EP3123030B1 - Verfahren zum pumpen in einem system aus vakuumpumpen und system aus vakuumpumpen - Google Patents

Verfahren zum pumpen in einem system aus vakuumpumpen und system aus vakuumpumpen Download PDF

Info

Publication number
EP3123030B1
EP3123030B1 EP14715334.0A EP14715334A EP3123030B1 EP 3123030 B1 EP3123030 B1 EP 3123030B1 EP 14715334 A EP14715334 A EP 14715334A EP 3123030 B1 EP3123030 B1 EP 3123030B1
Authority
EP
European Patent Office
Prior art keywords
ejector
vacuum pump
return valve
primary dry
dry screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14715334.0A
Other languages
English (en)
French (fr)
Other versions
EP3123030A1 (de
Inventor
Didier MÜLLER
Jean-Eric Larcher
Théodore ILTCHEV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ateliers Busch SA
Original Assignee
Ateliers Busch SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ateliers Busch SA filed Critical Ateliers Busch SA
Priority to PL14715334T priority Critical patent/PL3123030T3/pl
Publication of EP3123030A1 publication Critical patent/EP3123030A1/de
Application granted granted Critical
Publication of EP3123030B1 publication Critical patent/EP3123030B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • F04C28/065Capacity control using a multiplicity of units or pumping capacities, e.g. multiple chambers, individually switchable or controllable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • F04F5/20Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/48Control
    • F04F5/52Control of evacuating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/22Fluid gaseous, i.e. compressible
    • F04C2210/221Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/22Fluid gaseous, i.e. compressible
    • F04C2210/225Nitrogen (N2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/30Use in a chemical vapor deposition [CVD] process or in a similar process

