EP3167191B1 - Membranpumpe mit reduzierter leckageergänzung im überlastfall - Google Patents

Membranpumpe mit reduzierter leckageergänzung im überlastfall Download PDF

Info

Publication number
EP3167191B1
EP3167191B1 EP15738312.6A EP15738312A EP3167191B1 EP 3167191 B1 EP3167191 B1 EP 3167191B1 EP 15738312 A EP15738312 A EP 15738312A EP 3167191 B1 EP3167191 B1 EP 3167191B1
Authority
EP
European Patent Office
Prior art keywords
chamber
working fluid
pressure
hydraulic
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15738312.6A
Other languages
English (en)
French (fr)
Other versions
EP3167191A1 (de
Inventor
Christian Arnold
Martin Reinhard
Roland Elgetz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prominent GmbH
Original Assignee
Prominent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prominent GmbH filed Critical Prominent GmbH
Publication of EP3167191A1 publication Critical patent/EP3167191A1/de
Application granted granted Critical
Publication of EP3167191B1 publication Critical patent/EP3167191B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • F04B43/067Pumps having fluid drive the fluid being actuated directly by a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0081Special features systems, control, safety measures
    • F04B43/009Special features systems, control, safety measures leakage control; pump systems with two flexible members; between the actuating element and the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/09Motor parameters of linear hydraulic motors
    • F04B2203/0902Liquid pressure in a working chamber

