EP3161370A1 - Cuve etanche et isolante et son procede de fabrication - Google Patents

Cuve etanche et isolante et son procede de fabrication

Info

Publication number
EP3161370A1
EP3161370A1 EP15732604.2A EP15732604A EP3161370A1 EP 3161370 A1 EP3161370 A1 EP 3161370A1 EP 15732604 A EP15732604 A EP 15732604A EP 3161370 A1 EP3161370 A1 EP 3161370A1
Authority
EP
European Patent Office
Prior art keywords
layer
insulating
pad
thermal insulation
prefabricated panels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15732604.2A
Other languages
German (de)
English (en)
Other versions
EP3161370B1 (fr
Inventor
Mohamed Sassi
Mathieu WONG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Priority to PL15732604T priority Critical patent/PL3161370T3/pl
Publication of EP3161370A1 publication Critical patent/EP3161370A1/fr
Application granted granted Critical
Publication of EP3161370B1 publication Critical patent/EP3161370B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D9/00Apparatus or devices for transferring liquids when loading or unloading ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0624Single wall with four or more layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/227Assembling processes by adhesive means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and insulating vessels which may contain cold fluids, in particular tanks for storing or transporting liquefied gases, in particular liquefied natural gas at atmospheric pressure.
  • FR-A-278 557 is known, in particular, a sealed and insulating tank comprising a vessel wall fixed to a supporting structure, in which the wall of the vessel has a multilayer structure which successively comprises a primary waterproofing membrane intended to be in contact with a product contained in the tank, a primary insulating barrier, a secondary waterproofing membrane and a secondary insulating barrier.
  • the secondary insulating barrier, the secondary sealing membrane and the primary insulating barrier consist essentially of a set of prefabricated panels fixed to the supporting structure, each prefabricated panel successively comprising a rigid bottom plate, a first layer of thermal insulation carried by the bottom plate and forming with the bottom plate an element of the secondary insulating barrier, a waterproof coating which completely covers the first layer of thermal insulation by being bonded to the first layer of thermal insulation and which forms an element of the secondary waterproofing membrane, a second thermal insulation layer which covers a central zone of the first layer and the waterproof coating, and a rigid cover plate covering the second thermal insulation layer and constituting with the second layer of thermal insulation; thermal insulation an element of the primary insulating barrier.
  • the bottom plate, the first layer of thermal insulation and the waterproof coating of the prefabricated panel have a first rectangular outline while the second layer of thermal insulation and the cover plate have a second rectangular contour of smaller dimensions than the first one. contour rectangular, so that the second layer of thermal insulation and the cover plate do not cover an edge region of the waterproof coating along the four edges of the first rectangular contour.
  • the prefabricated panels are juxtaposed on the supporting structure parallel to each other, so that the edge region of the waterproof coating of a first of the prefabricated panels is each time close to the edge region of the waterproof coating of a second of the prefabricated panels.
  • the wall of the vessel further comprises sealing strips made of a flexible composite laminate material comprising at least one metal sheet bonded to at least one layer of fibers, the sealing strips being arranged straddling the adjacent border areas sealed waterproofing of the prefabricated panels and sealed to the waterproofing of the prefabricated panels to complete the secondary waterproofing membrane between the prefabricated panels.
  • the wall of the tank further comprises insulating blocks disposed on the sealing strips, an insulating pad being placed each time between the second layers of thermal insulation of two adjacent prefabricated panels, so as to complete the primary insulating barrier between the two prefabricated panels, the insulating pad having a layer of thermal insulation covered with a rigid plate, so that the rigid plates of the insulating blocks and the cover plates of the prefabricated panels constitute a substantially continuous wall capable of supporting the membrane of primary sealing.
  • EP-A-0248721 discloses a thermally insulating wall structure of similar design, in which a spacer gasket made of rigid insulating cellular material fills the gap between two adjacent sandwich panels.
  • the intermediate seal gasket is covered by the seal strip forming the secondary sealing barrier and is adhered to said strip of gasket.
  • the internal pad adhered to the strip of cover strips is coated on its outer face adjacent to the strip of cover of a fiberglass fabric bonded to said outer face to enhance the strength of the block. Since the pad is glued against the bottom formed by the shoulders of the sandwich panels and the inter-seal gasket, the fiberglass fabric of the pad is bonded to the seal strip also in the central portion of the seal strip covering the seal.
  • An idea underlying the invention is to enhance the fatigue resistance of the secondary sealing membrane of a tank of the aforementioned type, in particular at the level of the sealing strips arranged straddling the edge zones of the prefabricated panels. Indeed, because of the flexural flexibility of the material used, that is to say the capacity of the material to be folded to form waves without breaking, the sealing strips are particularly subject to deformation during the life of the tank.
  • the invention provides a tank of the aforementioned type, characterized in that the insulating pad comprises a reinforcing ply made of a composite material comprising a layer of fibers bonded by a polymer resin, the reinforcing ply having a stiffness in traction greater than or equal to the tensile stiffness of the sealing strips, the reinforcing ply being bonded to the thermal insulation layer on one side of the thermal insulating layer opposite to the rigid plate, the insulating pad being at each once fixed on the prefabricated panels by gluing the reinforcing ply onto the underlying sealing strip.
  • the insulating pad comprises a reinforcing ply made of a composite material comprising a layer of fibers bonded by a polymer resin, the reinforcing ply having a stiffness in traction greater than or equal to the tensile stiffness of the sealing strips, the reinforcing ply being bonded to the thermal insulation layer on one side of the thermal insulating layer opposite
  • the reinforcing ply consists of a composite material having a tensile stiffness greater than or equal to the tensile stiffness of the sealing strips, and because the reinforcing ply comprises a layer of fibers impregnated with a polymer resin, it makes it possible to effectively take up the tensioning forces which are established substantially parallel to the tank wall by thermal contraction and / or deformation of the carrier structure at sea.
  • the choice of a fiber composite material limits the thermal stresses generated by the reinforcing ply.
  • the following properties of the reinforcing ply can in particular be selected:
  • such a tank may comprise one or more of the following characteristics.
  • Another desirable physical property for the reinforcing strip is the relatively low coefficient of thermal expansion, which can be achieved by the choice of fibers, for example glass fibers, carbon fibers, polyester fibers and the like.
  • Another desirable physical property for the reinforcing strip is the good stickiness, which can be obtained in particular by the choice of the resin, which may for example be chosen from the group consisting of polyamides, polyether terephthalate, polyesters, polyurethanes, epoxides and their mixtures.
  • the resin which may for example be chosen from the group consisting of polyamides, polyether terephthalate, polyesters, polyurethanes, epoxides and their mixtures.
  • polyethylene and polypropylene resins are more difficult to stick reliably without any specific binding treatment.
  • the material of the reinforcing ply has a coefficient of thermal expansion and a tensile Young's modulus E, measured at 23 ° C., such that their product satisfies: 7.10 4 ⁇ . ⁇ '1 ⁇ E. a ⁇ 10 6 ⁇ . ⁇ '1
  • flexible flexural composite materials such as triplex® (E. a ⁇ 88000) are suitable for the reinforcing ply.
  • K '1 for example in the case of a metal sheet, the thermal stress in the material during the cold setting would be too high.
  • K -1 for example in the case of a plywood (E. a ⁇ 48000), the stiffness would not be sufficient to effectively strengthen the ribbon sealing strip flexible.
  • the Young's tensile modulus E can be used, determined according to the method NF EN ISO 1421 or using extensometers.
  • the coefficient of thermal contraction may be determined by an optical system or a comparator system mounted on an invar frame, to have a virtually zero contribution of the frame.
  • the flexible composite laminate material of the sealing strip can be made in different ways as to the composition, number and arrangement of the layers, especially with one or more metal layers and one or more layers of fibers.
  • the sealing strip is made of a flexible composite laminate material comprising a metal sheet sandwiched between two layers of glass fibers.
  • the metal foil is aluminum.
  • the two layers of glass fibers are bonded to the metal sheet by a flexible polymer resin, for example elastomer or polyurethane.
  • the reinforcing ply is made of a flexible composite laminate material comprising at least one metal sheet bonded to at least one layer of fibers, for example of the same flexible composite laminate material as the sealing strip.
  • a flexible composite laminate material comprising at least one metal sheet bonded to at least one layer of fibers, for example of the same flexible composite laminate material as the sealing strip.
  • the waterproof coating of the prefabricated panels consists of a composite rigid flexural material comprising a metal sheet sandwiched between two layers of glass fibers, the two layers of glass fibers being impregnated with a fiberglass. rigid polymer resin.
  • the metal foil is aluminum.
  • the reinforcing ply is made of a stiffer material in tension than the sealing strips.
  • a flexural rigid composite material comprising a fiber layer impregnated with a rigid polymer resin, for example polyamide, polyether terephthalate, polyester, polyurethane, epoxy and their mixtures.
  • the use of a stiffer material in tension that the flexible watertight web of the sealing strips makes it possible to effectively take up more tensioning forces which are established substantially parallel to the tank wall by thermal contraction and / or deformation of the bearing structure at sea.
