  • the surface finish of the device can be textured to induce tissue response and tissue ingrowth for improved stabilization.
  • the resorbable polymer includes polyactic acid, polyglycolic acid, polycaprolactone, a combination of two or more of the above or a variety of other resorbable polymers that are well known to those skilled in the art.
  • the device is fabricated from a tubular form and then shaped to its final configuration.
  • a sufficiently elastic and resilient material such as nitinol
  • the structure is preformed into the finished shape and elastically deformed.
  • the device is stowed in a delivery device during the delivery and the device elastically recovers its shape upon deployment.
  • one, some, or all portions of the device are manually expanded to the desired diameter and/or curved to a pre-set shape.
  • one, some, or all portions of the device is heat set in an oven while constrained to the desired shape.
  • At least one portion of the device expands radially upon being deployed in vivo.
  • the radial expansion of at least one portion of the device is due to the elastic nature of the material.
  • the radial expansion of at least one portion of the device is due to its pre-set thermal shape memory of the material.
  • at least one portion of the device is manually expanded radially via a balloon.
  • one or more radio-opaque markers are used. Without attempting to limit to any particular function, these radio-opaque markers can be visualized by using radiographic imaging equipment such as X-ray, magnetic resonance, ultrasound, or other imaging techniques known to one of ordinarily skilled in the art.
  • radiographic imaging equipment such as X-ray, magnetic resonance, ultrasound, or other imaging techniques known to one of ordinarily skilled in the art.
  • One or more markers as disclosed herein can be applied to any part of a device or a delivery system of the present teachings.
  • a radio-opaque marker can be weld, sewed, adhered, swaged riveted, otherwise placed, and secured in or on the device.
  • the radio-opaque marker may be made of tantalum, tungsten, platinum, irridium, gold, or alloys of these materials or other materials that are known to those skilled in the art.
  • the radio-opaque marker can also be made of numerous paramagnetic materials, including one or more elements with atomic numbers 21-29, 42, 44, and 58-70, such as chromium (III), manganese (II), iron (III), iron (II), cobalt (II), copper (II), nickel (II), praesodymium (III), neodymium (III), samarium (III), ytterbium (III), gadolinium (III), terbium (III), dysprosium (III), holmium (III) and erbium (III), or other MR visible materials that are known to those skilled in the arts.
  • the devices described above may be delivered by delivery systems described, e.g., in US 2011/0071623 .
  • the treatment starts with a septal puncture which creates an aperture in the atrial septum, and device as described above is then deployed across the aperture. Since the resulting aperture is essentially a fresh wound, the body's natural healing process will start.
  • the tissue or cell growth can extend through the openings of the device and into the tubular opening of the shunt portion of the device. In some situation, the opening created by the shunt portion of the device may be blocked or otherwise re-occluded by the tissue growth. Thus, such healing process would then undo all intended treatment over time.
  • the entirety or at least a portion of the device is covered with a biocompatible barrier, for example, to prevent excessive tissue ingrowth.
  • a biocompatible barrier for example, to prevent excessive tissue ingrowth.
  • only one side of the luminal surface is covered. Advantages of covering one side of the luminal surface include the possibility of enhanced healing. It is known that living cells infiltrate a sufficiently porous covering material, such as ePTFE, and that microcapillaries may form within and across the barrier wall so that a living intima is formed along the luminal surface.
  • the luminal surface of the shunt portion of the device is covered with a biocompatible barrier not only to prevent tissue ingrowth but also provide a thrombi-resistant to the shunt lumen.
  • the configuration may depend on the application of the device. In some applications, for example, where a large aperture with a greater pressure differential between the two atria is present or created, placing the covering on the luminal surface (facing the blood flow) may result in an advantageous laminar flow of the blood-blood flow without significant turbulence.
  • Another advantage of using only luminal covering can be improved anchoring of the device within the aperture afforded by interactions between the bare structure of the shunt portion of the device and the tissue wall surrounding the aperture.
  • the abluminal surface (facing the tissue) of the shunt portion of the device is covered with a biocompatible barrier in order to prevent tissue ingrowth.
  • placing barrier material only on the abluminal surface of the shunt portion has some benefit to patients. For example, contacting blood with a metal structure may result in local, limited thrombosis. Thus, by covering the abluminal surface of the shunt portion of the device could limit thrombosis, resulting in enhanced healing without occlusion of the shunt lumen.
  • the covering is placed on both the luminal and abluminal surfaces of the shunt portion.
  • the covering must be attached to the device to prevent it from detaching and perhaps forming emboli in the heart.
  • the material used as a barrier could be attach to a device through direct bonding between the device and material. For material that does not adhere well to a device, it can be made to bond to itself.
  • one effective method of affixing the ePTFE cover is to place ePTFE covers in contact with both the abluminal and luminal surfaces of the shunt portion of the device so that one ePTFE covering can bond to the other where the ePTFE coverings come to contact through the openings in the shunt portion.
  • porosity of material can be selected to achieve the best treatment result.
  • material with small pores, or even no pores could be used to encapsulate the abluminal side so that tissue encroachment can be prevented, and material with a larger pore size than that of the material covering the abluminal surface of the shunt portion could be used to cover the luminal surface in order to facilitate cell coverage and endothelialization of the luminal side to produce a thromboresistent surface in direct blood contact.
  • the encapsulating layers are made of a flexible, biocompatible, non-absorbable polymeric material (i.e., a material that does not dissolve after implanted in the body).
  • a flexible, biocompatible, non-absorbable polymeric material i.e., a material that does not dissolve after implanted in the body.
  • materials include, without limitation, expanded polytetrafluoroethylene (ePTFE), unexpanded porous PTFE, woven or knitted polyester or expanded PTFE yarns, ultrahigh molecular weight polyethylene (UHMWPE), other polyolefins, composite materials such as ePTFE with PTFE fibers, or UHMWPE film with embedded UHMWPE fibers, polyimides, silicones, polyurethane, hydrogels, fluorinated ethylene polypropylene (FEP), polypropylfluorinated amines (PFA), other related fluorinated polymers.
  • ePTFE expanded polytetrafluoroethylene
  • the encapsulating layer could also be made of other material such as polyurethanes, metallic materials, polyvinyl alcohol (PVA), extracellular matrix (ECM) isolated from a mammalian tissue, or other bioengineered materials, or other natural materials (e.g., collagen), or combinations of these materials.
  • Suitable material also include nonwoven fabrics, electrospun, dry spun materials or various combinations thereof.
  • the surface of the encapsulation material can be modified with biological, pharmaceutical and/or other active ingredients, such as anti-coagulants, anti-thrombogenic agents, cells, growth factors and/or drugs to diminish calcifications, protein deposition, and thrombus, which control and direct tissue growth by stimulating an irritation response to induce cell proliferation in one area and discourage cell proliferation in the other.
  • biological, pharmaceutical and/or other active ingredients such as anti-coagulants, anti-thrombogenic agents, cells, growth factors and/or drugs to diminish calcifications, protein deposition, and thrombus, which control and direct tissue growth by stimulating an irritation response to induce cell proliferation in one area and discourage cell proliferation in the other.
  • the methods, which are not part of the invention, and devices disclosed herein are useful for treating various symptoms of heart failures, in particular diastolic heart failures, by reducing the pressure in the left atrium and pulmonary veins.
  • devices according to the present teachings could be used to regulate pressure in other parts of the heart and/or vascular portions of the body.
  • the devices disclosed herein can be deployed on the septum between the left and right atria, the left and right ventricles, the left atrium and the coronary sinus, and the like.

Claims (8)