Definitions

  • the present invention relates to a diaphragm pump with a leak-relief valve.
  • Diaphragm pumps generally have a delivery chamber which is separated from a hydraulic chamber by a membrane, wherein the delivery chamber is connected both to a suction connection and to a pressure connection.
  • the filled with working fluid hydraulic chamber can then be acted upon with a pulsating working fluid pressure. Due to the pulsating working fluid pressure, a pulsating movement of the diaphragm between a pressure position, in which the volume of the delivery chamber is smaller, and a suction position, in which the volume of the delivery chamber is greater, reciprocated.
  • a working fluid usually a hydraulic oil is used. In principle, however, other suitable liquids can be used.
  • the medium to be pumped is separated from the drive, whereby on the one hand the drive is shielded from harmful influences of the pumped medium and on the other hand, the fluid from harmful influences of the drive, for example impurities, is shielded.
  • the pulsating working fluid pressure is often provided by means of a movable piston in contact with the working fluid.
  • the piston is reciprocated, for example, in a hollow cylindrical element, whereby the volume of the hydraulic space is reduced and increased, which leads to an increase and decrease of the pressure in the hydraulic chamber and in consequence to a movement of the membrane.
  • a vent valve is often connected to the hydraulic chamber, via which a certain amount of gas and possibly a small amount of working fluid is discharged during the pressure stroke. This also gradually reduces the amount of working fluid in the hydraulic chamber.
  • working fluid can be added to the hydraulic chamber through this leak-relief valve.
  • the leak relief valve In normal operation, the leak relief valve is designed so that exactly the amount of working fluid that has been lost during the pressure stroke, at the end of the suction stroke, i. essentially in the suction position, is refilled.
  • the metering pump described is typically used in a corresponding process plant, i. It is connected to a corresponding suction line and a pressure line. Although not generally desired, it may happen that in the process plant, the pressure line is accidentally closed, so that the metering pumps against a closed volume, which can lead to an unacceptably high pressure development, causing damage to the membrane or drive parts of the pump can lead.
  • the hydraulic chamber is often equipped with an outlet channel which is closed by a pressure relief valve which is designed such that when the pressure in the hydraulic chamber above a predetermined maximum value p max increases, the pressure relief valve opens, so that working fluid through the outlet channel leave the hydraulic room and is generally fed back into the working fluid reservoir.
  • the temperature of the pump can increase significantly, as with each pressure stroke again hydraulic fluid must be discharged through the pressure relief valve and is fed back through the leak-relief valve.
  • the stroke frequency and, as a consequence, the dosing output can be limited, so that even if the pressure line is blocked, the limit temperature is not exceeded at any point within the pump.
  • this measure leads to a significantly limited dosing, since the pump, even if there is no blockage of the pressure line is operated at a limited stroke frequency.
  • the pump-specific limit power must be determined accordingly consuming.
  • Another way to comply with the ATEX guidelines is to use an appropriate temperature sensor that senses the temperature of the pump, preferably near the pressure relief valve, and outputs a signal when the limit temperature is exceeded, which then shuts down the pump.
  • a temperature sensor must be maintained.
  • the signal emitted by the temperature sensor must be prepared and processed accordingly.
  • Another solution is to use a flow switch in the outlet channel, which detects the hydraulic oil flow via the pressure relief valve in case of overpressure and ensures that the pump is switched off.
  • this object is achieved in that the outlet channel is connected to the second chamber, and that the connecting channel either closable or the flow through the connecting channel throttled or at least throttled, so that in an overpressure case, i. when hydraulic oil has left the hydraulic chamber via the pressure relief valve, more hydraulic oil from the first chamber is tracked into the hydraulic chamber than can flow during a stroke of the second chamber in the first chamber.
  • the working fluid flowing past the piston can be returned to one of the two chambers.
  • the overpressure causes the pressure in the first chamber and / or the filling level in the first chamber to drop, since less working fluid can flow from the second chamber into the first chamber than via the leak-relief valve from the first chamber into the first chamber Hydraulic room is discharged.
  • the measure according to the invention therefore ensures that, in the overpressure case, gas penetrates into the hydraulic chamber and thereby prevents further heating of the pump.
  • the connecting channel can be closed by means of a valve.
  • the valve is usually closed.
  • About the leak-relief valve is the working fluid through the piston or the vent valve escaped, refilled. However, this amount is very small, so that the working fluid level in the first chamber drops only very slowly.
  • the first chamber can be sized so that the pump can be operated in this state for several days or even weeks, without the level or the working fluid pressure drops so far that gas penetrates through the leak-relief valve in the hydraulic chamber.
  • the valve of the connecting channel In order to put the pump back into operation, the valve of the connecting channel must be opened, so that the first chamber is filled again with sufficient working fluid. Since a certain gas volume is conveyed out of the hydraulic chamber with each pressure stroke, when gas is in the hydraulic chamber, and now no more gas is supplied via the leak-relief valve, the pump can work normally again.
  • the valve of the connection channel can be regularly opened for a short time, either manually - e.g. in the event of an error or during regular checks - or automatically, e.g. Timed every 24 hours to increase the working fluid level in the first chamber.
  • a second connection channel between the first and second chamber is provided.
  • the second connecting channel can be arranged above the first connecting channel and preferably above the leak-relief valve, wherein the second connecting channel is particularly preferably arranged above the working-fluid level in the second chamber.
  • the second communication passage When the second communication passage is located above the working fluid levels in the two chambers, it provides pressure equalization between the first and second chambers.
  • the second communication passage may have a large cross section, so that the pressure in the first and second chambers is always the same.
  • the first connection channel is dimensioned in such a way that in the overpressure case, as already described above, more working fluid can be discharged from the first chamber into the hydraulic chamber than can flow from the second chamber via the first connecting channel into the first chamber.
  • the first chamber is designed such that working fluid can only reach the first chamber via the first connecting channel. In this case, therefore, no pressure compensation via a second connection channel is possible. In overpressure, this means that more working fluid is transferred via the leak-relief valve from the first chamber into the hydraulic chamber as working fluid from the second chamber can flow into the first chamber, that the pressure of the working fluid in the first chamber is significantly reduced.
  • the hydraulic oil cavitates, thus introducing gas into the hydraulic space. As a result, the hydraulic displacement process of the pump is disturbed so much that the power consumption of the drive drops sharply and consequently an excessive heating of the hydraulic fails.
  • a second connection channel may be helpful if it is closed by a check valve, wherein the flow direction of the check valve is arranged in the direction of the second chamber.