  • the same rigid composite laminate material can be used for the watertight coating and the reinforcing ply, which facilitates the supply and the quality control of the materials.
  • the vessel wall comprises a gap located between the first layers of thermal insulation of two adjacent prefabricated panels and a strip of stuffing material disposed in the gap, the sealing strip which completes the membrane of secondary sealing between the prefabricated panels has a central portion crossing the gap above the web of stuffing material, the central portion of the sealing strip not being adhered to the web of stuffing material,
  • the reinforcing ply has a central portion covering the central portion of the sealing strip and not being adhered to the central portion of the sealing strip.
  • the central portion of the sealing strip has a greater flexibility and greater mobility to absorb displacements caused by the thermal contraction and / or the deformation of the ship at sea.
  • a central pad of non-adhesive material may be fixed on the flexible sealing mat or on the reinforcing ply.
  • the fixing of the pad can be made in different ways, in particular by double-sided adhesive or with a sticky tape.
  • Such a pad may be of different materials, for example flexible foam elastomer type, polyurethane, polyolefins (polyethylene, polypropylene) or melamine.
  • the insulating pad further comprises a central pad of non-adhesive material fixed projecting on a surface of the reinforcement ply opposite the thermal insulation layer of the insulating pad, the insulating pad being placed on the sealing strip so that the central pad overlies the central portion of the sealing strip.
  • the sealing strip further comprises a central pad of non-adhesive material fixed projecting on a surface of the sealing strip facing the insulating pad, the insulating pad being arranged on the strip of sealing so that the central portion of the reinforcing ply covers the central pad without being glued to the central pad.
  • Polyurethane foams are particularly suitable materials because of their low temperature resistance and low thermal conductivity.
  • the polyurethane foam is reinforced with embedded fibers, for example glass fibers.
  • the thermal insulation consists of a polyurethane foam having a density greater than 130 kg / m 3 , for example between 130 and 210 kg / m 3 .
  • Such a tank can be part of a land storage facility, for example to store LNG or be installed in a floating structure, coastal or deep water, including a LNG tank, a floating storage and regasification unit (FSRU) , a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and remote storage unit
  • a vessel for the transport of a cold liquid product comprises a double hull and a aforementioned tank disposed in the double hull.
  • the invention also provides a method of loading or unloading such a vessel, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage facility to or from the vessel vessel.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating storage facility. or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
  • the invention also provides a method of manufacturing a sealed and insulating tank, the method comprising:
  • each prefabricated panel successively comprising a rigid bottom plate, a first layer of thermal insulation carried by the bottom plate and constituting with the bottom plate an element of the secondary insulating barrier, a waterproof coating which completely covers the first layer of thermal insulation by being bonded to the first layer of thermal insulation and which forms an element of the secondary waterproofing membrane, a second layer of thermal insulation which covers a central area of the first layer and sealing cover, and a rigid cover plate covering the second layer of thermal insulation and constituting with the second layer of thermal insulation a member of the primary insulating barrier, the bottom plate, the first layer of thermal insulation and the waterproof coating of the prefabricated panel having a first rectangular contour while the two the second thermal insulation layer and the cover plate have a second rectangular outline of smaller dimensions than the first rectangular outline, so that the second thermal insulating layer and the cover plate do not cover an edge area of the cladding. sealed along the four edges of the first rectangular contour,
  • the sealing strips having the sealing strips straddling adjacent edge areas of the prefabricated panel waterproofing coatings, the sealing strips being made of a flexible composite laminate material comprising at least one metal sheet bonded to at least one layer of fibers and bonding the sealing strips sealingly to the waterproof coatings of prefabricated panels for completing the secondary waterproofing membrane between the prefabricated panels, providing insulating pavers, the insulation pad having a thermal insulation layer, a rigid plate fixed on an upper face of the thermal insulation layer and a reinforcing ply made in a composite material comprising a layer of fibers bonded by a polymer resin, the reinforcing ply having a tensile stiffness greater than or equal to the tensile stiffness of the sealing strips, the reinforcing ply being bonded to a lower face of the layer; of thermal insulation opposite to the rigid plate, arranging the insulating blocks on the sealing strips, an insulating pad being placed each time between the second layers of thermal insulation of two adjacent prefabricated panels, so as to complete the insulating barrier
  • this method may include one or more of the following features.
  • the method further comprises:
  • the insulating pad further comprises a central pad of non-adhesive material fixed projecting on a surface of the reinforcement ply opposite the thermal insulating layer of the insulating pad,
  • the method further comprising the step of bonding the reinforcing ply of the pavement isolating on either side of the central pad without gluing the central pad, and arranging the insulating pad on the sealing strip so that the central pad covers the central portion of the sealing strip without adhering thereto.
  • the sealing strip further comprises a central pad of non-adhesive material fixed projecting on a surface of the sealing strip facing the insulating pad,
  • the method further comprising the step of gluing the sealing strip on either side of the central pad without gluing the central pad, and arranging the insulating pad on the sealing strip so that the central portion of the reinforcing ply covers the central pad without being glued to the central pad.
  • Figure 1 is a partially exploded perspective view of a vessel wall according to one embodiment.
  • Figure 2 is an exploded plan view of a zone of the tank wall of Figure 1 located at the interface between two prefabricated panels.
  • Figure 3 is a view similar to Figure 2 showing the area of the tank wall in the assembled state.
  • Figure 4 is a view similar to Figure 2 showing another embodiment of the wall area at the interface between two prefabricated panels.
  • FIG. 5 is a fatigue curve representing the breaking force of the secondary membrane as a function of a number of cooling-heating cycles, for different embodiments of the insulating pad.
  • Figure 6 is a schematic cutaway representation of a tank LNG tank and a loading / unloading terminal of the tank.
  • Such a wall structure can be used to make substantially all the walls of a polyhedral vessel.
  • the terms 'on', 'above', 'upper' and 'high' generally refer to a position located inwardly of the vessel and therefore do not necessarily coincide with the notion of high in the terrestrial gravitational field.
  • the terms 'sub', 'below', 'lower' and 'lower' generally refer to a position located outside the vessel and therefore do not necessarily coincide with the notion of low in the gravitational field. earthly.
  • the prefabricated panels 54 are fixed on the supporting structure juxtaposed in a repeated pattern.
  • a panel 54 each comprises an element of the secondary insulating barrier 51, an element of the secondary sealed barrier and an element of the primary insulating barrier 53.
  • a panel 54 has substantially the shape of a rectangular parallelepiped. It consists of a first plate 9 mm plywood 9 mm thick surmounted by a first layer of thermal insulation 56, itself surmounted by a rigid waterproof coating 52 including an aluminum sheet of 0, 07 mm thick sandwiched between two glass fiber fabrics impregnated with a polyamide resin.
  • the waterproof coating 52 is bonded to the thermal insulation layer 56, for example using a two-component polyurethane adhesive.
  • a second layer of thermal insulation 57 is adhered to the waterproof coating 52 and itself carries a second plywood plate 58 of 12 mm thickness.
  • the subassembly 55-56 constitutes the secondary insulation barrier element 51.
  • the subassembly 57-58 constitutes the insulation barrier element primary 53 and has, in plan, a rectangular shape whose sides are parallel to those of the secondary insulation barrier element 51.
  • the two insulation barrier elements have, seen in plan, the shape of two rectangles having the same center.
  • the member 53 reveals a peripheral rim surface 59 of the impervious liner 52 all around the member 53.
  • the impervious liner 52 forms the secondary sealing membrane member.
  • the panel 54 which has just been described, may be prefabricated to form an assembly in which the various components are glued to one another in the arrangement indicated above. This set therefore forms the secondary barriers and the primary insulation barrier.
  • the thermal insulation layers 56 and 57 may be constituted by a cellular plastic material such as a polyurethane foam. Preferably, glass fibers are embedded in the polyurethane foam to reinforce it.
  • wells 60 are regularly distributed over the two longitudinal edges of the panel to cooperate with studs fixed on the supporting structure 99 according to the known technique.
  • the carrying structure 99 especially in the case of a ship, has deviations from the theoretical surface provided for the bearing structure simply because of manufacturing inaccuracies.
  • these gaps are made up by placing the panels 54 in abutment against the supporting structure by means of polymerizable resin strands 61, which make it possible, from a surface of imperfectly bearing structure, to obtain a covering consisting of by adjacent panels 54 having second plates 58 which, as a whole, define a surface substantially devoid of the desired theoretical surface.
  • the wells 60 are closed by inserting plugs of thermal insulating material 62, these plugs flush with the first layer of thermal insulation 56 of the panel 54.
  • a heat insulating material 63 consisting of, for example, a sheet of plastic foam or glass wool inserted into the gap.