  1. Vorrichtung zum Implantieren in einem Vorhofseptum eines Patienten, wobei die Vorrichtung Folgendes umfasst: eine Kernregion (16) mit mehreren Kernsegmenten, die eine zentrale Öffnung (24) umgeben, wobei die Kernregion (16) zum Anordnen in einer Öffnung im Vorhofseptum ausgelegt und konfiguriert ist, eine distale Halteregion (12) mit mehreren distalen Haltesegmenten (46), die sich von den Kernsegmenten erstrecken, wobei die distalen Haltesegmente (46) zum Eingreifen in Gewebe auf einer linken Vorhofseite der Septumswand ausgelegt sind, eine proximale Halteregion (20) mit mehreren proximalen Haltesegmenten (60), die sich von den Kernsegmenten erstrecken, wobei die proximalen Haltesegmente (60) zum Eingreifen in Gewebe auf einer rechten Vorhofseite der Septumswand ausgelegt sind, und eine Rückholregion (22) mit mehreren Rückholelementen (74), die sich von den proximalen Haltesegmenten (60) erstrecken, wobei jedes Rückholelement (74) einen Verbinder (72) an einem proximalen Ende umfasst, wobei der Verbinder (72) zum Verbinden mit einem Zuführungssystem ausgelegt ist, wobei die Vorrichtung eine zusammengefaltete Zuführungskonfiguration sowie eine erste und eine zweite Konfiguration aufweist, wobei in der ersten Konfiguration die distale Halteregion (12), die Kernregion (16) und die proximale Halteregion (20) zum Eingreifen in das Vorhofseptum konfiguriert sind, während die Verbinder (72) am proximalen Ende der Rückholregion (22) so angeordnet sind, dass sie mit dem Zuführungssystem verbunden werden können, und wobei in der zweiten Konfiguration die distale Halteregion (12), die Kernregion (16) und die proximale Halteregion (20) zum Eingreifen in das Vorhofseptum konfiguriert sind, während die Verbinder (72) am proximalen Ende der Rückholregion (20) radial auswärts von der zentralen Öffnung (24) der Kernregion (16) angeordnet und proximal von den proximalen Haltesegmenten (60) beabstandet sind, wobei die genannte Vorrichtung dadurch gekennzeichnet ist, dass sich die Verbinder (72) von einem Ende der Rückholelemente (74) in der zweiten Konfiguration radial einwärts erstrecken.
  2. Vorrichtung nach Anspruch 1, wobei die Verbinder (72) in der ersten Konfiguration weiter radial einwärts angeordnet sind als in der zweiten Konfiguration.
  3. Vorrichtung nach Anspruch 1, wobei die Rückholregion (22) zwei Rückholelemente (74) umfasst.
  4. Vorrichtung nach Anspruch 1, wobei die Rückholregion (22) vier Rückholelemente (74) umfasst.
  5. Vorrichtung nach Anspruch 1, wobei die Verbinder Ösen (72) umfassen.
  6. Vorrichtung nach Anspruch 1, wobei sich jeder Verbinder (72) in der ersten Konfiguration distal von einem Ende des assoziierten Rückholelements (74) erstreckt.
  7. Vorrichtung nach Anspruch 1, wobei die Vorrichtung ferner eine Rückholkonfiguration hat, in der die Verbinder (72) radial einwärts von einer Position in der zweiten Konfiguration angeordnet sind und die proximalen und distalen Haltesegmente (60, 46) jeweils in im Wesentlichen derselben Position sind wie in der zweiten Konfiguration.
  8. Vorrichtung nach Anspruch 7, wobei sich die Rückholelemente (74) in der ersten Konfiguration von der proximalen Halteregion (22) proximal weiter erstrecken als in der Rückholkonfiguration.
EP15824456.6A 2014-07-23 2015-07-23 Vorrichtungen zur behandlung von herzinsuffizienz Active EP3171786B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462028286P 2014-07-23 2014-07-23
US201562167624P 2015-05-28 2015-05-28
PCT/US2015/041777 WO2016014821A1 (en) 2014-07-23 2015-07-23 Devices and methods for treating heart failure

Publications (3)

Publication Number Publication Date
EP3171786A1 EP3171786A1 (de) 2017-05-31
EP3171786A4 EP3171786A4 (de) 2017-07-05
EP3171786B1 true EP3171786B1 (de) 2020-05-13

Family

ID=55163772

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15824456.6A Active EP3171786B1 (de) 2014-07-23 2015-07-23 Vorrichtungen zur behandlung von herzinsuffizienz

Country Status (5)

Country Link
US (1) US10632292B2 (de)
EP (1) EP3171786B1 (de)
JP (1) JP6799526B2 (de)
CA (1) CA2955389C (de)
WO (1) WO2016014821A1 (de)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2554595C (en) 2004-02-03 2016-03-29 Atria Medical Inc. Device and method for controlling in-vivo pressure
WO2007083288A2 (en) 2006-01-23 2007-07-26 Atria Medical Inc. Heart anchor device
US20110257723A1 (en) 2006-11-07 2011-10-20 Dc Devices, Inc. Devices and methods for coronary sinus pressure relief
US9232997B2 (en) 2006-11-07 2016-01-12 Corvia Medical, Inc. Devices and methods for retrievable intra-atrial implants
WO2008055301A1 (en) 2006-11-07 2008-05-15 Univ Sydney Devices and methods for the treatment of heart failure
US8745845B2 (en) 2006-11-07 2014-06-10 Dc Devices, Inc. Methods for mounting a prosthesis onto a delivery device
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US20210161637A1 (en) 2009-05-04 2021-06-03 V-Wave Ltd. Shunt for redistributing atrial blood volume
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
EP2673038B1 (de) 2011-02-10 2017-07-19 Corvia Medical, Inc. Vorrichtung zur erzeugung und aufrechterhaltung einer öffnung für intra-atriale druckentlastung
US11135054B2 (en) 2011-07-28 2021-10-05 V-Wave Ltd. Interatrial shunts having biodegradable material, and methods of making and using same
US8951223B2 (en) 2011-12-22 2015-02-10 Dc Devices, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
WO2014188279A2 (en) 2013-05-21 2014-11-27 V-Wave Ltd. Apparatus and methods for delivering devices for reducing left atrial pressure
US10675450B2 (en) 2014-03-12 2020-06-09 Corvia Medical, Inc. Devices and methods for treating heart failure
US10524792B2 (en) 2014-12-04 2020-01-07 Edwards Lifesciences Corporation Percutaneous clip for repairing a heart valve
EP3291773A4 (de) 2015-05-07 2019-05-01 The Medical Research, Infrastructure, And Health Services Fund Of The Tel Aviv Medical Center Temporäre interatriale shunts
EP3738551A1 (de) 2015-05-14 2020-11-18 Edwards Lifesciences Corporation Herzklappendichtungsvorrichtungen und einführungsvorrichtungen dafür
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US10799676B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10799675B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Cam controlled multi-direction steerable handles
US10799677B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10835714B2 (en) 2016-03-21 2020-11-17 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US11219746B2 (en) 2016-03-21 2022-01-11 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US20170340460A1 (en) 2016-05-31 2017-11-30 V-Wave Ltd. Systems and methods for making encapsulated hourglass shaped stents
US10835394B2 (en) 2016-05-31 2020-11-17 V-Wave, Ltd. Systems and methods for making encapsulated hourglass shaped stents
US10973638B2 (en) 2016-07-07 2021-04-13 Edwards Lifesciences Corporation Device and method for treating vascular insufficiency
US11304698B2 (en) 2016-07-25 2022-04-19 Virender K. Sharma Cardiac shunt device and delivery system
US10154844B2 (en) 2016-07-25 2018-12-18 Virender K. Sharma Magnetic anastomosis device and delivery system
US10653862B2 (en) 2016-11-07 2020-05-19 Edwards Lifesciences Corporation Apparatus for the introduction and manipulation of multiple telescoping catheters
US10905554B2 (en) 2017-01-05 2021-02-02 Edwards Lifesciences Corporation Heart valve coaptation device
WO2018132549A1 (en) 2017-01-11 2018-07-19 Sharma Virender K Cardiac shunt device and delivery system
US11135410B2 (en) * 2017-02-26 2021-10-05 Corvia Medical, Inc. Devices and methods for treating heart failure
US11291807B2 (en) 2017-03-03 2022-04-05 V-Wave Ltd. Asymmetric shunt for redistributing atrial blood volume
CA3054891A1 (en) 2017-03-03 2018-09-07 V-Wave Ltd. Shunt for redistributing atrial blood volume
US11224511B2 (en) 2017-04-18 2022-01-18 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
KR20230121168A (ko) 2017-04-18 2023-08-17 에드워즈 라이프사이언시스 코포레이션 심장 판막 밀봉 장치 및 그를 위한 전달 장치
US10799312B2 (en) 2017-04-28 2020-10-13 Edwards Lifesciences Corporation Medical device stabilizing apparatus and method of use
US10959846B2 (en) 2017-05-10 2021-03-30 Edwards Lifesciences Corporation Mitral valve spacer device
US11051940B2 (en) 2017-09-07 2021-07-06 Edwards Lifesciences Corporation Prosthetic spacer device for heart valve
US11065117B2 (en) 2017-09-08 2021-07-20 Edwards Lifesciences Corporation Axisymmetric adjustable device for treating mitral regurgitation
US11040174B2 (en) 2017-09-19 2021-06-22 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10238493B1 (en) 2018-01-09 2019-03-26 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10973639B2 (en) 2018-01-09 2021-04-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
SG11202006509SA (en) 2018-01-09 2020-08-28 Edwards Lifesciences Corp Native valve repair devices and procedures
US10123873B1 (en) 2018-01-09 2018-11-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10159570B1 (en) 2018-01-09 2018-12-25 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10507109B2 (en) 2018-01-09 2019-12-17 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10076415B1 (en) 2018-01-09 2018-09-18 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10245144B1 (en) 2018-01-09 2019-04-02 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10111751B1 (en) 2018-01-09 2018-10-30 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10105222B1 (en) 2018-01-09 2018-10-23 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10136993B1 (en) 2018-01-09 2018-11-27 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10231837B1 (en) 2018-01-09 2019-03-19 Edwards Lifesciences Corporation Native valve repair devices and procedures
US11458287B2 (en) 2018-01-20 2022-10-04 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
US10898698B1 (en) 2020-05-04 2021-01-26 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
WO2019142152A1 (en) 2018-01-20 2019-07-25 V-Wave Ltd. Devices and methods for providing passage between heart chambers
WO2019189079A1 (ja) * 2018-03-29 2019-10-03 テルモ株式会社 医療デバイス
US11389297B2 (en) 2018-04-12 2022-07-19 Edwards Lifesciences Corporation Mitral valve spacer device
US11207181B2 (en) 2018-04-18 2021-12-28 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10945844B2 (en) 2018-10-10 2021-03-16 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
MX2021009464A (es) 2019-02-14 2021-09-10 Edwards Lifesciences Corp Dispositivos de sellado de valvulas cardiacas y dispositivos de suministro para los mismos.
US11612385B2 (en) 2019-04-03 2023-03-28 V-Wave Ltd. Systems and methods for delivering implantable devices across an atrial septum
EP3972499A1 (de) 2019-05-20 2022-03-30 V-Wave Ltd. Systeme und verfahren zur erzeugung eines interatrialen shunts
JP2022547936A (ja) 2019-09-09 2022-11-16 シファメド・ホールディングス・エルエルシー 調整可能なシャントならびに関連システム及び方法
WO2021113670A1 (en) 2019-12-05 2021-06-10 Shifamed Holdings, Llc Implantable shunt systems and methods
EP4138649A4 (de) 2020-04-23 2024-04-17 Shifamed Holdings Llc Intrakardiale sensoren mit schaltbaren konfigurationen und zugehörige systeme und verfahren
WO2022046921A1 (en) 2020-08-25 2022-03-03 Shifamed Holdings, Llc Adjustable interatrial shunts and associated systems and methods
EP4243915A1 (de) 2020-11-12 2023-09-20 Shifamed Holdings, LLC Einstellbare implantierbare vorrichtungen und zugehörige verfahren
US11234702B1 (en) 2020-11-13 2022-02-01 V-Wave Ltd. Interatrial shunt having physiologic sensor
CN112603617B (zh) * 2020-12-17 2024-03-22 杭州诺生医疗科技有限公司 心房分流器械
WO2022143326A1 (zh) * 2020-12-30 2022-07-07 杭州德晋医疗科技有限公司 左心室减容装置、左心室减容系统及左心室减容方法
CA3231663A1 (en) * 2021-09-16 2023-03-23 David Dudzinski Transcatheter atrial septal closure device
WO2023199267A1 (en) 2022-04-14 2023-10-19 V-Wave Ltd. Interatrial shunt with expanded neck region