Definitions

  • the present invention relates to a pumping method for improving flow and final vacuum performance in a vacuum pump system whose main pump is a screw-type dry vacuum pump, while reducing the output gas temperature and its electrical energy consumption. Also, the present invention relates to a vacuum pump system that can be used to perform the method of the present invention.
  • the speed of rotation of the pump plays a very important role which defines the operation of the pump in the different phases of emptying the speakers.
  • the trivial solution is to use a speed variator which allows the reduction or the increase of the speed and consequently of the power according to the different criteria of the pressure type, maximum current, limit torque, temperature, etc. But during the periods of operation in reduced speed of rotation there are drops of flow at high pressure, the flow rate being proportional to the speed of rotation. Frequency converter speed variation imposes additional cost and bulk.
  • Another trivial solution is the use of bypass valves at certain stages in multi-stage Roots or Claws vacuum pumps, respectively at certain well defined positions along the screws in the dry vacuum pumps of the type. to screw. This solution requires many parts and has reliability problems.
  • the document WO2014 / 012896A2 proposes to use downstream of a roots-type primary vacuum pump an ejector mounted in parallel with the outlet orifice of the primary pump to reduce the final vacuum achievable by this type of pump.
  • the ejector is provided with motor fluid by an external gas line which may advantageously be the same as that used for purging the primary type pump roots.
  • the document WO2011 / 061429A2 teaches that it is possible to lower the power consumption of a primary vacuum pump if means for controlling the external motor fluid supply of the aforementioned ejector are incorporated in the pumping system. These control means have for The purpose is to switch on and off the ejector at the most favorable moments for an optimal reduction of the electric power of the primary pump.
  • JP2007100562A proposes to replace the engine fluid source as a gas line with an external and isolated air compressor.
  • Another object of the present invention is to propose a method of pumping in a vacuum pump system which makes it possible to obtain a higher flow rate at low pressure than that which can be obtained by means of a dry vacuum pump of the type shown in FIG. screw alone when pumping a vacuum chamber.
  • the present invention also aims to propose a method of pumping in a vacuum pump system to reduce the electrical energy required for the vacuum of a vacuum chamber and its maintenance, as well as the drop in temperature exhaust gases.
  • a pumping method which is carried out in the context of a pumping system whose configuration consists essentially of a dry screw-type primary vacuum pump provided with a pumping orifice. a gas inlet connected to a vacuum chamber and a gas outlet opening in a conduit which is provided with a check valve before opening into the atmosphere or other devices.
  • the suction of an ejector supplied with motor fluid by a compressor driven by at least one shaft of the primary vacuum pump is connected in parallel with the nonreturn valve, its outlet going to the atmosphere or joining the conduit of the primary pump after the check valve.
  • the method essentially consists in supplying the ejector with fluid from a compressor driven by at least one shaft of the vacuum pump and operating the ejector continuously all the time that the primary vacuum pump dries with a screw pump the gases contained in the vacuum chamber by the gas inlet orifice, but also all the time that the screw-dried primary vacuum pump maintains a defined pressure (eg the final vacuum) in the chamber by pushing back the gases going up by its exit.
  • a defined pressure eg the final vacuum
  • the invention resides in the fact that the coupling of the dry primary screw vacuum pump and the ejector does not require specific measurements and devices (eg pressure sensors, temperature sensors, current, etc.), servocontrols or data and calculation management. Therefore, the vacuum pump system adapted for carrying out the pumping method according to the present invention comprises a minimum number of components, is very simple and costs significantly less than existing systems.
  • the invention lies in the fact that, thanks to the new pumping method, the primary dry screw vacuum pump can operate at a single constant speed, that of the electrical network, or rotate at variable speeds according to its own mode of operation. Therefore, the complexity and cost of the vacuum pump system adapted for carrying out the pumping method according to the present invention can be further reduced.
  • the ejector built into the vacuum pump system can still operate without damage according to this method of pumping. Its dimensioning is conditioned by a minimum motor fluid consumption for the operation of the device. It is normally single-storey. Its nominal flow rate is chosen as a function of the volume of the outlet duct of the dry primary vacuum pump with screw limited by the non-return valve. This flow rate may be 1/500 to 1/20 of the nominal flow rate of the dry primary screw vacuum pump, but may also be lower or higher than these values.
  • the driving fluid for the ejector may be air, but also other gases, for example nitrogen.
  • the non-return valve placed in the duct at the outlet of the dry primary screw vacuum pump, may be a standard item available commercially. It is dimensioned according to the nominal flow rate of the dry primary screw vacuum pump. In particular, it is expected that the check valve closes when the suction pressure of the primary dry screw vacuum pump is between 500 mbar absolute and the final vacuum (eg 100 mbar).
  • the ejector is multi-stage.
  • the ejector may be made of high chemical resistance material substances and gas commonly used in the semiconductor industry, both in the single-stage ejector variant as in that of the multi ejector -floor.
  • the ejector is preferably small.
  • the ejector is integrated in a cartridge which incorporates the non-return valve.
  • the ejector is integrated in a cartridge which incorporates the check valve and this cartridge itself is housed in an exhaust silencer, fixed to the gas outlet port of the vacuum pump. primary dry screw.
  • the ejector still pumps in the volume between the gas outlet of the dry primary vacuum pump screw and the check valve.
  • the compressor can draw atmospheric air or gases into the gas outlet duct after the check valve.
  • the presence of the compressor makes the screw pump system independent of a source of compressed gas, which may respond to certain industrial environments.
  • the pressure is high, for example equal to the atmospheric pressure. Due to the compression in the dry primary screw vacuum pump, the pressure of the gases discharged at its outlet is higher than the atmospheric pressure (if the gases at the outlet of the primary pump are discharged directly to the atmosphere) or higher. than the pressure at the input of another device connected downstream. This causes the non-return valve to open.
  • the screw-type primary vacuum pump consumes less and less energy for compression and produces less and less compression heat.
  • Figure 1 represents a first vacuum pump system SP adapted for implementing a pumping method.
  • This vacuum pump system SP comprises an enclosure 1, which is connected to the suction port 2 of a dry primary screw vacuum pump 3.
  • the gas outlet orifice of the primary vacuum pump dries at 3 is connected to the duct 5.
  • a discharge non-return valve 6 is placed in the duct 5, which after this non-return valve continues in gas outlet duct 8.
  • the non-return valve 6, when it is closed, allows the formation of a volume 4, between the gas outlet port of the primary vacuum pump 3 and itself.
  • the vacuum pump system SP also comprises an ejector 7, connected in parallel with the non-return valve 6.
  • the suction orifice of the ejector is connected to the volume 4 of the duct 5 and its discharge orifice is connected to the duct 8.
  • the supply duct 9 provides the driving fluid for the ejector 7.
  • Figure 2 represents a second vacuum pump system SP adapted for implementing a pumping method.
  • the system represented in figure 2 further comprises a compressor 10 which supplies the gas flow rate at the pressure necessary for the operation of the ejector 7.
  • One embodiment of the invention provides that the compressor 10 is driven by at least one shaft of the primary dry screw pump 3. Its energy consumption so that it can provide the flow of gas at the pressure necessary to operate the ejector 7 is much smaller (eg of the order of 3% to 5%) compared to the gain on the energy consumption of the main pump 3.
  • the compressor 10 can suck the atmospheric air or gases in the gas outlet duct 8 after the non-return valve 6. Its presence makes the vacuum pump system independent of a source of compressed gas, which can meet certain industrial environments.
  • the driving fluid for the ejector 7 is fed by the compressor 10.
  • the dry screw-type primary vacuum pump 3 draws the gases into the chamber 1 through the conduit 2 connected to its inlet and compresses them to discharge thereafter to its exit in the conduit 5 by the non-return valve 6.
  • the closing pressure of the non-return valve 6 is reached, it closes. From this moment the pumping of the ejector 7 gradually lowers the pressure in the volume 4 to the value of its limit pressure.
  • the power consumed by the primary dry screw pump 3 gradually decreases. This occurs in a short period of time, for example for a certain cycle in 5 to 10 seconds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Claims (16)