  • a flexible waterproof strip 65 is placed on the peripheral edges 59 adjacent to two adjacent panels 54, and the sealing strip 65 is bonded to the peripheral rims 59, so as to seal the perforations located at the right of each well 60 and covering the gap between the two panels 54.
  • the waterproof strip 65 is made of a composite material called triplex flexible flexible comprising three layers: the two outer layers are fiberglass fabrics and the intermediate layer is a thin metal sheet, for example an aluminum foil with a thickness of about 0.1 mm. This metal sheet ensures the continuity of the secondary waterproofing membrane. Its flexural flexibility, due to the flexible nature of the binder between the aluminum foil and the glass fibers, enables it to follow the deformations of the panels 54 due to the deformation of the shell to the swell or the cold setting of the tank. Flexibility in bending means the ability of the material to be bent to form waves without breaking.
  • insulating pavers 66 each consisting of a thermal insulation layer 67 coated with a rigid plywood plate 68 on an upper surface of the insulating pad 66 and a sheet reinforcement ply on the lower surface of the insulating pad 66.
  • the reinforcement ply not visible in FIG. 1 will be described with reference to FIGS. 2 to 4.
  • the insulating pavers 66 have a dimension such that they completely fill the area located above the peripheral rims 59 of two adjacent panels 54.
  • the insulating blocks 66 are glued on the sealing strips 65. After being put in place, the plate 68 provides a relative continuity between the plates 58 of two adjacent panels 54 for supporting the primary waterproofing membrane.
  • These insulating pavers 66 have a width equal to the distance between two elements 53 of two adjacent panels 54 and may have a greater or lesser length. A reduced length allows, if necessary, an easier implementation in the event of a slight misalignment of two panels 54 adjacent.
  • the blocks 66 are glued to the sealing strip 65 and resting on it.
  • the primary sealing membrane is formed of an embossed sheet membrane 69 having two series of intersecting corrugations to give it sufficient flexibility in both directions of the plane of the vessel wall.
  • the insulating pavers 66, the watertight strip 65 and the thermal insulation materials 62 and 63 are represented in an exploded form and thus appear above their actual position in the tank wall in the final state. assembled. The final positions of these elements are better visible in Figure 3 which will be described below.
  • FIG. 2 partially represents the two prefabricated panels 54 fixed on the carrying structure 99 in FIGS. their final position, while the insulating pad 66, the reinforcing ply 1 of the insulating pad 66 and the sealing strip 65 are shown in the disassembled state above their final position.
  • Figure 3 shows all the elements in their final assembled position. The thicknesses of the watertight coating 52, the watertight strip 65, the reinforcing ply 1 and the corresponding glue layers have been exaggerated for the sake of visibility.
  • the reinforcing ply 1 is bonded to the lower surface 2 of the thermal insulating layer 67 by means of a glue layer 3. This gluing can be done in prefabrication in order to deliver to the assembly site of the tank a insulating pad 66 already comprising the reinforcing ply 1.
  • the glue 3 is for example an epoxy or polyurethane glue.
  • the assembly process is as follows:
  • a layer of adhesive 4 is disposed on the peripheral edge surface 59 of the impervious coating 52 of the two prefabricated panels 54.
  • the sealing strip 65 is then applied and pressed onto the adhesive layer 4 until the adhesive is set.
  • the glue 4 is for example an epoxy glue or polyurethane.
  • the sealing strip 65 is not glued at a central portion 6 of its lower surface which spans the gap between the two panels 54, which measures about 30mm.
  • a second layer of adhesive 5 is then placed either on the lower surface of the reinforcing ply 1 of the insulating block 66 or on the upper surface of the impervious strip 65.
  • the glue 5 is for example a relatively viscous epoxy or polyurethane glue, which makes it possible to apply a layer that is thick enough to take up the surface irregularities of the reinforcing ply 1. It is indeed important that, in the assembled state, the Rigid plates 68 and 58 generally provide a flat surface support surface for uniformly supporting the primary waterproofing membrane 69, which is made of a thin and relatively brittle material.
  • the layer of adhesive 5 in line with the central portion 6 of the sealing strip 65, so as to preserve the elasticity and mobility of this central portion 6 by not sticking any of its two faces.
  • FIG. 4 represents a second embodiment of the tank wall at the junction between two prefabricated panels 54 in which the insulating pad has been modified to avoid applying the layer of adhesive 5 in line with the central portion. 6 of the sealing strip 65.
  • the elements identical or similar to those of the previous embodiment have the same reference numeral.
  • the insulating pad 66 additionally bears a non-adhesive pad 10, made for example of polymer foam or thick paper, which is bonded to the lower surface of the reinforcing ply 1, at a central line of the insulating block 66 intended to cover the central portion 6 of the sealing strip 65.
  • the bonding of the pad 10 to the reinforcing ply 1 may be made in different ways, for example by means of a glue line 11 or a scotch double-sided or providing the pad 10 with an adhesive tape.
  • the pad 10 can also be assembled in prefabrication to minimize the operations to be performed on the assembly site of the tank.
  • the lower surface of the reinforcement ply 1 is glued with the adhesive layer 5 on either side of the non-adhesive pad 10, without adhering the non-adhesive pad 10.
  • the upper surface of the central portion 6 of the strip waterproof 65 is in contact with the non-adhesive pad 10 without being glued, which promotes its flexibility and mobility to absorb displacement of thermal origin.
  • the pad 10 is fixed, not on the reinforcing ply 1, but on the flexible ply 65, for example with a double-sided tape or an adhesive tape to ensure its positioning.
  • Figure 5 shows the breaking force of the sealing strip 65 expressed in kilo Newton (kN) as a function of the average service life of the vessel wall, expressed as an average number of cold-running cycles.
  • the thermal insulation of the layers 56, 57 and 67 is a polyurethane foam reinforced with glass fibers with a density of 130 kg / m 3 .
  • the thickness of the primary insulating barrier is 150 mm.
  • the thickness of the secondary insulating barrier is 250 mm.
  • the operating temperature of the secondary membrane is approximately - 80 ° C.
  • Glue 4 is a bi-component polyurethane glue supplied by the company
  • Bostik under the reference XPU 1841 1 A / 3B.
  • the central portion of the reinforcing ply 1 is also bonded to the waterproof band 65. This material is usually packaged in flat plates, because of its relative rigidity.
  • the adhesive 3 is a two-component polyurethane adhesive supplied by Henkel under the reference Macroplast 8202/5400.
  • the adhesive 5 is an epoxy resin supplied by the company Unitech under the reference UEA 100/300.
  • An endurance test is performed in the form of a series of cold-reheat cycles between the ambient temperature and the LNG temperature (-162 ° C).
  • the watertight strip 65 holds 70000 cycles before crossing a reference force threshold shown by line 12 of FIG. 5. This threshold corresponds to the breakage of a material of the whole of the insulation.
  • Curve 14 of FIG. 5 is an average fatigue curve for the watertight strip 65.
  • the reinforcing ply 1 and the glue layer 3 are removed. For the rest, the data of example 1 are retained.
  • the watertight strip 65 holds 35,000 cycles before crossing the reference stress threshold shown by line 2 of FIG. 5.
  • Curve 15 of FIG. 5 is an average fatigue curve for the watertight strip 65 resulting from the extrapolation of Comparative Example 1.
  • the service life of the watertight strip 65 obtained in Comparative Example 1 is less than 50. % of the service life obtained in Example 1.
  • a numerical simulation of the tank wall at the operating temperature predicts a tension stress in the sealing strip 65 of the order of 74 MPa, which is also very largely below the breaking stress of the flexible triplex®, close to 200 MPa.
  • the technique described above for producing a tank wall can be used in different types of tanks, for example to form an LNG tank in a land installation or in a floating structure such as a LNG tank or other.
  • a cutaway view of a LNG tank 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary waterproof membrane intended to be in contact with the LNG contained in the tank, a secondary sealed membrane arranged between the primary waterproof membrane and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary waterproof membrane and the secondary waterproof membrane and between the secondary waterproof membrane and the double shell 72.
  • loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal for transferring a cargo of LNG to or from the tank 7.
  • FIG. 6 represents an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising an arm mobile 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 that can connect to the loading / unloading pipes 73.
  • the movable arm 74 can be adapted to all gauges of LNG carriers .
  • a conduct of link not shown extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the onshore installation 77.
  • the underwater line 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the installation on land 77 over a large distance, for example 5 km, which keeps the LNG tanker 70 at a great distance from the coast during the loading and unloading operations.
  • pumps on board the ship 70 and / or pumps equipping the shore installation 77 and / or pumps equipping the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Une cuve étanche et isolante dans laquelle la barrière isolante secondaire, la membrane d'étanchéité secondaire et la barrière isolante primaire sont essentiellement constituées par un ensemble de panneaux préfabriqués (54) juxtaposés sur la structure porteuse. Des bandes d'étanchéité (65) sont disposées à cheval sur les zones de bordure (59) voisines des revêtements étanches des panneaux préfabriqués (54) pour compléter la membrane d'étanchéité secondaire entre les panneaux préfabriqués. Des pavés isolants (66) disposés sur les bandes d'étanchéité comportent une couche d'isolant thermique (67) recouverte d'une plaque rigide (68) et une nappe de renforcement (1) ayant une raideur en traction supérieure ou égale à la raideur en traction des bandes d'étanchéité (65) et collée à la couche d'isolant thermique sur une face de la couche d'isolant thermique (67) opposée à la plaque rigide (68), le pavé isolant étant à chaque fois fixé sur les panneaux préfabriqués par collage de la nappe de renforcement (1) sur la bande d'étanchéité (65) sous-jacente.