Family Cites Families (384)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874388A (en) 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US3837345A (en) 1973-08-31 1974-09-24 A Matar Venous valve snipper
US4018228A (en) 1975-02-24 1977-04-19 Goosen Carl C Surgical punch apparatus
US4491986A (en) 1976-05-12 1985-01-08 Shlomo Gabbay Heart valve
US4373216A (en) 1980-10-27 1983-02-15 Hemex, Inc. Heart valves having edge-guided occluders
JPS5827935U (ja) 1981-08-18 1983-02-23 株式会社村田製作所 混成集積回路装置
US4705507A (en) 1984-05-02 1987-11-10 Boyles Paul W Arterial catheter means
US4655217A (en) 1985-10-11 1987-04-07 Reed Matt H Method and apparatus for disabling vein valves in-situ
US5478353A (en) 1987-05-14 1995-12-26 Yoon; Inbae Suture tie device system and method for suturing anatomical tissue proximate an opening
JP2710355B2 (ja) 1988-09-20 1998-02-10 日本ゼオン株式会社 医用弁装置
JP2754067B2 (ja) 1989-01-17 1998-05-20 日本ゼオン株式会社 医療用体壁穴栓塞治具
US5674192A (en) 1990-12-28 1997-10-07 Boston Scientific Corporation Drug delivery
US5171233A (en) 1990-04-25 1992-12-15 Microvena Corporation Snare-type probe
US5100423A (en) 1990-08-21 1992-03-31 Medical Engineering & Development Institute, Inc. Ablation catheter
US5108420A (en) 1991-02-01 1992-04-28 Temple University Aperture occlusion device
US5697882A (en) 1992-01-07 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
DE69334196T2 (de) 1992-01-21 2009-01-02 Regents Of The University Of Minnesota, Minneapolis Verschlusseinrichtung eines Septumschadens
US5332402A (en) 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
WO1994006357A1 (en) 1992-09-23 1994-03-31 Target Therapeutics, Inc. Medical retrieval device
US5304184A (en) 1992-10-19 1994-04-19 Indiana University Foundation Apparatus and method for positive closure of an internal tissue membrane opening
US5429144A (en) 1992-10-30 1995-07-04 Wilk; Peter J. Coronary artery by-pass method
CA2102084A1 (en) 1992-11-09 1994-05-10 Howard C. Topel Surgical cutting instrument for coring tissue affixed thereto
US5284488A (en) 1992-12-23 1994-02-08 Sideris Eleftherios B Adjustable devices for the occlusion of cardiac defects
US5464449A (en) 1993-07-08 1995-11-07 Thomas J. Fogarty Internal graft prosthesis and delivery system
US5683411A (en) 1994-04-06 1997-11-04 William Cook Europe A/S Medical article for implantation into the vascular system of a patient
GB9408314D0 (en) 1994-04-27 1994-06-15 Cardio Carbon Co Ltd Heart valve prosthesis
US5725552A (en) 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US6123715A (en) 1994-07-08 2000-09-26 Amplatz; Curtis Method of forming medical devices; intravascular occlusion devices
WO1996001591A1 (en) 1994-07-08 1996-01-25 Microvena Corporation Method of forming medical devices; intravascular occlusion devices
US5846261A (en) 1994-07-08 1998-12-08 Aga Medical Corp. Percutaneous catheter directed occlusion devices
US5433727A (en) 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
ZA958860B (en) 1994-10-21 1997-04-18 St Jude Medical Rotatable cuff assembly for a heart valve prosthesis
US5556386A (en) 1995-04-03 1996-09-17 Research Medical, Inc. Medical pressure relief valve
US5556408A (en) 1995-04-27 1996-09-17 Interventional Technologies Inc. Expandable and compressible atherectomy cutter
DE69635659T2 (de) 1995-06-01 2006-07-06 Meadox Medicals, Inc. Implantierbare intraluminale prothese
US5702412A (en) 1995-10-03 1997-12-30 Cedars-Sinai Medical Center Method and devices for performing vascular anastomosis
JPH11514269A (ja) 1995-10-13 1999-12-07 トランスバスキュラー インコーポレイテッド 動脈閉塞にバイパスを形成するためのおよび/またはその他の経血管的手法を実施するための方法および装置
US6283983B1 (en) 1995-10-13 2001-09-04 Transvascular, Inc. Percutaneous in-situ coronary bypass method and apparatus
DE69735530T2 (de) 1996-01-04 2006-08-17 Chuter, Timothy A.M. Dr., Atherton Flachdrahtstent
US6168622B1 (en) 1996-01-24 2001-01-02 Microvena Corporation Method and apparatus for occluding aneurysms
DE69724255T2 (de) 1996-02-02 2004-06-03 Transvascular, Inc., Menlo Park System für interstitielle transvaskuläre chirurgische eingriffe
DE19604817C2 (de) 1996-02-09 2003-06-12 Pfm Prod Fuer Die Med Ag Vorrichtung zum Verschließen von Defektöffnungen im menschlichen oder tierischen Körper
IL117472A0 (en) 1996-03-13 1996-07-23 Instent Israel Ltd Radiopaque stent markers
DE19621099C2 (de) 1996-05-24 1999-05-20 Sulzer Osypka Gmbh Vorrichtung mit einem Katheter und einer von der Innenseite in die Herzwand einstechbaren Nadel als Hochfrequenzelektrode
US5755682A (en) 1996-08-13 1998-05-26 Heartstent Corporation Method and apparatus for performing coronary artery bypass surgery
WO1998008456A1 (en) 1996-08-26 1998-03-05 Transvascular, Inc. Methods and apparatus for transmyocardial direct coronary revascularization
US5741297A (en) 1996-08-28 1998-04-21 Simon; Morris Daisy occluder and method for septal defect repair
US5655548A (en) 1996-09-16 1997-08-12 Circulation, Inc. Method for treatment of ischemic heart disease by providing transvenous myocardial perfusion
US6258119B1 (en) 1996-11-07 2001-07-10 Myocardial Stents, Inc. Implant device for trans myocardial revascularization
US6395017B1 (en) 1996-11-15 2002-05-28 C. R. Bard, Inc. Endoprosthesis delivery catheter with sequential stage control
US6050936A (en) 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
US5893369A (en) 1997-02-24 1999-04-13 Lemole; Gerald M. Procedure for bypassing an occlusion in a blood vessel
US5954761A (en) 1997-03-25 1999-09-21 Intermedics Inc. Implantable endocardial lead assembly having a stent
US6245103B1 (en) 1997-08-01 2001-06-12 Schneider (Usa) Inc Bioabsorbable self-expanding stent
US6174330B1 (en) 1997-08-01 2001-01-16 Schneider (Usa) Inc Bioabsorbable marker having radiopaque constituents
US6120534A (en) 1997-10-29 2000-09-19 Ruiz; Carlos E. Endoluminal prosthesis having adjustable constriction
US6416490B1 (en) 1997-11-04 2002-07-09 Scimed Life Systems, Inc. PMR device and method
US6286512B1 (en) 1997-12-30 2001-09-11 Cardiodyne, Inc. Electrosurgical device and procedure for forming a channel within tissue
US6193734B1 (en) 1998-01-23 2001-02-27 Heartport, Inc. System for performing vascular anastomoses
EP1051128B1 (de) 1998-01-30 2006-03-15 St. Jude Medical ATG, Inc. Medizinischer transplantatverbinder oder stopfen sowie verfahren zu ihrer herstellung
US5944738A (en) 1998-02-06 1999-08-31 Aga Medical Corporation Percutaneous catheter directed constricting occlusion device
US6352543B1 (en) 2000-04-29 2002-03-05 Ventrica, Inc. Methods for forming anastomoses using magnetic force
US6651670B2 (en) 1998-02-13 2003-11-25 Ventrica, Inc. Delivering a conduit into a heart wall to place a coronary vessel in communication with a heart chamber and removing tissue from the vessel or heart wall to facilitate such communication
DE59812219D1 (de) 1998-03-04 2004-12-09 Schneider Europ Gmbh Buelach Vorrichtung zum Einführen einer Endoprothese in einen Katheterschaft
US6383195B1 (en) 1998-04-13 2002-05-07 Endoline, Inc. Laparoscopic specimen removal apparatus
US6059827A (en) 1998-05-04 2000-05-09 Axya Medical, Inc. Sutureless cardiac valve prosthesis, and devices and methods for implanting them
US20010027287A1 (en) 1998-05-26 2001-10-04 Trans Vascular, Inc. Apparatus for providing coronary retroperfusion and/or left ventricular assist and methods of use
US6254636B1 (en) 1998-06-26 2001-07-03 St. Jude Medical, Inc. Single suture biological tissue aortic stentless valve
SE512225C2 (sv) 1998-06-26 2000-02-14 Jouko Haverinen Fixtur
US6210338B1 (en) 1998-08-21 2001-04-03 Aga Medical Corp. Sizing catheter for measuring cardiovascular structures
US6241678B1 (en) 1998-08-21 2001-06-05 Aga Medical Corporation Sizing catheter for measuring septal defects