  1. Verfahren zum Pumpen in einem System von Vakuumpumpen (SP), umfassend:
    - eine primäre trockene Schrauben-Vakuumpumpe (3) mit einer Gaseintrittsöffnung (2), welche mit einer Vakuumkammer (1) verbunden ist und einer Gasaustrittsöffnung (4), welche in eine Leitung (5) vor Austreten aus dem Gasauslass (8) des Systems von Vakuumpumpen (SP) führt,
    - ein Rückschlagventil (6), welches in der Leitung (5) zwischen der Gasaustrittsöffnung (4) und dem Gasauslass (8) angeordnet ist, und
    - einen Ejektor (7), welcher parallel zu dem Rückschlagventil (6) verbunden ist,
    - einen Kompressor (10),
    das Verfahren ist dadurch gekennzeichnet, dass
    der Kompressor (10) von mindestens einer der Wellen der primären trockenen Schrauben-Vakuumpumpe (3) angetrieben ist;
    die primäre trockene Schrauben-Vakuumpumpe (3) in Betrieb genommen wird, um die Gase, welche sich in der Vakuumkammer (1) befinden, durch die Gasaustrittsöffnung (4) zu pumpen;
    in simultaner Weise wird der Ejektor (7) mit einem Arbeitsfluid durch den Kompressor (10) versorgt; und
    der Ejektor (7) wird während der ganzen Zeit mit Arbeitsfluid versorgt, in der die primäre trockene Schrauben-Vakuumpumpe (3) von einer Energiequelle versorgt ist und die Vakuumkammer (1) evakuiert.
  2. Verfahren zum Pumpen nach Anspruch 1, dadurch gekennzeichnet, dass es einen Ejektor (7) verwendet, dessen Auslass in die Leitung (5) nach dem Rückschlagventil (6) mündet.
  3. Verfahren zum Pumpen nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die nominelle Flussrate des Ejektors (7) als eine Funktion des Volumens der Auslassleitung (5) der primären trockenen Schrauben-Vakuumpumpe (3) gewählt ist, welches durch das Rückschlagventil (6) begrenzt ist.
  4. Verfahren zum Pumpen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Arbeitsmedium des Ejektors (7) Druckluft und/oder Stickstoff ist.
  5. Verfahren zum Pumpen nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Rückschlagventil (6) schliesst, wenn der Druck an der Saugseite der primären trockenen Schrauben-Vakuumpumpe (3) zwischen 500 mbar absolut und dem finalen Vakuum ist.
  6. Verfahren zum Pumpen nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es einen Ejektor (7) verwendet, welcher aus einem Material gefertigt ist, welches erhöhte chemische Resistenz gegen Substanzen und Gase aufweist, die herkömmlicherweise in der HalbleiterIndustrie verwendet werden.
  7. Verfahren zum Pumpen nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es einen Ejektor (7) verwendet, welcher in einem Gehäuse integriert ist, in dem das Rückschlagventil (6) aufgenommen ist.
  8. Verfahren zum Pumpen nach Anspruch 7, dadurch gekennzeichnet, dass es das Gehäuse verwendet, welches in einem Abgasschalldämpfer aufgenommen ist, der an der Austrittsöffnung (5) der primären trockenen Schrauben-Vakuumpumpe (3) befestigt ist
  9. System von Vakuumpumpen (SP), umfassend:
    - eine primäre trockene Schrauben-Vakuumpumpe (3) mit einer Gaseintrittsöffnung (2), welche mit einer Vakuumkammer (1) verbunden ist und einer Gasaustrittsöffnung (4), welche in eine Leitung (5) vor dem Austreten aus einem Gasauslass (8) des Systems von Vakuumpumpen (SP) führt,
    - ein Rückschlagventil (6), welches in der Leitung (5) zwischen der Gasaustrittsöffnung (4) und dem Gasauslass (8) angeordnet ist, und
    - einen Ejektor (7), welcher parallel zu dem Rückschlagventil (6) verbunden ist,
    - einen Kompressor (10),
    das System von Vakuumpumpen (SP) ist dadurch gekennzeichnet, dass
    der Kompressor (10) über mindestens eine der Wellen der primären trockenen Schrauben-Vakuumpumpe (3) angetrieben ist,
    der Injektor (7) ausgebildet ist, um mit einem Arbeitsmedium durch den Kompressor (10) während der ganzen Zeit versorgt zu werden, in der die primäre trockenen Schrauben-Vakuumpumpe (3) von einer Energiequelle versorgt ist und die Vakuumkammer (1) evakuiert.
  10. System von Vakuumpumpen nach Anspruch 9, dadurch gekennzeichnet, dass der Auslass des Ejektors (7) in die Leitung (5) nach dem Rückschlagventil (6) mündet.
  11. System von Vakuumpumpen nach einem der Ansprüche 9 bis 10, dadurch gekennzeichnet, dass die nominelle Flussrate des Ejektors (7) als eine Funktion des Volumens der Austrittsleitung (5) der primären trockenen Schrauben-Vakuumpumpe (3) gewählt ist, welches durch das Rückschlagventil (6) begrenzt ist.
  12. System von Vakuumpumpen nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass es als Arbeitsmedium des Ejektors (7) Druckluft und/oder Stickstoff verwendet.
  13. System von Vakuumpumpen nach einem der Ansprüche 9 bis 2, dadurch gekennzeichnet, dass das Rückschlagventil (6) ausgebildet ist, um zu schliessen, wenn der Druck auf der Saugseite der primären trockenen Schrauben-Vakuumpumpe (3) zwischen 500mbar absolut und dem finale Vakuum ist.
  14. System von Vakuumpumpen nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass der Ejektor (7) aus einem Material gefertigt ist, welches eine erhöhte chemische Resistenz gegen Substanzen und Gase hat, welche herkömmlicherweise in der Halbleiterindustrie verwendet werden.
  15. System von Vakuumpumpen nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, dass der Enjektor (7) in einem Gehäuse integriert ist, welches das Rückschlagventil (6) aufnimmt.
  16. System von Vakuumpumpen nach Anspruch 15, dadurch gekennzeichnet, dass das Gehäuse in einem Abgasschalldämpfer aufgenommen ist, welcher an der Gasaustrittsöffnung (5) der primären trockenen Schrauben-Vakuumpumpe (3) befestigt ist.
EP14715334.0A 2014-03-24 2014-04-07 Verfahren zum pumpen in einem system aus vakuumpumpen und system aus vakuumpumpen Active EP3123030B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL14715334T PL3123030T3 (pl) 2014-03-24 2014-04-07 Sposób pompowania w układzie pomp próżniowych i układ pomp próżniowych