Description

CUVE ETANCHE ET ISOLANTE ET SON PROCEDE DE FABRICATION
Domaine technique
L'invention se rapporte au domaine des cuves étanches et isolantes pouvant contenir des fluides froids, notamment des cuves pour le stockage ou le transport de gaz liquéfiés, en particulier le gaz naturel liquéfié à pression atmosphérique.
Arrière-plan technologique
On connaît, notamment par FR-A-278 557, une cuve étanche et isolante comportant une paroi de cuve fixée sur une structure porteuse, dans laquelle la paroi de la cuve présente une structure multicouche qui comporte successivement une membrane d'étanchéité primaire destinée à être en contact avec un produit contenu dans la cuve, une barrière isolante primaire, une membrane d'étanchéité secondaire et une barrière isolante secondaire.
La barrière isolante secondaire, la membrane d'étanchéité secondaire et la barrière isolante primaire sont essentiellement constituées par un ensemble de panneaux préfabriqués fixés sur la structure porteuse, chaque panneau préfabriqué comprenant successivement une plaque de fond rigide, une première couche d'isolant thermique portée par la plaque de fond et constituant avec la plaque de fond un élément de la barrière isolante secondaire, un revêtement étanche qui recouvre complètement la première couche d'isolant thermique en étant collé sur la première couche d'isolant thermique et qui forme un élément de la membrane d'étanchéité secondaire, une deuxième couche d'isolant thermique qui recouvre une zone centrale de la première couche et du revêtement étanche, et une plaque de couvercle rigide recouvrant la deuxième couche d'isolant thermique et constituant avec la deuxième couche d'isolant thermique un élément de la barrière isolante primaire.
La plaque de fond, la première couche d'isolant thermique et le revêtement étanche du panneau préfabriqué présentent un premier contour rectangulaire tandis que la deuxième couche d'isolant thermique et la plaque de couvercle présentent un deuxième contour rectangulaire de plus petites dimensions que le premier contour rectangulaire, de sorte que la deuxième couche d'isolant thermique et la plaque de couvercle ne recouvrent pas une zone de bordure du revêtement étanche le long des quatre bords du premier contour rectangulaire.
Les panneaux préfabriqués sont juxtaposés sur la structure porteuse parallèlement les uns aux autres, de manière que la zone de bordure du revêtement étanche d'un premier des panneaux préfabriqués est à chaque fois voisine de la zone de bordure du revêtement étanche d'un deuxième des panneaux préfabriqués.
La paroi de la cuve comporte en outre des bandes d'étanchéité faites en un matériau stratifié composite souple comprenant au moins une feuille métallique liée à au moins une couche de fibres, les bandes d'étanchéité étant disposées à cheval sur les zones de bordure voisines des revêtements étanches des panneaux préfabriqués et collées de manière étanche aux revêtements étanches des panneaux préfabriqués pour compléter la membrane d'étanchéité secondaire entre les panneaux préfabriqués.
La paroi de la cuve comporte en outre des pavés isolants disposés sur les bandes d'étanchéité, un pavé isolant étant à chaque fois disposé entre les deuxièmes couches d'isolant thermique de deux panneaux préfabriqués voisins, de manière à compléter la barrière isolante primaire entre les deux panneaux préfabriqués, le pavé isolant comportant une couche d'isolant thermique recouverte d'une plaque rigide, de sorte que les plaques rigides des pavés isolants et les plaques de couvercle des panneaux préfabriqués constituent une paroi sensiblement continue apte à supporter la membrane d'étanchéité primaire.
EP-A-0248721 décrit une structure de paroi thermiquement isolante de conception similaire, dans laquelle une garniture de joint intercalaire constituée par une matière cellulaire isolante rigide remplit l'intervalle entre deux panneaux sandwich adjacents. La garniture de joint intercalaire est recouverte par la bande de couvre-joint formant la barrière d'étanchéité secondaire et est collée à ladite bande de couvre-joint. Le pavé interne collé à la bande de couvre-joint est revêtu sur sa face externe adjacente à la bande de couvre-joint d'un tissu de fibre de verre collé sur ladite face externe pour renforcer la résistance mécanique du pavé. Etant donné que le pavé est collé contre le fond formé par les épaulements des panneaux sandwich et par la garniture de joint intercalaire, le tissu de fibre de verre du pavé est collé à la bande de couvre-joint aussi dans la portion centrale de la bande de couvre-joint recouvrant la garniture de joint intercalaire.
Résumé
Dans les cuves du type précité, il se produit des déformations de tous les éléments en raison des changements de température affectant la paroi de cuve lors de son remplissage avec un liquide très froid comme du GNL et, a contrario, lors de sa vidange entraînant un retour à température ambiante. En sus de ces effets thermiques de contraction et de dilatation, qui se répètent dans le temps au cours de la vie de la cuve, les cuves de navires subissent aussi des efforts dus à la déformation de la coque du navire à la mer. Il en résulte des phénomènes de fatigue des éléments, qu'il y a lieu de surveiller au cours du temps pour prévenir toute rupture.
Une idée à la base de l'invention est de renforcer la résistance à la fatigue de la membrane d'étanchéité secondaire d'une cuve du type précité, en particulier au niveau des bandes d'étanchéité disposées à cheval sur les zones de bordure des panneaux préfabriqués. En effet, du fait de la souplesse en flexion du matériau employé, c'est-à-dire la capacité du matériau à être plié pour former des vagues sans se rompre, les bandes d'étanchéité sont particulièrement soumises à des déformations au cours de la vie de la cuve.
Pour cela, l'invention fournit une cuve du type précité, caractérisée par le fait que le pavé isolant comporte une nappe de renforcement réalisée dans un matériau composite comprenant une couche de fibres liées par une résine polymère, la nappe de renforcement présentant une raideur en traction supérieure ou égale à la raideur en traction des bandes d'étanchéité, la nappe de renforcement étant collée à la couche d'isolant thermique sur une face de la couche d'isolant thermique opposée à la plaque rigide, le pavé isolant étant à chaque fois fixé sur les panneaux préfabriqués par collage de la nappe de renforcement sur la bande d'étanchéité sous-jacente.
Grâce à ces caractéristiques, il est possible d'augmenter la résistance à la fatigue de la membrane secondaire, tout en conservant une bande d'étanchéité en nappe souple à l'interface entre les panneaux, ce qui présente des avantages pour ia fiabilité et i'étanchéité du collage de la bande d'étanchéité sur les revêtements étanches des panneaux préfabriqués et, le cas échéant, pour la mobilité de la membrane secondaire en réponse aux déplacements d'origine thermique.
Du fait que la nappe de renforcement est constituée d'un matériau composite présentant une raideur en traction supérieure à ou du même ordre de grandeur que la raideur en traction des bandes d'étanchéité, et du fait que la nappe de renforcement comprend une couche de fibres imprégnée d'une résine polymère, elle permet de reprendre efficacement les efforts de tension qui s'établissent sensiblement parallèlement à la paroi de cuve par contraction thermique et/ou déformation de la structure porteuse à la mer. En outre, le choix d'un matériau composite fibré limite les contraintes thermiques générées par la nappe de renforcement.
Pour influencer la raideur en traction de la nappe de renforcement, les propriétés suivantes de la nappe de renforcement peuvent en particulier être sélectionnées :
- nature de la résine polymère, module d'Young à l'état final
- nature et diamètre des fibres.
Selon des modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes.
Une autre propriété physique souhaitable pour la bande de renforcement est le coefficient de dilatation thermique relativement bas, ce qui peut être obtenu par le choix des fibres, par exemple fibres de verre, fibres de carbone, fibres de polyester et autres.
Une autre propriété physique souhaitable pour la bande de renforcement est la bonne aptitude au collage, ce qui peut être obtenu notamment par le choix de la résine, pouvant être par exemple choisie dans le groupe constitué des polyamides, polyéthertéréphtalate, polyesters, polyuréthanes, époxy et leurs mélanges. En revanche, les résines polyéthylènes et polypropylènes sont plus difficiles à coller de manière fiable sans traitement spécifique contraignant.
De préférence, le matériau de la nappe de renforcement présente un coefficient de dilatation thermique et un module d'Young en traction E, mesurés à 23°C, tels que leur produit vérifie : 7.104 Ρα. Κ'1 < E. a < 106 Ρα. Κ'1
A titre d'exemple, des matériaux composites souples en flexion comme le triplex® (E. a~88000) conviennent pour la nappe de renforcement. Pour une valeur plus élevée qu'environ 106 Pa. K'1, par exemple dans le cas d'une tôle métallique, la contrainte thermique dans le matériau lors de la mise en froid serait trop élevée. Pour une valeur plus basse qu'environ 7.104 Pa. K-1, par exemple dans le cas d'un bois contreplaqué (E. a~48000), la rigidité ne serait pas suffisante pour renforcer efficacement la bande d'étanchéité en nappe souple.
Pour déterminer la rigidité en traction de la nappe de renforcement, on peut utiliser le module d'Young en traction E, déterminé suivant la méthode NF EN ISO 1421 ou à l'aide d'extensomètres. Le coefficient de contraction thermique a peut être déterminé par un système optique ou un système de comparateur monté sur un bâti en invar, pour avoir une contribution quasi nulle du bâti.
Le matériau stratifié composite souple de la bande d'étanchéité peut être réalisé de différentes manières quant à la composition, au nombre et à l'agencement des couches, notamment avec une ou plusieurs couches métalliques et une ou plusieurs couches de fibres. Selon un mode de réalisation, la bande d'étanchéité est constituée d'un matériau stratifié composite souple comprenant une feuille métallique prise en sandwich entre deux couches de fibres de verre. Par exemple, la feuille métallique est en aluminium. Les deux couches de fibres de verre sont liées à la feuille métallique par une résine polymère souple, par exemple élastomère ou polyuréthane.
Selon un mode de réalisation, la nappe de renforcement est constituée d'un matériau stratifié composite souple comprenant au moins une feuille métallique liée à au moins une couche de fibres, par exemple du même matériau stratifié composite souple que la bande d'étanchéité. L'emploi du même matériau stratifié composite souple pour les bandes d'étanchéités et la nappe de renforcement facilite l'approvisionnement et le contrôle de qualité des matériaux.
Selon un mode de réalisation, le revêtement étanche des panneaux préfabriqués est constitué d'un matériau stratifié composite rigide en flexion comprenant une feuille métallique prise en sandwich entre deux couches de fibres de verre, les deux couches de fibres de verre étant imprégnées d'une résine polymère rigide. Par exemple, la feuille métallique est en aluminium. Selon un mode de réalisation préféré, la nappe de renforcement est constituée d'un matériau plus raide en traction que les bandes d'étanchéité. Pour cela, on peut utiliser un matériau composite rigide en flexion comprenant une couche de fibres imprégnée d'une résine polymère rigide, par exemple polyamide, polyéthertéréphtalate, polyester, polyuréthane, époxy et leurs mélanges.. L'utilisation d'un matériau plus raide en traction que la nappe étanche souple des bandes d'étanchéité permet de reprendre efficacement plus d'efforts de tension qui s'établissent sensiblement parallèlement à la paroi de cuve par contraction thermique et/ou déformation de la structure porteuse à la mer.
Selon un mode de réalisation, le même matériau stratifié composite rigide peut être employé pour le revêtement étanche et la nappe de renforcement, ce qui facilite l'approvisionnement et le contrôle de qualité des matériaux.
Selon un mode de réalisation, la paroi de cuve comporte un interstice localisé entre les premières couches d'isolant thermique de deux panneaux préfabriqués voisins et une bande de matériau de bourrage disposée dans l'interstice, la bande d'étanchéité qui complète la membrane d'étanchéité secondaire entre les panneaux préfabriqués présente une portion centrale franchissant l'interstice au-dessus de la bande de matériau de bourrage, la portion centrale de la bande d'étanchéité n'étant pas collée à la bande de matériau de bourrage,
et la nappe de renforcement présente une portion centrale recouvrant la portion centrale de la bande d'étanchéité et n'étant pas collée à la portion centrale de la bande d'étanchéité.