  • the check valve ensures that the second connection channel remains closed in all the previously described functional states of the pump.
  • a safety valve or a specially designed leak-relief valve returns at least a portion of the working fluid back to the first chamber to protect the membrane. This is the case, for example, in the case of a blockage of the suction line, if the membrane does not move back into the suction position and therefore too much Working fluid flows into the hydraulic chamber. During the pressure stroke, the membrane then moves beyond the pressure position, which can lead to damage to the membrane. Therefore, a safety valve or a specially designed leak-relief valve can be provided, which opens in the event that the membrane moves beyond the printing position.
  • the safety valve or the leak-relief valve are designed such that the escaping working fluid is returned to the first chamber, the use of the check valve in the second connecting channel is advantageous, which then possibly give overpressure occurring in the first chamber via the check valve in the second chamber can be.
  • the leak-relief valve is advantageously designed such that it has a between a closed position, in which the valve passage is closed, and an open position in which the valve passage is open, a reciprocating closing body, which held by means of a pressure element in the closed position is, wherein the pressure element is designed such that when the pressure in the hydraulic chamber is less than a set pressure p min , the closing body moves in the direction of the open position.
  • the first connection channel is arranged lower than the leak-relief valve.
  • the second chamber can be dimensioned relatively compact, since it is only necessary that the connecting channel is always below the working fluid level in the second chamber.
  • the device according to the invention has the advantage that no external power supply is necessary. In addition, no signal processing and evaluation is required, which makes the inventive measure maintenance and wear. There are no additional components needed.
  • FIG. 1 a partial sectional view of a first embodiment of the invention is shown.
  • the membrane (not shown) is on the left outside the representation of FIG. 1 and is connected to the leak-relief valve 5, which is resiliently biased within the hydraulic chamber 6 and closes the connection between the hydraulic chamber 6 and the first chamber 1 of the working fluid supply.
  • the working fluid is arranged in the first chamber 1 and in the second chamber 2.
  • the first chamber 1 and the second chamber 2 are connected to each other via a first connecting channel 4, which is designed here as a nozzle.
  • the nozzle cross-section is dimensioned such that in the overpressure case, more working fluid will be discharged via the leak-relief valve 5 into the hydraulic chamber 6 than can be tracked via the nozzle 4. Furthermore, an opening 3, which functions as a second connection channel, is arranged between the first chamber 1 and the second chamber 2.
  • the leak-relief valve 5 is designed such that, in particular when at the end of the suction stroke, i. is in the suction position too little working fluid in the hydraulic chamber 6, the leak-relief valve 5 opens so that working fluid from the first chamber can flow into the hydraulic chamber 6. In normal operation, the amount of working fluid that needs to be replaced via the leak-relief valve is very low. In the overpressure case, i.
  • the pressure in the hydraulic chamber 6 increases rapidly, so for safety reasons working fluid via a pressure relief valve (not shown) discharged from the hydraulic chamber 6 and discharged, for example, in the second chamber 2 of the working fluid reservoir.
  • a pressure relief valve (not shown) discharged from the hydraulic chamber 6 and discharged, for example, in the second chamber 2 of the working fluid reservoir.
  • the leak-relief valve 5 must track a significantly larger amount of working fluid from the first chamber.
  • FIG. 2 the state is shown in normal operation.
  • One recognizes the working fluid reservoir, which consists of the first chamber 1 and the second chamber 2, which is connected to each other by a below the liquid level nozzle 4, which acts as a first connecting channel.
  • the second connection channel is realized through the opening 3, which is above the working fluid level.
  • the loss of working fluid in the hydraulic chamber is so small that during a complete stroke the tracked working fluid can easily be tracked through the first connecting channel 4 from the second chamber to the first chamber.
  • the pressure relief valve will no longer open and therefore no larger amount of hydraulic oil will leave the hydraulic chamber.
  • more working fluid will again flow from the second chamber into the first chamber via the nozzle 4 as working fluid from the first chamber 1 is fed into the hydraulic chamber via the leak-relief valve 5, so that the working fluid level in the first chamber 1 will increase again.
  • the level has risen so far that the leak-relief valve is again completely below the working fluid level, no gas is in the hydraulic chamber fed and the dosing increases again.
  • the gas contained in the hydraulic chamber can be discharged via a vent valve.
  • FIG. 4 a partial sectional view of a second embodiment of the invention is shown.
  • This differs essentially from the first embodiment in that there is no pressure equalization, the second connecting channel is present and the connection of the first and second chamber is closed by a check valve 9, which prevents a working fluid flow from the second chamber 2 into the first chamber 1 and a bypass 10, which has a small cross-section, so that working fluid can flow from the second chamber 2 into the first chamber 1 to a lesser extent.
  • Fig. 4a the check valve 9 with bypass 10 is shown enlarged. It can be seen that the bypass line 10 provides a direct connection between the first chamber 1 and second chamber 2.
  • Fig. 5 is a schematic diagram illustrating the operation of the embodiment of FIG. 4 clarified.
  • the loss of working fluid in the hydraulic chamber is so small that during a complete stroke the supplied via the leak-relief valve 5 working fluid can be easily tracked through the bypass 10 from the second chamber into the first chamber.
  • the pressure relief valve will not open and therefore no larger amount of hydraulic oil leave the hydraulic chamber.
  • more working fluid will again flow from the second chamber into the first chamber via the bypass 10 as working fluid from the first chamber 1 is fed into the hydraulic chamber via the leak-relief valve 5, so that the pressure in the first chamber 1 will increase again.
  • the gas contained in the hydraulic chamber can be discharged via a vent valve.
  • the leak-relief valve opens and the excessive hydraulic oil volume can flow via the first chamber 1 and the opening check valve 9 with slight overpressure in the second chamber 2, without the membrane being damaged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Membranpumpe mit einem Leckergänzungsventil.
  • Membranpumpen weisen im Allgemeinen einen über eine Membran von einem Hydraulikraum getrennten Förderraum auf, wobei der Förderraum sowohl mit einem Sauganschluss als auch mit einem Druckanschluss verbunden ist. Der mit Arbeitsflüssigkeit befüllbare Hydraulikraum kann dann mit einem pulsierenden Arbeitsflüssigkeitsdruck beaufschlagt werden. Durch den pulsierenden Arbeitsflüssigkeitsdruck wird eine pulsierende Bewegung der Membran zwischen einer Druckposition, in der das Volumen des Förderraums kleiner ist, und einer Saugposition, in der das Volumen des Förderraums größer ist, hin- und herbewegt. Dadurch ist es möglich, über den Sauganschluss, der mit einem entsprechenden Rückschlagventil mit dem Förderraum verbunden ist, das Fördermedium anzusaugen, wenn das Volumen des Förderraums vergrößert wird, und über den Druckanschluss, der ebenfalls mit einem entsprechenden Rückschlagventil mit dem Förderraum verbunden ist, unter Druck wieder abzugeben, wenn das Volumen des Förderraums verringert wird.
  • Als Arbeitsflüssigkeit wird in der Regel ein Hydrauliköl verwendet. Grundsätzlich können jedoch auch andere geeignete Flüssigkeiten verwendet werden.
  • Durch die Membran wird das zu fördernde Medium vom Antrieb getrennt, wodurch einerseits der Antrieb von schädlichen Einflüssen des Fördermediums abgeschirmt ist und andererseits auch das Fördermedium von schädlichen Einflüssen des Antriebes, zum Beispiel Verunreinigungen, abgeschirmt ist.