US6641610B2 (en) 1998-09-10 2003-11-04 Percardia, Inc. Valve designs for left ventricular conduits
US6290728B1 (en) 1998-09-10 2001-09-18 Percardia, Inc. Designs for left ventricular conduit
US6508252B1 (en) 1998-11-06 2003-01-21 St. Jude Medical Atg, Inc. Medical grafting methods and apparatus
US7044134B2 (en) 1999-11-08 2006-05-16 Ev3 Sunnyvale, Inc Method of implanting a device in the left atrial appendage
US6152937A (en) 1998-11-06 2000-11-28 St. Jude Medical Cardiovascular Group, Inc. Medical graft connector and methods of making and installing same
US6350277B1 (en) 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
US6156055A (en) 1999-03-23 2000-12-05 Nitinol Medical Technologies Inc. Gripping device for implanting, repositioning or extracting an object within a body vessel
US6695859B1 (en) 1999-04-05 2004-02-24 Coalescent Surgical, Inc. Apparatus and methods for anastomosis
US6666885B2 (en) 1999-04-16 2003-12-23 Carbomedics Inc. Heart valve leaflet
US6309350B1 (en) 1999-05-03 2001-10-30 Tricardia, L.L.C. Pressure/temperature/monitor device for heart implantation
US6712836B1 (en) 1999-05-13 2004-03-30 St. Jude Medical Atg, Inc. Apparatus and methods for closing septal defects and occluding blood flow
US6790229B1 (en) 1999-05-25 2004-09-14 Eric Berreklouw Fixing device, in particular for fixing to vascular wall tissue
US6699256B1 (en) 1999-06-04 2004-03-02 St. Jude Medical Atg, Inc. Medical grafting apparatus and methods
US6287302B1 (en) 1999-06-14 2001-09-11 Fidus Medical Technology Corporation End-firing microwave ablation instrument with horn reflection device
US7033372B1 (en) 1999-08-04 2006-04-25 Percardia, Inc. Corkscrew reinforced left ventricle to coronary artery channel
WO2001015618A2 (en) 1999-08-31 2001-03-08 The Cleveland Clinic Foundation Non-occlusive vascular bypass surgical methods and instruments
AU5812299A (en) 1999-09-07 2001-04-10 Microvena Corporation Retrievable septal defect closure device
GB9925636D0 (en) 1999-10-29 1999-12-29 Angiomed Ag Method of, and device for, installing a stent in a sleeve
US7758624B2 (en) 2000-11-13 2010-07-20 C. R. Bard, Inc. Implant delivery device
US20070043435A1 (en) 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
DE10000137A1 (de) 2000-01-04 2001-07-12 Pfm Prod Fuer Die Med Ag Implantat zum Verschließen von Defektöffnungen im menschlichen oder tierischen Körper
US6468301B1 (en) 2000-03-27 2002-10-22 Aga Medical Corporation Repositionable and recapturable vascular stent/graft
US6468303B1 (en) 2000-03-27 2002-10-22 Aga Medical Corporation Retrievable self expanding shunt
US7056294B2 (en) 2000-04-13 2006-06-06 Ev3 Sunnyvale, Inc Method and apparatus for accessing the left atrial appendage
US6214029B1 (en) * 2000-04-26 2001-04-10 Microvena Corporation Septal defect occluder
US6334864B1 (en) 2000-05-17 2002-01-01 Aga Medical Corp. Alignment member for delivering a non-symmetric device with a predefined orientation
US6440152B1 (en) 2000-07-28 2002-08-27 Microvena Corporation Defect occluder release assembly and method
US6527746B1 (en) 2000-08-03 2003-03-04 Ev3, Inc. Back-loading catheter
US6572652B2 (en) 2000-08-29 2003-06-03 Venpro Corporation Method and devices for decreasing elevated pulmonary venous pressure
US7691144B2 (en) 2003-10-01 2010-04-06 Mvrx, Inc. Devices, systems, and methods for reshaping a heart valve annulus
SE517410C2 (sv) 2000-09-20 2002-06-04 Jan Otto Solem Anordning och införingsanordning för åstadkommande av ett komplementblodflöde till en kransartär
US20020082525A1 (en) 2000-10-18 2002-06-27 Oslund John C. Rapid exchange delivery catheter
US6936058B2 (en) 2000-10-18 2005-08-30 Nmt Medical, Inc. Over-the-wire interlock attachment/detachment mechanism
EP1341487B1 (de) 2000-12-15 2005-11-23 Angiomed GmbH & Co. Medizintechnik KG Stent mit herzklappe
CN100342829C (zh) 2001-02-05 2007-10-17 维亚科公司 改善二尖瓣功能的方法和装置
US6802846B2 (en) 2001-02-12 2004-10-12 Ams Research Corporation Foreign body retrieval device and method
US6979343B2 (en) 2001-02-14 2005-12-27 Ev3 Inc. Rolled tip recovery catheter
US6562066B1 (en) 2001-03-02 2003-05-13 Eric C. Martin Stent for arterialization of the coronary sinus and retrograde perfusion of the myocardium
US6958076B2 (en) 2001-04-16 2005-10-25 Biomedical Research Associates Inc. Implantable venous valve
US8091556B2 (en) 2001-04-20 2012-01-10 V-Wave Ltd. Methods and apparatus for reducing localized circulatory system pressure
US6699283B2 (en) 2001-04-26 2004-03-02 Daniel Clarke Mazzucco Heart valve with rectangular orifice
US6837901B2 (en) 2001-04-27 2005-01-04 Intek Technology L.L.C. Methods for delivering, repositioning and/or retrieving self-expanding stents
US20030130713A1 (en) 2001-05-21 2003-07-10 Stewart Mark T. Trans-septal catheter with retention mechanism
US7338514B2 (en) 2001-06-01 2008-03-04 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
KR100393548B1 (ko) 2001-06-05 2003-08-02 주식회사 엠아이텍 의료용 스텐트
JP4201702B2 (ja) 2001-06-20 2008-12-24 パーク メディカル リミテッド ライアビリティ カンパニー 吻合装置
US8771302B2 (en) 2001-06-29 2014-07-08 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
FR2827153A1 (fr) 2001-07-12 2003-01-17 Younes Boudjemline Dispositif pour fermer les defauts septaux
US7572288B2 (en) 2001-07-20 2009-08-11 Microvention, Inc. Aneurysm treatment device and method of use
WO2003013793A1 (en) 2001-08-10 2003-02-20 American Tool Companies, Inc. Increased and variable force and multi-speed clamps
US20060052821A1 (en) 2001-09-06 2006-03-09 Ovalis, Inc. Systems and methods for treating septal defects
WO2003022344A2 (en) 2001-09-06 2003-03-20 Nmt Medical, Inc. Flexible delivery system
US20070129755A1 (en) 2005-12-05 2007-06-07 Ovalis, Inc. Clip-based systems and methods for treating septal defects
JP2005532832A (ja) 2001-09-24 2005-11-04 ノヴォスト コーポレイション 不整脈の治療に電離放射線を用いる方法および装置
US6669693B2 (en) 2001-11-13 2003-12-30 Mayo Foundation For Medical Education And Research Tissue ablation device and methods of using
AU2002360695A1 (en) 2001-12-19 2003-07-09 Nmt Medical, Inc. Septal occluder and associated methods
US7318833B2 (en) 2001-12-19 2008-01-15 Nmt Medical, Inc. PFO closure device with flexible thrombogenic joint and improved dislodgement resistance
US7037329B2 (en) 2002-01-07 2006-05-02 Eric C. Martin Bifurcated stent for percutaneous arterialization of the coronary sinus and retrograde perfusion of the myocardium
US6638257B2 (en) 2002-03-01 2003-10-28 Aga Medical Corporation Intravascular flow restrictor
EP1480565B8 (de) 2002-03-01 2009-04-01 Regents Of The University Of Minnesota Vaskuläre okklusionsvorrichtung
US6866679B2 (en) 2002-03-12 2005-03-15 Ev3 Inc. Everting stent and stent delivery system
CA2467702C (en) 2002-03-15 2009-01-13 Nmt Medical, Inc. Coupling system useful in placement of implants
US7976564B2 (en) 2002-05-06 2011-07-12 St. Jude Medical, Cardiology Division, Inc. PFO closure devices and related methods of use
US7485141B2 (en) 2002-05-10 2009-02-03 Cordis Corporation Method of placing a tubular membrane on a structural frame
JP2005528162A (ja) 2002-06-03 2005-09-22 エヌエムティー メディカル インコーポレイテッド 心臓内欠損閉塞のための生物学的組織足場を有するデバイス
US20030181843A1 (en) 2002-06-11 2003-09-25 Scout Medical Technologies, Llc Device and method providing arterial blood flow for perfusion of ischemic myocardium
US7717934B2 (en) 2002-06-14 2010-05-18 Ev3 Inc. Rapid exchange catheters usable with embolic protection devices
US7166120B2 (en) 2002-07-12 2007-01-23 Ev3 Inc. Catheter with occluding cuff
US20040044351A1 (en) 2002-08-27 2004-03-04 Gary Searle Mechanical occluding device
AU2003268220B8 (en) 2002-08-28 2010-01-21 Hlt, Inc. Method and device for treating diseased valve
DE10242444A1 (de) 2002-09-11 2004-04-01 pfm Produkte für die Medizin AG Extraktionsvorrichtung