Grâce à ces caractéristiques, la portion centrale de la bande d'étanchéité présente une plus grande souplesse et une plus grande mobilité pour absorber des déplacements causés par la contraction thermique et/ou la déformation du navire à la mer.
Selon des modes de réalisation, un patin central en matière non adhésive peut être fixé sur la nappe d'étanchéité souple ou sur la nappe de renforcement. La fixation du patin peut être faite de différentes manières, notamment par adhésif double face ou avec une bande collante. Un tel patin peut être en différents matériaux, par exemple en mousse souple de type élastomère, polyuréthane, polyoléfines (polyéthylène, polypropylène) ou mélamine. Selon un mode de réalisation correspondant, le pavé isolant comporte en outre un patin central en matière non adhésive fixé en saillie sur une surface de la nappe de renforcement opposée à la couche d'isolant thermique du pavé isolant, le pavé isolant étant disposé sur la bande d'étanchéité de manière que le patin central recouvre la portion centrale de la bande d'étanchéité.
Selon un autre mode de réalisation correspondant, la bande d'étanchéité comporte en outre un patin central en matière non adhésive fixé en saillie sur une surface de la bande d'étanchéité tournée vers le pavé isolant, le pavé isolant étant disposé sur la bande d'étanchéité de manière que la portion centrale de la nappe de renforcement recouvre le patin central sans être collée au patin central.
Différents matériaux peuvent convenir pour les couches d'isolant thermique des panneaux préfabriqués et des pavés isolants. Les mousses de polyuréthane sont des matériaux particulièrement appropriés en raison de leur résistance aux basses températures et leur faible conductivité thermique. De préférence, la mousse de polyuréthane est renforcée de fibres noyées, par exemple fibres de verre.
Selon un mode de réalisation, l'isolant thermique est constitué d'une mousse de polyuréthane présentant une densité supérieure à 130 kg/m3, par exemple comprise entre 130 et 210 kg/m3.
Grâce à ces caractéristiques, il est possible d'augmenter la rigidité et la durabilité des barrières isolantes.
Une telle cuve peut faire partie d'une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres.
Selon un mode de réalisation, un navire pour le transport d'un produit liquide froid comporte une double coque et une cuve précitée disposée dans la double coque.
Selon un mode de réalisation, l'invention fournit aussi un procédé de chargement ou déchargement d'un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire. Selon un mode de réalisation, l'invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Selon un mode de réalisation, l'invention fournit aussi un procédé de fabrication d'une cuve étanche et isolante, le procédé comportant :
fournir un ensemble de panneaux préfabriqués, chaque panneau préfabriqué comprenant successivement une plaque de fond rigide, une première couche d'isolant thermique portée par la plaque de fond et constituant avec la plaque de fond un élément de la barrière isolante secondaire, un revêtement étanche qui recouvre complètement la première couche d'isolant thermique en étant collé sur la première couche d'isolant thermique et qui forme un élément de la membrane d'étanchéité secondaire, une deuxième couche d'isolant thermique qui recouvre une zone centrale de la première couche et du revêtement étanche, et une plaque de couvercle rigide recouvrant la deuxième couche d'isolant thermique et constituant avec la deuxième couche d'isolant thermique un élément de la barrière isolante primaire, la plaque de fond, la première couche d'isolant thermique et le revêtement étanche du panneau préfabriqué présentant un premier contour rectangulaire tandis que la deuxième couche d'isolant thermique et la plaque de couvercle présentent un deuxième contour rectangulaire de plus petites dimensions que le premier contour rectangulaire, de sorte que la deuxième couche d'isolant thermique et la plaque de couvercle ne recouvrent pas une zone de bordure du revêtement étanche le long des quatre bords du premier contour rectangulaire,
juxtaposer et fixer les panneaux préfabriqués parallèlement les uns aux autres sur la structure porteuse, de manière que la zone de bordure du revêtement étanche d'un premier des panneaux préfabriqués est à chaque fois voisine de la zone de bordure du revêtement étanche d'un deuxième des panneaux préfabriqués,
disposer des bandes d'étanchéité à cheval sur les zones de bordure voisines des revêtements étanches des panneaux préfabriqués, les bandes d'étanchéité étant faites en un matériau stratifié composite souple comprenant au moins une feuille métallique liée à au moins une couche de fibres et coller les bandes d'étanchéité de manière étanche aux revêtements étanches des panneaux préfabriqués pour compléter la membrane d'étanchéité secondaire entre les panneaux préfabriqués, fournir des pavés isolants, le pavé isolant comportant une couche d'isolant thermique, une plaque rigide fixée sur une face supérieure de la couche d'isolant thermique et une nappe de renforcement réalisée dans un matériau composite comprenant une couche de fibres liées par une résine polymère, la nappe de renforcement présentant une raideur en traction supérieure ou égale à la raideur en traction des bandes d'étanchéité, la nappe de renforcement étant collée sur une face inférieure de la couche d'isolant thermique opposée à la plaque rigide, disposer les pavés isolants sur les bandes d'étanchéité, un pavé isolant étant à chaque fois disposé entre les deuxièmes couches d'isolant thermique de deux panneaux préfabriqués voisins, de manière à compléter la barrière isolante primaire entre les deux panneaux préfabriqués et à former une paroi de support sensiblement continue avec les plaques rigides des pavés isolants et les plaques de couvercle des panneaux préfabriqués,
fixer les pavés isolants sur les panneaux préfabriqués par collage de la nappe de renforcement du pavé isolant sur la bande d'étanchéité sous-jacente, et
fixer une membrane d'étanchéité primaire sur la paroi de support sensiblement continue.
Selon des modes de réalisation, ce procédé peut comporter une ou plusieurs des caractéristiques suivantes.
Selon un mode de réalisation, le procédé comporte en outre :
disposer une bande de matériau de bourrage dans un interstice localisé entre les premières couches d'isolant thermique de deux panneaux préfabriqués voisins, disposer la bande d'étanchéité qui complète la membrane d'étanchéité secondaire entre les panneaux préfabriqués sans coller à la bande de matériau de bourrage une portion centrale de la bande d'étanchéité qui franchit l'interstice au-dessus de la bande de matériau de bourrage, et
fixer le pavé isolant comportant la nappe de renforcement sans coller une portion centrale de la nappe de renforcement sur la bande d'étanchéité.
Selon un mode de réalisation, le pavé isolant comporte en outre un patin central en matière non adhésive fixé en saillie sur une surface de la nappe de renforcement opposée à la couche d'isolant thermique du pavé isolant,
le procédé comportant en outre l'étape d'encoller la nappe de renforcement du pavé isolant de part et d'autre du patin central sans encoller le patin central, et de disposer le pavé isolant sur la bande d'étanchéité de manière que le patin central recouvre la portion centrale de la bande d'étanchéité sans y adhérer.
Selon un autre mode de réalisation, la bande d'étanchéité comporte en outre un patin central en matière non adhésive fixé en saillie sur une surface de la bande d'étanchéité tournée vers le pavé isolant,
le procédé comportant en outre l'étape d'encoller la bande d'étanchéité de part et d'autre du patin central sans encoller le patin central, et de disposer le pavé isolant sur la bande d'étanchéité de manière que la portion centrale de la nappe de renforcement recouvre le patin central sans être collée au patin central.
Brève description des figures
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
• La figure 1 est une vue en perspective partiellement éclatée d'une paroi de cuve selon un mode de réalisation.
• La figure 2 est une vue plane éclatée d'une zone de la paroi de cuve de la figure 1 située à l'interface entre deux panneaux préfabriqués.
• La figure 3 est une vue analogue à la figure 2 montrant la zone de la paroi de cuve à l'état assemblé.
• La figure 4 est une vue analogue à la figure 2 montrant un autre mode de réalisation de la zone de paroi située à l'interface entre deux panneaux préfabriqués.
• La figure 5 est une courbe de fatigue représentant l'effort à la rupture de la membrane secondaire en fonction d'un nombre de cycles de refroidissement-réchauffage, pour différents modes de réalisation du pavé isolant. • La figure 6 est une représentation schématique écorchée d'une cuve de navire méthanier et d'un terminal de chargement/déchargement de cette cuve.
Description détaillée de modes de réalisation
En référence à la figure 1 , on décrit maintenant un mode de réalisation d'une paroi de cuve dans laquelle la barrière isolante secondaire, la membrane d'étanchéité secondaire et la barrière isolante primaire sont réalisées à partir de panneaux préfabriqués 54.
Une telle structure de paroi peut être employée pour réaliser sensiblement toutes les parois d'une cuve polyédrique. A cet égard, les termes 'sur', 'au-dessus', 'supérieur' et 'haut' font généralement référence à une position située vers l'intérieur de la cuve et ne coïncident donc pas forcément avec la notion de haut dans le champ gravitationnel terrestre. De même, les termes 'sous', 'en dessous', 'inférieur' et 'bas' font généralement référence à une position située vers l'extérieur de la cuve et ne coïncident donc pas forcément avec la notion de bas dans le champ gravitationnel terrestre.
Les panneaux préfabriqués 54 sont fixés sur la structure porteuse de manière juxtaposée selon un motif répété. Un panneau 54 comporte à chaque fois un élément de la barrière isolante secondaire 51 , un élément de la barrière étanche secondaire et un élément de la barrière isolante primaire 53.
Un panneau 54 a sensiblement la forme d'un parallélépipède rectangle. Il est constitué d'une première plaque 55 de contre-plaqué de 9 mm d'épaisseur surmontée d'une première couche d'isolant thermique 56, elle-même surmontée d'un revêtement étanche rigide 52 incluant une feuille en aluminium de 0,07 mm d'épaisseur prise en sandwich entre deux tissus de fibres de verre imprégnés d'un résine de polyamide. Le revêtement étanche 52 est collé à la couche d'isolant thermique 56, par exemple à l'aide d'une colle polyuréthane bi-composante.
Une deuxième couche d'isolant thermique 57 est collée sur le revêtement étanche 52 et porte elle-même une deuxième plaque de contre-plaqué 58 de 12 mm d'épaisseur. Le sous-ensemble 55-56 constitue l'élément de barrière d'isolation secondaire 51. Le sous-ensemble 57-58 constitue l'élément de barrière d'isolation primaire 53 et il a, vu en plan, une forme rectangulaire dont les côtés sont parallèles à ceux de l'élément de barrière d'isolation secondaire 51. Les deux éléments de barrière d'isolation ont, vus en plan, la forme de deux rectangles ayant le même centre. L'élément 53 laisse découverte une surface de bordure périphérique 59 du revêtement étanche 52 tout autour de l'élément 53. Le revêtement étanche 52 constitue l'élément de membrane d'étanchéité secondaire.
Le panneau 54, qui vient d'être décrit, peut être préfabriqué pour constituer un ensemble dont les différents constituants sont collés les uns sur les autres dans la disposition ci-dessus indiquée. Cet ensemble forme donc les barrières secondaires et la barrière d'isolation primaire. Les couches d'isolant thermique 56 et 57 peuvent être constituées par un matériau plastique alvéolaire tel qu'une mousse de polyuréthanne. De préférence, des fibres de verre sont noyées dans la mousse de polyuréthanne pour la renforcer.
Pour assurer la fixation des panneaux 54 sur la structure porteuse 99, on prévoit, régulièrement répartis sur les deux bords longitudinaux du panneau, des puits 60 pour coopérer avec des goujons fixés sur la structure porteuse 99 selon la technique connue.
La structure porteuse 99, notamment dans le cas d'un navire, présente des écarts par rapport à la surface théorique prévue pour la structure porteuse simplement en raison des imprécisions de fabrication. De façon connue, on rattrape ces écarts en mettant en appui les panneaux 54 contre la structure porteuse par l'intermédiaire de boudins de résine polymérisable 61 , qui permettent, à partir d'une surface de structure porteuse imparfaite, d'obtenir un habillage constitué par des panneaux 54 adjacents présentant des deuxièmes plaques 58 qui, dans leur ensemble, définissent une surface pratiquement sans écart par rapport à la surface théorique désirée.