  • Der pulsierende Arbeitsflüssigkeitsdruck wird häufig mit Hilfe eines beweglichen Kolbens, der mit der Arbeitsflüssigkeit in Kontakt steht, bereitgestellt. Der Kolben wird dabei zum Beispiel in einem hohlzylindrischen Element hin- und herbewegt, wodurch das Volumen des Hydraulikraums verkleinert und vergrößert wird, was zu einer Erhöhung und Absenkung des Druckes im Hydraulikraum sowie in der Folge zu einer Bewegung der Membran führt. Trotz verschiedenster Maßnahmen, die ein Umströmen des Kolbens mit der Arbeitsflüssigkeit verhindern sollen, lässt sich in der Praxis nicht ausschließen, dass bei jedem Hubvorgang eine kleine Menge der Arbeitsflüssigkeit durch den schmalen verbleibenden Spalt zwischen Kolben und hohlzylindrischem Element verloren geht, wodurch allmählich die Arbeitsflüssigkeitsmenge im Hydraulikraum reduziert wird.
  • Des Weiteren kann Gas in den Hydraulikraum eindringen, welches daraus entfernt werden muss, um eine volle Hubbewegung der Membran zu ermöglichen. Zu diesem Zweck ist häufig ein Entlüftungsventil mit dem Hydraulikraum verbunden, über welches während des Druckhubes eine bestimmte Menge Gas und gegebenenfalls eine kleine Menge Arbeitsflüssigkeit ausgetragen wird. Auch dadurch verringert sich allmählich die Arbeitsflüssigkeitsmenge im Hydraulikraum.
  • Dies hat zur Folge, dass der Druckhub nicht mehr vollständig von der Membran ausgeführt wird, da nicht mehr genügend Arbeitsflüssigkeit zur Druckhubbewegung der Membran zur Verfügung steht.
  • Daher ist beispielsweise in der DE 1 034 030 bereits vorgeschlagen worden, den Hydraulikraum unter Zwischenschaltung eines Ventils, einem sogenannten Leckergänzungsventil, mit einem Arbeitsflüssigkeitsvorrat zu verbinden.
  • Durch dieses Leckergänzungsventil kann bei Bedarf Arbeitsflüssigkeit in den Hydraulikraum nachgefüllt werden. Dabei ist jedoch darauf zu achten, dass nicht zu viel Arbeitsflüssigkeit in den Hydraulikraum gebracht wird, da dann sich die Membran im Druckhub zu weit in den Förderraum hineinbewegt und unter Umständen mit Ventilkanälen oder der Innenkontur des Dosierkopfes in Kontakt gerät und beschädigt wird.
  • Im Normalbetrieb ist das Leckergänzungsventil so ausgebildet, dass exakt diejenige Arbeitsflüssigkeitsmenge, die während des Druckhubes verloren gegangen ist, am Ende des Saughubes, d.h. im Wesentlichen in der Saugposition, aufgefüllt wird.
  • Die beschriebene Dosierpumpe wird in der Regel in einer entsprechenden Prozessanlage verwendet, d.h. sie ist an eine entsprechende Saugleitung und eine Druckleitung angeschlossen. Auch wenn grundsätzlich nicht gewünscht, kann es jedoch passieren, dass in der Prozessanlage die Druckleitung versehentlich verschlossen wird, sodass die Dosierpumpe gegen ein geschlossenes Volumen pumpt, wodurch es zu einer unzulässig hohen Druckentwicklung kommen kann, was zu einer Beschädigung der Membran oder Antriebsteilen der Pumpe führen kann.
  • Um dies zu verhindern, ist daher häufig der Hydraulikraum mit einem Auslasskanal ausgestattet, der von einem Druckbegrenzungsventil verschlossen ist, welches derart ausgebildet ist, dass wenn der Druck im Hydraulikraum über einen vorbestimmten Maximalwert pmax ansteigt, das Druckbegrenzungsventil öffnet, sodass Arbeitsflüssigkeit über den Auslasskanal den Hydraulikraum verlassen kann und im Allgemeinen zurück in den Arbeitsflüssigkeitsvorrat geführt wird.
  • Dadurch kann ein weiterer Druckanstieg verhindert werden.
  • Durch die Ölrückführung kommt es jedoch zu einer deutlichen Erwärmung des gesamten hydraulischen Systems, insbesondere des Druckbegrenzungsventils und des Hydrauliköls.
  • Insbesondere dann, wenn die Blockierung der Druckleitung für ein längeres Zeitintervall anhält, kann die Temperatur der Pumpe deutlich ansteigen, da bei jedem Druckhub erneut Hydraulikflüssigkeit über das Druckbegrenzungsventil abgelassen werden muss und über das Leckergänzungsventil wieder zugeführt wird.
  • Je nach Einsatzbereich der Dosierpumpe sind jedoch bestimmte Temperaturklassen gemäß ATEX-Leitlinien der Europäischen Union einzuhalten. Eine Erwärmung der Pumpe ist daher nur bis zu einem gewissen Maß erlaubt.
  • Um die Anforderungen der ATEX-Leitlinien zu erfüllen, sind im Stand der Technik verschiedene Maßnahmen bekannt. Beispielsweise kann die Hubfrequenz und in der Folge auch die Dosierleistung begrenzt werden, sodass selbst bei einer Blockierung der Druckleitung die Grenztemperatur an keiner Stelle innerhalb der Pumpe überschritten wird. Diese Maßnahme führt jedoch zu einer deutlich eingeschränkten Dosierleistung, da die Pumpe, selbst dann, wenn keine Blockierung der Druckleitung vorliegt, mit begrenzter Hubfrequenz betrieben wird. Zudem muss die pumpenspezifische Grenzleistung entsprechend aufwendig bestimmt werden.
  • Eine weitere Möglichkeit, die ATEX-Leitlinien zu erfüllen, besteht in der Verwendung eines entsprechenden Temperatursensors, der die Temperatur der Pumpe, vorzugsweise in der Nähe des Druckbegrenzungsventils erfasst und bei Überschreiten der Grenztemperatur ein Signal abgibt, das dann zum Abschalten der Pumpe führt. Durch diese Maßnahme muss jedoch ein Temperatursensor vorgehalten werden. Zudem muss das vom Temperatursensor abgegebene Signal entsprechend aufbereitet und verarbeitet werden.
  • Eine weitere Lösungsmöglichkeit besteht in der Verwendung eines Strömungswächters im Auslasskanal, der im Überdruckfall den Hydraulikölfluss über das Druckbegrenzungsventil erfasst und für eine Abschaltung der Pumpe sorgt.
  • Auch hier fallen zusätzliche Kosten für den Strömungswächter sowie die damit verbundene Signalaufbereitungselektronik an.
  • Ausgehend von dem beschriebenen Stand der Technik ist es daher Aufgabe der vorliegenden Erfindung, eine Membranpumpe bereitzustellen, die automatisch die Dosierleistung im Überdruckfall reduziert, ohne dass die Verwendung von zusätzlichen Sensoren notwendig ist.
  • Erfindungsgemäß wird diese Aufgabe dadurch gelöst, dass der Auslasskanal mit der zweiten Kammer verbunden ist, und dass der Verbindungskanal entweder verschließbar oder der Durchfluss durch den Verbindungskanal gedrosselt oder zumindest drosselbar ist, so dass in einem Überdruckfall, d.h. wenn Hydrauliköl über das Druckbegrenzungsventil den Hydraulikraum verlassen hat, mehr Hydrauliköl aus der ersten Kammer in den Hydraulikraum nachgeführt wird als während eines Hubes von der zweiten Kammer in die erste Kammer nachströmen kann.
  • Auch die an dem Kolben vorbeiströmende Arbeitsflüssigkeitsmenge kann in eine der beiden Kammern zurückgeführt werden.
  • Je nach Ausführungsform führt daher der Überdruckfall dazu, dass der Druck in der ersten Kammer und/oder die Füllhöhe in der ersten Kammer abfällt, da weniger Arbeitsflüssigkeit von der zweiten Kammer in die erste Kammer nachströmen kann als über das Leckergänzungsventil aus der ersten Kammer in den Hydraulikraum abgegeben wird.
  • Sobald aber die Füllhöhe oder der Druck in der ersten Kammer unter einen bestimmten Wert abfällt, wird über das Leckergänzungsventil Gas in den Hydraulikraum geführt. Wenn jedoch Gas im Hydraulikraum ist, führt dies aufgrund der Kompressibilität des Gases zu einer verringerten Bewegung der Membran, sodass die Dosierleistung reduziert und damit die Erwärmung der Dosierpumpe über eine vorbestimmte Maximaltemperatur verhindert wird.
  • Durch die erfindungsgemäße Maßnahme ist daher sichergestellt, dass im Überdruckfall, Gas in den Hydraulikraum eindringt und dadurch eine weitere Erwärmung der Pumpe verhindert.
  • In einer Ausführungsform ist der Verbindungskanal mit Hilfe eines Ventils verschließbar.
  • Während des Betriebes der Pumpe ist das Ventil in der Regel geschlossen. Über das Leckergänzungsventil wird diejenige Arbeitsflüssigkeitsmenge, die über den Kolben oder das Entlüftungsventil entwichen ist, nachgefüllt. Diese Menge ist jedoch sehr gering, so dass der Arbeitsflüssigkeitspegel in der ersten Kammer nur sehr langsam absinkt. Die erste Kammer kann so bemessen sein, dass die Pumpe in diesem Zustand mehrere Tage oder sogar Wochen betrieben werden kann, ohne dass der Pegel oder der Arbeitsflüssigkeitsdruck soweit absinkt, dass Gas über das Leckergänzungsventil in den Hydraulikraum eindringt.
  • Auch ist es möglich, die Arbeitsflüssigkeit, die am Kolben vorbeiströmt in die erste Kammer rückzuführen, wodurch das Absenken des Flüssigkeitspegels verlangsamt wird.