US7137184B2 (en) 2002-09-20 2006-11-21 Edwards Lifesciences Corporation Continuous heart valve support frame and method of manufacture
US8303511B2 (en) 2002-09-26 2012-11-06 Pacesetter, Inc. Implantable pressure transducer system optimized for reduced thrombosis effect
US20050119735A1 (en) 2002-10-21 2005-06-02 Spence Paul A. Tissue fastening systems and methods utilizing magnetic guidance
US7404824B1 (en) 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US20040102719A1 (en) 2002-11-22 2004-05-27 Velocimed, L.L.C. Guide wire control catheters for crossing occlusions and related methods of use
US7316708B2 (en) 2002-12-05 2008-01-08 Cardiac Dimensions, Inc. Medical device delivery system
US7270662B2 (en) 2004-01-21 2007-09-18 Naheed Visram Surgical perforation device with electrocardiogram (ECG) monitoring ability and method of using ECG to position a surgical perforation device
US7112197B2 (en) 2003-01-21 2006-09-26 Baylis Medical Company Inc. Surgical device with pressure monitoring ability
US7048733B2 (en) 2003-09-19 2006-05-23 Baylis Medical Company Inc. Surgical perforation device with curve
US20040143262A1 (en) 2003-01-21 2004-07-22 Baylis Medical Company Inc. Surgical perforation device and method with pressure monitoring and staining abilities
DE10362223B4 (de) 2003-01-21 2010-02-04 pfm Produkte für die Medizin AG Grundwickelform
US6960224B2 (en) 2003-01-22 2005-11-01 Cardia, Inc. Laminated sheets for use in a fully retrievable occlusion device
US8021359B2 (en) 2003-02-13 2011-09-20 Coaptus Medical Corporation Transseptal closure of a patent foramen ovale and other cardiac defects
US20040162514A1 (en) 2003-02-14 2004-08-19 Scout Medical Technologies System and method for controlling differential pressure in a cardio-vascular system
US20040176788A1 (en) 2003-03-07 2004-09-09 Nmt Medical, Inc. Vacuum attachment system
US7658747B2 (en) 2003-03-12 2010-02-09 Nmt Medical, Inc. Medical device for manipulation of a medical implant
JP4624984B2 (ja) 2003-03-12 2011-02-02 クック インコーポレイテッド 逆流を許容する人工弁
US7473266B2 (en) 2003-03-14 2009-01-06 Nmt Medical, Inc. Collet-based delivery system
CN1780591A (zh) 2003-03-27 2006-05-31 赛热股份有限公司 治疗未闭椭圆孔的方法和装置
US7967769B2 (en) 2003-04-08 2011-06-28 Rox Medical Inc. Implantable arterio-venous shunt devices and methods for their use
US8372112B2 (en) 2003-04-11 2013-02-12 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods, and related methods of use
US20040267306A1 (en) 2003-04-11 2004-12-30 Velocimed, L.L.C. Closure devices, related delivery methods, and related methods of use
US7530995B2 (en) 2003-04-17 2009-05-12 3F Therapeutics, Inc. Device for reduction of pressure effects of cardiac tricuspid valve regurgitation
US7159593B2 (en) 2003-04-17 2007-01-09 3F Therapeutics, Inc. Methods for reduction of pressure effects of cardiac tricuspid valve regurgitation
US20040215323A1 (en) 2003-04-24 2004-10-28 Medtronic Ave, Inc. Membrane eyelet
US7604660B2 (en) 2003-05-01 2009-10-20 Merit Medical Systems, Inc. Bifurcated medical appliance delivery apparatus and method
US7105024B2 (en) 2003-05-06 2006-09-12 Aesculap Ii, Inc. Artificial intervertebral disc
US6913614B2 (en) 2003-05-08 2005-07-05 Cardia, Inc. Delivery system with safety tether
US20040236308A1 (en) 2003-05-22 2004-11-25 Atrium Medical Corp. Kinetic isolation pressurization
US6921397B2 (en) 2003-05-27 2005-07-26 Cardia, Inc. Flexible delivery device
US7413563B2 (en) 2003-05-27 2008-08-19 Cardia, Inc. Flexible medical device
US8480706B2 (en) 2003-07-14 2013-07-09 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
EP2481356B1 (de) 2003-07-14 2013-09-11 W.L. Gore & Associates, Inc. Rohrförmige Verschlussvorrichtung mit Sperrsystem für persistierendes Foramen ovale (PFO)
US7247269B2 (en) 2003-07-21 2007-07-24 Biosense Webster, Inc. Method for making a spiral array ultrasound transducer
US7860579B2 (en) 2003-07-25 2010-12-28 Integrated Sensing Systems, Inc. Delivery system, method, and anchor for medical implant placement
US7317951B2 (en) 2003-07-25 2008-01-08 Integrated Sensing Systems, Inc. Anchor for medical implant placement and method of manufacture
WO2005018728A2 (en) 2003-08-19 2005-03-03 Nmt Medical, Inc. Expandable sheath tubing
DE10340265A1 (de) 2003-08-29 2005-04-07 Sievers, Hans-Hinrich, Prof. Dr.med. Prothese zum Ersatz der Aorten- und/oder Mitralklappe des Herzens
US20050049692A1 (en) 2003-09-02 2005-03-03 Numamoto Michael J. Medical device for reduction of pressure effects of cardiac tricuspid valve regurgitation
US7144410B2 (en) 2003-09-18 2006-12-05 Cardia Inc. ASD closure device with self centering arm network
US7192435B2 (en) * 2003-09-18 2007-03-20 Cardia, Inc. Self centering closure device for septal occlusion
WO2005027753A1 (en) 2003-09-19 2005-03-31 St. Jude Medical, Inc. Apparatus and methods for tissue gathering and securing
US7658748B2 (en) 2003-09-23 2010-02-09 Cardia, Inc. Right retrieval mechanism
US7309341B2 (en) 2003-09-30 2007-12-18 Ethicon Endo-Surgery, Inc. Single lumen anastomosis applier for self-deploying fastener
US7608086B2 (en) 2003-09-30 2009-10-27 Ethicon Endo-Surgery, Inc. Anastomosis wire ring device
US20050119676A1 (en) 2003-09-30 2005-06-02 Bumbalough Timothy R. Applier having automated release of surgical device
US7419498B2 (en) 2003-10-21 2008-09-02 Nmt Medical, Inc. Quick release knot attachment system
US7347869B2 (en) 2003-10-31 2008-03-25 Cordis Corporation Implantable valvular prosthesis
US8292910B2 (en) 2003-11-06 2012-10-23 Pressure Products Medical Supplies, Inc. Transseptal puncture apparatus
WO2005048883A1 (en) 2003-11-13 2005-06-02 Fidel Realyvasquez Methods and apparatus for valve repair
SE526861C2 (sv) 2003-11-17 2005-11-15 Syntach Ag Vävnadslesionsskapande anordning samt en uppsättning av anordningar för behandling av störningar i hjärtrytmregleringssystemet
WO2005055834A1 (en) 2003-11-20 2005-06-23 Nmt Medical, Inc. Device, with electrospun fabric, for a percutaneous transluminal procedure, and methods thereof
US20050165344A1 (en) 2003-11-26 2005-07-28 Dobak John D.Iii Method and apparatus for treating heart failure
US20050137609A1 (en) 2003-12-17 2005-06-23 Gerald Guiraudon Universal cardiac introducer
US20050137686A1 (en) 2003-12-23 2005-06-23 Sadra Medical, A Delaware Corporation Externally expandable heart valve anchor and method
US8864822B2 (en) 2003-12-23 2014-10-21 Mitralign, Inc. Devices and methods for introducing elements into tissue
CA2554595C (en) 2004-02-03 2016-03-29 Atria Medical Inc. Device and method for controlling in-vivo pressure
EP1737349A1 (de) 2004-03-03 2007-01-03 NMT Medical, Inc. Abgabe/rückholsystem für einen septumokkludierer
US9039724B2 (en) 2004-03-19 2015-05-26 Aga Medical Corporation Device for occluding vascular defects
US8398670B2 (en) 2004-03-19 2013-03-19 Aga Medical Corporation Multi-layer braided structures for occluding vascular defects and for occluding fluid flow through portions of the vasculature of the body
US8777974B2 (en) 2004-03-19 2014-07-15 Aga Medical Corporation Multi-layer braided structures for occluding vascular defects
US8313505B2 (en) 2004-03-19 2012-11-20 Aga Medical Corporation Device for occluding vascular defects
US8747453B2 (en) 2008-02-18 2014-06-10 Aga Medical Corporation Stent/stent graft for reinforcement of vascular abnormalities and associated method
EP1761202A4 (de) 2004-03-23 2012-06-13 Correx Inc Vorrichtung und verfahren zum verbinden einer leitung mit einem hohlen organ
US7799041B2 (en) 2004-03-23 2010-09-21 Correx, Inc. Apparatus and method for forming a hole in a hollow organ
AU2005232562B2 (en) 2004-04-08 2009-05-07 St. Jude Medical, Cardiology Division, Inc. Flange occlusion devices and methods
US20050267524A1 (en) 2004-04-09 2005-12-01 Nmt Medical, Inc. Split ends closure device