On bouche les puits 60 en y insérant des bouchons de matériau isolant thermique 62, ces bouchons affleurant au niveau de la première couche d'isolant thermique 56 du panneau 54. En outre, on peut mettre en place dans les interstices qui séparent les éléments 51 de deux panneaux 54 adjacents, un matériau d'isolation thermique 63 constitué, par exemple, d'une feuille de mousse plastique ou de laine de verre insérée dans l'interstice. Pour constituer une membrane d'étanchéité secondaire continue, on met en place une bande étanche souple 65 sur les rebords périphériques 59 voisins de deux panneaux 54 adjacents, et on colle la bande étanche 65 sur les rebords périphériques 59, de façon à obturer les perforations situées au droit de chaque puits 60 et à recouvrir l'interstice entre les deux panneaux 54. La bande étanche 65 est constituée d'un matériau composite appelé triplex® souple comportant trois couches : les deux couches externes sont des tissus de fibres de verre et la couche intermédiaire est une feuille métallique mince, par exemple une feuille d'aluminium d'une épaisseur d'environ 0,1 mm. Cette feuille métallique assure la continuité de la membrane d'étanchéité secondaire. Sa souplesse en flexion, en raison de la nature souple du liant entre la feuille d'aluminium et les fibres de verre, lui permet de suivre les déformations des panneaux 54 dues à la déformation de la coque à la houle ou à la mise en froid de la cuve. Par souplesse en flexion, on entend la capacité du matériau à être plié pour former des vagues sans se rompre.
Entre les éléments 53 de deux panneaux 54 adjacents subsiste une zone en dépression située au droit des rebords périphériques 59, cette dépression ayant sensiblement comme profondeur l'épaisseur de la barrière d'isolation primaire. On comble ces zones de dépression en y mettant en place des pavés isolants 66 constitués chacun d'une couche d'isolant thermique 67 revêtue d'une plaque rigide en contre-plaqué 68 sur une surface supérieure du pavé isolant 66 et d'une nappe de renforcement sur la surface inférieure du pavé isolant 66. La nappe de renforcement non visible sur la figure 1 sera décrite en référence aux figures 2 à 4.
Les pavés isolants 66 ont une dimension telle qu'ils remplissent totalement la zone située au-dessus des rebords périphériques 59 de deux panneaux 54 adjacents. Les pavés isolants 66 sont collés sur les bandes étanches 65. Après leur mise en place, la plaque 68 assure une relative continuité entre les plaques 58 de deux panneaux 54 adjacents pour le soutien de la membrane d'étanchéité primaire.
Ces pavés isolants 66 ont une largeur égale à la distance entre deux éléments 53 de deux panneaux 54 adjacents et peuvent avoir une longueur plus ou moins grande. Une longueur réduite permet, le cas échéant, une mise en place plus facile dans l'hypothèse d'un léger désalignement de deux panneaux 54 adjacents. Les pavés 66 sont collés à la bande étanche 65 et en appui sur celle-ci. La membrane d'étanchéité primaire est formée d'une membrane en tôles gaufrées 69 présentant deux séries d'ondulations sécantes pour lui conférer une souplesse suffisante dans les deux directions du plan de la paroi de cuve.
Sur la figure 1 , les pavés isolants 66, la bande étanche 65 et les matériaux d'isolation thermique 62 et 63 sont représentés sous une forme éclatée et apparaissent ainsi au-dessus de leur position réelle dans la paroi de cuve à l'état final assemblé. Les positions finales de ces éléments sont mieux visibles sur la figure 3 qui sera décrite plus bas.
En référence aux figures 2 et 3, on va maintenant décrire un premier mode de réalisation de la paroi de cuve au niveau de la jonction entre deux panneaux préfabriqués 54. La figure 2 représente partiellement les deux panneaux préfabriqués 54 fixés sur la structure porteuse 99 dans leur position finale, tandis que le pavé isolant 66, la nappe de renforcement 1 du pavé isolant 66 et la bande étanche 65 sont représentés à l'état démonté au-dessus de leur position finale. La figure 3 représente tous les éléments dans leur position finale assemblée. Les épaisseurs du revêtement étanche 52, de la bande étanche 65, de la nappe de renforcement 1 et des couches de colle correspondantes ont été exagérées par mesure de visibilité.
La nappe de renforcement 1 est collée sur la surface inférieure 2 de la couche d'isolant thermique 67 au moyen d'une couche de colle 3. Ce collage peut être effectué en préfabrication afin de livrer sur le chantier d'assemblage de la cuve un pavé isolant 66 comportant déjà la nappe de renforcement 1. La colle 3 est par exemple une colle époxy ou polyuréthane.
Le procédé d'assemblage est le suivant :
- Une couche de colle 4 est disposée sur la surface de bordure périphérique 59 du revêtement étanche 52 des deux panneaux préfabriqués 54.
La bande étanche 65 est ensuite appliquée et pressée sur la couche de colle 4 jusqu'à ce que la colle soit prise. La colle 4 est par exemple une colle époxy ou polyuréthane. Comme visible sur la figure 3, la bande étanche 65 n'est pas collée au niveau d'une portion centrale 6 de sa surface inférieure qui enjambe l'interstice entre les deux panneaux 54, lequel mesure environ 30mm. Une deuxième couche de colle 5 est ensuite disposée, soit sur la surface inférieure de la nappe de renforcement 1 du pavé isolant 66, soit sur la surface supérieure de la bande étanche 65.
Enfin le pavé isolant 66 est appliqué et pressé contre la surface supérieure de la bande étanche 65 jusqu'à ce que la colle 5 soit prise.
La colle 5 est par exemple une colle époxy ou polyuréthane relativement visqueuse, ce qui permet d'appliquer une couche assez épaisse pour reprendre les irrégularités de surface de la nappe de renforcement 1. Il importe en effet que, dans l'état assemblé, les plaques rigides 68 et 58 offrent globalement une surface de support de bonne planéité pour supporter de manière uniforme la membrane d'étanchéité primaire 69, qui est faite d'un matériau mince et relativement fragile.
De préférence, on évite d'appliquer la couche de colle 5 à l'aplomb de la portion centrale 6 de la bande étanche 65, de manière à préserver l'élasticité et la mobilité de cette portion centrale 6 en ne collant aucune de ses deux faces.
La figure 4 représente un deuxième mode de réalisation de la paroi de cuve au niveau de la jonction entre deux panneaux préfabriqués 54 dans lequel le pavé isolant a été modifié pour éviter d'appliquer la couche de colle 5 à l'aplomb de la portion centrale 6 de la bande étanche 65. Les éléments identiques ou analogues à ceux du mode de réalisation précédent portent le même chiffre de référence.
Sur la figure 4, le pavé isolant 66 porte en plus un patin non adhésif 10, réalisé par exemple en mousse polymère ou papier épais, qui est collé sur la surface inférieure de la nappe de renforcement 1 , au niveau d'une ligne centrale du pavé isolant 66 destinée à recouvrir la portion centrale 6 de la bande étanche 65. Le collage du patin 10 sur la nappe de renforcement 1 peut être réalisé de différents manières, par exemple au moyen d'une ligne de colle 11 ou d'un scotch double face ou en munissant le patin 10 d'une bande adhésive. Le patin 10 peut être également assemblé en préfabrication afin de minimiser les opérations devant être réalisées sur le chantier d'assemblage de la cuve.
Pour la fixation du pavé isolant 66 à la paroi de cuve, on encolle la surface inférieure de la nappe de renforcement 1 avec la couche de colle 5 de part et d'autre du patin non adhésif 10, sans encoller le patin non adhésif 10. Ainsi, une fois l'assemblage final réalisé, la surface supérieure de ia portion centrale 6 de ia bande étanche 65 est au contact du patin non adhésif 10 sans y être collée, ce qui favorise sa flexibilité et sa mobilité pour absorber des déplacements d'origine thermique.
Dans un mode non représenté sur la figure 4 mais constituant une variante, le patin 10 est fixé, non pas sur la nappe de renforcement 1 , mais sur la nappe souple 65, par exemple avec un scotch double face ou une bande adhésive pour assurer son positionnement.
Des exemples de réalisation de la paroi de cuve vont maintenant être décrits à titre illustratif et leurs propriétés mécaniques de tenue à la fatigue vont être décrites en référence à la figure 5. La figure 5 représente l'effort de rupture de la bande d'étanchéité 65 exprimé en kilo Newton (kN) en fonction de la durée moyenne de service de la paroi de cuve, exprimée en moyenne de nombre de cycles de traction à froid.
Exemple 1
L'isolant thermique des couches 56, 57 et 67 est une mousse de polyuréthane renforcée de fibres de verre de densité 130kg/m3. L'épaisseur de la barrière isolante primaire est 150 mm. L'épaisseur de la barrière isolante secondaire est 250 mm. La température de service de la membrane secondaire est environ - 80 °C.
La bande étanche 65 est un triplex® souple d'épaisseur égale à 0,6 mm (aluminium, résine, fibre de verre) fourni par la société Hutchinson. La largeur de cette bande est de l'ordre de 250 mm. Son module d'Young en traction est E = 10 GPa et son coefficient de dilatation thermique à 23 °C est = 0,9.10~5 K' 1. La contrainte de traction à la rupture, mesurée à 23°C, est environ 200 MPa. Ce matériau est habituellement conditionné en rouleaux, du fait de sa souplesse.
La colle 4 est une colle polyuréthane bi-composante fournie par la société
Bostik sous la référence XPU 1841 1 A/3B.
La nappe de renforcement 1 est un triplex rigide d'épaisseur égale à 0,6 mm (aluminium, fibre de verre, résine polyamide) fourni par la société Hankuk. Son module d'Young en traction est E = 15 GPa et son coefficient de dilatation thermique à 23 °C est a = 10-5 K. La contrainte de traction à la rupture, mesurée à 23°C, est environ 210 MPa. La portion centrale de la nappe de renforcement 1 est aussi collée à la bande étanche 65. Ce matériau est habituellement conditionné en plaques planes, du fait de sa relative rigidité.
La colle 3 est une colle polyuréthane bi-composante fournie par la société Henkel sous la référence Macroplast 8202/5400.
La colle 5 est une résine époxy fournie par la société Unitech sous la référence UEA 100/300.
Un test d'endurance est effectué sous la forme d'une succession de cycles de mise en froid-réchauffage entre la température ambiante et la température du GNL (-162 °C). La bande étanche 65 tient 70000 cycles avant de franchir un seuil d'effort de référence montré par la ligne 12 de la figure 5. Ce seuil correspond à la rupture d'un matériau de l'ensemble de l'isolation.
La courbe 14 de la figure 5 est une courbe de fatigue moyenne pour la bande étanche 65.
Par ailleurs, dans cette configuration, une simulation numérique de la paroi de cuve à la température de service prédit une contrainte de tension dans la bande étanche 65 de l'ordre de 63 MPa, ce qui est très largement en-dessous de la contrainte de rupture du triplex® souple, voisine de 200 MPa.
Exemple comparatif 1
La nappe de renforcement 1 et la couche de colle 3 sont supprimées. Pour le reste, les données de l'exemple 1 sont conservées. La bande étanche 65 tient 35000 cycles avant de franchir le seuil d'effort de référence montré par la ligne 2 de la figure 5.
La courbe 15 de la figure 5 est une courbe de fatigue moyenne pour la bande étanche 65 résultant de l'extrapolation de l'exemple comparatif 1. La durée de service de la bande étanche 65 obtenue dans l'exemple comparatif 1 est inférieure à 50% de la durée de service obtenue dans l'exemple 1.
Par ailleurs, dans cette configuration, une simulation numérique de la paroi de cuve à la température de service prédit une contrainte de tension dans la bande étanche 65 de l'ordre de 117MPa.
Exemple 2 La nappe de renforcement 1 est un triplex® souple d'épaisseur égale à 0,6 mm (aluminium, fibre de verre) fourni par la société Hutchinson. Son module d'Young en traction est E = 10 GPa et son coefficient de dilatation thermique à 23 °C est a = 0,9.10-5 K-1. La contrainte de traction à la rupture, mesurée à 23°C, est environ 200 MPa.
Pour le reste, les données de l'exemple 1 sont conservées.
Une simulation numérique de la paroi de cuve à la température de service prédit une contrainte de tension dans la bande étanche 65 de l'ordre de 74 MPa, ce qui est aussi très largement en-dessous de la contrainte de rupture du triplex® souple, voisine de 200 MPa.
La technique décrite ci-dessus pour réaliser une paroi de cuve peut être utilisée dans différents types de réservoirs, par exemple pour constituer un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.
En référence à la figure 6, une vue écorchée d'un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une membrane étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une membrane étanche secondaire agencée entre la membrane étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la membrane étanche primaire et la membrane étanche secondaire et entre la membrane étanche secondaire et la double coque 72.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 7 .
La figure 6 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