  • Im Überdruckfall steigt jedoch die über das Leckergänzungsventil nachzuführende Menge an Arbeitsflüssigkeit stark an, so dass der Pegel oder der Arbeitsflüssigkeitsdruck schnell absinkt und Gas in den Hydraulikraum eindringt.
  • Sobald Gas in den Hydraulikraum eingedrungen ist, ist die Funktion der Pumpe gestört und eine weitere Erwärmung ausgeschlossen.
  • Um die Pumpe wieder in Betrieb zu nehmen, muss das Ventil des Verbindungskanals geöffnet werden, so dass die erste Kammer wieder mit genügend Arbeitsflüssigkeit befüllt wird. Da bei jedem Druckhub ein bestimmtes Gasvolumen aus dem Hydraulikraum hinausbefördert wird, wenn Gas im Hydraulikraum ist, und nun über das Leckergänzungsventil kein Gas mehr zugeführt wird, kann die Pumpe wieder normal arbeiten.
  • Das Ventil des Verbindungskanals kann regelmäßig kurzzeitig geöffnet werden und zwar entweder manuell - z.B. im Fehlerfall oder während regelmäßiger Kontrollen - oder automatisch, z.B. zeitgesteuert alle 24 h, um den Arbeitsflüssigkeitspegel in der ersten Kammer zu erhöhen.
  • In einer weiteren besonders bevorzugten Ausführungsform ist ein zweiter Verbindungskanal zwischen erster und zweiter Kammer vorgesehen.
  • Dabei kann der zweite Verbindungskanal oberhalb des ersten Verbindungskanals und vorzugsweise oberhalb des Leckergänzungsventils angeordnet sein, wobei besonders bevorzugt der zweite Verbindungskanal oberhalb des Arbeitsflüssigkeitspegels in der zweiten Kammer angeordnet ist.
  • Wenn der zweite Verbindungskanal oberhalb der Arbeitsflüssigkeitspegel in den beiden Kammer angeordnet ist, sorgt er für einen Druckausgleich zwischen der ersten und zweiten Kammer. Der zweite Verbindungskanal kann einen großen Querschnitt aufweisen, sodass der Druck in der ersten und zweiten Kammer immer gleich ist. Der erste Verbindungskanal ist jedoch derart dimensioniert, dass im Überdruckfall, wie bereits oben beschrieben, mehr Arbeitsflüssigkeit aus der ersten Kammer in die Hydraulikkammer abgeführt als von der zweiten Kammer über den ersten Verbindungskanal in die erste Kammer nachströmen kann.
  • Dadurch wird der Arbeitsflüssigkeitspegel in der ersten Kammer absinken. Sobald der Arbeitsflüssigkeitspegel in der ersten Kammer in der Höhe des Leckergänzungsventils liegt, wird weniger Arbeitsflüssigkeit und zusätzlich Gas in den Hydraulikraum nachgeführt. Wenn jedoch Gas im Hydraulikraum ist, führt dies aufgrund der Kompressibilität des Gases zu einer verringerten Bewegung der Membran, sodass die Dosierleistung reduziert und damit die Erwärmung der Dosierpumpe über eine vorbestimmte Maximaltemperatur verhindert wird. Sobald die Blockade in der Druckleitung behoben ist, wird über das Druckbegrenzungsventil keine Arbeitsflüssigkeit mehr aus dem Hydraulikraum entweichen. Das im Hydraulikraum vorhandene Gas wird dann sukzessive über das Entlüftungsventil ausgetragen. Da nun weniger Hydraulikflüssigkeit im Hydraulikraum benötigt wird, wird der Arbeitsflüssigkeitspegel im ersten Raum wieder ansteigen und die Dosierleistung wieder zunehmen.
  • In einer alternativen Ausführungsform ist vorgesehen, dass die erste Kammer derart ausgebildet ist, dass Arbeitsflüssigkeit nur über den ersten Verbindungskanal in die erste Kammer gelangen kann. In diesem Fall ist somit kein Druckausgleich über einen zweiten Verbindungskanal möglich. Im Überdruckfall bedeutet dies, da mehr Arbeitsflüssigkeit über das Leckergänzungsventil von der ersten Kammer in den Hydraulikraum überführt wird als Arbeitsflüssigkeit von der zweiten Kammer in die erste Kammer nachströmen kann, dass der Druck der Arbeitsflüssigkeit in der ersten Kammer deutlich reduziert wird. Durch das Absenken des Druckes kavitiert das Hydrauliköl und trägt so Gas in den Hydraulikraum ein. Auch hierdurch wird der hydraulische Verdrängungsprozess der Pumpe so stark gestört, dass die Leistungsaufnahme des Antriebs stark abfällt und folglich eine übermäßige Erwärmung der Hydraulik ausbleibt.
  • Auch bei dieser Ausführungsform kann ein zweiter Verbindungskanal hilfreich sein, wenn er durch ein Rückschlagventil verschlossen ist, wobei die Durchflussrichtung des Rückschlagventils in Richtung der zweiten Kammer angeordnet ist. Das Rückschlagventil stellt sicher, dass in allen bislang beschriebenen Funktionszuständen der Pumpe der zweite Verbindungskanal verschlossen bleibt.
  • Allerdings kann es für manche Anwendungsfälle geboten sein, dass zum Schutz der Membran, falls die Membranlage nicht mit der gewünschten Lage übereinstimmt, ein Sicherheitsventil oder ein speziell ausgebildetes Leckergänzungsventil zumindest einen Teil der Arbeitsflüssigkeit wieder in die erste Kammer zurückführt. Dies ist beispielsweise bei einer Blockade der Saugleitung der Fall, wenn sich die Membran nicht bis in die Saugposition zurückbewegt und daher zuviel Arbeitsflüssigkeit in den Hydraulikraum einströmt. Während des Druckhubes bewegt sich dann die Membran über die Druckposition hinaus, was zu einer Beschädigung der Membran führen kann. Daher kann ein Sicherheitsventil oder ein speziell ausgebildetes Leckergänzungsventil vorgesehen sein, welches für den Fall, dass sich die Membran über die Druckposition hinausbewegt, öffnet.
  • Falls das Sicherheitsventil oder das Leckergänzungsventil derart ausgebildet sind, dass die austretende Arbeitsflüssigkeit in die erste Kammer rückgeführt wird, ist der Einsatz des Rückschlagventils in dem zweiten Verbindungskanal von Vorteil, das dann eventuell in der ersten Kammer auftretender Überdruck über das Rückschlagventil in die zweite Kammer abgeben werden kann.
  • Das Leckergänzungsventil ist mit Vorteil derart ausgebildet, dass es einen zwischen einer Schließstellung, in welcher der Ventildurchgang geschlossen ist, und einer Offenstellung, in welcher der Ventildurchgang geöffnet ist, einen hin- und herbewegbaren Schließkörper aufweist, welcher mit Hilfe eines Druckelementes in der Schließstellung gehalten wird, wobei das Druckelement derart ausgelegt ist, dass, wenn der Druck im Hydraulikraum kleiner als ein Einstelldruck pmin ist, der Schließkörper sich in Richtung der Offenstellung bewegt.
  • In einer alternativen Ausführungsform ist der erste Verbindungskanal tiefer angeordnet als das Leckergänzungsventil. Dadurch kann die zweite Kammer relativ kompakt dimensioniert werden, da lediglich notwendig ist, dass der Verbindungskanal immer unterhalb des Arbeitsflüssigkeitspegels in der zweiten Kammer ist.
  • Die erfindungsgemäße Vorrichtung hat den Vorteil, dass keine externe Energieversorgung notwendig ist. Zudem ist keine Signalverarbeitung und -auswertung erforderlich, was die erfindungsgemäße Maßnahme wartungs- und verschleißfrei macht. Es werden keine zusätzlichen Bauteile benötigt.
  • Weitere Vorteile, Merkmale und Anwendungsmöglichkeiten werden deutlich anhand der folgenden Beschreibung zweier bevorzugter Ausführungsformen und der dazugehörigen Figuren. Es zeigen:
  • Figur 1
    eine Teilschnittansicht einer ersten erfindungsgemäßen Ausführungsform,
    Figur 2
    eine schematische Darstellung der Funktionsweise der Ausführungsform von Figur 1 im Normalbetrieb,
    Figur 3
    eine schematische Darstellung der Funktionsweise der Ausführungsform von Figur 1 im Überdruckbetrieb,
    Figur 4
    eine Teilschnittansicht einer zweiten Ausführungsform der Erfindung und
    Figur 5
    eine schematische Darstellung der Funktionsweise der zweiten Ausführungsform gemäß Figur 4.
  • In Figur 1 ist eine Teilschnittansicht einer ersten Ausführungsform der Erfindung gezeigt. Die Membran (nicht gezeigt) befindet sich links außerhalb der Darstellung von Figur 1 und ist mit dem Leckergänzungsventil 5 verbunden, welches innerhalb des Hydraulikraums 6 federnd vorgespannt ist und die Verbindung zwischen Hydraulikraum 6 und der ersten Kammer 1 des Arbeitsflüssigkeitsvorrates verschließt. Die Arbeitsflüssigkeit ist in der ersten Kammer 1 und in der zweiten Kammer 2 angeordnet. Die erste Kammer 1 und die zweite Kammer 2 sind über einen ersten Verbindungskanal 4, der hier als Düse ausgebildet ist, miteinander verbunden.