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP2014055822 2014-03-24
PCT/EP2014/056938 WO2015144254A1 (fr) 2014-03-24 2014-04-07 Méthode de pompage dans un système de pompes à vide et système de pompes à vide

Publications (2)

Publication Number Publication Date
EP3123030A1 EP3123030A1 (de) 2017-02-01
EP3123030B1 true EP3123030B1 (de) 2019-08-07

Family

ID=50346017

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14715334.0A Active EP3123030B1 (de) 2014-03-24 2014-04-07 Verfahren zum pumpen in einem system aus vakuumpumpen und system aus vakuumpumpen

Country Status (15)

Country Link
US (1) US10260502B2 (de)
EP (1) EP3123030B1 (de)
JP (1) JP6445041B2 (de)
KR (1) KR102190221B1 (de)
CN (1) CN106232992A (de)
AU (1) AU2014388058B2 (de)
BR (1) BR112016021735B1 (de)
CA (1) CA2943315C (de)
DK (1) DK3123030T3 (de)
ES (1) ES2752762T3 (de)
PL (1) PL3123030T3 (de)
PT (1) PT3123030T (de)
RU (1) RU2660698C2 (de)
TW (1) TWI651471B (de)
WO (1) WO2015144254A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178846A (ja) * 2017-04-12 2018-11-15 株式会社荏原製作所 真空ポンプ装置の運転制御装置、及び運転制御方法
DE102021107055A1 (de) * 2021-03-22 2022-09-22 Inficon Gmbh Funktionsprüfung einer Leckdetektionsvorrichtung für die Dichtheitsprüfung eines mit einer Flüssigkeit gefüllten Prüflings