US7143625B2 (en) 2004-04-16 2006-12-05 Boston Scientific Scimed, Inc. Stent crimper
US7654997B2 (en) 2004-04-21 2010-02-02 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US7803150B2 (en) 2004-04-21 2010-09-28 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US7462175B2 (en) 2004-04-21 2008-12-09 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
CA2563426C (en) 2004-05-05 2013-12-24 Direct Flow Medical, Inc. Unstented heart valve with formed in place support structure
US8308760B2 (en) 2004-05-06 2012-11-13 W.L. Gore & Associates, Inc. Delivery systems and methods for PFO closure device with two anchors
US7704268B2 (en) 2004-05-07 2010-04-27 Nmt Medical, Inc. Closure device with hinges
US20050251063A1 (en) 2004-05-07 2005-11-10 Raghuveer Basude Safety device for sampling tissue
US20050273075A1 (en) 2004-06-08 2005-12-08 Peter Krulevitch Method for delivering drugs to the adventitia using device having microprojections
US20060009832A1 (en) 2004-07-09 2006-01-12 Conor Medsystems, Inc. Balloon catheter and method and system for securing a stent to a balloon catheter
US9138228B2 (en) 2004-08-11 2015-09-22 Emory University Vascular conduit device and system for implanting
US20060041183A1 (en) 2004-08-20 2006-02-23 Massen Richard J Electromechanical machine-based artificial muscles, bio-valves and related devices
CN101035488A (zh) 2004-09-24 2007-09-12 因瓦泰克有限公司 用于处理分叉的组件
WO2006036837A2 (en) 2004-09-24 2006-04-06 Nmt Medical, Inc. Occluder device double securement system for delivery/recovery of such occluder device
CA2582160A1 (en) 2004-10-08 2006-04-20 Sinus Rhythm Technologies, Inc. Two-stage scar generation for treating atrial fibrillation
WO2006042280A2 (en) 2004-10-12 2006-04-20 Alexander Shaknovich System and method for assisted partitioning of body conduits
US20060085060A1 (en) 2004-10-15 2006-04-20 Campbell Louis A Methods and apparatus for coupling an allograft tissue valve and graft
US7722629B2 (en) 2004-10-29 2010-05-25 Jeffrey W. Chambers, M.D. System and method for catheter-based septal defect repair
US20060111704A1 (en) 2004-11-22 2006-05-25 Rox Medical, Inc. Devices, systems, and methods for energy assisted arterio-venous fistula creation
US7905901B2 (en) 2004-11-29 2011-03-15 Cardia, Inc. Self-centering occlusion device
US7582104B2 (en) 2004-12-08 2009-09-01 Cardia, Inc. Daisy design for occlusion device
US8162905B2 (en) 2004-12-17 2012-04-24 W. L. Gore & Associates, Inc. Delivery system
US9545300B2 (en) 2004-12-22 2017-01-17 W. L. Gore & Associates, Inc. Filament-wound implantable devices
US20060241677A1 (en) 2005-01-03 2006-10-26 Eric Johnson Methods for maintaining a filtering device within a lumen
DE102005003632A1 (de) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Katheter für die transvaskuläre Implantation von Herzklappenprothesen
US8372113B2 (en) 2005-03-24 2013-02-12 W.L. Gore & Associates, Inc. Curved arm intracardiac occluder
US20060276882A1 (en) 2005-04-11 2006-12-07 Cook Incorporated Medical device including remodelable material attached to frame
SE531468C2 (sv) 2005-04-21 2009-04-14 Edwards Lifesciences Ag En anordning för styrning av blodflöde
US7758589B2 (en) 2005-05-03 2010-07-20 Ethicon Endo-Surgery, Inc. Surgical instrument for extracting an anastomotic ring device
US20060253184A1 (en) 2005-05-04 2006-11-09 Kurt Amplatz System for the controlled delivery of stents and grafts
US20070118207A1 (en) 2005-05-04 2007-05-24 Aga Medical Corporation System for controlled delivery of stents and grafts
DE102005022423B3 (de) 2005-05-14 2007-01-18 Osypka, Peter, Dr.-Ing. Vorrichtung zum Einbringen eines Gegenstandes im Inneren eines Blutgefässes oder des Herzens
US20070005127A1 (en) 2005-06-17 2007-01-04 Peter Boekstegers Hinged tissue implant and related methods and devices for delivering such an implant
US20070021739A1 (en) 2005-07-24 2007-01-25 Lascor Gmbh Inter-atrial Transseptal Laser Puncture (TLP) Procedure
WO2007014313A2 (en) 2005-07-26 2007-02-01 Precision Thoracic Corporation Minimally invasive methods and apparatus
EP1919398B1 (de) 2005-07-29 2014-03-05 Cook Medical Technologies LLC Elliptische implantierbare vorrichtung
US20070038295A1 (en) 2005-08-12 2007-02-15 Cook Incorporated Artificial valve prosthesis having a ring frame
US20070043431A1 (en) 2005-08-19 2007-02-22 Cook Incorporated Prosthetic valve
WO2007025028A1 (en) 2005-08-25 2007-03-01 The Cleveland Clinic Foundation Percutaneous atrioventricular valve and method of use
US20070088388A1 (en) 2005-09-19 2007-04-19 Opolski Steven W Delivery device for implant with dual attachment sites
US20070123934A1 (en) 2005-09-26 2007-05-31 Whisenant Brian K Delivery system for patent foramen ovale closure device
ATE474503T1 (de) 2005-11-11 2010-08-15 Occlutech Gmbh Occlusionsinstrument zum verschliessen eines herzohres
US7955354B2 (en) 2005-11-14 2011-06-07 Occlutech Gmbh Occlusion device and surgical instrument and method for its implantation/explantation
CA2634754A1 (en) 2005-12-29 2007-07-12 Nmt Medical, Inc. Syringe activated-valve for flushing a catheter and methods thereof
US8778008B2 (en) 2006-01-13 2014-07-15 Aga Medical Corporation Intravascular deliverable stent for reinforcement of vascular abnormalities
US8900287B2 (en) 2006-01-13 2014-12-02 Aga Medical Corporation Intravascular deliverable stent for reinforcement of abdominal aortic aneurysm
WO2007083288A2 (en) 2006-01-23 2007-07-26 Atria Medical Inc. Heart anchor device
US20080161901A1 (en) 2006-01-25 2008-07-03 Heuser Richard R Catheter system with stent apparatus for connecting adjacent blood vessels
US7625392B2 (en) 2006-02-03 2009-12-01 James Coleman Wound closure devices and methods
EP2583640B1 (de) 2006-02-16 2022-06-22 Venus MedTech (HangZhou), Inc. Minimalinvasiver Herzklappenersatz
US7648527B2 (en) 2006-03-01 2010-01-19 Cook Incorporated Methods of reducing retrograde flow
US20070209957A1 (en) 2006-03-09 2007-09-13 Sdgi Holdings, Inc. Packaging system for medical devices
US20070225759A1 (en) 2006-03-22 2007-09-27 Daniel Thommen Method for delivering a medical device to the heart of a patient
CN101049268B (zh) 2006-04-03 2011-09-14 孟坚 医疗用闭塞器械
DE102006036649A1 (de) 2006-04-27 2007-10-31 Biophan Europe Gmbh Okkluder
EP1849440A1 (de) 2006-04-28 2007-10-31 Younes Boudjemline Vaskuläre Stents mit verschiedenen Durchmessern
EP2023860A2 (de) 2006-04-29 2009-02-18 Arbor Surgical Technologies, Inc. Mehrteilige herzklappenprothesenanordnungen sowie vorrichtung und verfahren zu ihrer einsetzung
US20070265658A1 (en) 2006-05-12 2007-11-15 Aga Medical Corporation Anchoring and tethering system
US20070270741A1 (en) 2006-05-17 2007-11-22 Hassett James A Transseptal needle assembly and methods
DE602006021485D1 (de) 2006-05-17 2011-06-01 Syntach Ag Kontrollierbare vorrichtung und kit zur behandlung von störungen des herzrhythmus-reguliersystems
US8092517B2 (en) 2006-05-25 2012-01-10 Deep Vein Medical, Inc. Device for regulating blood flow
US7938826B2 (en) 2006-05-30 2011-05-10 Coherex Medical, Inc. Methods, systems, and devices for closing a patent foramen ovale using mechanical structures
US8402974B2 (en) 2006-05-30 2013-03-26 Coherex Medical, Inc. Methods, systems, and devices for sensing, measuring, and controlling closure of a patent foramen ovale
US7815676B2 (en) 2006-07-07 2010-10-19 The Cleveland Clinic Foundation Apparatus and method for assisting in the removal of a cardiac valve
US8010186B1 (en) 2006-07-19 2011-08-30 Pacesetter, Inc. System and related methods for identifying a fibrillation driver
US20080039743A1 (en) 2006-08-09 2008-02-14 Coherex Medical, Inc. Methods for determining characteristics of an internal tissue opening
US20080058940A1 (en) 2006-08-22 2008-03-06 Shing Sheng Wu Artificial intervertebral disc