  • Der Düsenquerschnitt ist derart dimensioniert, dass im Überdruckfall mehr Arbeitsflüssigkeit über das Leckergänzungsventil 5 in den Hydraulikraum 6 abgeben wird als über die Düse 4 nachgeführt werden kann. Des Weiteren ist ein Durchbruch 3, der als zweiter Verbindungskanal fungiert, zwischen der ersten Kammer 1 und der zweiten Kammer 2 angeordnet. Das Leckergänzungsventil 5 ist derart ausgebildet, dass, wenn sich insbesondere am Ende des Saughubes, d.h. in der Saugposition zu wenig Arbeitsflüssigkeit im Hydraulikraum 6 befindet, das Leckergänzungsventil 5 öffnet, sodass Arbeitsflüssigkeit von der ersten Kammer in den Hydraulikraum 6 nachströmen kann. Im Normalbetrieb ist die Menge an Arbeitsflüssigkeit, die über das Leckergänzungsventil ersetzt werden muss, sehr gering. Im Überdruckfall, d.h. beispielsweise bei einer Blockierung der Druckleitung, steigt der Druck im Hydraulikraum 6 rapide an, sodass aus Sicherheitsgründen Arbeitsflüssigkeit über ein Druckbegrenzungsventil (nicht gezeigt) aus dem Hydraulikraum 6 abgelassen und beispielsweise in die zweite Kammer 2 des Arbeitsflüssigkeitsvorrats abgegeben wird. Im Überdruckfall muss das Leckergänzungsventil 5 eine deutlich größere Menge an Arbeitsflüssigkeit aus der ersten Kammer nachführen.
  • Die Funktionsweise der erfindungsgemäßen Dosierpumpe wird deutlich anhand der schematischen Darstellungen der Figuren 2 und 3.
  • In Figur 2 ist der Zustand im Normalbetrieb gezeigt. Man erkennt den Arbeitsflüssigkeitsvorrat, der aus der ersten Kammer 1 und der zweiten Kammer 2 besteht, welcher durch eine unterhalb des Flüssigkeitspegels angeordnete Düse 4, die als erster Verbindungskanal fungiert, miteinander verbunden ist. Der zweite Verbindungskanal wird durch den Durchbruch 3, der oberhalb des Arbeitsflüssigkeitspegels liegt, verwirklicht. Beim Öffnen des Leckergänzungsventils 5 strömt Arbeitsflüssigkeit aus der ersten Kammer in den sich in Figur 2 links anschließenden Hydraulikraum.
  • In dem Moment, in dem das Leckergänzungsventil 5 geöffnet wird, strömt Arbeitsflüssigkeit aus der ersten Kammer 1 aus und der Flüssigkeitspegel in der ersten Kammer sinkt ab. Sobald das Leckergänzungsventil 5 wieder geschlossen ist, steigt der Arbeitsflüssigkeitspegel in der ersten Kammer 1 wieder an, da Arbeitsflüssigkeit über die Düse 4 von der zweiten Kammer 2 in die erste Kammer 1 nachströmen kann.
  • Im Normalbetrieb ist der Verlust an Arbeitsflüssigkeit im Hydraulikraum derart gering, dass während eines vollständigen Hubes die nachgeführte Arbeitsflüssigkeitsmenge leicht durch den ersten Verbindungskanal 4 von der zweiten Kammer in die erste Kammer nachgeführt werden kann.
  • Im Überdruckfall jedoch wird abrupt eine größere Menge Hydraulikflüssigkeit aus dem Hydraulikraum abgelassen und über ein entsprechendes Druckbegrenzungsventil und über die Zuführung 7 der zweiten Kammer 2 des Arbeitsflüssigkeitsvorrates wieder zugeführt. Im Überdruckfall erfolgt eine unerwünschte Erwärmung nicht nur des rückgeführten Hydrauliköls, sondern auch des Druckbegrenzungsventils (nicht gezeigt).
  • Durch die erfindungsgemäße Aufteilung des Arbeitsflüssigkeitsvorrates in zwei durch einen schmalen ersten Verbindungskanal verbundene Kammern wird jedoch im Überdruckbetrieb erreicht, dass während eines Hubes nicht mehr genügend Arbeitsflüssigkeit von der zweiten Kammer in die erste Kammer nachströmen kann, um den Arbeitsflüssigkeitsverlust über das Druckbegrenzungsventil auszugleichen.
  • Im Ergebnis führt dies dazu, dass, wie in Figur 3 schematisch dargestellt, der Arbeitsflüssigkeitspegel in der ersten Kammer 1 allmählich absinkt. Irgendwann wird der Arbeitsflüssigkeitspegel in der ersten Kammer 1 jedoch im Bereich der Öffnung zum Leckergänzungsventil 5 liegen, sodass dann, wenn das Leckergänzungsventil 5 öffnet, auch Gas mit in die Hydraulikkammer geführt wird. Sobald jedoch Gas in der Hydraulikkammer ist, wird die Dosierleistung aufgrund der Kompressibilität des Gases deutlich reduziert, wodurch weniger Energie in die Pumpe eingebracht wird und eine weitere Erhitzung ausbleibt.
  • Sobald der Überdruckbetrieb beendet ist, d.h. eine eventuell vorhandene Blockade in der Druckleitung beseitigt worden ist, wird das Druckbegrenzungsventil nicht mehr öffnen und daher keine größere Menge an Hydrauliköl die Hydraulikkammer verlassen. In dieser Situation wird wieder mehr Arbeitsflüssigkeit von der zweiten Kammer in die erste Kammer über die Düse 4 strömen als Arbeitsflüssigkeit von der ersten Kammer 1 in den Hydraulikraum über das Leckergänzungsventil 5 nachgeführt wird, sodass der Arbeitsflüssigkeitspegel in der ersten Kammer 1 wieder ansteigen wird. Sobald der Pegel soweit angestiegen ist, dass das Leckergänzungsventil wieder vollständig unterhalb des Arbeitsflüssigkeitspegels liegt, wird kein Gas mehr in den Hydraulikraum zugeführt und die Dosierleistung steigt wieder. Das im Hydraulikraum enthaltene Gas kann über ein Entlüftungsventil ausgetragen werden.
  • In Figur 4 ist eine Teilschnittansicht einer zweiten erfindungsgemäßen Ausführungsform gezeigt. Diese unterscheidet sich im Wesentlichen von der ersten Ausführungsform dadurch, dass kein als Druckausgleich fungierender, zweiter Verbindungskanal vorhanden ist und die Verbindung aus erster und zweiter Kammer durch ein Rückschlagventil 9 verschlossen ist, das einen Arbeitsflüssigkeitsstrom von der zweiten Kammer 2 in die erste Kammer 1 verhindert und einen Bypass 10 aufweist, der einen geringen Querschnitt aufweist, sodass in geringem Maße Arbeitsflüssigkeit von der zweiten Kammer 2 in die erste Kammer 1 strömen kann.
  • In Fig. 4a ist das Rückschlagventil 9 mit Bypass 10 vergrössert dargestellt. Man erkennt, dass die Bypassleitung 10 eine direkte Verbindung zwischen erster Kammer 1 und zweiter Kammer 2 zur Verfügung stellt.
  • Fig. 5 ist eine Schemazeichnung, die die Funktionsweise der Ausführungsform von Figur 4 verdeutlicht.
  • Im Normalbetrieb ist der Verlust an Arbeitsflüssigkeit im Hydraulikraum derart gering, dass während eines vollständigen Hubes die über das Leckergänzungsventil 5 nachgeführte Arbeitsflüssigkeitsmenge leicht durch den Bypass 10 von der zweiten Kammer in die erste Kammer nachgeführt werden kann.
  • Im Überdruckfall jedoch wird abrupt eine größere Menge Hydraulikflüssigkeit aus dem Hydraulikraum abgelassen und über ein entsprechendes Druckbegrenzungsventil und über die Zuführung 7 der zweiten Kammer 2 des Arbeitsflüssigkeitsvorrates wieder zugeführt. Im Überdruckfall erfolgt eine unerwünschte Erwärmung nicht nur des rückgeführten Hydrauliköls, sondern auch des Druckbegrenzungsventils (nicht gezeigt).
  • Durch die erfindungsgemäße Aufteilung des Arbeitsflüssigkeitsvorrates in zwei durch einen schmalen ersten Verbindungskanal verbundene Kammern wird jedoch im Überdruckbetrieb erreicht, dass während eines Hubes nicht mehr genügend Arbeitsflüssigkeit von der zweiten Kammer in die erste Kammer nachströmen kann, um den Arbeitsflüssigkeitsverlust über das Druckbegrenzungsventil auszugleichen.
  • Im Ergebnis führt dies dazu, dass aufgurnd des fehlenden Druckausgleichs im Überdruckfall mehr Arbeitsflüssigkeit aus der Kammer 1 in den Hydraulikraum 6 ausgetragen wird als über den Bypass 10 aus der zweiten Kammer 2 in die erste Kammer 1 nachströmen kann, so dass der Druck in der ersten Kammer rapide abfällt. Dies hat zur Folge, dass Kavitation auftritt, d.h. die Arbeitsflüssigkeit gast aus und das entstandene Gas wird über das Leckergänzungsventil in den Hydraulikraum transportiert, was ebenso zu einem unvollständigen Hub führt, wodurch die in die Pumpe eingebrachte Energie reduziert und die Temperatur abgesenkt wird.
  • Sobald der Überdruckbetrieb beendet ist, d.h. eine eventuell vorhandene Blockade in der Druckleitung beseitigt worden ist, wird das Druckbegrenzungsventil nicht mehr öffnen und daher keine größere Menge an Hydrauliköl die Hydraulikkammer verlassen. In dieser Situation wird wieder mehr Arbeitsflüssigkeit von der zweiten Kammer in die erste Kammer über den Bypass 10 strömen als Arbeitsflüssigkeit von der ersten Kammer 1 in den Hydraulikraum über das Leckergänzungsventil 5 nachgeführt wird, sodass der Druck in der ersten Kammer 1 wieder ansteigen wird. Sobald der Druck wieder entsprechend angestiegen ist, wird keine Kavitation mehr auftreten und die Dosierleistung steigt wieder. Das im Hydraulikraum enthaltene Gas kann über ein Entlüftungsventil ausgetragen werden.
  • Im Störbetrieb der Membranlage, z.B. bei einer Blockade der Saugleitung, öffnet das Leckergänzungsventil und das zu große Hydraulikölvolumen kann über die erste Kammer 1 und das sich öffnende Rückschlagventil 9 mit leichtem Überdruck in die zweite Kammer 2 abfließen, ohne dass die Membran Schaden nimmt.
  • Bezugszeichenliste
  • 1
    erste Kammer
    2
    zweite Kammer
    3
    zweiter Verbindungskanal
    4
    Düse/erster Verbindungskanal
    5
    Leckergänzungsventil
    6
    Hydraulikraum
    7
    Zuführung
    9
    Rückschlagventil
    10
    Bypass