REVENDICATIONS
1. Cuve étanche et isolante comportant une paroi de cuve fixée sur une structure porteuse (99), dans laquelle la paroi de la cuve présente une structure multicouche qui comporte successivement une membrane d'étanchéité primaire (69) destinée à être en contact avec un produit contenu dans la cuve, une barrière isolante primaire, une membrane d'étanchéité secondaire et une barrière isolante secondaire,
dans laquelle la barrière isolante secondaire, la membrane d'étanchéité secondaire et la barrière isolante primaire sont essentiellement constituées par un ensemble de panneaux préfabriqués (54) fixés sur la structure porteuse, chaque panneau préfabriqué comprenant successivement une plaque de fond rigide (55), une première couche d'isolant thermique (56) portée par la plaque de fond et constituant avec la plaque de fond un élément de la barrière isolante secondaire, un revêtement étanche (52) qui recouvre complètement la première couche d'isolant thermique en étant collé sur la première couche d'isolant thermique et qui forme un élément de la membrane d'étanchéité secondaire, une deuxième couche d'isolant thermique (57) qui recouvre une zone centrale de la première couche et du revêtement étanche, et une plaque de couvercle rigide (58) recouvrant la deuxième couche d'isolant thermique et constituant avec la deuxième couche d'isolant thermique un élément de la barrière isolante primaire,
dans laquelle la plaque de fond, la première couche d'isolant thermique et le revêtement étanche du panneau préfabriqué présentent un premier contour rectangulaire tandis que la deuxième couche d'isolant thermique et la plaque de couvercle présentent un deuxième contour rectangulaire de plus petites dimensions que le premier contour rectangulaire, de sorte que la deuxième couche d'isolant thermique et la plaque de couvercle ne recouvrent pas une zone de bordure (59) du revêtement étanche le long des quatre bords du premier contour rectangulaire, et dans laquelle les panneaux préfabriqués sont juxtaposés sur la structure porteuse parallèlement les uns aux autres, de manière que la zone de bordure du revêtement étanche d'un premier des panneaux préfabriqués est à chaque fois voisine de la zone de bordure du revêtement étanche d'un deuxième des panneaux préfabriqués, la paroi de la cuve comportant en outre des bandes d'étanchéité (65) faites d'un matériau stratifié composite souple comprenant au moins une feuille métallique liée à au moins une couche de fibres, les bandes d'étanchéité étant disposées à cheval sur les zones de bordure (59) voisines des revêtements étanches des panneaux préfabriqués (54) et collées de manière étanche aux revêtements étanches (52) des panneaux préfabriqués pour compléter la membrane d'étanchéité secondaire entre les panneaux préfabriqués,
la paroi de la cuve comportant en outre des pavés isolants (66) disposés sur les bandes d'étanchéité, un pavé isolant étant à chaque fois disposé entre les deuxièmes couches d'isolant thermique de deux panneaux préfabriqués voisins, de manière à compléter la barrière isolante primaire entre les deux panneaux préfabriqués, le pavé isolant comportant une couche d'isolant thermique (67) recouverte d'une plaque rigide (68), de sorte que les plaques rigides des pavés isolants et les plaques de couvercle des panneaux préfabriqués constituent une paroi sensiblement continue apte à supporter la membrane d'étanchéité primaire, dans laquelle le pavé isolant comporte une nappe de renforcement (1 ) comprenant une couche de fibres, la nappe de renforcement étant collée à la couche d'isolant thermique sur une face de la couche d'isolant thermique (67) opposée à la plaque rigide (68), le pavé isolant étant à chaque fois fixé sur les panneaux préfabriqués par collage de la nappe de renforcement (1 ) sur la bande d'étanchéité (65) sous- jacente,
caractérisée par le fait que la nappe de renforcement est constituée d'un matériau stratifié composite comprenant au moins une feuille métallique prise en sandwich entre deux couches de fibres de verre liées par une résine polymère, et que la nappe de renforcement présente une raideur en traction supérieure ou égale à la raideur en traction des bandes d'étanchéité (65).
2. Cuve selon la revendication 1 , dans laquelle le matériau de la nappe de renforcement présente un coefficient de dilatation thermique et un module d'Young en traction E, mesurés à 23°C, tels que leur produit vérifie :
7.104 Pa. K-1 < E. a < 106 Pa. K'1 .
3. Cuve selon la revendication 1 ou 2, dans laquelle le matériau stratifié composite constituant la nappe de renforcement (1 ) est souple.
4. Cuve selon la revendication 1 ou 2, dans laquelle le matériau stratifié composite constituant la nappe de renforcement (1 ) est rigide en flexion, lesdites couches de fibres de verre étant imprégnées d'une résine polymère rigide.
5. Cuve selon l'une des revendications 1 à 4, dans laquelle la bande d'étanchéité (65) est constituée d'un matériau stratifié composite souple comprenant une feuille métallique prise en sandwich entre deux couches de fibres de verre, et dans laquelle le revêtement étanche (52) des panneaux préfabriqués est constitué d'un matériau stratifié composite rigide comprenant une feuille métallique prise en sandwich entre deux couches de fibres de verre, les deux couches de fibres de verre étant imprégnées d'une résine polymère rigide,
la nappe de renforcement étant constituée du même matériau que la bande d'étanchéité (65) ou que le revêtement étanche (52).
6. Cuve selon l'une des revendications 1 à 5, dans laquelle la paroi de cuve comporte un interstice localisé entre les premières couches d'isolant thermique de deux panneaux préfabriqués (54) voisins et une bande de matériau de bourrage (63) disposée dans l'interstice, la bande d'étanchéité (65) qui complète la membrane d'étanchéité secondaire entre les panneaux préfabriqués présente une portion centrale (6) franchissant l'interstice au-dessus de la bande de matériau de bourrage, la portion centrale de la bande d'étanchéité n'étant pas collée à la bande de matériau de bourrage,
et dans laquelle la nappe de renforcement (1 ) présente une portion centrale recouvrant la portion centrale de la bande d'étanchéité et n'étant pas collée à la portion centrale (6) de la bande d'étanchéité.
7. Cuve selon la revendication 6, dans laquelle le pavé isolant comporte en outre un patin central (10) en matière non adhésive fixé en saillie sur une surface de la nappe de renforcement opposée à la couche d'isolant thermique du pavé isolant, le pavé isolant étant disposé sur la bande d'étanchéité de manière que le patin central recouvre la portion centrale (6) de la bande d'étanchéité (65).
8. Cuve selon la revendication 6, dans laquelle la bande d'étanchéité comporte en outre un patin central (10) en matière non adhésive fixé en saillie sur une surface de la bande d'étanchéité tournée vers le pavé isolant, le pavé isolant étant disposé sur la bande d'étanchéité de manière que la portion centrale de la nappe de renforcement (1 ) recouvre le patin central sans être collée au patin central.
9. Cuve selon l'une des revendications 1 à 8, dans laquelle la première couche d'isolant thermique du panneau préfabriqué, la deuxième couche d'isolant thermique du panneau préfabriqué et la couche d'isolant thermique du pavé isolant sont constituées d'une mousse de polyuréthane présentant une densité supérieure à 130 kg/m3, par exemple comprise entre 130 et 210 kg/m3.
10. Navire (70) pour le transport d'un produit liquide froid, le navire comportant une double coque (72) et une cuve (71 ) selon l'une des revendications 1 à 9 disposée dans la double coque.
1 1. Procédé de chargement ou déchargement d'un navire (70) selon la revendication 10, dans lequel on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81 ) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71 ).
12. Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon la revendication 10, des canalisations isolées (73, 79, 76, 81 ) agencées de manière à relier la cuve (71 ) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
13. Procédé de fabrication d'une cuve étanche et isolante, le procédé comportant :
fournir un ensemble de panneaux préfabriqués (54), chaque panneau préfabriqué comprenant successivement une plaque de fond rigide (55), une première couche d'isolant thermique (56) portée par la plaque de fond et constituant avec la plaque de fond un élément de la barrière isolante secondaire, un revêtement étanche (52) qui recouvre complètement la première couche d'isolant thermique en étant collé sur la première couche d'isolant thermique et qui forme un élément de la membrane d'étanchéité secondaire, une deuxième couche d'isolant thermique (57) qui recouvre une zone centrale de la première couche et du revêtement étanche, et une plaque de couvercle (58) rigide recouvrant la deuxième couche d'isolant thermique et constituant avec la deuxième couche d'isolant thermique un élément de la barrière isolante primaire, la plaque de fond, la première couche d'isolant thermique et le revêtement étanche du panneau préfabriqué présentant un premier contour rectangulaire tandis que la deuxième couche d'isolant thermique et la plaque de couvercle présentent un deuxième contour rectangulaire de plus petites dimensions que le premier contour rectangulaire, de sorte que la deuxième couche d'isolant thermique et la plaque de couvercle ne recouvrent pas une zone de bordure (59) du revêtement étanche le long des quatre bords du premier contour rectangulaire, juxtaposer et fixer les panneaux préfabriqués parallèlement les uns aux autres sur la structure porteuse (99), de manière que la zone de bordure du revêtement étanche d'un premier des panneaux préfabriqués est à chaque fois voisine de la zone de bordure du revêtement étanche d'un deuxième des panneaux préfabriqués, disposer des bandes d'étanchéité (65) à cheval sur les zones de bordure voisines des revêtements étanches des panneaux préfabriqués, les bandes d'étanchéité (65) étant faites d'un matériau stratifié composite souple comprenant au moins une feuille métallique liée à au moins une couche de fibres, et coller les bandes d'étanchéité (65) de manière étanche aux revêtements étanches (52) des panneaux préfabriqués pour compléter la membrane d'étanchéité secondaire entre les panneaux préfabriqués,
fournir des pavés isolants (66), le pavé isolant comportant une couche d'isolant thermique (67), une plaque rigide (68) fixée sur une face supérieure de la couche d'isolant thermique et une nappe de renforcement (1 ) collée sur une face inférieure de la couche d'isolant thermique opposée à la plaque rigide, la nappe de renforcement (1 ) étant réalisée dans un matériau stratifié composite comprenant au moins une feuille métallique prise en sandwich entre deux couches de fibres de verre liées par une résine polymère, la nappe de renforcement présentant une raideur en traction supérieure ou égale à la raideur en traction des bandes d'étanchéité (65),
disposer les pavés isolants (66) sur les bandes d'étanchéité (65), un pavé isolant étant à chaque fois disposé entre les deuxièmes couches d'isolant thermique de deux panneaux préfabriqués voisins, de manière à compléter la barrière isolante primaire entre les deux panneaux préfabriqués et à former une paroi de support sensiblement continue avec les plaques rigides des pavés isolants et les plaques de couvercle des panneaux préfabriqués,
fixer les pavés isolants sur les panneaux préfabriqués par collage de la nappe de renforcement du pavé isolant sur la bande d'étanchéité sous-jacente, et
fixer une membrane d'étanchéité primaire (69) sur la paroi de support sensiblement continue.
14. Procédé selon la revendication 13, comportant en outre :
disposer une bande de matériau de bourrage (63) dans un interstice localisé entre les premières couches d'isolant thermique de deux panneaux préfabriqués voisins, disposer la bande d'étanchéité qui complète la membrane d'étanchéité secondaire entre les panneaux préfabriqués sans coller à la bande de matériau de bourrage une portion centrale de la bande d'étanchéité qui franchit l'interstice au-dessus de la bande de matériau de bourrage, et
fixer le pavé isolant comportant la nappe de renforcement sans coller une portion centrale (6) de la nappe de renforcement sur la bande d'étanchéité (65).
15. Procédé selon la revendication 14, dans lequel le pavé isolant comporte en outre un patin central (10) en matière non adhésive fixé en saillie sur une surface de la nappe de renforcement opposée à la couche d'isolant thermique du pavé isolant,
le procédé comportant en outre l'étape d'encoller la nappe de renforcement (1 ) du pavé isolant de part et d'autre du patin central sans encoller le patin central (10), et de disposer le pavé isolant sur la bande d'étanchéité de manière que le patin central recouvre la portion centrale (6) de la bande d'étanchéité sans y adhérer.
16. Procédé selon la revendication 14, dans laquelle la bande d'étanchéité comporte en outre un patin central (10) en matière non adhésive fixé en saillie sur une surface de la bande d'étanchéité tournée vers le pavé isolant, le procédé comportant en outre l'étape d'encoller la bande d'étanchéité de part et d'autre du patin central sans encoller le patin central (10), et de disposer le pavé isolant sur la bande d'étanchéité de manière que la portion centrale de la nappe de renforcement (1 ) recouvre le patin central sans être collée au patin central.
EP15732604.2A 2014-06-25 2015-06-23 Cuve etanche et isolante et son procede de fabrication Active EP3161370B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15732604T PL3161370T3 (pl) 2014-06-25 2015-06-23 Szczelny i izolacyjny zbiornik i sposób jego wytwarzania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1455937A FR3022971B1 (fr) 2014-06-25 2014-06-25 Cuve etanche et isolante et son procede de fabrication
PCT/EP2015/064144 WO2015197638A1 (fr) 2014-06-25 2015-06-23 Cuve etanche et isolante et son procede de fabrication