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536418A (en) * 1969-02-13 1970-10-27 Onezime P Breaux Cryogenic turbo-molecular vacuum pump
FR2822200B1 (fr) * 2001-03-19 2003-09-26 Cit Alcatel Systeme de pompage pour gaz a faible conductivite thermique
SE519647C2 (sv) * 2002-05-03 2003-03-25 Piab Ab Vakuumpump och sätt att tillhandahålla undertryck
JP4745779B2 (ja) * 2005-10-03 2011-08-10 神港精機株式会社 真空装置
FR2952683B1 (fr) * 2009-11-18 2011-11-04 Alcatel Lucent Procede et dispositif de pompage a consommation d'energie reduite
US20120261011A1 (en) * 2011-04-14 2012-10-18 Young Man Cho Energy reduction module using a depressurizing vacuum apparatus for vacuum pump
FR2993614B1 (fr) * 2012-07-19 2018-06-15 Pfeiffer Vacuum Procede et dispositif de pompage d'une chambre de procedes
RU2666379C2 (ru) * 2014-05-01 2018-09-07 Ателье Буш Са Способ откачки в насосной системе и система вакуумных насосов
JP6512674B2 (ja) * 2014-10-02 2019-05-15 アテリエ ビスク ソシエテ アノニムAtelier Busch SA 真空を生成するための圧送システムおよびこの圧送システムによる圧送方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3123030A1 (de) 2017-02-01
CA2943315A1 (fr) 2015-10-01
US10260502B2 (en) 2019-04-16
RU2016141339A (ru) 2018-04-24
TWI651471B (zh) 2019-02-21
KR102190221B1 (ko) 2020-12-14
AU2014388058B2 (en) 2019-02-21
PT3123030T (pt) 2019-10-25
BR112016021735B1 (pt) 2022-07-05
TW201600723A (zh) 2016-01-01
WO2015144254A1 (fr) 2015-10-01
KR20160137596A (ko) 2016-11-30
RU2660698C2 (ru) 2018-07-09
CN106232992A (zh) 2016-12-14
US20170089339A1 (en) 2017-03-30
ES2752762T3 (es) 2020-04-06
DK3123030T3 (da) 2019-10-14
JP6445041B2 (ja) 2018-12-26
JP2017519141A (ja) 2017-07-13
PL3123030T3 (pl) 2020-03-31
AU2014388058A1 (en) 2016-10-13
CA2943315C (fr) 2021-09-21
BR112016021735A2 (pt) 2021-09-08

Similar Documents

Publication Publication Date Title
EP3201469B1 (de) Pumpsystem zur vakuumerzeugung und verfahren zum pumpen mit diesem pumpsystem
EP2501936B1 (de) Pumpverfahren und vorrichtung mit verringertem energieverbrauch
EP3161318B1 (de) Verfahren zum pumpen in einem system aus vakuumpumpen und system aus vakuumpumpen
EP3198148B1 (de) Vakuumerzeugendes pumpsystem und pumpverfahren mit diesem pumpsystem
WO2018010970A1 (fr) Procédé de descente en pression dans un sas de chargement et de déchargement et groupe de pompage associé
EP3123030B1 (de) Verfahren zum pumpen in einem system aus vakuumpumpen und system aus vakuumpumpen
EP3137771B1 (de) Verfahren zum pumpen in einem pumpsystem und vakuumpumpensystem
WO2020078689A1 (fr) Procédé de contrôle de la température d'une pompe à vide, pompe à vide et installation associées
FR2968730A1 (fr) Dispositif de pompage a consommation d'energie reduite
EP2823182B1 (de) Verbesserte pumpeinrichtung und ein steuerungsverfahren für solch eine pumpeinrichtung
BE332865A (de)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190327

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1164310

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014051236

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20191011

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3123030

Country of ref document: PT

Date of ref document: 20191025

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20191008

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENT- UND MARKENANWAELTE, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191207

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2752762

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014051236

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1164310

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230330

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20230417

Year of fee payment: 10

Ref country code: IT

Payment date: 20230420

Year of fee payment: 10

Ref country code: IE

Payment date: 20230419

Year of fee payment: 10

Ref country code: FR

Payment date: 20230424

Year of fee payment: 10

Ref country code: ES

Payment date: 20230627

Year of fee payment: 10

Ref country code: DK

Payment date: 20230421

Year of fee payment: 10

Ref country code: DE

Payment date: 20230420

Year of fee payment: 10

Ref country code: CH

Payment date: 20230502

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230420

Year of fee payment: 10

Ref country code: AT

Payment date: 20230420

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230419

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240418

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240418

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240329

Year of fee payment: 11

Ref country code: PL

Payment date: 20240328

Year of fee payment: 11