Claims (7)

  1. Membranpumpe mit einem über eine Membran von einem Hydraulikraum (6) getrennten Förderraum, wobei der Förderraum jeweils mit einem Sauganschluss und einem Druckanschluss verbunden ist und der mit einer Arbeitsflüssigkeit befüllbare Hydraulikraum mit einem pulsierenden Arbeitsflüssigkeitsdruck beaufschlagt werden kann, und die Membran zwischen einer Druckposition, in der das Volumen des Förderraums kleiner ist, und einer Saugposition, in der das Volumen des Förderraums größer ist, hin- und herbewegt werden kann, wobei der Hydraulikraum (6) über ein Leckergänzungsventil (5) mit einem Arbeitsflüssigkeitsvorrat verbunden ist, wobei das Leckergänzungsventil derart ausgebildet ist, dass, wenn der Druck im Hydraulikraum in der Saugposition der Membran kleiner als ein vorbestimmter Minimalwert (pmin) ist, das Leckergänzungsventil öffnet, und der Hydraulikraum einen Auslasskanal aufweist, der von einem Druckbegrenzungsventil verschlossen ist, das derart ausgebildet ist, dass, wenn der Druck im Hydraulikraum (6) über einen vorbestimmten Maximalwert (pmax) ansteigt, das Druckbegrenzungsventil öffnet, so dass Arbeitsflüssigkeit über den Auslasskanal den Hydraulikraum verlassen kann, wobei der Arbeitsflüssigkeitsvorrat in einer ersten (1) und in einer zweiten Kammer (2) angeordnet ist und wobei die beiden Kammern über einen ersten Verbindungskanal (4) miteinander verbunden sind, dadurch gekennzeichnet,
    dass der Auslasskanal mit der zweiten Kammer (2) verbunden ist, und
    dass der Verbindungskanal entweder verschließbar oder der Durchfluss durch den Verbindungskanal gedrosselt oder zumindest drosselbar ist, so dass in einem Überdruckfall, d.h. wenn Hydrauliköl über das Druckbegrenzungsventil den Hydraulikraum verlassen hat, mehr Hydrauliköl aus der ersten Kammer in den Hydraulikraum nachgeführt wird als während eines Hubes von der zweiten Kammer in die erste Kammer nachströmen kann.
  2. Membranpumpe nach Anspruch 1, dadurch gekennzeichnet, dass das Leckergänzungsventil (5) einen zwischen einer Schließstellung, in welcher der Ventildurchgang geschlossen ist, und einer Offenstellung, in welcher der Ventildurchgang geöffnet ist, hin- und her bewegbaren Schließkörper aufweist, welcher mit Hilfe eines Druckelementes in der Schließstellung gehalten wird, wobei das Druckelement derart ausgelegt ist, dass wenn der Druck im Hydraulikraum kleiner als ein Einstelldruck (pmin) ist, der Schließkörper sich in Richtung der Offenstellung bewegt.
  3. Membranpumpe nach einem Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste Verbindungskanal (4) tiefer angeordnet ist als das Leckergänzungsventil (5).
  4. Membranpumpe nach Anspruch 3, dadurch gekennzeichnet, dass ein zweiter Verbindungskanal (3) zwischen erster (1) und zweiter Kammer (2) vorgesehen ist, wobei der zweite Verbindungskanal (3) oberhalb des ersten Verbindungskanal (4) und vorzugsweise oberhalb des Leckergänzungsventil (5) angeordnet ist, wobei besonders bevorzugt, der zweite Verbindungskanal (3) oberhalb des Arbeitsflüssigkeitspegel in der zweiten Kammer (2) angeordnet ist.
  5. Membranpumpe nach Anspruch 4, dadurch gekennzeichnet, dass die erste Kammer (1) derart ausgebildet ist, dass Arbeitsflüssigkeit von der zweiten Kammer (2) nur über den ersten Verbindungskanal (4) in die erste Kammer (1) gelangen kann.
  6. Membranpumpe nach Anspruch 5, dadurch gekennzeichnet, dass der zweite Verbindungskanal (3) durch ein Rückschlagventil verschlossen ist, wobei die Durchflussrichtung des Rückschlagventils in Richtung der zweiten Kammer (2) angeordnet ist.
  7. Membranpumpe nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Ventil (9) zum Verschließen des ersten Verbindungskanal (4) vorgesehen ist.
EP15738312.6A 2014-07-11 2015-07-10 Membranpumpe mit reduzierter leckageergänzung im überlastfall Active EP3167191B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014109801.3A DE102014109801A1 (de) 2014-07-11 2014-07-11 Membranpumpe mit reduzierter Leckageergänzung im Überlastfall
PCT/EP2015/065907 WO2016005596A1 (de) 2014-07-11 2015-07-10 Membranpumpe mit reduzierter leckageergänzung im überlastfall