EP2059198B1 (de) 2006-09-06 2014-01-15 Cook Medical Technologies LLC Stents mit steckverbindern und biologisch abbaubaren stabilisierungselementen
US8876895B2 (en) 2006-09-19 2014-11-04 Medtronic Ventor Technologies Ltd. Valve fixation member having engagement arms
WO2008042229A2 (en) 2006-09-28 2008-04-10 Nmt Medical, Inc. Implant-catheter attachment mechanism using snare and method of use
WO2008070262A2 (en) 2006-10-06 2008-06-12 The Cleveland Clinic Foundation Apparatus and method for targeting a body tissue
US20080103508A1 (en) 2006-11-01 2008-05-01 Ali Serdar Karakurum Apparatus and method for removal of foreign matter from a patient
US20080109069A1 (en) 2006-11-07 2008-05-08 Coleman James E Blood perfusion graft
US10413284B2 (en) 2006-11-07 2019-09-17 Corvia Medical, Inc. Atrial pressure regulation with control, sensing, monitoring and therapy delivery
US9232997B2 (en) 2006-11-07 2016-01-12 Corvia Medical, Inc. Devices and methods for retrievable intra-atrial implants
US8745845B2 (en) 2006-11-07 2014-06-10 Dc Devices, Inc. Methods for mounting a prosthesis onto a delivery device
US20110257723A1 (en) 2006-11-07 2011-10-20 Dc Devices, Inc. Devices and methods for coronary sinus pressure relief
WO2008055301A1 (en) 2006-11-07 2008-05-15 Univ Sydney Devices and methods for the treatment of heart failure
US8460372B2 (en) 2006-11-07 2013-06-11 Dc Devices, Inc. Prosthesis for reducing intra-cardiac pressure having an embolic filter
SE530568C2 (sv) 2006-11-13 2008-07-08 Medtentia Ab Anordning och metod för förbättring av funktionen hos en hjärtklaff
US7350995B1 (en) 2006-12-19 2008-04-01 Rhodes Julia M Marker eraser system
US8337518B2 (en) 2006-12-20 2012-12-25 Onset Medical Corporation Expandable trans-septal sheath
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
US7959668B2 (en) 2007-01-16 2011-06-14 Boston Scientific Scimed, Inc. Bifurcated stent
WO2008089365A2 (en) 2007-01-19 2008-07-24 The Cleveland Clinic Foundation Method for implanting a cardiovascular valve
US7678144B2 (en) 2007-01-29 2010-03-16 Cook Incorporated Prosthetic valve with slanted leaflet design
WO2008094706A2 (en) 2007-02-01 2008-08-07 Cook Incorporated Closure device and method of closing a bodily opening
DE102007005900A1 (de) 2007-02-01 2008-08-07 Endosmart Gesellschaft für innovative Medizintechnik mbH Instrument zum operativen Entfernen einer defekten Herzklappe
US20080221582A1 (en) 2007-03-05 2008-09-11 Pulmonx Pulmonary stent removal device
US8092523B2 (en) 2007-03-12 2012-01-10 St. Jude Medical, Inc. Prosthetic heart valves with flexible leaflets
US9005242B2 (en) 2007-04-05 2015-04-14 W.L. Gore & Associates, Inc. Septal closure device with centering mechanism
US8187284B2 (en) 2007-04-23 2012-05-29 Boston Scientific Scimed, Inc. Intraluminary stent relocating apparatus
US7846123B2 (en) 2007-04-24 2010-12-07 Emory University Conduit device and system for implanting a conduit device in a tissue wall
US9017362B2 (en) 2007-06-13 2015-04-28 Cook Medical Technologies Llc Occluding device
US8048147B2 (en) 2007-06-27 2011-11-01 Aga Medical Corporation Branched stent/graft and method of fabrication
US20090054984A1 (en) 2007-08-20 2009-02-26 Histogenics Corporation Method For Use Of A Double-Structured Tissue Implant For Treatment Of Tissue Defects
US8034061B2 (en) 2007-07-12 2011-10-11 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US8006535B2 (en) 2007-07-12 2011-08-30 Sorin Biomedica Cardio S.R.L. Expandable prosthetic valve crimping device
US20090030495A1 (en) 2007-07-25 2009-01-29 Abbott Laboratories Vascular Enterprises Limited System for controlled prosthesis deployment
US8361138B2 (en) 2007-07-25 2013-01-29 Aga Medical Corporation Braided occlusion device having repeating expanded volume segments separated by articulation segments
US20090112251A1 (en) 2007-07-25 2009-04-30 Aga Medical Corporation Braided occlusion device having repeating expanded volume segments separated by articulation segments
US7905918B2 (en) 2007-08-23 2011-03-15 William Wayne Cimino Elastic metallic replacement ligament
DE102007043830A1 (de) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Herzklappenstent
US20090292310A1 (en) 2007-09-13 2009-11-26 Dara Chin Medical device for occluding a heart defect and a method of manufacturing the same
US8366741B2 (en) 2007-09-13 2013-02-05 Cardia, Inc. Occlusion device with centering arm
US20090082803A1 (en) 2007-09-26 2009-03-26 Aga Medical Corporation Braided vascular devices having no end clamps
US9414842B2 (en) 2007-10-12 2016-08-16 St. Jude Medical, Cardiology Division, Inc. Multi-component vascular device
US8343029B2 (en) 2007-10-24 2013-01-01 Circulite, Inc. Transseptal cannula, tip, delivery system, and method
EP2052688B1 (de) 2007-10-25 2012-06-06 pfm medical ag Schlingenmechanismus zum chirurgischen Entnehmen
US20090171386A1 (en) 2007-12-28 2009-07-02 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US9743918B2 (en) 2008-01-18 2017-08-29 St. Jude Medical, Cardiology Division, Inc. Percutaneous catheter directed intravascular occlusion device
US20090209999A1 (en) 2008-02-14 2009-08-20 Michael Afremov Device and Method for Closure of Atrial Septal Defects
US8163004B2 (en) 2008-02-18 2012-04-24 Aga Medical Corporation Stent graft for reinforcement of vascular abnormalities and associated method
US9259225B2 (en) 2008-02-19 2016-02-16 St. Jude Medical, Cardiology Division, Inc. Medical devices for treating a target site and associated method
US20130165967A1 (en) 2008-03-07 2013-06-27 W.L. Gore & Associates, Inc. Heart occlusion devices
EP2268214A1 (de) 2008-03-11 2011-01-05 UMC Utrecht Holding B.V. Vorrichtung und verfahren zur transseptalen punktion
WO2009121001A1 (en) 2008-03-28 2009-10-01 Coherex Medical, Inc. Delivery systems for a medical device and related methods
WO2009129481A1 (en) 2008-04-18 2009-10-22 Cook Incorporated Branched vessel prosthesis
WO2009137755A2 (en) 2008-05-09 2009-11-12 University Of Pittsburgh- Commonwealth System Of Higher Education Biologic matrix for cardiac repair
US8454632B2 (en) 2008-05-12 2013-06-04 Xlumena, Inc. Tissue anchor for securing tissue layers
RU2373900C1 (ru) 2008-07-23 2009-11-27 Закрытое Акционерное Общество Научно-Производственное Предприятие "Мединж" Протез клапана сердца
US9232992B2 (en) 2008-07-24 2016-01-12 Aga Medical Corporation Multi-layered medical device for treating a target site and associated method
US9351715B2 (en) 2008-07-24 2016-05-31 St. Jude Medical, Cardiology Division, Inc. Multi-layered medical device for treating a target site and associated method
US20100022940A1 (en) 2008-07-25 2010-01-28 Medtronic Vascular, Inc. Percutaneously Introduceable Shunt Devices and Methods
US20100030321A1 (en) 2008-07-29 2010-02-04 Aga Medical Corporation Medical device including corrugated braid and associated method
US20100049307A1 (en) 2008-08-25 2010-02-25 Aga Medical Corporation Stent graft having extended landing area and method for using the same
US8944411B2 (en) 2008-08-29 2015-02-03 Corning Cable Systems Llc Pulling grip assembly for a fiber optic assembly
US20100063578A1 (en) 2008-09-05 2010-03-11 Aga Medical Corporation Bifurcated medical device for treating a target site and associated method
EP2326259B1 (de) 2008-09-05 2021-06-23 Pulsar Vascular, Inc. Systeme zur stützung oder verschliessung einer körperöffnung oder -kavität
US9427304B2 (en) 2008-10-27 2016-08-30 St. Jude Medical, Cardiology Division, Inc. Multi-layer device with gap for treating a target site and associated method
US8940015B2 (en) 2008-11-11 2015-01-27 Aga Medical Corporation Asymmetrical medical devices for treating a target site and associated method
US8690911B2 (en) 2009-01-08 2014-04-08 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