Publications (2)

Publication Number Publication Date
EP3161370A1 true EP3161370A1 (fr) 2017-05-03
EP3161370B1 EP3161370B1 (fr) 2017-12-20

Family

ID=51519037

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15732604.2A Active EP3161370B1 (fr) 2014-06-25 2015-06-23 Cuve etanche et isolante et son procede de fabrication

Country Status (16)

Country Link
US (1) US10267455B2 (fr)
EP (1) EP3161370B1 (fr)
JP (1) JP6585635B2 (fr)
KR (1) KR102397134B1 (fr)
CN (1) CN106461158B (fr)
AU (1) AU2015279270B2 (fr)
ES (1) ES2657799T3 (fr)
FR (1) FR3022971B1 (fr)
MY (1) MY179675A (fr)
NO (1) NO3161370T3 (fr)
PH (1) PH12016502450A1 (fr)
PL (1) PL3161370T3 (fr)
PT (1) PT3161370T (fr)
RU (1) RU2682230C2 (fr)
SG (1) SG11201610486RA (fr)
WO (1) WO2015197638A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3022971B1 (fr) * 2014-06-25 2017-03-31 Gaztransport Et Technigaz Cuve etanche et isolante et son procede de fabrication
CN106766341A (zh) * 2017-03-02 2017-05-31 舟山巨洋技术开发有限公司 利用船舶废热的液态制冷设备
FR3064042B1 (fr) * 2017-03-15 2021-10-22 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante comportant un bouchon isolant de renfort
ES2886216T3 (es) * 2017-06-01 2021-12-16 Gaztransport Et Technigaz Cisterna estanca y térmicamente aislante
KR101931879B1 (ko) * 2017-06-28 2019-03-13 가즈트랑스포르 에 떼끄니가즈 밀봉된 멤브레인 및 밀봉된 멤브레인을 조립하기 위한 방법
FR3077278B1 (fr) * 2018-02-01 2020-02-07 Gaztransport Et Technigaz Paroi etanche a membrane ondulee renforcee
FR3077865B1 (fr) * 2018-02-09 2020-02-28 Gaztranport Et Technigaz Cuve etanche et thermiquement isolante comportant des bouchons isolants inter-panneaux
CN109606565B (zh) * 2018-07-26 2021-09-17 沪东中华造船(集团)有限公司 一种b型围护系统绝缘块连接处的密封结构
CN109606554B (zh) * 2018-07-26 2021-09-21 沪东中华造船(集团)有限公司 一种用于密封b型围护系统绝缘块连接处的方法
FR3093159B1 (fr) * 2019-02-21 2021-01-29 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
FR3094449B1 (fr) * 2019-03-26 2022-12-23 Gaztransport Et Technigaz Bloc de mousse polyuréthane/polyisocyanurate d’un massif d’isolation thermique d’une cuve et son procédé de préparation
FR3094451B1 (fr) * 2019-03-26 2022-12-23 Gaztransport Et Technigaz Bloc de mousse polyuréthane/polyisocyanurate d’un massif d’isolation thermique d’une cuve et son procédé de préparation
FR3097964B1 (fr) * 2019-06-28 2021-11-12 Gaztransport Et Technigaz Procédé de test d’étanchéité de membrane étanche
FR3097934B1 (fr) * 2019-06-28 2022-01-28 Gaztransport Et Technigaz Procédé de fabrication d'une structure d'angle pour cuve
EP4010621A1 (fr) * 2019-08-09 2022-06-15 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante comportant des bouchons isolants inter-panneaux
FR3101390B1 (fr) * 2019-09-27 2021-09-03 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
FR3108383B1 (fr) * 2020-03-20 2023-10-27 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante
FR3109979B1 (fr) * 2020-05-05 2022-04-08 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante comprenant des éléments de remplissage anti-convectif
KR102469998B1 (ko) * 2020-12-14 2022-11-25 현대중공업 주식회사 액화가스 저장탱크 및 이를 포함하는 선박
CN114688454B (zh) * 2021-12-16 2023-12-08 沪东中华造船(集团)有限公司 一种用于b型罐支座的绝缘安装方法
CN114458953A (zh) * 2022-01-26 2022-05-10 上海海威斯特保温工程有限公司 一种用于低温液化气体储存的围护系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR781557A (fr) * 1934-11-19 1935-05-18 Allume-feu à gaz
JPS62270896A (ja) * 1986-05-19 1987-11-25 Nippon Kokan Kk <Nkk> メンブレンタンクの2次パリヤ−分割構造
FR2599468B1 (fr) * 1986-06-03 1988-08-05 Technigaz Structure de paroi thermiquement isolante de reservoir etanche
FR2724623B1 (fr) * 1994-09-20 1997-01-10 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante perfectionnee integree dans une structure porteuse
FR2781557B1 (fr) * 1998-07-24 2000-09-15 Gaz Transport & Technigaz Perfectionnement pour une cuve etanche et thermiquement isolante a panneaux prefabriques
WO2006003192A1 (fr) * 2004-07-06 2006-01-12 Shell Internationale Research Maatschappij B.V. Cuve de stockage de gaz liquefie
FR2877638B1 (fr) * 2004-11-10 2007-01-19 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee a elements calorifuges resistants a la compression
FR2903165B1 (fr) * 2006-06-30 2008-09-05 Gaz Transport & Technigaz Panneau prefabrique avec film protecteur
KR100751697B1 (ko) * 2006-09-20 2007-08-23 현대중공업 주식회사 탄소 섬유 보강 폴리머(cfrp)를 이용한 lng 저장용기용 화물창의 단열구조
FR2911576B1 (fr) * 2007-01-23 2009-03-06 Alstom Sa Procede de realisation d'une paroi isolante et etanche d'une cuve
CN102015434B (zh) * 2008-05-02 2014-07-02 三星重工业株式会社 用于固定货物的隔热面板的设备和货物的隔热面板
KR101215629B1 (ko) * 2008-06-20 2012-12-26 삼성중공업 주식회사 액화천연가스 화물창의 코너 패널
KR101168949B1 (ko) * 2010-06-01 2012-08-02 한국과학기술원 단열 구조체 및 이를 갖는 극저온 액체저장탱크
KR101200019B1 (ko) * 2010-11-29 2012-11-12 한국과학기술원 액화천연가스 운반선의 단열방벽 접합구조물
RU2559237C2 (ru) * 2011-03-09 2015-08-10 Блюскоуп Билдингз Норт Америка, Инк. Система изоляции стены, содержащая блоки с расположенными под углом сторонами
FR2973097B1 (fr) * 2011-03-23 2013-04-12 Gaztransp Et Technigaz Element calorifuge pour paroi de cuve etanche et thermiquement isolante
FR2977562B1 (fr) * 2011-07-06 2016-12-23 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse
FR2978748B1 (fr) * 2011-08-01 2014-10-24 Gaztransp Et Technigaz Cuve etanche et thermiquement isolante
WO2013083162A1 (fr) * 2011-12-05 2013-06-13 Blue Wave Co S.A. Cuves sous pression et appareil pour les supporter à bord de navires
KR101337628B1 (ko) * 2011-12-13 2013-12-05 삼성중공업 주식회사 액화천연가스 저장 탱크 및 그 설치 방법
FR2996520B1 (fr) * 2012-10-09 2014-10-24 Gaztransp Et Technigaz Cuve etanche et thermiquement isolante comportant une membrane metalique ondulee selon des plis orthogonaux
FR3022971B1 (fr) * 2014-06-25 2017-03-31 Gaztransport Et Technigaz Cuve etanche et isolante et son procede de fabrication
FR3026459B1 (fr) * 2014-09-26 2017-06-09 Gaztransport Et Technigaz Cuve etanche et isolante comportant un element de pontage entre les panneaux de la barriere isolante secondaire

Also Published As

Publication number Publication date
SG11201610486RA (en) 2017-01-27
AU2015279270A1 (en) 2017-01-12
AU2015279270B2 (en) 2018-11-29
PH12016502450B1 (en) 2017-03-06
PT3161370T (pt) 2018-02-16
PH12016502450A1 (en) 2017-03-06
FR3022971B1 (fr) 2017-03-31
JP6585635B2 (ja) 2019-10-02
US10267455B2 (en) 2019-04-23
KR102397134B1 (ko) 2022-05-12
KR20170021833A (ko) 2017-02-28
PL3161370T3 (pl) 2018-05-30
MY179675A (en) 2020-11-11
JP2017526867A (ja) 2017-09-14
RU2682230C2 (ru) 2019-03-15
RU2016150149A3 (fr) 2019-01-17
FR3022971A1 (fr) 2016-01-01
ES2657799T3 (es) 2018-03-06
WO2015197638A1 (fr) 2015-12-30
EP3161370B1 (fr) 2017-12-20
RU2016150149A (ru) 2018-07-26
CN106461158A (zh) 2017-02-22
NO3161370T3 (fr) 2018-05-19
US20170138537A1 (en) 2017-05-18
CN106461158B (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
EP3161370B1 (fr) Cuve etanche et isolante et son procede de fabrication
EP0248721B1 (fr) Structure de paroi thermiquement isolante de réservoir étanche
EP2283272B1 (fr) Fixation par collage de blocs isolants pour cuve de stockage de gaz liquefies a l&#39;aide de cordons ondules
FR2724623A1 (fr) Cuve etanche et thermiquement isolante perfectionnee integree dans une structure porteuse
EP3365592B1 (fr) Cuve comprenant des blocs isolants de coin equipes de fentes de relaxation
EP3004718B1 (fr) Caisse autoporteuse pour l&#39;isolation thermique d&#39;une cuve de stockage d&#39;un fluide et procede de fabrication d&#39;une telle caisse
EP3004719A2 (fr) Procede de fabrication d&#39;une caisse autoporteuse pour l&#39;isolation thermique d&#39;une cuve de stockage d&#39;un fluide et caisse autoporteuse ainsi realisee
WO2019155158A1 (fr) Procede de fabrication d&#39;une paroi de cuve etanche et thermiquement isolante comportant des bouchons isolants inter-panneaux
FR3085199A1 (fr) Paroi de cuve etanche et thermiquement isolante
EP4010622A1 (fr) Procédé de fabrication d&#39;une paroi de cuve étanche et thermiquement isolante comportant des bouchons isolants inter-panneaux
EP3055606B1 (fr) Caisse autoporteuse pour l&#39;isolation thermique d&#39;une cuve de stockage d&#39;un fluide et procede de fabrication d&#39;une telle caisse
WO2021186049A1 (fr) Cuve étanche et thermiquement isolante
FR2894319A1 (fr) &#34;cuve calorifugee de confinement d&#39;un fluide et son procede de fabrication&#34;
WO2022090341A1 (fr) Cuve étanche et thermiquement isolante
WO2021058824A1 (fr) Cuve étanche et thermiquement isolante
FR2781556A1 (fr) Cuve etanche et thermiquement isolante a panneaux prefabriques perfectionnes, integree dans une structure porteuse
EP4010621A1 (fr) Cuve étanche et thermiquement isolante comportant des bouchons isolants inter-panneaux
WO2020084247A1 (fr) Cuve etanche et thermiquement isolante
FR3103024A1 (fr) Cuve étanche et thermiquement isolante
FR3135126A1 (fr) Paroi de cuve traversée par une conduite étanche d’évacuation de fluide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20170719

DAV Request for validation of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 956697

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015006878

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3161370

Country of ref document: PT

Date of ref document: 20180216

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20180207

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2657799

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180306

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 956697

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180320

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GAZTRANSPORT ET TECHNIGAZ

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20171220

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015006878

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

26N No opposition filed

Effective date: 20180921

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015006878

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180623

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150623

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180623

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230706

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240524

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240626

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240603

Year of fee payment: 10

Ref country code: NO

Payment date: 20240523

Year of fee payment: 10

Ref country code: FR

Payment date: 20240624

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240517

Year of fee payment: 10

Ref country code: PT

Payment date: 20240517

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240607

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240606

Year of fee payment: 10