Publications (2)

Publication Number Publication Date
EP3167191A1 EP3167191A1 (de) 2017-05-17
EP3167191B1 true EP3167191B1 (de) 2019-10-30

Family

ID=53610874

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15738312.6A Active EP3167191B1 (de) 2014-07-11 2015-07-10 Membranpumpe mit reduzierter leckageergänzung im überlastfall

Country Status (6)

Country Link
US (1) US10378530B2 (de)
EP (1) EP3167191B1 (de)
CN (1) CN106460823B (de)
CA (1) CA2946093A1 (de)
DE (1) DE102014109801A1 (de)
WO (1) WO2016005596A1 (de)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB597106A (en) * 1945-08-09 1948-01-19 Norman Emile Mcclelland Improvements in or relating to diaphragm pumps
DE7420466U (de) * 1975-01-16 Lewa H Kg Membranpumpe
DE1034030B (de) 1955-09-22 1958-07-10 Reiners Walter Dr Ing Membranpumpe fuer nicht schmierende und chemisch aggressive Fluessigkeiten, insbesondere zur Schaedlingsbekaempfung in der Landwirtschaft
US3254845A (en) * 1964-12-11 1966-06-07 Panther Pumps & Equipment Comp Fluid power transfer apparatus
DE1528474B1 (de) * 1966-03-01 1970-07-23 Lewa Herbert Ott Fa Hydraulische Steuereinrichtung an einer Membranpumpe
US3612727A (en) * 1969-10-17 1971-10-12 Crane Co Metering pump
USRE29055E (en) * 1970-12-21 1976-11-30 Pump and method of driving same
DE7303301U (de) * 1973-01-30 1974-04-04 Feluwa Schlesiger & Co Kg Membran-Kolbenpumpe
US4019837A (en) * 1975-05-30 1977-04-26 Graco Inc. Pressure unloading apparatus for a diaphragm pump
JPS5685583A (en) * 1979-12-14 1981-07-11 Diesel Kiki Co Ltd Controlling device for variable delivery rotary pump
DE2923284A1 (de) * 1979-06-08 1980-12-11 Wagner Gmbh J Verfahren und vorrichtung zur leistungsregelung von membranpumpen
EP0055467B1 (de) * 1980-12-29 1984-12-05 LEWA Herbert Ott GmbH + Co. Membranpumpe mit druckentlastet eingespannter Membran
DE3708868A1 (de) * 1987-03-18 1988-10-06 Ott Kg Lewa Verfahren und vorrichtung zum anfahren einer hydraulischen membranpumpe gegen last
US4934906A (en) * 1988-01-29 1990-06-19 Williams James F High pressure diaphragm pump
DE4018464A1 (de) * 1990-06-08 1991-12-12 Ott Kg Lewa Membran fuer eine hydraulisch angetriebene membranpumpe
DE4141670C2 (de) * 1991-12-17 1994-09-29 Ott Kg Lewa Hydraulisch angetriebene Membranpumpe mit Membranhubbegrenzung
DE4327969C2 (de) 1993-08-19 1997-07-03 Ott Kg Lewa Hydraulisch angetriebene Membranpumpe
DE4420863C2 (de) * 1994-06-15 1998-05-14 Ott Kg Lewa Gesteuerte Schnüffelbehinderung für Hochdruck-Membranpumpen
US5647733A (en) * 1995-12-01 1997-07-15 Pulsafeeder Inc. Diaphragm metering pump having modular construction
FR2895036B1 (fr) * 2005-12-20 2008-02-22 Milton Roy Europ Sa Pompe a membrane a actionnement hydraulique avec dispositif de compensation des fuites
CN101245777B (zh) * 2007-02-13 2010-09-08 米尔顿罗伊欧洲公司 具有泄漏补偿设备的液压致动隔膜泵
DE102010039831B4 (de) * 2010-08-26 2022-02-03 Prominent Gmbh Membranpumpe sowie Verfahren zum Einstellen einer solchen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN106460823B (zh) 2020-04-17
US20170037840A1 (en) 2017-02-09
EP3167191A1 (de) 2017-05-17
US10378530B2 (en) 2019-08-13
CN106460823A (zh) 2017-02-22
WO2016005596A1 (de) 2016-01-14
CA2946093A1 (en) 2016-01-14
DE102014109801A1 (de) 2016-01-14

Similar Documents

Publication Publication Date Title
EP0547404A1 (de) Hydraulisch angetriebene Membranpumpe mit Membranhubbegrenzung
EP2307726B1 (de) Verstellpumpe mit einem mengenregler und einem druckventil.
EP0023591B1 (de) Hydraulische Steuerung mit Rohrbruchsicherung für einen doppelt wirkenden Antriebszylinder zum Positionieren, insbes. einer angetriebenen Führungsrolle in der Strangführung einer Stranggiessanlage
DE102013113387A1 (de) Injektor zur Injektion eines Fluids und Verfahren zur Steuerung eines Injektors
EP2613058B1 (de) Hydrauliksystem
DE10356971A1 (de) Schaltung zum Regeln der Speisungsmenge einer hydraulischen Pumpe
DE102010039829A1 (de) Membranpumpe mit trägheitsgesteuertem Leckergänzungsventil
DE102014010108B4 (de) Hydraulisch angetriebene Membranpumpe
DE102020007053A1 (de) Prüfvorrichtung
EP2329147B1 (de) Pumpenvorrichtung
DE2736597C3 (de)
DE102010039831B4 (de) Membranpumpe sowie Verfahren zum Einstellen einer solchen
DE3341020A1 (de) Einrichtung zur regelung von druck und foerdermengen einer membranpumpe
EP3167191B1 (de) Membranpumpe mit reduzierter leckageergänzung im überlastfall
EP2997261B1 (de) Membranpumpe mit lagensteuerung
EP3189234B1 (de) Verdrängerpumpe mit fluidreservoir
EP3670906B1 (de) Dosierpumpe mit integriertem überströmventil und ventileinsatz für eine dosierpumpe
DE2803471C2 (de) Dosierpumpenkopf
DE1203991B (de) Druckregelventil
DE2753601A1 (de) Konstantstromteilerventil
EP3084212B1 (de) Fördereinrichtung für ein fluid
EP2320291B1 (de) Druckventil- bzw. Druckregelungsvorrichtung
DE102014219244A1 (de) Hydraulische Schaltung zur Versorgung eines Verbrauchers mit Differentialcharakter
DE220611C (de)
DE1600869A1 (de) Umlaufventil

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015010801

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F04B0043060000

Ipc: F04B0043067000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 43/067 20060101AFI20190716BHEP

Ipc: F04B 43/00 20060101ALI20190716BHEP

INTG Intention to grant announced

Effective date: 20190808

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015010801

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1196428

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200131

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200302

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200229

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015010801

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200710

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200710

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200710

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200710

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1196428

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230711

Year of fee payment: 9