BRPI1007767A2 (pt) 2009-02-09 2017-06-27 St Jude Medical Cardiology Div Inc dispositivo de colocação, e, aparelho de afixação reversível
US10702275B2 (en) 2009-02-18 2020-07-07 St. Jude Medical Cardiology Division, Inc. Medical device with stiffener wire for occluding vascular defects
WO2010111666A1 (en) 2009-03-26 2010-09-30 Taheri Laduca Llc Vascular implants and methods
US20100249491A1 (en) 2009-03-27 2010-09-30 Circulite, Inc. Two-piece transseptal cannula, delivery system, and method of delivery
US8460168B2 (en) 2009-03-27 2013-06-11 Circulite, Inc. Transseptal cannula device, coaxial balloon delivery device, and methods of using the same
EP2421468B1 (de) 2009-04-20 2016-12-07 Rox Medical, Inc. Vorrichtung zur erstellung einer künstlichen venen-arterien-fistel
US8512397B2 (en) 2009-04-27 2013-08-20 Sorin Group Italia S.R.L. Prosthetic vascular conduit
EP2427143B1 (de) 2009-05-04 2017-08-02 V-Wave Ltd. Vorrichtung zur druckregelung in einer herzkammer
US9034034B2 (en) 2010-12-22 2015-05-19 V-Wave Ltd. Devices for reducing left atrial pressure, and methods of making and using same
US8075611B2 (en) 2009-06-02 2011-12-13 Medtronic, Inc. Stented prosthetic heart valves
CN101579267A (zh) 2009-06-12 2009-11-18 陈良万 外科术中应用的分支人造血管支架
WO2010148246A2 (en) 2009-06-17 2010-12-23 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US8366088B2 (en) 2009-07-10 2013-02-05 Ge-Hitachi Nuclear Energy Americas Llc Brachytherapy and radiography target holding device
US9757107B2 (en) 2009-09-04 2017-09-12 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
US8696693B2 (en) 2009-12-05 2014-04-15 Integrated Sensing Systems, Inc. Delivery system, method, and anchor for medical implant placement
AU2011210741B2 (en) 2010-01-29 2013-08-15 Corvia Medical, Inc. Devices and methods for reducing venous pressure
US20110270239A1 (en) 2010-04-29 2011-11-03 Werneth Randell L Transseptal crossing device
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US9510973B2 (en) 2010-06-23 2016-12-06 Ivantis, Inc. Ocular implants deployed in schlemm's canal of the eye
US9132009B2 (en) * 2010-07-21 2015-09-15 Mitraltech Ltd. Guide wires with commissural anchors to advance a prosthetic valve
US8597225B2 (en) * 2010-07-26 2013-12-03 The Cleveland Clinic Foundation Method for increasing blood flow in or about a cardiac or other vascular or prosthetic structure to prevent thrombosis
US9198756B2 (en) 2010-11-18 2015-12-01 Pavilion Medical Innovations, Llc Tissue restraining devices and methods of use
EP2673038B1 (de) 2011-02-10 2017-07-19 Corvia Medical, Inc. Vorrichtung zur erzeugung und aufrechterhaltung einer öffnung für intra-atriale druckentlastung
EP2707077B1 (de) 2011-05-11 2017-10-04 Microvention, Inc. Vorrichtung zum verschliessen eines lumens
US20120289971A1 (en) 2011-05-11 2012-11-15 Merit Medical Systems, Inc. Multiple lumen retrieval device and method of using
US9629715B2 (en) 2011-07-28 2017-04-25 V-Wave Ltd. Devices for reducing left atrial pressure having biodegradable constriction, and methods of making and using same
US8979832B2 (en) 2011-08-10 2015-03-17 Boston Scientific Scimed, Inc. Cutting device and related methods of use
US8951223B2 (en) 2011-12-22 2015-02-10 Dc Devices, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
US9005155B2 (en) 2012-02-03 2015-04-14 Dc Devices, Inc. Devices and methods for treating heart failure
US10588611B2 (en) 2012-04-19 2020-03-17 Corvia Medical Inc. Implant retention attachment and method of use
US9649480B2 (en) 2012-07-06 2017-05-16 Corvia Medical, Inc. Devices and methods of treating or ameliorating diastolic heart failure through pulmonary valve intervention
US9445797B2 (en) 2012-09-13 2016-09-20 Medtronic, Inc. Percutaneous atrial and ventricular septal defect closure device
US20140172074A1 (en) 2012-12-13 2014-06-19 480 Biomedical, Inc. Stent with reinforced joints
US9775636B2 (en) 2013-03-12 2017-10-03 Corvia Medical, Inc. Devices, systems, and methods for treating heart failure
US20140277054A1 (en) 2013-03-15 2014-09-18 Dc Devices, Inc. Devices, systems, and methods for percutaneous trans-septal puncture
US20150119796A1 (en) 2013-10-26 2015-04-30 Dc Devices, Inc. Anti-Lockup Thread Attachment Mechanism and Method of Use Thereof
US11439396B2 (en) 2014-05-02 2022-09-13 W. L. Gore & Associates, Inc. Occluder and anastomosis devices
US11712230B2 (en) 2014-05-02 2023-08-01 W. L. Gore & Associates, Inc. Occluder and anastomosis devices
TR201815290T4 (tr) 2014-09-09 2018-11-21 Occlutech Holding Ag Kalpte akış düzenleme cihazı.
US10932786B2 (en) 2014-11-04 2021-03-02 Corvia Medical, Inc. Devices and methods for treating patent ductus arteriosus
US11135410B2 (en) 2017-02-26 2021-10-05 Corvia Medical, Inc. Devices and methods for treating heart failure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2955389C (en) 2023-04-04
CA2955389A1 (en) 2016-01-28
EP3171786A4 (de) 2017-07-05
US10632292B2 (en) 2020-04-28
US20160022970A1 (en) 2016-01-28
JP6799526B2 (ja) 2020-12-16
EP3171786A1 (de) 2017-05-31
WO2016014821A8 (en) 2016-03-24
JP2017521185A (ja) 2017-08-03
WO2016014821A1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
EP3171786B1 (de) Vorrichtungen zur behandlung von herzinsuffizienz
US11135410B2 (en) Devices and methods for treating heart failure
US10675450B2 (en) Devices and methods for treating heart failure
US11786256B2 (en) Devices and methods for excluding the left atrial appendage
US8597225B2 (en) Method for increasing blood flow in or about a cardiac or other vascular or prosthetic structure to prevent thrombosis
US9757107B2 (en) Methods and devices for intra-atrial shunts having adjustable sizes
CN111225621B (zh) 医疗设备及用于该医疗设备的锚定件
KR102044599B1 (ko) 공간 충진 장치
JP6240604B2 (ja) 拡張可能な閉塞デバイス及び方法
US6652555B1 (en) Barrier device for covering the ostium of left atrial appendage
US20150005811A1 (en) Expandable occlusion devices and methods of use
US20140303719A1 (en) Percutaneously implantable artificial heart valve system and associated methods and devices
US20190328374A1 (en) Trans-septal closure device
CA3126178A1 (en) Vascular implant with anchor member
US20220031456A1 (en) Apparatuses and methods for at least partially supporting a valve leaflet of a regurgitant heart valve
AU2022332977A1 (en) Anchors for implantable medical devices
WO2023099516A1 (en) Medical occlusion device and system comprising the medical occlusion device and a catheter
EP4196050A1 (de) Vorrichtungen und verfahren zur mindestens teilweisen unterstützung eines klappensegels einer herzklappenregurgitation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

A4 Supplementary search report drawn up and despatched

Effective date: 20170607

RIC1 Information provided on ipc code assigned before grant

Ipc: A61B 17/00 20060101AFI20170531BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180312

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015052841

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1269177

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200913

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200914

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200814

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200813

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200813

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1269177

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015052841

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210216

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200723

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20230606

Year of fee payment: 9

Ref country code: FR

Payment date: 20230620

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230601

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230531

Year of fee payment: 9